Quantized critical supercurrent in SrTiO 3 -based quantum point contacts

Superconductivity in SrTiO occurs at remarkably low carrier densities and therefore, unlike conventional superconductors, can be controlled by electrostatic gates. Here, we demonstrate nanoscale weak links connecting superconducting leads, all within a single material, SrTiO . Ionic liquid gating ac...

Full description

Saved in:
Bibliographic Details
Published inScience advances Vol. 7; no. 40; p. eabi6520
Main Authors Mikheev, Evgeny, Rosen, Ilan T, Goldhaber-Gordon, David
Format Journal Article
LanguageEnglish
Published United States 01.10.2021
Online AccessGet full text

Cover

Loading…
Abstract Superconductivity in SrTiO occurs at remarkably low carrier densities and therefore, unlike conventional superconductors, can be controlled by electrostatic gates. Here, we demonstrate nanoscale weak links connecting superconducting leads, all within a single material, SrTiO . Ionic liquid gating accumulates carriers in the leads, and local electrostatic gates are tuned to open the weak link. These devices behave as superconducting quantum point contacts with a quantized critical supercurrent. This is a milestone toward establishing SrTiO as a single-material platform for mesoscopic superconducting transport experiments that also intrinsically contains the necessary ingredients to engineer topological superconductivity.
AbstractList Superconductivity in SrTiO occurs at remarkably low carrier densities and therefore, unlike conventional superconductors, can be controlled by electrostatic gates. Here, we demonstrate nanoscale weak links connecting superconducting leads, all within a single material, SrTiO . Ionic liquid gating accumulates carriers in the leads, and local electrostatic gates are tuned to open the weak link. These devices behave as superconducting quantum point contacts with a quantized critical supercurrent. This is a milestone toward establishing SrTiO as a single-material platform for mesoscopic superconducting transport experiments that also intrinsically contains the necessary ingredients to engineer topological superconductivity.
A superconducting quantum constriction is realized by locally screening ionic liquid gating in SrTiO 3 . Superconductivity in SrTiO 3 occurs at remarkably low carrier densities and therefore, unlike conventional superconductors, can be controlled by electrostatic gates. Here, we demonstrate nanoscale weak links connecting superconducting leads, all within a single material, SrTiO 3 . Ionic liquid gating accumulates carriers in the leads, and local electrostatic gates are tuned to open the weak link. These devices behave as superconducting quantum point contacts with a quantized critical supercurrent. This is a milestone toward establishing SrTiO 3 as a single-material platform for mesoscopic superconducting transport experiments that also intrinsically contains the necessary ingredients to engineer topological superconductivity.
Author Goldhaber-Gordon, David
Mikheev, Evgeny
Rosen, Ilan T
Author_xml – sequence: 1
  givenname: Evgeny
  orcidid: 0000-0003-2818-5978
  surname: Mikheev
  fullname: Mikheev, Evgeny
  organization: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
– sequence: 2
  givenname: Ilan T
  orcidid: 0000-0001-8869-7364
  surname: Rosen
  fullname: Rosen, Ilan T
  organization: Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
– sequence: 3
  givenname: David
  orcidid: 0000-0001-8549-0560
  surname: Goldhaber-Gordon
  fullname: Goldhaber-Gordon, David
  organization: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34597141$$D View this record in MEDLINE/PubMed
BookMark eNpNkFFLwzAQx4NM3Jx79VHyBTpzTZu2jzJ0EwZDnM_lklwhsrU1aQX99HZ0ik933P1_x_G7ZpO6qYmxWxBLgFjdB-PQfi5RO5XG4oLNYpmlUZwm-eRfP2WLEN6FEJAolUJxxaYySYsMEpixzUuPdee-yXLjXecMHnjoW_Km957qjruav_q923HJI41hyH2ciP7I28YNe9PUHZou3LDLCg-BFuc6Z29Pj_vVJtru1s-rh21kQGQQVTYmCVkhjKbExAgqR42FzaVBIMyt1qgNKauMHqZaSkHD5wCUpJW1hZyz5XjX-CYET1XZendE_1WCKE9WytFKebYyAHcj0Pb6SPYv_utA_gAFO2LE
CitedBy_id crossref_primary_10_1103_PhysRevResearch_4_043087
crossref_primary_10_1038_s41928_023_00981_5
crossref_primary_10_1038_s41467_022_33682_2
crossref_primary_10_1103_PhysRevResearch_6_L012051
crossref_primary_10_1021_acs_nanolett_1c04447
crossref_primary_10_1016_j_cpc_2022_108595
crossref_primary_10_1038_s41563_023_01622_0
crossref_primary_10_1021_acs_nanolett_1c03481
Cites_doi 10.1103/PhysRevB.98.024521
10.1103/RevModPhys.79.801
10.1103/PhysRevLett.94.026801
10.1038/nnano.2009.240
10.3390/condmat3040037
10.1103/PhysRevLett.112.136801
10.1038/srep06788
10.1103/PhysRevMaterials.3.123401
10.1038/ncomms4990
10.1103/PhysRevB.100.094526
10.1103/PhysRevB.46.12573
10.1103/PhysRevB.93.184504
10.1038/ncomms8426
10.1088/1367-2630/13/11/113006
10.1103/PhysRevLett.66.3056
10.1002/admi.201900772
10.1103/PhysRevApplied.7.034029
10.1103/PhysRevB.94.045120
10.1021/acs.nanolett.5b00216
10.1021/nl4014265
10.1088/1367-2630/13/5/053016
10.1103/PhysRevB.96.014513
10.1021/acs.nanolett.6b02348
10.1126/science.1126445
10.1103/PhysRevLett.117.237002
10.1038/nature07576
10.1103/PhysRevB.70.245319
10.1038/ncomms7005
10.1103/PhysRevLett.112.066801
10.1103/PhysRevLett.101.036801
10.1103/PhysRevB.41.7906
10.1103/PhysRevB.86.085121
10.1038/ncomms3716
10.1103/PhysRevB.45.10563
10.1103/PhysRevB.87.125110
10.1103/RevModPhys.76.411
10.1016/0921-4534(96)00013-5
10.1038/nature14398
10.1103/PhysRevB.86.060503
10.1103/PhysRevLett.107.256601
10.1038/nmat4303
10.1103/PhysRevLett.75.3533
10.1021/acs.nanolett.8b01614
10.1103/PhysRevB.95.140502
10.1038/ncomms2116
10.1038/nmat2298
10.1103/PhysRevB.87.014436
10.1038/34373
10.1103/PhysRevLett.75.1831
10.1038/s41467-018-06444-2
10.1021/acs.nanolett.6b03820
10.1038/s41467-019-13133-1
10.1038/nnano.2006.140
10.1103/RevModPhys.79.1217
10.1038/nphys3592
10.1103/PhysRevB.96.201404
10.1063/1.5080939
10.1038/s41567-018-0365-8
10.1038/ncomms11167
10.1103/PhysRevB.96.161406
10.1103/PhysRevB.86.180503
10.1103/PhysRevB.53.365
10.1038/nmat2750
10.1103/PhysRevB.10.1865
10.1103/PhysRevB.25.4515
10.1038/ncomms7181
10.1038/ncomms2080
10.1103/PhysRevLett.45.1352
10.1103/PhysRevB.99.075435
10.1103/PhysRevB.89.165415
10.1103/PhysRevLett.109.056803
10.1103/PhysRevB.100.094504
10.1103/PhysRevB.27.6739
10.1038/srep24822
10.1103/PhysRevB.46.14005
10.1038/s41928-020-0383-2
10.1103/PhysRevB.51.1073
10.1021/acs.nanolett.8b02029
10.1016/j.aop.2020.168107
10.1038/s41467-018-02907-8
10.1073/pnas.1713916115
10.1038/nphys3049
10.1103/PhysRevB.39.8040
10.1103/PhysRevB.103.075431
10.1038/s41467-017-00495-7
10.1126/science.aat6467
10.1103/PhysRevB.80.155440
10.1103/PhysRevLett.103.226802
10.1103/PhysRevB.99.104515
10.1038/s41467-018-04657-z
10.1038/ncomms7437
10.1038/nmat3810
10.1103/PhysRevB.100.075422
10.1103/PhysRevB.96.224506
10.1103/PhysRevB.38.8707
10.1006/spmi.1999.0730
10.1103/PhysRevB.71.174502
ContentType Journal Article
DBID NPM
AAYXX
CITATION
DOI 10.1126/sciadv.abi6520
DatabaseName PubMed
CrossRef
DatabaseTitle PubMed
CrossRef
DatabaseTitleList PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2375-2548
ExternalDocumentID 10_1126_sciadv_abi6520
34597141
Genre Journal Article
GroupedDBID 53G
5VS
AAFWJ
ACGFS
ADAXU
ADBBV
ADPDF
ADRAZ
AENVI
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBORY
BCGUY
BCNDV
BKF
EBS
EJD
FRP
GROUPED_DOAJ
HYE
KQ8
M48
M~E
NPM
OK1
OVD
OVEED
RHF
RHI
RPM
TEORI
AAYXX
CITATION
ID FETCH-LOGICAL-c1071-fd2e31790cbe4c2a168aba9d83ca1ea8dbbabce6d6cb9d8b330e00111e45fdd93
IEDL.DBID M48
ISSN 2375-2548
IngestDate Fri Aug 23 01:46:35 EDT 2024
Wed Oct 23 10:01:32 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 40
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1071-fd2e31790cbe4c2a168aba9d83ca1ea8dbbabce6d6cb9d8b330e00111e45fdd93
ORCID 0000-0003-2818-5978
0000-0001-8549-0560
0000-0001-8869-7364
PMID 34597141
ParticipantIDs crossref_primary_10_1126_sciadv_abi6520
pubmed_primary_34597141
PublicationCentury 2000
PublicationDate 2021-Oct
2021-10-00
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-Oct
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Science advances
PublicationTitleAlternate Sci Adv
PublicationYear 2021
References e_1_3_2_28_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_85_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_89_2
e_1_3_2_100_2
e_1_3_2_81_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_31_2
e_1_3_2_73_2
Lin X. (e_1_3_2_12_2) 2013; 3
e_1_3_2_58_2
e_1_3_2_96_2
e_1_3_2_3_2
e_1_3_2_35_2
e_1_3_2_77_2
e_1_3_2_92_2
e_1_3_2_50_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_86_2
e_1_3_2_21_2
e_1_3_2_63_2
e_1_3_2_44_2
e_1_3_2_67_2
Cheng G. (e_1_3_2_25_2) 2016; 6
e_1_3_2_82_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_97_2
e_1_3_2_2_2
e_1_3_2_93_2
e_1_3_2_70_2
e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_87_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_60_2
e_1_3_2_83_2
e_1_3_2_102_2
e_1_3_2_9_2
e_1_3_2_37_2
e_1_3_2_18_2
e_1_3_2_75_2
e_1_3_2_10_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_33_2
e_1_3_2_79_2
e_1_3_2_14_2
e_1_3_2_56_2
e_1_3_2_98_2
e_1_3_2_94_2
e_1_3_2_71_2
e_1_3_2_90_2
e_1_3_2_27_2
e_1_3_2_65_2
e_1_3_2_42_2
e_1_3_2_84_2
e_1_3_2_23_2
e_1_3_2_69_2
e_1_3_2_46_2
e_1_3_2_88_2
e_1_3_2_61_2
e_1_3_2_80_2
e_1_3_2_101_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_99_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_95_2
e_1_3_2_4_2
e_1_3_2_91_2
e_1_3_2_72_2
References_xml – ident: e_1_3_2_52_2
  doi: 10.1103/PhysRevB.98.024521
– ident: e_1_3_2_84_2
  doi: 10.1103/RevModPhys.79.801
– ident: e_1_3_2_80_2
  doi: 10.1103/PhysRevLett.94.026801
– ident: e_1_3_2_75_2
  doi: 10.1038/nnano.2009.240
– ident: e_1_3_2_49_2
  doi: 10.3390/condmat3040037
– ident: e_1_3_2_86_2
  doi: 10.1103/PhysRevLett.112.136801
– ident: e_1_3_2_72_2
  doi: 10.1038/srep06788
– ident: e_1_3_2_32_2
  doi: 10.1103/PhysRevMaterials.3.123401
– ident: e_1_3_2_69_2
  doi: 10.1038/ncomms4990
– ident: e_1_3_2_50_2
  doi: 10.1103/PhysRevB.100.094526
– ident: e_1_3_2_42_2
  doi: 10.1103/PhysRevB.46.12573
– ident: e_1_3_2_61_2
  doi: 10.1103/PhysRevB.93.184504
– ident: e_1_3_2_66_2
  doi: 10.1038/ncomms8426
– ident: e_1_3_2_67_2
  doi: 10.1088/1367-2630/13/11/113006
– ident: e_1_3_2_3_2
  doi: 10.1103/PhysRevLett.66.3056
– ident: e_1_3_2_47_2
– ident: e_1_3_2_19_2
  doi: 10.1002/admi.201900772
– ident: e_1_3_2_11_2
  doi: 10.1103/PhysRevApplied.7.034029
– ident: e_1_3_2_20_2
  doi: 10.1103/PhysRevB.94.045120
– ident: e_1_3_2_28_2
  doi: 10.1021/acs.nanolett.5b00216
– ident: e_1_3_2_8_2
  doi: 10.1021/nl4014265
– ident: e_1_3_2_54_2
  doi: 10.1088/1367-2630/13/5/053016
– ident: e_1_3_2_97_2
  doi: 10.1103/PhysRevB.96.014513
– ident: e_1_3_2_35_2
  doi: 10.1021/acs.nanolett.6b02348
– ident: e_1_3_2_77_2
  doi: 10.1126/science.1126445
– ident: e_1_3_2_94_2
  doi: 10.1103/PhysRevLett.117.237002
– ident: e_1_3_2_16_2
  doi: 10.1038/nature07576
– ident: e_1_3_2_83_2
  doi: 10.1103/PhysRevB.70.245319
– ident: e_1_3_2_51_2
  doi: 10.1038/ncomms7005
– ident: e_1_3_2_79_2
  doi: 10.1103/PhysRevLett.112.066801
– ident: e_1_3_2_78_2
  doi: 10.1103/PhysRevLett.101.036801
– ident: e_1_3_2_2_2
  doi: 10.1103/PhysRevB.41.7906
– ident: e_1_3_2_36_2
  doi: 10.1103/PhysRevB.86.085121
– ident: e_1_3_2_91_2
  doi: 10.1038/ncomms3716
– ident: e_1_3_2_4_2
  doi: 10.1103/PhysRevB.45.10563
– ident: e_1_3_2_71_2
  doi: 10.1103/PhysRevB.87.125110
– ident: e_1_3_2_89_2
  doi: 10.1103/RevModPhys.76.411
– ident: e_1_3_2_99_2
  doi: 10.1016/0921-4534(96)00013-5
– ident: e_1_3_2_24_2
  doi: 10.1038/nature14398
– ident: e_1_3_2_37_2
  doi: 10.1103/PhysRevB.86.060503
– ident: e_1_3_2_34_2
  doi: 10.1103/PhysRevLett.107.256601
– ident: e_1_3_2_44_2
  doi: 10.1038/nmat4303
– ident: e_1_3_2_5_2
  doi: 10.1103/PhysRevLett.75.3533
– ident: e_1_3_2_26_2
  doi: 10.1021/acs.nanolett.8b01614
– ident: e_1_3_2_30_2
  doi: 10.1103/PhysRevB.95.140502
– ident: e_1_3_2_15_2
  doi: 10.1038/ncomms2116
– ident: e_1_3_2_33_2
  doi: 10.1038/nmat2298
– ident: e_1_3_2_48_2
  doi: 10.1103/PhysRevB.87.014436
– ident: e_1_3_2_100_2
  doi: 10.1038/34373
– ident: e_1_3_2_88_2
  doi: 10.1103/PhysRevLett.75.1831
– ident: e_1_3_2_18_2
  doi: 10.1038/s41467-018-06444-2
– ident: e_1_3_2_29_2
  doi: 10.1021/acs.nanolett.6b03820
– ident: e_1_3_2_56_2
  doi: 10.1038/s41467-019-13133-1
– ident: e_1_3_2_7_2
  doi: 10.1038/nnano.2006.140
– ident: e_1_3_2_59_2
  doi: 10.1103/RevModPhys.79.1217
– ident: e_1_3_2_93_2
  doi: 10.1038/nphys3592
– ident: e_1_3_2_76_2
  doi: 10.1103/PhysRevB.96.201404
– ident: e_1_3_2_31_2
  doi: 10.1063/1.5080939
– ident: e_1_3_2_102_2
  doi: 10.1038/s41567-018-0365-8
– ident: e_1_3_2_57_2
  doi: 10.1038/ncomms11167
– ident: e_1_3_2_58_2
  doi: 10.1103/PhysRevB.96.161406
– ident: e_1_3_2_55_2
  doi: 10.1103/PhysRevB.86.180503
– ident: e_1_3_2_64_2
  doi: 10.1103/PhysRevB.53.365
– ident: e_1_3_2_45_2
  doi: 10.1038/nmat2750
– ident: e_1_3_2_101_2
  doi: 10.1103/PhysRevB.10.1865
– ident: e_1_3_2_39_2
  doi: 10.1103/PhysRevB.25.4515
– ident: e_1_3_2_92_2
  doi: 10.1038/ncomms7181
– ident: e_1_3_2_82_2
  doi: 10.1038/ncomms2080
– volume: 3
  start-page: 021002
  year: 2013
  ident: e_1_3_2_12_2
  article-title: Fermi surface of the most dilute superconductor
  publication-title: Phys. Rev. X
  contributor:
    fullname: Lin X.
– ident: e_1_3_2_98_2
  doi: 10.1103/PhysRevLett.45.1352
– ident: e_1_3_2_10_2
  doi: 10.1103/PhysRevB.99.075435
– ident: e_1_3_2_60_2
– ident: e_1_3_2_9_2
  doi: 10.1103/PhysRevB.89.165415
– ident: e_1_3_2_90_2
  doi: 10.1103/PhysRevLett.109.056803
– ident: e_1_3_2_53_2
  doi: 10.1103/PhysRevB.100.094504
– ident: e_1_3_2_40_2
  doi: 10.1103/PhysRevB.27.6739
– ident: e_1_3_2_43_2
  doi: 10.1038/srep24822
– ident: e_1_3_2_96_2
  doi: 10.1103/PhysRevB.46.14005
– ident: e_1_3_2_23_2
  doi: 10.1038/s41928-020-0383-2
– ident: e_1_3_2_63_2
  doi: 10.1103/PhysRevB.51.1073
– ident: e_1_3_2_95_2
  doi: 10.1021/acs.nanolett.8b02029
– ident: e_1_3_2_13_2
  doi: 10.1016/j.aop.2020.168107
– ident: e_1_3_2_62_2
  doi: 10.1038/s41467-018-02907-8
– ident: e_1_3_2_87_2
  doi: 10.1073/pnas.1713916115
– ident: e_1_3_2_85_2
  doi: 10.1038/nphys3049
– ident: e_1_3_2_74_2
  doi: 10.1103/PhysRevB.39.8040
– ident: e_1_3_2_46_2
  doi: 10.1103/PhysRevB.103.075431
– ident: e_1_3_2_21_2
  doi: 10.1038/s41467-017-00495-7
– ident: e_1_3_2_27_2
  doi: 10.1126/science.aat6467
– ident: e_1_3_2_81_2
  doi: 10.1103/PhysRevB.80.155440
– ident: e_1_3_2_14_2
  doi: 10.1103/PhysRevLett.103.226802
– ident: e_1_3_2_73_2
  doi: 10.1103/PhysRevB.99.104515
– ident: e_1_3_2_22_2
  doi: 10.1038/s41467-018-04657-z
– volume: 6
  start-page: 041042
  year: 2016
  ident: e_1_3_2_25_2
  article-title: Tunable electron-electron interactions in LaAlO3/SrTiO3 nanostructures
  publication-title: Phys. Rev, X
  contributor:
    fullname: Cheng G.
– ident: e_1_3_2_17_2
  doi: 10.1038/ncomms7437
– ident: e_1_3_2_70_2
  doi: 10.1038/nmat3810
– ident: e_1_3_2_68_2
  doi: 10.1103/PhysRevB.100.075422
– ident: e_1_3_2_38_2
  doi: 10.1103/PhysRevB.96.224506
– ident: e_1_3_2_41_2
  doi: 10.1103/PhysRevB.38.8707
– ident: e_1_3_2_65_2
  doi: 10.1006/spmi.1999.0730
– ident: e_1_3_2_6_2
  doi: 10.1103/PhysRevB.71.174502
SSID ssj0001466519
Score 2.2141917
Snippet Superconductivity in SrTiO occurs at remarkably low carrier densities and therefore, unlike conventional superconductors, can be controlled by electrostatic...
A superconducting quantum constriction is realized by locally screening ionic liquid gating in SrTiO 3 . Superconductivity in SrTiO 3 occurs at remarkably low...
SourceID crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage eabi6520
Title Quantized critical supercurrent in SrTiO 3 -based quantum point contacts
URI https://www.ncbi.nlm.nih.gov/pubmed/34597141
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1bS8MwGA0yQfYizuu8jDwI6kNG26Rp-yAi4hjCFHGDvZV8SQoF7S5dRf31pm2mDvU1l5eThO-c5Mv5EDrlZldo7UoCChRhrghIlDiMyJCBF0lHBdVzweCe90fsbuyPv_OfLID5n9KurCc1mj9332bvV-bAX_74ACPUa1dAyn3PyPd1j1FW7vaBpfrVfQvj3LAV69v4e1oTbVBm2LXL3JUQtUI2q6DT20Kbli3i63p5W2hNZ9uoZc9jjs-tafTFDuo_Fgaj9EMrLG31ApwXUz2XtQETTjP8NB-mD5hiUoYuhWfljOIFTyep6S9z1oVc5Lto1Lsd3vSJrZJApJFuLkmUp2npsyVBM-kJl4cCRKRCKoWrRagABEjNFZdgWoFSR1cV5jXzE6Uiuoca2STTBwgHoryCCEIIKTAHwlDxwNEJBNoD7ki_jc6WwMTT2gwjrkSEx-Mazdii2Ub7NW5f45bgHv7bc4SaXpkwUmXKHaPGYl7oExPxF9CplHKnWtBP0_espA
link.rule.ids 315,786,790,870,24346,27955,27956
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantized+critical+supercurrent+in+SrTiO+3+-based+quantum+point+contacts&rft.jtitle=Science+advances&rft.au=Mikheev%2C+Evgeny&rft.au=Rosen%2C+Ilan+T&rft.au=Goldhaber-Gordon%2C+David&rft.date=2021-10-01&rft.eissn=2375-2548&rft.volume=7&rft.issue=40&rft.spage=eabi6520&rft_id=info:doi/10.1126%2Fsciadv.abi6520&rft_id=info%3Apmid%2F34597141&rft.externalDocID=34597141
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2375-2548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2375-2548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2375-2548&client=summon