Interfacial Atomic Mechanisms of Single‐Crystalline MoS 2 Epitaxy on Sapphire
The epitaxial growth of molybdenum disulfide (MoS₂) on sapphire substrates enables the formation of single‐crystalline monolayer MoS₂ with exceptional material properties on a wafer scale. Despite this achievement, the underlying growth mechanisms remain a subject of debate. The epitaxial interface...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 37; no. 11; p. e2414317 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
01.03.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 |
DOI | 10.1002/adma.202414317 |
Cover
Loading…
Abstract | The epitaxial growth of molybdenum disulfide (MoS₂) on sapphire substrates enables the formation of single‐crystalline monolayer MoS₂ with exceptional material properties on a wafer scale. Despite this achievement, the underlying growth mechanisms remain a subject of debate. The epitaxial interface is critical for understanding these mechanisms, yet its exact atomic configuration has previously been unclear. In this study, a monolayer single‐crystalline MoS₂ grown on a sapphire substrate is analyzed, decisively visualizing the atomic structure of the epitaxial interface and elucidating its role in epitaxial growth from an atomic perspective. The findings reveal that the interface consists of a periodic molecular MoO 3 interlayer, van der Waals epitaxially grown on a single Al‐terminated sapphire surface. Additionally, it is discovered that MoO 3 coverage enhances surface interactions and introduces a unique atomic arrangement with 1‐fold symmetry at the sapphire surface, thereby facilitating the unidirectional alignment of MoS₂. This discovery provides valuable insights into the growth mechanisms leading to single‐crystalline MoS₂ formation, and suggests pathways for quantitatively monitoring and controlling growth dynamics, for the improvement of material quality and process repeatability, applicable for single‐crystalline MoS₂ or potentially other transition metal dichalcogenides epitaxially grown on sapphire. |
---|---|
AbstractList | The epitaxial growth of molybdenum disulfide (MoS₂) on sapphire substrates enables the formation of single‐crystalline monolayer MoS₂ with exceptional material properties on a wafer scale. Despite this achievement, the underlying growth mechanisms remain a subject of debate. The epitaxial interface is critical for understanding these mechanisms, yet its exact atomic configuration has previously been unclear. In this study, a monolayer single‐crystalline MoS₂ grown on a sapphire substrate is analyzed, decisively visualizing the atomic structure of the epitaxial interface and elucidating its role in epitaxial growth from an atomic perspective. The findings reveal that the interface consists of a periodic molecular MoO 3 interlayer, van der Waals epitaxially grown on a single Al‐terminated sapphire surface. Additionally, it is discovered that MoO 3 coverage enhances surface interactions and introduces a unique atomic arrangement with 1‐fold symmetry at the sapphire surface, thereby facilitating the unidirectional alignment of MoS₂. This discovery provides valuable insights into the growth mechanisms leading to single‐crystalline MoS₂ formation, and suggests pathways for quantitatively monitoring and controlling growth dynamics, for the improvement of material quality and process repeatability, applicable for single‐crystalline MoS₂ or potentially other transition metal dichalcogenides epitaxially grown on sapphire. The epitaxial growth of molybdenum disulfide (MoS₂) on sapphire substrates enables the formation of single-crystalline monolayer MoS₂ with exceptional material properties on a wafer scale. Despite this achievement, the underlying growth mechanisms remain a subject of debate. The epitaxial interface is critical for understanding these mechanisms, yet its exact atomic configuration has previously been unclear. In this study, a monolayer single-crystalline MoS₂ grown on a sapphire substrate is analyzed, decisively visualizing the atomic structure of the epitaxial interface and elucidating its role in epitaxial growth from an atomic perspective. The findings reveal that the interface consists of a periodic molecular MoO interlayer, van der Waals epitaxially grown on a single Al-terminated sapphire surface. Additionally, it is discovered that MoO coverage enhances surface interactions and introduces a unique atomic arrangement with 1-fold symmetry at the sapphire surface, thereby facilitating the unidirectional alignment of MoS₂. This discovery provides valuable insights into the growth mechanisms leading to single-crystalline MoS₂ formation, and suggests pathways for quantitatively monitoring and controlling growth dynamics, for the improvement of material quality and process repeatability, applicable for single-crystalline MoS₂ or potentially other transition metal dichalcogenides epitaxially grown on sapphire. |
Author | Kong, Wei Chen, Yuxuan Li, Huashan Li, Wenhao Hou, Hongyu Cao, Changhong Zhu, Huaze Chen, Han Shen, Jichuang Ji, Chen |
Author_xml | – sequence: 1 givenname: Han surname: Chen fullname: Chen, Han organization: Zhejiang University Hangzhou 310027 China, School of Engineering Westlake University Hangzhou 310030 China – sequence: 2 givenname: Chen surname: Ji fullname: Ji, Chen organization: School of Engineering Westlake University Hangzhou 310030 China – sequence: 3 givenname: Yuxuan surname: Chen fullname: Chen, Yuxuan organization: Physics Laboratory Industrial Training Center Shenzhen Polytechnic University Shenzhen 518055 China – sequence: 4 givenname: Hongyu surname: Hou fullname: Hou, Hongyu organization: Department of Mechanical Engineering McGill University Montreal H3A0C3 Canada – sequence: 5 givenname: Wenhao surname: Li fullname: Li, Wenhao organization: Zhejiang University Hangzhou 310027 China, School of Engineering Westlake University Hangzhou 310030 China – sequence: 6 givenname: Jichuang surname: Shen fullname: Shen, Jichuang organization: Zhejiang University Hangzhou 310027 China, School of Engineering Westlake University Hangzhou 310030 China – sequence: 7 givenname: Changhong surname: Cao fullname: Cao, Changhong organization: Department of Mechanical Engineering McGill University Montreal H3A0C3 Canada – sequence: 8 givenname: Huaze surname: Zhu fullname: Zhu, Huaze organization: School of Engineering Westlake University Hangzhou 310030 China – sequence: 9 givenname: Huashan surname: Li fullname: Li, Huashan organization: School of Physics Sun Yat‐Sen University Guangzhou 510275 China, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices School of Physics Sun Yat‐Sen University Guangzhou 510275 China, Center for Neutron Science and Technology School of Physics Sun Yat‐sen University Guangzhou 510275 China – sequence: 10 givenname: Wei orcidid: 0000-0002-7965-4407 surname: Kong fullname: Kong, Wei organization: School of Engineering Westlake University Hangzhou 310030 China, Research Center for Industries of the Future Westlake University Hangzhou Zhejiang 310030 China, Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization Westlake Institute for Optoelectronics Fuyang Hangzhou Zhejiang 311400 China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39846311$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kL1OwzAURi1URH9gZUR-gZRrO07isaoKVKLqUJgjx7mhRokT2UGiG4_AM_IktCp0QGK6yzlX-s6YDFzrkJBrBlMGwG912egpBx6zWLD0jIyY5CyKQckBGYESMlJJnA3JOIRXAFAJJBdkKFQWJ4KxEVkvXY--0sbqms76trGGrtBstbOhCbSt6Ma6lxq_Pj7nfhd6XdfWIV21G8rporO9ft_R1tGN7rqt9XhJzitdB7z6uRPyfLd4mj9Ej-v75Xz2GBkGKYsSAwqzpABUnGcodZoaJjFJiySVheIsK4Fz0GCkEGgqI2NZYIkgK6YzLsSE3Bz_dm9Fg2Xeedtov8t_l-2B6REwvg3BY3VCGOSHdPkhXX5KtxfiP4LZr-tt63qvbf2f9g30ZnJS |
CitedBy_id | crossref_primary_10_1016_j_nantod_2025_102718 |
Cites_doi | 10.1021/acsnano.7b03819 10.1126/science.288.5468.1029 10.1038/s41565-023-01456-6 10.1021/acsnano.2c08983 10.1021/acsnano.5b03043 10.1038/nmat3633 10.1038/nnano.2014.207 10.1016/0039-6028(93)90202-U 10.1002/advs.202002395 10.1038/s41467-023-36286-6 10.1038/s41565-019-0397-y 10.1103/PhysRevB.82.155319 10.1002/smtd.202300165 10.1103/PhysRevB.60.R16287 10.1021/nl503373x 10.1016/0927-0256(96)00008-0 10.1038/s41928-022-00890-z 10.1103/PhysRevLett.84.3650 10.1038/s41467-024-46170-6 10.1038/s41565-021-00963-8 10.1038/nmat3673 10.1038/nnano.2013.100 10.1103/PhysRevLett.77.3865 10.1021/acsnano.7b04323 10.1021/acsami.2c03471 10.1021/acs.nanolett.7b04521 10.1038/s41467-018-04435-x 10.1038/s41586-020-2009-2 10.1038/nphoton.2016.15 10.1038/s41586-019-1226-z 10.1038/s41928-021-00670-1 10.1038/s41565-021-01004-0 10.1103/PhysRevB.65.195405 10.1038/nphoton.2012.285 10.1021/acsnano.2c09754 10.1038/s41586-018-0008-3 10.1103/PhysRevB.54.11169 10.1103/PhysRevLett.85.3225 10.1038/s41467-020-19752-3 10.1021/acsnano.0c01478 10.1021/acsnano.0c06750 10.1038/s41565-023-01445-9 10.1088/2053-1583/abce08 10.1016/j.ultramic.2018.06.003 10.1002/adma.202404923 10.1063/1.3382344 10.1021/acs.nanolett.0c02531 |
ContentType | Journal Article |
Copyright | 2025 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2025 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM |
DOI | 10.1002/adma.202414317 |
DatabaseName | CrossRef PubMed |
DatabaseTitle | CrossRef PubMed |
DatabaseTitleList | CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
ExternalDocumentID | 39846311 10_1002_adma_202414317 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Guangdong Province grantid: 2018B030306036 – fundername: Guangdong Science & Technology Project grantid: 2019QN01C113 – fundername: Canada Foundation for Innovation grantid: G258035 – fundername: National Natural Science Foundation of China grantid: 52072417 – fundername: Natural Sciences and Engineering Research Council of Canada grantid: RGPIN-2021-02664 – fundername: NSFC original exploration project grantid: 12150001 – fundername: Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices grantid: 2022B1212010008 – fundername: National Natural Science Foundation of China grantid: 52473244 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AETEA AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE FOJGT G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6K MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WTY WXSBR WYISQ XG1 XPP XV2 YR2 ZY4 ZZTAW ~02 ~IA ~WT NPM |
ID | FETCH-LOGICAL-c1071-6c09e86b0e9228e5a77c15e67b675b9218d0220a0c533ecfc545bede05f1a8233 |
ISSN | 0935-9648 |
IngestDate | Mon Jul 21 06:00:33 EDT 2025 Thu Apr 24 23:06:04 EDT 2025 Tue Aug 05 12:04:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | MoO3 interlayer single‐crystalline MoS2 surface interactions epitaxial growth growth dynamics |
Language | English |
License | 2025 Wiley‐VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1071-6c09e86b0e9228e5a77c15e67b675b9218d0220a0c533ecfc545bede05f1a8233 |
ORCID | 0000-0002-7965-4407 |
PMID | 39846311 |
ParticipantIDs | pubmed_primary_39846311 crossref_primary_10_1002_adma_202414317 crossref_citationtrail_10_1002_adma_202414317 |
PublicationCentury | 2000 |
PublicationDate | 2025-03-00 2025-Mar |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-00 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2025 |
References | e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 Lytvynov L. (e_1_2_9_7_1) 2019 |
References_xml | – ident: e_1_2_9_9_1 doi: 10.1021/acsnano.7b03819 – ident: e_1_2_9_36_1 doi: 10.1126/science.288.5468.1029 – ident: e_1_2_9_28_1 doi: 10.1038/s41565-023-01456-6 – ident: e_1_2_9_34_1 doi: 10.1021/acsnano.2c08983 – ident: e_1_2_9_27_1 doi: 10.1021/acsnano.5b03043 – ident: e_1_2_9_19_1 doi: 10.1038/nmat3633 – ident: e_1_2_9_5_1 doi: 10.1038/nnano.2014.207 – ident: e_1_2_9_37_1 doi: 10.1016/0039-6028(93)90202-U – ident: e_1_2_9_41_1 doi: 10.1002/advs.202002395 – ident: e_1_2_9_29_1 doi: 10.1038/s41467-023-36286-6 – ident: e_1_2_9_4_1 doi: 10.1038/s41565-019-0397-y – ident: e_1_2_9_24_1 doi: 10.1103/PhysRevB.82.155319 – ident: e_1_2_9_10_1 doi: 10.1002/smtd.202300165 – ident: e_1_2_9_39_1 doi: 10.1103/PhysRevB.60.R16287 – ident: e_1_2_9_15_1 doi: 10.1021/nl503373x – ident: e_1_2_9_44_1 doi: 10.1016/0927-0256(96)00008-0 – ident: e_1_2_9_42_1 doi: 10.1038/s41928-022-00890-z – ident: e_1_2_9_40_1 doi: 10.1103/PhysRevLett.84.3650 – ident: e_1_2_9_30_1 doi: 10.1038/s41467-024-46170-6 – ident: e_1_2_9_8_1 doi: 10.1038/s41565-021-00963-8 – ident: e_1_2_9_17_1 doi: 10.1038/nmat3673 – ident: e_1_2_9_6_1 doi: 10.1038/nnano.2013.100 – ident: e_1_2_9_46_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_9_16_1 doi: 10.1021/acsnano.7b04323 – ident: e_1_2_9_43_1 doi: 10.1021/acsami.2c03471 – ident: e_1_2_9_13_1 doi: 10.1021/acs.nanolett.7b04521 – ident: e_1_2_9_18_1 doi: 10.1038/s41467-018-04435-x – ident: e_1_2_9_20_1 doi: 10.1038/s41586-020-2009-2 – ident: e_1_2_9_3_1 doi: 10.1038/nphoton.2016.15 – ident: e_1_2_9_21_1 doi: 10.1038/s41586-019-1226-z – ident: e_1_2_9_2_1 doi: 10.1038/s41928-021-00670-1 – ident: e_1_2_9_26_1 doi: 10.1038/s41565-021-01004-0 – ident: e_1_2_9_35_1 doi: 10.1103/PhysRevB.65.195405 – ident: e_1_2_9_1_1 doi: 10.1038/nphoton.2012.285 – ident: e_1_2_9_33_1 doi: 10.1021/acsnano.2c09754 – ident: e_1_2_9_12_1 doi: 10.1038/s41586-018-0008-3 – ident: e_1_2_9_45_1 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_9_38_1 doi: 10.1103/PhysRevLett.85.3225 – volume-title: Single Crystals of Electronic Materials year: 2019 ident: e_1_2_9_7_1 – ident: e_1_2_9_23_1 doi: 10.1038/s41467-020-19752-3 – ident: e_1_2_9_22_1 doi: 10.1021/acsnano.0c01478 – ident: e_1_2_9_14_1 doi: 10.1021/acsnano.0c06750 – ident: e_1_2_9_25_1 doi: 10.1038/s41565-023-01445-9 – ident: e_1_2_9_32_1 doi: 10.1088/2053-1583/abce08 – ident: e_1_2_9_48_1 doi: 10.1016/j.ultramic.2018.06.003 – ident: e_1_2_9_31_1 doi: 10.1002/adma.202404923 – ident: e_1_2_9_47_1 doi: 10.1063/1.3382344 – ident: e_1_2_9_11_1 doi: 10.1021/acs.nanolett.0c02531 |
SSID | ssj0009606 |
Score | 2.472944 |
Snippet | The epitaxial growth of molybdenum disulfide (MoS₂) on sapphire substrates enables the formation of single‐crystalline monolayer MoS₂ with exceptional material... The epitaxial growth of molybdenum disulfide (MoS₂) on sapphire substrates enables the formation of single-crystalline monolayer MoS₂ with exceptional material... |
SourceID | pubmed crossref |
SourceType | Index Database Enrichment Source |
StartPage | e2414317 |
Title | Interfacial Atomic Mechanisms of Single‐Crystalline MoS 2 Epitaxy on Sapphire |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39846311 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZbC6N9KOt-9deKHgZ7COpsybKTx5J2hEL2sLSsewqyfF4DqR3aGJr-9T1Jlp2wFLa-mGCfbHLfIX8n674j5ItUkge5lEzGCbAoUxlToIEZLTqRJioR2hQ4D3_Eg6vo4lpet4IKtrpknp7ox7V1JS9BFc8hrqZK9j-QbW6KJ_A34otHRBiP_4SxXc7LlV31Pp2b-uLOEEwp7-T-1m7RGOGLaQqsf7dAEji1jHJYjjq8c26ahTwszKeCkZrNbvweWK9H63cGIJ91f8Qw0V8wKW7AtF9uVg_6dXHHoA2yi4n7jN_WmHmj39VD1doNysqOLIs_i2p58YHLdvfVCdQTJjc5qGuU6WdUJ-PiIydcmh8BCYOhLGsnbycGqzKrB7XGEJ0_u7VQih7SJlHfeVUu2196TTY5Zg6mqcXZz1ZRzCRsXrsz4N9WH7ZF3vjhKzRlJeGwxOPyLdmpMwZ66uDfJa-geEe2l3Qk35PhUiBQFwi0DQRa5vTvQKAYCJTTOhBoWVAfCB_I1ffzy_6A1X0ymMbkPWSxDnrQjdMAepx3Qaok0aGEOEkxG0x7SOIyU0-tAo3cHnSukTWnkEEg81B1uRAfyUZRFrBHKA4LorCrY4h1ZLQFM3wZpkKLOEtExMN9wrxbxroWkTe9TKZjJ3_Nx8aj48aj--RrYz9z8inPWn5yXm7sPBQHz145JFttUB6RjfldBZ-RI87TY4v6EwYKYeM |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interfacial+Atomic+Mechanisms+of+Single-Crystalline+MoS+2+Epitaxy+on+Sapphire&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chen%2C+Han&rft.au=Ji%2C+Chen&rft.au=Chen%2C+Yuxuan&rft.au=Hou%2C+Hongyu&rft.date=2025-03-01&rft.eissn=1521-4095&rft.volume=37&rft.issue=11&rft.spage=e2414317&rft_id=info:doi/10.1002%2Fadma.202414317&rft_id=info%3Apmid%2F39846311&rft.externalDocID=39846311 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |