A Prognostic Model to Improve Asthma Prediction Outcomes Using Machine Learning

Purpose The utility of predictive models for the prognosis of asthma disease that rely on clinical history and findings has been on the constant rise owing to the attempts to achieve better disease outcomes through improved clinical processes. With the prognostic model, the primary focus is on the s...

Full description

Saved in:
Bibliographic Details
Published inThe open bioinformatics journal Vol. 17; no. 1
Main Authors M R, Pooja, Ravi, Vinayakumar, Lokesh, Gururaj Harinahalli, Al Mazroa, Alanoud, Ravi, Pradeep
Format Journal Article
LanguageEnglish
Published 28.06.2024
Online AccessGet full text

Cover

Loading…
Abstract Purpose The utility of predictive models for the prognosis of asthma disease that rely on clinical history and findings has been on the constant rise owing to the attempts to achieve better disease outcomes through improved clinical processes. With the prognostic model, the primary focus is on the search for a combination of features that are as robust as possible in predicting the disease outcome. Clinical decisions concerning obstructive lung diseases such as Chronic obstructive Pulmonary Disease (COPD) have a high chance of leading to results that can be misinterpreted with wrong inferences drawn that may have long-term implications, including the targeted therapy that can be mistakenly beset. Hence, we suggest data-centric approaches that harness learning techniques to facilitate the disease prediction process and augment the inferences through clinical findings. Methods A dataset containing information on both symptomatic representations and medical history in the form of categorical data along with lung function parameters, which were estimated using a spirometer (with the data basically being quantitative (numerical) in nature) was used. The Naïve Bayes classifier performed comparatively well with the optimized feature set. The adoption of One-Class Support Vector Machines (OCSVM) as an alternative method to sampling data has resulted in the selection of an ideal representation of the data rather than the regular sampling approach that is used for undersampling. Results The model was able to predict the disease outcome with a precision of 86.1% and recall of 84.7%, accounting for an F1 measure of 84.5%.The Area under Curve(AUC) and Classification Accuracy (CA) were evaluated to be 92.2% and 84.7% respectively. Conclusion Incorporating domain knowledge into the prediction models involves identifying clinical features that are most relevant to the process of disease classification using prior knowledge about the disease and its contributing factors, which can significantly enhance the productivity of the models. Feature engineering is centric on the use of domain knowledge within clinical prediction models and commonly results in an optimized feature set. It is evident from the experimental results that using a combination of medical history data and significant clinical findings result in a better prognostic model
AbstractList Purpose The utility of predictive models for the prognosis of asthma disease that rely on clinical history and findings has been on the constant rise owing to the attempts to achieve better disease outcomes through improved clinical processes. With the prognostic model, the primary focus is on the search for a combination of features that are as robust as possible in predicting the disease outcome. Clinical decisions concerning obstructive lung diseases such as Chronic obstructive Pulmonary Disease (COPD) have a high chance of leading to results that can be misinterpreted with wrong inferences drawn that may have long-term implications, including the targeted therapy that can be mistakenly beset. Hence, we suggest data-centric approaches that harness learning techniques to facilitate the disease prediction process and augment the inferences through clinical findings. Methods A dataset containing information on both symptomatic representations and medical history in the form of categorical data along with lung function parameters, which were estimated using a spirometer (with the data basically being quantitative (numerical) in nature) was used. The Naïve Bayes classifier performed comparatively well with the optimized feature set. The adoption of One-Class Support Vector Machines (OCSVM) as an alternative method to sampling data has resulted in the selection of an ideal representation of the data rather than the regular sampling approach that is used for undersampling. Results The model was able to predict the disease outcome with a precision of 86.1% and recall of 84.7%, accounting for an F1 measure of 84.5%.The Area under Curve(AUC) and Classification Accuracy (CA) were evaluated to be 92.2% and 84.7% respectively. Conclusion Incorporating domain knowledge into the prediction models involves identifying clinical features that are most relevant to the process of disease classification using prior knowledge about the disease and its contributing factors, which can significantly enhance the productivity of the models. Feature engineering is centric on the use of domain knowledge within clinical prediction models and commonly results in an optimized feature set. It is evident from the experimental results that using a combination of medical history data and significant clinical findings result in a better prognostic model
Author Lokesh, Gururaj Harinahalli
Ravi, Vinayakumar
M R, Pooja
Al Mazroa, Alanoud
Ravi, Pradeep
Author_xml – sequence: 1
  givenname: Pooja
  surname: M R
  fullname: M R, Pooja
– sequence: 2
  givenname: Vinayakumar
  surname: Ravi
  fullname: Ravi, Vinayakumar
– sequence: 3
  givenname: Gururaj Harinahalli
  surname: Lokesh
  fullname: Lokesh, Gururaj Harinahalli
– sequence: 4
  givenname: Alanoud
  surname: Al Mazroa
  fullname: Al Mazroa, Alanoud
– sequence: 5
  givenname: Pradeep
  surname: Ravi
  fullname: Ravi, Pradeep
BookMark eNp9UE1LAzEUDFLBtvofcvC6-l6STbbgpRQ_ClvqwZ6XNPvSrnSTkqyC_94WPXjyNMPMMAwzYaMQAzF2i3An0Kh7QKxMCVILCVqhEgq0UIhSlnDBxmezOLujP_yKTXJ-B9CyEnLM1nP-muIuxDx0jq9iSwc-RL7sjyl-Ep_nYd_bU4Tazg1dDHz9MbjYU-ab3IUdX1m37wLxmmwKJ-GaXXp7yHTzi1O2eXp8W7wU9fp5uZjXhUMwUPjWgLGCjKHSbysnlDAORUlOU0W0rUjPSo8C8LRzJhVpcH5Wau0ttGi2csoefnpdijkn8s0xdb1NXw1Ccz6n-e8c-Q378VkS
Cites_doi 10.2196/11966
10.47750/pnr.2022.13.04.001
10.1155/2013/435321
10.1007/978-981-10-7512-4_99
10.1016/j.ajem.2018.06.062
10.2174/1874944502013010227
10.1007/978-981-10-9059-2_11
10.2196/16981
10.1201/9781003224068-3
10.1109/MIPRO.2016.7522173
10.1186/s12967-020-02312-0
10.1016/j.alit.2019.04.010
10.1007/978-3-030-05147-1_17
10.1007/978-3-030-73909-6_8
10.12688/f1000research.73026.1
10.1007/s10916-008-9196-y
10.1186/s12874-019-0708-x
10.1177/1460458217723169
10.1002/ppul.24342
10.1109/ERECT.2015.7499028
10.1109/ICCCI.2017.8117717
10.1186/s40248-019-0179-2
10.1145/3200947.3201036
10.18280/mmep.090423
10.1007/978-981-13-9282-5_72
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.2174/0118750362306414240624113350
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1875-0362
ExternalDocumentID 10_2174_0118750362306414240624113350
GroupedDBID ---
123
29N
2WC
53G
5VS
AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
CS3
E3Z
GROUPED_DOAJ
GX1
J9A
JBO
KQ8
M~E
OK1
RNS
TR2
ID FETCH-LOGICAL-c1070-fd707a2e77e5fb8c2427c125ec6e8eeb8e695f1201638934e60cf9566fa0d17b3
ISSN 1875-0362
IngestDate Fri Aug 23 04:52:30 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1070-fd707a2e77e5fb8c2427c125ec6e8eeb8e695f1201638934e60cf9566fa0d17b3
OpenAccessLink https://doi.org/10.2174/0118750362306414240624113350
ParticipantIDs crossref_primary_10_2174_0118750362306414240624113350
PublicationCentury 2000
PublicationDate 2024-06-28
PublicationDateYYYYMMDD 2024-06-28
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-28
  day: 28
PublicationDecade 2020
PublicationTitle The open bioinformatics journal
PublicationYear 2024
References ref12
ref14
ref17
ref16
ref19
Tobore I. (ref5) 2019; 7
Xiang Yang (ref21) 2020; 22
Messinger A.I. (ref10) 2019; 54
Ciancio N. (ref26) 2019; 14
Spathis D. (ref11) 2017; 1460458217723169
MP P. (ref28) 2020; 13
Ma X. (ref24) 2020; 18
Amaral Jorge LM (ref25) 2020; 58
Goto T. (ref13) 2018; 36
ref23
Wang X. (ref3) 2019
ref20
Salau A.O. (ref30) 2022; 9
ref27
ref8
Pooja M.R. (ref18) 2019; 8
ref9
Chatzimichail E. (ref1) 2013; 2013
Deng H. (ref7) 2019; 19
Pooja M. R. (ref15) 2018; 2
Nafisi V.R. (ref29) 2021
Manoharan S.C. (ref2) 2009; 33
Pooja M.R. (ref6) 2022; 13
Tomita K. (ref4) 2019; 68
Haque R. (ref22) 2021
References_xml – volume: 7
  start-page: e11966
  year: 2019
  ident: ref5
  publication-title: JMIR Mhealth Uhealth
  doi: 10.2196/11966
  contributor:
    fullname: Tobore I.
– volume: 13
  start-page: 1
  year: 2022
  ident: ref6
  publication-title: J. Pharm. Negat. Results
  doi: 10.47750/pnr.2022.13.04.001
  contributor:
    fullname: Pooja M.R.
– volume: 2013
  start-page: 1
  year: 2013
  ident: ref1
  publication-title: Adv. Artif. Intell.
  doi: 10.1155/2013/435321
  contributor:
    fullname: Chatzimichail E.
– ident: ref12
  doi: 10.1007/978-981-10-7512-4_99
– volume: 36
  start-page: 1650
  year: 2018
  ident: ref13
  publication-title: Am. J. Emerg. Med.
  doi: 10.1016/j.ajem.2018.06.062
  contributor:
    fullname: Goto T.
– volume: 13
  year: 2020
  ident: ref28
  publication-title: Open Public Health J.
  doi: 10.2174/1874944502013010227
  contributor:
    fullname: MP P.
– ident: ref17
  doi: 10.1007/978-981-10-9059-2_11
– year: 2021
  ident: ref29
  publication-title: J. Biomed. Phys. Eng.
  contributor:
    fullname: Nafisi V.R.
– volume: 22
  start-page: e16981
  year: 2020
  ident: ref21
  publication-title: J. Med. Internet Res.
  doi: 10.2196/16981
  contributor:
    fullname: Xiang Yang
– year: 2019
  ident: ref3
  publication-title: arXiv preprint :1907.11195,
  contributor:
    fullname: Wang X.
– ident: ref27
  doi: 10.1201/9781003224068-3
– ident: ref19
  doi: 10.1109/MIPRO.2016.7522173
– volume: 18
  start-page: 146
  year: 2020
  ident: ref24
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-020-02312-0
  contributor:
    fullname: Ma X.
– volume: 68
  start-page: 456
  year: 2019
  ident: ref4
  publication-title: Allergol. Int.
  doi: 10.1016/j.alit.2019.04.010
  contributor:
    fullname: Tomita K.
– volume: 58
  start-page: 2455
  year: 2020
  ident: ref25
  publication-title: Med Biol Eng Comput
  doi: 10.1007/978-3-030-05147-1_17
  contributor:
    fullname: Amaral Jorge LM
– volume: 8
  start-page: 239
  year: 2019
  ident: ref18
  publication-title: Int. J. Eng. Adv. Technol.
  contributor:
    fullname: Pooja M.R.
– ident: ref23
  doi: 10.1007/978-3-030-73909-6_8
– year: 2021
  ident: ref22
  publication-title: F1000Research 10
  doi: 10.12688/f1000research.73026.1
  contributor:
    fullname: Haque R.
– volume: 33
  start-page: 347
  year: 2009
  ident: ref2
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-008-9196-y
  contributor:
    fullname: Manoharan S.C.
– volume: 19
  start-page: 70
  year: 2019
  ident: ref7
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/s12874-019-0708-x
  contributor:
    fullname: Deng H.
– volume: 1460458217723169
  year: 2017
  ident: ref11
  publication-title: Health Informatics J.
  doi: 10.1177/1460458217723169
  contributor:
    fullname: Spathis D.
– volume: 54
  start-page: 1149
  year: 2019
  ident: ref10
  publication-title: Pediatr. Pulmonol.
  doi: 10.1002/ppul.24342
  contributor:
    fullname: Messinger A.I.
– volume: 2
  year: 2018
  ident: ref15
  publication-title: J. Health Inform. Manage.
  contributor:
    fullname: Pooja M. R.
– ident: ref16
  doi: 10.1109/ERECT.2015.7499028
– ident: ref8
  doi: 10.1109/ICCCI.2017.8117717
– volume: 14
  start-page: 17
  year: 2019
  ident: ref26
  publication-title: Multidiscip. Respir. Med.
  doi: 10.1186/s40248-019-0179-2
  contributor:
    fullname: Ciancio N.
– ident: ref9
  doi: 10.1145/3200947.3201036
– volume: 9
  start-page: 1053
  year: 2022
  ident: ref30
  publication-title: Math. Model. Eng. Probl.
  doi: 10.18280/mmep.090423
  contributor:
    fullname: Salau A.O.
– ident: ref14
– ident: ref20
  doi: 10.1007/978-981-13-9282-5_72
SSID ssj0063823
Score 2.3205714
Snippet Purpose The utility of predictive models for the prognosis of asthma disease that rely on clinical history and findings has been on the constant rise owing to...
SourceID crossref
SourceType Aggregation Database
Title A Prognostic Model to Improve Asthma Prediction Outcomes Using Machine Learning
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swELYKE4gXtF-IsR_yA29VRpLWTvZYIQaatDEhmPpW2c55FEoylWQS_Bv7h7mzkzRUCDFeosiqLSf35fyd-_mOsd1sAFoI_AAjY8MA-X8YaAkysBgQGcSUsOCyff6QR2fDb2Mx7vX-dVRLVak_m9sHz5U8x6rYhnalU7L_Ydl2UGzAe7QvXtHCeH2SjUek8yelHGVdpapmM6KSfp8A8M2X51eKRBbZ1BcEP65KnAZc971Q4LsTUkKTY_V3l6gSfKiyVl9Pizq5qkvo3J0X2anvhBQ_i-Ki9e8n6q-TCPya5upGXZKGu5X9FJdw7TZyDqt5NVcXdIgIf0YVXaYt9mY4s9t54Xd8Zyovqqy7OREPSUQVd_0phkMBLZJ-uXmgrXHCyTLYln07xU7uvAL1p-4UO9E5vVAiC8FQ2yewvZ9Se2mpawWIGPrQeJPHRlthL2L0XqQTPBy3uiFJf5xSFN88xTrbrWe399hoHd7TITCnL9lmHXnwkYfRK9aD_DVb87VIb96w4xFfgIk7MPGy4DWYuAcTX4CJN2DiDky8BhNvwPSWnX09ON0_CupqG4GJ0O8HNkvCRMWQJCCsTg1yt8Qg_QUjIQXQKcgvwkZIGB3JHYIMjcXoWloVZlGiB1tsNS9y2GZca4tRhY4GwsZDK6zScapCk9qBDY3S0Tsmmncx-eOTqkyeYpGdZ_Z7zzYW4PzAVst5BR-RS5b6k7PtHUdPZ-w
link.rule.ids 315,783,787,27938,27939
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Prognostic+Model+to+Improve+Asthma+Prediction+Outcomes+Using+Machine+Learning&rft.jtitle=The+open+bioinformatics+journal&rft.au=M+R%2C+Pooja&rft.au=Ravi%2C+Vinayakumar&rft.au=Lokesh%2C+Gururaj+Harinahalli&rft.au=Al+Mazroa%2C+Alanoud&rft.date=2024-06-28&rft.issn=1875-0362&rft.eissn=1875-0362&rft.volume=17&rft.issue=1&rft_id=info:doi/10.2174%2F0118750362306414240624113350&rft.externalDBID=n%2Fa&rft.externalDocID=10_2174_0118750362306414240624113350
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-0362&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-0362&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-0362&client=summon