Ferroelastic Domain Switching and Time‐Resolved Negative Capacitance in Polar‐Axis‐Oriented Hf 0.5 Zr 0.5 O 2 Grown by Atomic Layer Epitaxy

Ferroelectric properties of Hf 0.5 Zr 0.5 O 2 are strongly correlated with its crystallographic orientation, with the [001] direction serving as the polar axis. However, the epitaxial growth of highly polar‐axis‐oriented Hf 0.5 Zr 0.5 O 2 layers with pronounced ferroelectricity is rarely reported. H...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 21; no. 3; p. e2408278
Main Authors Jiang, Yu‐Sen, Lin, Wei‐En, Shiojiri, Makoto, Yin, Yu‐Tung, Su, Yu‐Cheng, Nien, Chih‐Hung, Hsu, Chen‐Feng, Hou, Vincent Duen‐Huei, Chang, Chih‐Sheng, Radu, Iuliana, Chen, Miin‐Jang
Format Journal Article
LanguageEnglish
Published Germany 01.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ferroelectric properties of Hf 0.5 Zr 0.5 O 2 are strongly correlated with its crystallographic orientation, with the [001] direction serving as the polar axis. However, the epitaxial growth of highly polar‐axis‐oriented Hf 0.5 Zr 0.5 O 2 layers with pronounced ferroelectricity is rarely reported. Here epitaxial (001)‐oriented Hf 0.5 Zr 0.5 O 2 thin films grown by atomic layer epitaxy (ALE) is demonstrated, which achieve a state‐of‐the‐art ferroelectric polarization up to 78.9 µC cm −2 . The epitaxial Hf 0.5 Zr 0.5 O 2 layer experiences a lattice reorientation from (010) to (001) during the wake‐up process, as evidenced by plane‐view precession electron diffraction. Accordingly, a two‐step, 90° ferroelastic domain switching model is proposed to elucidate multiple polarization switching. Furthermore, the observed polarization switching dynamics closely match with the time‐resolved negative capacitance, which is quantified as an equivalent high dielectric constant of −170. This study highlights the capability of ALE to precisely control the crystallographic orientation of Hf 0.5 Zr 0.5 O 2 thin films, providing deep insights into fundamental ferroelectric mechanisms.
AbstractList Ferroelectric properties of Hf Zr O are strongly correlated with its crystallographic orientation, with the [001] direction serving as the polar axis. However, the epitaxial growth of highly polar-axis-oriented Hf Zr O layers with pronounced ferroelectricity is rarely reported. Here epitaxial (001)-oriented Hf Zr O thin films grown by atomic layer epitaxy (ALE) is demonstrated, which achieve a state-of-the-art ferroelectric polarization up to 78.9 µC cm . The epitaxial Hf Zr O layer experiences a lattice reorientation from (010) to (001) during the wake-up process, as evidenced by plane-view precession electron diffraction. Accordingly, a two-step, 90° ferroelastic domain switching model is proposed to elucidate multiple polarization switching. Furthermore, the observed polarization switching dynamics closely match with the time-resolved negative capacitance, which is quantified as an equivalent high dielectric constant of -170. This study highlights the capability of ALE to precisely control the crystallographic orientation of Hf Zr O thin films, providing deep insights into fundamental ferroelectric mechanisms.
Ferroelectric properties of Hf 0.5 Zr 0.5 O 2 are strongly correlated with its crystallographic orientation, with the [001] direction serving as the polar axis. However, the epitaxial growth of highly polar‐axis‐oriented Hf 0.5 Zr 0.5 O 2 layers with pronounced ferroelectricity is rarely reported. Here epitaxial (001)‐oriented Hf 0.5 Zr 0.5 O 2 thin films grown by atomic layer epitaxy (ALE) is demonstrated, which achieve a state‐of‐the‐art ferroelectric polarization up to 78.9 µC cm −2 . The epitaxial Hf 0.5 Zr 0.5 O 2 layer experiences a lattice reorientation from (010) to (001) during the wake‐up process, as evidenced by plane‐view precession electron diffraction. Accordingly, a two‐step, 90° ferroelastic domain switching model is proposed to elucidate multiple polarization switching. Furthermore, the observed polarization switching dynamics closely match with the time‐resolved negative capacitance, which is quantified as an equivalent high dielectric constant of −170. This study highlights the capability of ALE to precisely control the crystallographic orientation of Hf 0.5 Zr 0.5 O 2 thin films, providing deep insights into fundamental ferroelectric mechanisms.
Author Radu, Iuliana
Su, Yu‐Cheng
Hsu, Chen‐Feng
Lin, Wei‐En
Shiojiri, Makoto
Nien, Chih‐Hung
Jiang, Yu‐Sen
Chang, Chih‐Sheng
Yin, Yu‐Tung
Chen, Miin‐Jang
Hou, Vincent Duen‐Huei
Author_xml – sequence: 1
  givenname: Yu‐Sen
  orcidid: 0000-0003-2622-2771
  surname: Jiang
  fullname: Jiang, Yu‐Sen
  organization: Department of Materials Science and Engineering National Taiwan University Taipei 106319 Taiwan
– sequence: 2
  givenname: Wei‐En
  surname: Lin
  fullname: Lin, Wei‐En
  organization: Graduate School of Advanced Technology National Taiwan University Taipei 106319 Taiwan
– sequence: 3
  givenname: Makoto
  surname: Shiojiri
  fullname: Shiojiri, Makoto
  organization: Kyoto Institute of Technology Kyoto 606–8585 Japan
– sequence: 4
  givenname: Yu‐Tung
  orcidid: 0000-0002-8366-7382
  surname: Yin
  fullname: Yin, Yu‐Tung
  organization: Department of Materials Science and Engineering National Taiwan University Taipei 106319 Taiwan
– sequence: 5
  givenname: Yu‐Cheng
  surname: Su
  fullname: Su, Yu‐Cheng
  organization: Taiwan Semiconductor Manufacturing Company Hsinchu 300096 Taiwan
– sequence: 6
  givenname: Chih‐Hung
  surname: Nien
  fullname: Nien, Chih‐Hung
  organization: Taiwan Semiconductor Manufacturing Company Hsinchu 300096 Taiwan
– sequence: 7
  givenname: Chen‐Feng
  surname: Hsu
  fullname: Hsu, Chen‐Feng
  organization: Taiwan Semiconductor Manufacturing Company Hsinchu 300096 Taiwan
– sequence: 8
  givenname: Vincent Duen‐Huei
  surname: Hou
  fullname: Hou, Vincent Duen‐Huei
  organization: Taiwan Semiconductor Manufacturing Company Hsinchu 300096 Taiwan
– sequence: 9
  givenname: Chih‐Sheng
  surname: Chang
  fullname: Chang, Chih‐Sheng
  organization: Taiwan Semiconductor Manufacturing Company Hsinchu 300096 Taiwan
– sequence: 10
  givenname: Iuliana
  surname: Radu
  fullname: Radu, Iuliana
  organization: Taiwan Semiconductor Manufacturing Company Hsinchu 300096 Taiwan
– sequence: 11
  givenname: Miin‐Jang
  orcidid: 0000-0001-7124-5476
  surname: Chen
  fullname: Chen, Miin‐Jang
  organization: Department of Materials Science and Engineering National Taiwan University Taipei 106319 Taiwan, Graduate School of Advanced Technology National Taiwan University Taipei 106319 Taiwan, Graduate Institute of Electronics Engineering National Taiwan University Taipei 106319 Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39676420$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1OwzAQhS0E4qewZYl8gZZx4jjNsipQkCqK-NmwiRx7UowSu7JDaXccAa7ISUgpZYHE6s3ifW808w7ItnUWCTlm0GMA0Wmoq6oXQcShH6X9LbLPBIu7oh9l278zgz1yEMIzQMwinu6SvTgTqeAR7JOPC_TeYSVDYxQ9c7U0lt69mkY9GTul0mp6b2r8fHu_xeCqOWp6jVPZmDnSoZxJZRppFdKWunGV9K1xsDChlYk3aJvWf1lS6CX00X_LhEZ05N2rpcWSDhpXt2vHcomens_arMXykOyUsgp49KMd8nBxfj-87I4no6vhYNxVDFLoZpoVmUDFY8FRF1BonSAmugTIShQFE2mZFkolSnANZQpMCECZIk-U5lrFHXKyzp29FDXqfOZNLf0y3_ymNfC1QXkXgscyXx3bGGcbL02VM8hXFeSrCvLfClqs9wfbJP8DfAEzhIxV
CitedBy_id crossref_primary_10_1002_apxr_202400194
Cites_doi 10.1063/1.5096002
10.1063/1.5055258
10.1103/PhysRev.95.690
10.1038/s41563-018-0196-0
10.1016/0022-1902(59)80070-1
10.1002/adfm.202108876
10.1143/JPSJ.31.506
10.1063/1.344419
10.1109/LED.2023.3331001
10.1002/aelm.201600173
10.1002/adfm.202314396
10.1063/1.4916715
10.1002/pssr.202100086
10.1038/s41928-023-00959-3
10.1063/1.4916707
10.1103/PhysRevB.66.214109
10.1103/PhysRevLett.99.267602
10.1063/1.5129318
10.1007/978-3-319-25301-5
10.1002/adfm.201602869
10.1103/PhysRevLett.102.045701
10.1063/5.0066607
10.1002/pssr.202100025
10.1143/JPSJ.71.2800
10.1021/nl302049k
10.1063/1.4919135
10.1063/1.2336999
10.1111/j.1151-2916.1991.tb07309.x
10.1038/s41467-020-15159-2
10.1038/s41578-022-00431-2
10.1109/TED.2023.3277804
10.1063/1.1750380
10.1038/nmat4148
10.1063/1.4995619
10.1109/LED.2012.2204856
10.1038/s41467-024-47194-8
10.1111/j.1151-2916.1990.tb06682.x
10.1109/TED.2020.2985635
10.1063/1.1505659
10.1021/acsami.5b05773
10.1021/acsaelm.2c01582
10.1016/j.actamat.2024.119920
10.1021/acsami.6b03586
10.1039/D1NR02272E
10.1021/acsaelm.1c00110
10.1016/j.actamat.2024.119750
10.1021/acsaelm.9b00256
10.1063/5.0037617
10.1002/adfm.202209604
10.1063/1.4811483
10.1063/1.1870126
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
DOI 10.1002/smll.202408278
DatabaseName CrossRef
PubMed
DatabaseTitle CrossRef
PubMed
DatabaseTitleList PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
ExternalDocumentID 39676420
10_1002_smll_202408278
Genre Journal Article
GrantInformation_xml – fundername: National Science and Technology Council
  grantid: 112-2112-M-002-045
– fundername: National Science and Technology Council
  grantid: 113-2221-E-002-091-MY3
– fundername: National Science and Technology Council
  grantid: 113-2218-E-002-039-MBK
– fundername: National Science and Technology Council
  grantid: 113-2622-8-002-015-SB
GroupedDBID ---
05W
0R~
123
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYOK
AAYXX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CITATION
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
FEDTE
G-S
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
QRW
R.K
RIWAO
RNS
ROL
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
XV2
Y6R
ZZTAW
~S-
NPM
ID FETCH-LOGICAL-c1070-9d1b96ec4364edb0bdd5ee5df009fe6b167f7bcc5c64d0f701660ea7e45cd4dc3
ISSN 1613-6810
IngestDate Thu Apr 03 07:08:37 EDT 2025
Thu Apr 24 23:10:31 EDT 2025
Tue Jul 01 05:32:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords ferroelectric
precession electron diffraction
atomic layer epitaxy
polarization switching dynamics
negative capacitance
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1070-9d1b96ec4364edb0bdd5ee5df009fe6b167f7bcc5c64d0f701660ea7e45cd4dc3
ORCID 0000-0001-7124-5476
0000-0003-2622-2771
0000-0002-8366-7382
PMID 39676420
ParticipantIDs pubmed_primary_39676420
crossref_citationtrail_10_1002_smll_202408278
crossref_primary_10_1002_smll_202408278
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-00
2025-Jan
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-00
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2025
References e_1_2_10_21_1
e_1_2_10_21_2
e_1_2_10_3_11
e_1_2_10_3_10
Kolmogorov A. N. (e_1_2_10_13_3) 1937; 3
e_1_2_10_2_1
e_1_2_10_18_3
e_1_2_10_2_3
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_2_2
e_1_2_10_18_2
e_1_2_10_4_3
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_2_4
e_1_2_10_4_2
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_6_2
e_1_2_10_14_2
e_1_2_10_11_2
e_1_2_10_8_2
e_1_2_10_13_1
e_1_2_10_11_1
e_1_2_10_20_1
e_1_2_10_1_1
e_1_2_10_1_2
e_1_2_10_1_3
e_1_2_10_3_2
e_1_2_10_17_2
e_1_2_10_1_4
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_3_4
e_1_2_10_13_4
e_1_2_10_3_3
e_1_2_10_5_1
e_1_2_10_13_5
e_1_2_10_17_1
e_1_2_10_3_6
e_1_2_10_13_2
e_1_2_10_3_5
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_3_8
e_1_2_10_9_2
e_1_2_10_12_1
e_1_2_10_3_7
e_1_2_10_9_1
e_1_2_10_12_2
e_1_2_10_9_4
e_1_2_10_10_1
e_1_2_10_3_9
e_1_2_10_9_3
e_1_2_10_10_2
References_xml – ident: e_1_2_10_3_4
  doi: 10.1063/1.5096002
– ident: e_1_2_10_3_5
  doi: 10.1063/1.5055258
– ident: e_1_2_10_16_1
  doi: 10.1103/PhysRev.95.690
– ident: e_1_2_10_3_1
  doi: 10.1038/s41563-018-0196-0
– ident: e_1_2_10_6_1
  doi: 10.1016/0022-1902(59)80070-1
– ident: e_1_2_10_3_6
  doi: 10.1002/adfm.202108876
– volume: 3
  start-page: 335
  year: 1937
  ident: e_1_2_10_13_3
  publication-title: Bull Acad Sci URSS (Cl Sci Math Nat)
– ident: e_1_2_10_13_4
  doi: 10.1143/JPSJ.31.506
– ident: e_1_2_10_20_1
  doi: 10.1063/1.344419
– ident: e_1_2_10_17_2
– ident: e_1_2_10_18_2
  doi: 10.1109/LED.2023.3331001
– ident: e_1_2_10_12_2
  doi: 10.1002/aelm.201600173
– ident: e_1_2_10_3_3
  doi: 10.1002/adfm.202314396
– ident: e_1_2_10_9_2
  doi: 10.1063/1.4916715
– ident: e_1_2_10_10_1
  doi: 10.1002/pssr.202100086
– ident: e_1_2_10_19_1
  doi: 10.1038/s41928-023-00959-3
– ident: e_1_2_10_4_1
  doi: 10.1063/1.4916707
– ident: e_1_2_10_13_1
  doi: 10.1103/PhysRevB.66.214109
– ident: e_1_2_10_13_5
  doi: 10.1103/PhysRevLett.99.267602
– ident: e_1_2_10_10_2
  doi: 10.1063/1.5129318
– ident: e_1_2_10_11_1
  doi: 10.1007/978-3-319-25301-5
– ident: e_1_2_10_3_11
  doi: 10.1002/adfm.201602869
– ident: e_1_2_10_9_3
– ident: e_1_2_10_14_2
  doi: 10.1103/PhysRevLett.102.045701
– ident: e_1_2_10_1_3
  doi: 10.1063/5.0066607
– ident: e_1_2_10_2_1
  doi: 10.1002/pssr.202100025
– ident: e_1_2_10_11_2
  doi: 10.1143/JPSJ.71.2800
– ident: e_1_2_10_9_1
  doi: 10.1021/nl302049k
– ident: e_1_2_10_3_10
– ident: e_1_2_10_8_1
  doi: 10.1063/1.4919135
– ident: e_1_2_10_1_1
  doi: 10.1063/1.2336999
– ident: e_1_2_10_6_2
  doi: 10.1111/j.1151-2916.1991.tb07309.x
– ident: e_1_2_10_8_2
  doi: 10.1038/s41467-020-15159-2
– ident: e_1_2_10_1_4
  doi: 10.1038/s41578-022-00431-2
– ident: e_1_2_10_2_4
  doi: 10.1109/TED.2023.3277804
– ident: e_1_2_10_13_2
  doi: 10.1063/1.1750380
– ident: e_1_2_10_17_1
  doi: 10.1038/nmat4148
– ident: e_1_2_10_4_2
  doi: 10.1063/1.4995619
– ident: e_1_2_10_9_4
– ident: e_1_2_10_15_1
  doi: 10.1109/LED.2012.2204856
– ident: e_1_2_10_3_9
  doi: 10.1038/s41467-024-47194-8
– ident: e_1_2_10_5_1
  doi: 10.1111/j.1151-2916.1990.tb06682.x
– ident: e_1_2_10_18_3
  doi: 10.1109/TED.2020.2985635
– ident: e_1_2_10_21_1
  doi: 10.1063/1.1505659
– ident: e_1_2_10_21_2
  doi: 10.1021/acsami.5b05773
– ident: e_1_2_10_2_3
  doi: 10.1021/acsaelm.2c01582
– ident: e_1_2_10_3_8
  doi: 10.1016/j.actamat.2024.119920
– ident: e_1_2_10_12_1
  doi: 10.1021/acsami.6b03586
– ident: e_1_2_10_18_1
  doi: 10.1039/D1NR02272E
– ident: e_1_2_10_2_2
  doi: 10.1021/acsaelm.1c00110
– ident: e_1_2_10_7_1
  doi: 10.1016/j.actamat.2024.119750
– ident: e_1_2_10_3_2
  doi: 10.1021/acsaelm.9b00256
– ident: e_1_2_10_1_2
  doi: 10.1063/5.0037617
– ident: e_1_2_10_3_7
  doi: 10.1002/adfm.202209604
– ident: e_1_2_10_4_3
  doi: 10.1063/1.4811483
– ident: e_1_2_10_14_1
  doi: 10.1063/1.1870126
SSID ssj0031247
Score 2.4607308
Snippet Ferroelectric properties of Hf 0.5 Zr 0.5 O 2 are strongly correlated with its crystallographic orientation, with the [001] direction serving as the polar...
Ferroelectric properties of Hf Zr O are strongly correlated with its crystallographic orientation, with the [001] direction serving as the polar axis. However,...
SourceID pubmed
crossref
SourceType Index Database
Enrichment Source
StartPage e2408278
Title Ferroelastic Domain Switching and Time‐Resolved Negative Capacitance in Polar‐Axis‐Oriented Hf 0.5 Zr 0.5 O 2 Grown by Atomic Layer Epitaxy
URI https://www.ncbi.nlm.nih.gov/pubmed/39676420
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeIEHxH0bF_kBiYcoI3FuzWO1C9W0rYh2YuylSmxnC2sTlKZs5YmfAH9xv4Rz4sRLUZEGL3Hr2K7V8ynnEp_vEPImiJAyRoamTCLLdLkrTDBD4MLCrhNFYSBsTBQ-PPL7x-7-iXfS6Vy3Ti3Ny3iLf1-ZV_I_UoU-kCtmyf6DZPWi0AGfQb5wBQnD9VYy3pNFkUuwf5F1dSefgpdvDC_TUp2PxJA4Znjo8wwYqp98AwvzSJ4pvu9tUJU8Lau0AZj7Af1cPbx3lc70lwHyIaN12k8Ma8szTouqGRgMw1eXGZqxvRJTnI2DaIEnR7AcydXSS-PhFN-Dg0n7SabZuUyxOochKpLG4gxDLjNV5fE9aots0QpS7Kd1WPvzXO9oeJPEdqCIEGBZfXdX3xyep_mXVCXUH0YXeZnrJ52a1lpzNK8VeR0HYV4rDqIe3WCYmMiupjRbu6_ebv28Z3YL185KNaJoaWfTCb6cQhI4puoMLfN1_6FH9elGxQTNxjh_rOffIXcZuDJYZWPno6Y4c8C-qgoANbtviEUt9m7595cMpyUXqDKFRg_Jg9qHoT0FyEekI7PH5H6L2fIJ-dWGJlXQpBqaFKBJEZrXP342oKQNKGkLlBRmVaCEgQhHaBog0n5CAYH0tKiaAWW0AiKNF1QBkVZApDUQn5Ljvd3Rdt-sq3-Y3AY9ZIbCjkNfctfxXSliKxbCk9ITCXgFifRj2w-SIObc474rrCQA38W3ZBRI1-PCFdx5RtayPJPrhCZJVVc9jrsxGNAMvPYuDxLmCmEHvpdYG8Rs_toxr6nxsULLZLxalBvkrR7_VZHC_HXkcyUpPc4J_QB8fmvz1mu8IPdu8P6SrJXFXL4CS7iMX1dQ-g1A663M
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ferroelastic+Domain+Switching+and+Time%E2%80%90Resolved+Negative+Capacitance+in+Polar%E2%80%90Axis%E2%80%90Oriented+Hf+0.5+Zr+0.5+O+2+Grown+by+Atomic+Layer+Epitaxy&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Jiang%2C+Yu%E2%80%90Sen&rft.au=Lin%2C+Wei%E2%80%90En&rft.au=Shiojiri%2C+Makoto&rft.au=Yin%2C+Yu%E2%80%90Tung&rft.date=2025-01-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=21&rft.issue=3&rft_id=info:doi/10.1002%2Fsmll.202408278&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202408278
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon