In‐Situ Growth of Mn 3 O 4 Nanoparticles on Nitrogen‐Doped Carbon Dots‐Derived Carbon Skeleton as Cathode Materials for Aqueous Zinc Ion Batteries
Mn 3 O 4 is a promising cathode material for aqueous zinc ion batteries (ZIBs) which is a new type of low cost, eco‐friendly, high security energy storage system, while those previously reported electrochemical capacities of Mn 3 O 4 are far from its theoretical value. In this work, Mn 3 O 4 nanopar...
Saved in:
Published in | ChemSusChem Vol. 15; no. 6; p. e202102390 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
22.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mn
3
O
4
is a promising cathode material for aqueous zinc ion batteries (ZIBs) which is a new type of low cost, eco‐friendly, high security energy storage system, while those previously reported electrochemical capacities of Mn
3
O
4
are far from its theoretical value. In this work, Mn
3
O
4
nanoparticles and nitrogen‐doped carbon dots (NCDs) are synthesized together through an in‐situ hydrothermal route, and then calcined to be a nanocomposite in which Mn
3
O
4
nanoparticles are anchored on a nitrogen‐doped carbon skeleton (designated as Mn
3
O
4
/NCDs). Although the carbon content is only 3.9 wt.% in the Mn
3
O
4
/NCDs, the NCDs‐derived carbon skeleton provides an electrically conductive network and a stable structure. Such a special nanocomposite has a large specific surface area, plenty of active sites, excellent hydrophilicity and good electronic conductivity. Owing to these structural merits, the Mn
3
O
4
/NCDs electrode exhibits a preeminent specific capacity of 443.6 mAh g
−1
and 123.3 mAh g
−1
at current densities of 0.1 and 1.5 A g
−1
in ZIBs, respectively, which are far beyond the bare Mn
3
O
4
nanoparticles synthesized under the similar condition. The electrochemical measurement results prove that carbon dots, as a new type of carbon nanomaterials, have strong ability to modify and improve the performance of existing electrode materials, which may push these electrode materials forward to practical applications. |
---|---|
AbstractList | Mn
O
is a promising cathode material for aqueous zinc ion batteries (ZIBs) which is a new type of low cost, eco-friendly, high security energy storage system, while those previously reported electrochemical capacities of Mn
O
are far from its theoretical value. In this work, Mn
O
nanoparticles and nitrogen-doped carbon dots (NCDs) are synthesized together through an in-situ hydrothermal route, and then calcined to be a nanocomposite in which Mn
O
nanoparticles are anchored on a nitrogen-doped carbon skeleton (designated as Mn
O
/NCDs). Although the carbon content is only 3.9 wt.% in the Mn
O
/NCDs, the NCDs-derived carbon skeleton provides an electrically conductive network and a stable structure. Such a special nanocomposite has a large specific surface area, plenty of active sites, excellent hydrophilicity and good electronic conductivity. Owing to these structural merits, the Mn
O
/NCDs electrode exhibits a preeminent specific capacity of 443.6 mAh g
and 123.3 mAh g
at current densities of 0.1 and 1.5 A g
in ZIBs, respectively, which are far beyond the bare Mn
O
nanoparticles synthesized under the similar condition. The electrochemical measurement results prove that carbon dots, as a new type of carbon nanomaterials, have strong ability to modify and improve the performance of existing electrode materials, which may push these electrode materials forward to practical applications. Mn 3 O 4 is a promising cathode material for aqueous zinc ion batteries (ZIBs) which is a new type of low cost, eco‐friendly, high security energy storage system, while those previously reported electrochemical capacities of Mn 3 O 4 are far from its theoretical value. In this work, Mn 3 O 4 nanoparticles and nitrogen‐doped carbon dots (NCDs) are synthesized together through an in‐situ hydrothermal route, and then calcined to be a nanocomposite in which Mn 3 O 4 nanoparticles are anchored on a nitrogen‐doped carbon skeleton (designated as Mn 3 O 4 /NCDs). Although the carbon content is only 3.9 wt.% in the Mn 3 O 4 /NCDs, the NCDs‐derived carbon skeleton provides an electrically conductive network and a stable structure. Such a special nanocomposite has a large specific surface area, plenty of active sites, excellent hydrophilicity and good electronic conductivity. Owing to these structural merits, the Mn 3 O 4 /NCDs electrode exhibits a preeminent specific capacity of 443.6 mAh g −1 and 123.3 mAh g −1 at current densities of 0.1 and 1.5 A g −1 in ZIBs, respectively, which are far beyond the bare Mn 3 O 4 nanoparticles synthesized under the similar condition. The electrochemical measurement results prove that carbon dots, as a new type of carbon nanomaterials, have strong ability to modify and improve the performance of existing electrode materials, which may push these electrode materials forward to practical applications. |
Author | Xiong, Huan‐Ming Huang, Zun‐Hui Niu, Xiao‐Qing Zhang, Xi‐Rong Wei, Ji‐Shi Song, Tian‐Bing |
Author_xml | – sequence: 1 givenname: Tian‐Bing surname: Song fullname: Song, Tian‐Bing organization: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200438 P. R. China – sequence: 2 givenname: Zun‐Hui surname: Huang fullname: Huang, Zun‐Hui organization: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200438 P. R. China – sequence: 3 givenname: Xiao‐Qing surname: Niu fullname: Niu, Xiao‐Qing organization: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200438 P. R. China – sequence: 4 givenname: Xi‐Rong surname: Zhang fullname: Zhang, Xi‐Rong organization: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200438 P. R. China – sequence: 5 givenname: Ji‐Shi surname: Wei fullname: Wei, Ji‐Shi organization: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200438 P. R. China – sequence: 6 givenname: Huan‐Ming orcidid: 0000-0002-3118-942X surname: Xiong fullname: Xiong, Huan‐Ming organization: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200438 P. R. China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35122400$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1OAjEUhRujEUS3Lk1fAGynZWCWCP6Q8LNAE-Nm0nZutQpTbIvGnY_g0ufzSewEwcTE1b055zt3cc8B2i1tCQgdU9KihCSnynvVSkhCScIysoPqtJvyZjvlt7vbndEaOvD-kZCUZGm6j2qsTZOEE1JHn8Py6_1jZsIKXzr7Gh6w1XhcYoanmOOJKO1SuGDUHDy2JZ6Y4Ow9VJmBXUKB-8LJqA9s8JUGzrz8qrMnmEOIi_BRCg-2ADwWIUJi7rG2DveeV2BXHt-ZUuFhJM9EqHzwh2hPRwqOfmYD3VycX_evmqPp5bDfGzUVJR3S5FIDF6AyljICrCuV6HJImWZZp5sKzWmH6TYDUERmMvqFFAWFpFNImkhNWQOdrO8uV3IBRb50ZiHcW755UQT4GlDOeu9A58oEEYwtgxNmnlOSV03kVRP5tokYa_2JbS7_E_gGDY2PTQ |
CitedBy_id | crossref_primary_10_1016_j_jconrel_2023_08_008 crossref_primary_10_1039_D3TA05705D crossref_primary_10_1016_j_cej_2024_149206 crossref_primary_10_1016_j_ccr_2022_215009 crossref_primary_10_1002_adfm_202400001 crossref_primary_10_1016_j_ensm_2024_103436 crossref_primary_10_1021_acsaem_2c02690 crossref_primary_10_1016_j_apsusc_2023_157580 crossref_primary_10_1016_j_cej_2023_144735 crossref_primary_10_1016_j_cej_2024_151542 crossref_primary_10_1021_acsami_3c11957 crossref_primary_10_1039_D4YA00539B crossref_primary_10_1016_j_compositesb_2023_110770 crossref_primary_10_1016_j_jallcom_2023_169191 crossref_primary_10_1016_j_jcis_2024_07_250 crossref_primary_10_1016_j_materresbull_2023_112605 crossref_primary_10_1002_smll_202205558 crossref_primary_10_1021_acs_iecr_3c02245 crossref_primary_10_1371_journal_pone_0305611 crossref_primary_10_1002_aenm_202301745 crossref_primary_10_1016_j_carbon_2023_03_058 crossref_primary_10_1080_21663831_2023_2178860 crossref_primary_10_1016_j_fuel_2024_132545 crossref_primary_10_1007_s11581_024_05636_9 crossref_primary_10_1002_smtd_202401626 crossref_primary_10_1016_j_jallcom_2023_169068 crossref_primary_10_1039_D4QM00740A crossref_primary_10_1016_j_est_2024_111413 crossref_primary_10_1002_smll_202409217 crossref_primary_10_1016_j_ssi_2024_116575 crossref_primary_10_1016_j_cej_2025_161327 crossref_primary_10_1002_ece2_83 crossref_primary_10_1016_j_jcis_2023_11_129 |
Cites_doi | 10.1039/C8CS00750K 10.1007/s42452-021-04550-3 10.1021/jacs.7b04471 10.1002/smll.201905842 10.1002/ange.201501193 10.1002/anie.202005603 10.1039/C9QM00554D 10.1016/j.mtphys.2021.100518 10.1021/acsenergylett.0c00740 10.1021/acsenergylett.8b01426 10.1002/adma.201503816 10.1016/j.cej.2021.130981 10.1002/advs.201902795 10.1039/C5GC00686D 10.1002/ange.202010287 10.1002/anie.201501193 10.1016/j.ensm.2021.01.020 10.1039/D0QM90015J 10.1002/aenm.201400982 10.1039/c0cc02724c 10.1002/ange.202005603 10.1021/acsaem.0c00990 10.1016/j.electacta.2017.10.166 10.1016/j.nanoen.2020.104523 10.1016/j.jpowsour.2019.226917 10.1002/anie.202010287 10.1002/smll.201602164 10.1007/BF01163155 10.1039/C8TA01198B 10.1016/j.jallcom.2019.151812 10.1016/j.cclet.2021.01.006 10.1002/smll.201804760 10.1038/nenergy.2016.119 10.1021/acsami.8b04085 10.1126/sciadv.aax4279 10.1021/acs.chemmater.5b02336 10.1021/acsaem.1c01905 10.1016/j.ensm.2019.04.022 10.1039/C5TA08426A 10.1021/acsami.0c05812 10.1002/aenm.202001050 10.1039/C9EE02526J 10.1002/smll.201402648 10.1021/acssuschemeng.8b02502 |
ContentType | Journal Article |
Copyright | 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM |
DOI | 10.1002/cssc.202102390 |
DatabaseName | CrossRef PubMed |
DatabaseTitle | CrossRef PubMed |
DatabaseTitleList | PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1864-564X |
ExternalDocumentID | 35122400 10_1002_cssc_202102390 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 21975048 – fundername: National Natural Science Foundation of China grantid: 21771039 – fundername: Shanghai Science and Technology Committee grantid: 19DZ2270100 |
GroupedDBID | --- 05W 0R~ 1OC 29B 33P 4.4 5GY 5VS 66C 77Q 8-1 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAYXX AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFWVQ AFZJQ AGYGG AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BRXPI CITATION CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- OIG P2W PQQKQ ROL SUPJJ SV3 W99 WBKPD WOHZO WXSBR XV2 ZZTAW ~S- NPM |
ID | FETCH-LOGICAL-c1070-4bfe4aec93630e38bca84e63f39786af4173f53eec0b9b38bdbad1e27db12bf13 |
ISSN | 1864-5631 |
IngestDate | Thu Apr 03 06:56:47 EDT 2025 Thu Apr 24 23:01:48 EDT 2025 Tue Jul 01 00:36:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Mn3O4 carbon dots nanocomposite zinc ion battery cathode material |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1070-4bfe4aec93630e38bca84e63f39786af4173f53eec0b9b38bdbad1e27db12bf13 |
ORCID | 0000-0002-3118-942X |
PMID | 35122400 |
ParticipantIDs | pubmed_primary_35122400 crossref_citationtrail_10_1002_cssc_202102390 crossref_primary_10_1002_cssc_202102390 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-22 |
PublicationDateYYYYMMDD | 2022-03-22 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | ChemSusChem |
PublicationTitleAlternate | ChemSusChem |
PublicationYear | 2022 |
References | e_1_2_8_28_2 e_1_2_8_49_2 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_45_2 e_1_2_8_26_2 e_1_2_8_5_1 e_1_2_8_3_2 e_1_2_8_9_1 e_1_2_8_7_2 e_1_2_8_43_1 e_1_2_8_20_2 e_1_2_8_41_2 e_1_2_8_22_1 e_1_2_8_1_1 e_1_2_8_38_3 e_1_2_8_17_2 e_1_2_8_38_2 e_1_2_8_19_2 e_1_2_8_11_3 e_1_2_8_36_1 e_1_2_8_13_2 e_1_2_8_15_1 e_1_2_8_34_1 e_1_2_8_11_2 e_1_2_8_32_2 e_1_2_8_53_2 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_27_2 e_1_2_8_29_2 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_48_1 e_1_2_8_2_2 e_1_2_8_4_2 e_1_2_8_6_2 e_1_2_8_8_2 e_1_2_8_42_1 e_1_2_8_21_2 e_1_2_8_44_2 e_1_2_8_23_1 e_1_2_8_40_2 e_1_2_8_16_2 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_12_2 e_1_2_8_12_3 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_37_2 e_1_2_8_31_2 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_52_2 e_1_2_8_50_2 |
References_xml | – ident: e_1_2_8_32_2 doi: 10.1039/C8CS00750K – ident: e_1_2_8_44_2 doi: 10.1007/s42452-021-04550-3 – ident: e_1_2_8_49_2 doi: 10.1021/jacs.7b04471 – ident: e_1_2_8_16_2 doi: 10.1002/smll.201905842 – ident: e_1_2_8_38_3 doi: 10.1002/ange.201501193 – ident: e_1_2_8_36_1 – ident: e_1_2_8_12_2 doi: 10.1002/anie.202005603 – ident: e_1_2_8_26_2 doi: 10.1039/C9QM00554D – ident: e_1_2_8_52_2 doi: 10.1016/j.mtphys.2021.100518 – ident: e_1_2_8_14_1 doi: 10.1021/acsenergylett.0c00740 – ident: e_1_2_8_2_2 doi: 10.1021/acsenergylett.8b01426 – ident: e_1_2_8_31_2 doi: 10.1002/adma.201503816 – ident: e_1_2_8_13_2 doi: 10.1016/j.cej.2021.130981 – ident: e_1_2_8_21_2 doi: 10.1002/advs.201902795 – ident: e_1_2_8_18_1 – ident: e_1_2_8_40_2 doi: 10.1039/C5GC00686D – ident: e_1_2_8_11_3 doi: 10.1002/ange.202010287 – ident: e_1_2_8_38_2 doi: 10.1002/anie.201501193 – ident: e_1_2_8_15_1 – ident: e_1_2_8_29_2 doi: 10.1016/j.ensm.2021.01.020 – ident: e_1_2_8_33_2 doi: 10.1039/D0QM90015J – ident: e_1_2_8_45_2 doi: 10.1002/aenm.201400982 – ident: e_1_2_8_9_1 – ident: e_1_2_8_37_2 doi: 10.1039/c0cc02724c – ident: e_1_2_8_12_3 doi: 10.1002/ange.202005603 – ident: e_1_2_8_27_2 doi: 10.1021/acsaem.0c00990 – ident: e_1_2_8_48_1 – ident: e_1_2_8_22_1 doi: 10.1016/j.electacta.2017.10.166 – ident: e_1_2_8_3_2 doi: 10.1016/j.nanoen.2020.104523 – ident: e_1_2_8_51_1 – ident: e_1_2_8_10_2 doi: 10.1016/j.jpowsour.2019.226917 – ident: e_1_2_8_39_1 – ident: e_1_2_8_11_2 doi: 10.1002/anie.202010287 – ident: e_1_2_8_34_1 doi: 10.1002/smll.201602164 – ident: e_1_2_8_43_1 – ident: e_1_2_8_25_1 – ident: e_1_2_8_42_1 doi: 10.1007/BF01163155 – ident: e_1_2_8_46_1 doi: 10.1039/C8TA01198B – ident: e_1_2_8_1_1 – ident: e_1_2_8_24_1 doi: 10.1016/j.jallcom.2019.151812 – ident: e_1_2_8_35_1 doi: 10.1016/j.cclet.2021.01.006 – ident: e_1_2_8_47_1 doi: 10.1002/smll.201804760 – ident: e_1_2_8_19_2 doi: 10.1038/nenergy.2016.119 – ident: e_1_2_8_7_2 doi: 10.1021/acsami.8b04085 – ident: e_1_2_8_8_2 doi: 10.1126/sciadv.aax4279 – ident: e_1_2_8_41_2 doi: 10.1021/acs.chemmater.5b02336 – ident: e_1_2_8_17_2 doi: 10.1021/acsaem.1c01905 – ident: e_1_2_8_5_1 – ident: e_1_2_8_6_2 doi: 10.1016/j.ensm.2019.04.022 – ident: e_1_2_8_50_2 doi: 10.1039/C5TA08426A – ident: e_1_2_8_20_2 doi: 10.1021/acsami.0c05812 – ident: e_1_2_8_23_1 doi: 10.1002/aenm.202001050 – ident: e_1_2_8_30_1 – ident: e_1_2_8_4_2 doi: 10.1039/C9EE02526J – ident: e_1_2_8_28_2 doi: 10.1002/smll.201402648 – ident: e_1_2_8_53_2 doi: 10.1021/acssuschemeng.8b02502 |
SSID | ssj0060966 |
Score | 2.3502514 |
Snippet | Mn
3
O
4
is a promising cathode material for aqueous zinc ion batteries (ZIBs) which is a new type of low cost, eco‐friendly, high security energy storage... Mn O is a promising cathode material for aqueous zinc ion batteries (ZIBs) which is a new type of low cost, eco-friendly, high security energy storage system,... |
SourceID | pubmed crossref |
SourceType | Index Database Enrichment Source |
StartPage | e202102390 |
Title | In‐Situ Growth of Mn 3 O 4 Nanoparticles on Nitrogen‐Doped Carbon Dots‐Derived Carbon Skeleton as Cathode Materials for Aqueous Zinc Ion Batteries |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35122400 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6FcoAL4r-lgPaAxCEy2F7biY-lASVIbUWTSlEv0a69q1qAXcU2lTjxCBx5K96BJ2HGu147KEiFixPN7K7jzKedH8_OEPKCC65AL7pOmijlBJEP-6DnK4fJiKVMoVrB08hHx9H0LHi_DJeDwc9e1lJdiVfJ163nSv5HqkADueIp2X-QrF0UCPAd5AtXkDBcryXjWW5zFeZZVWMg6aq6aLJa8iEbngwD3D3BLTbZb_hm4Dir1gWsaGdOikuM8vK1AO6kqMqOA8_wpePNP4KKwiocvGwODhYp9i2q9IM26YoHoGQwpfY8y5PhDEbq6p1tnmJbEOFCfp7XJX7Y-I5JDF4AWO3t37RatUGdiWuf192AaZ11r1Vq5C4zXlj2h958GxdfZpZ_Whi-CXqAv-wyx-_FQb1xFDhhZBSI7NN0wqfd3MMeiKOtOkPXoE3KEitaogfMdAPTzeLcfyhNm8qoyz77K5y_svNvkJs--C3YUmNyauuZReAvNsfd2l_fVhF1_deb99-wkjb8ncbuWdwld4zDQg80hO6Rgczvk1uHbZ_AB-THLP_17Tvij2r80ULRo5wyekIDuoE_WuS0xR_MaZBHNbooIg9pGnMttcUc5SU1mKMWcxQwRw3mKGKOAuaoxdxDcvbu7eJw6ph-H07igeZxAqFkwGUSs4i5ko1FwscB7BkKbOZxxFXgjZgKmZSJK2IB_FTw1JP-KBWeL5THHpGdvMjlLqEjLwVjniuRgsEfxzzmQRwq5UUj8CBSN94jTvv_rhJTDB97snxabZfnHnlpx1_qMjB_HflYi8uOY6HXZGo_ufYa--R2B_qnZKda1_IZ2L6VeN7g6Tcxc6ma |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In%E2%80%90Situ+Growth+of+Mn+3+O+4+Nanoparticles+on+Nitrogen%E2%80%90Doped+Carbon+Dots%E2%80%90Derived+Carbon+Skeleton+as+Cathode+Materials+for+Aqueous+Zinc+Ion+Batteries&rft.jtitle=ChemSusChem&rft.au=Song%2C+Tian%E2%80%90Bing&rft.au=Huang%2C+Zun%E2%80%90Hui&rft.au=Niu%2C+Xiao%E2%80%90Qing&rft.au=Zhang%2C+Xi%E2%80%90Rong&rft.date=2022-03-22&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=15&rft.issue=6&rft_id=info:doi/10.1002%2Fcssc.202102390&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cssc_202102390 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |