A Comparative Analysis of Various Deep-Learning Models for Noise Suppression
Excessive noise in speech communication systems is a major issue affecting various fields, including teleconferencing and hearing aid systems. To tackle this issue, various deep-learning models have been proposed, with autoencoder-based models showing remarkable results. In this paper, we present a...
Saved in:
Published in | EAI endorsed transactions on internet of things Vol. 10 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
2024
|
Online Access | Get full text |
Cover
Loading…
Abstract | Excessive noise in speech communication systems is a major issue affecting various fields, including teleconferencing and hearing aid systems. To tackle this issue, various deep-learning models have been proposed, with autoencoder-based models showing remarkable results. In this paper, we present a comparative analysis of four different deep learning based autoencoder models, namely model ‘alpha’, model ‘beta’, model ‘gamma’, and model ‘delta’ for noise suppression in speech signals. The performance of each model was evaluated using objective metric, mean squared error (MSE). Our experimental results showed that the model ‘alpha’ outperformed the other models, achieving a minimum error of 0.0086 and maximum error of 0.0158. The model ‘gamma’ also performed well, with a minimum error of 0.0169 and maximum error of 0.0216. These findings suggest that the pro-posed models have great potential for enhancing speech communication systems in various fields. |
---|---|
AbstractList | Excessive noise in speech communication systems is a major issue affecting various fields, including teleconferencing and hearing aid systems. To tackle this issue, various deep-learning models have been proposed, with autoencoder-based models showing remarkable results. In this paper, we present a comparative analysis of four different deep learning based autoencoder models, namely model ‘alpha’, model ‘beta’, model ‘gamma’, and model ‘delta’ for noise suppression in speech signals. The performance of each model was evaluated using objective metric, mean squared error (MSE). Our experimental results showed that the model ‘alpha’ outperformed the other models, achieving a minimum error of 0.0086 and maximum error of 0.0158. The model ‘gamma’ also performed well, with a minimum error of 0.0169 and maximum error of 0.0216. These findings suggest that the pro-posed models have great potential for enhancing speech communication systems in various fields. |
Author | Lakdawala, Absar M. Shah, Dhaval B. Gajjar, Henil Kapil, P. N. Selarka, Trushti |
Author_xml | – sequence: 1 givenname: Henil surname: Gajjar fullname: Gajjar, Henil – sequence: 2 givenname: Trushti surname: Selarka fullname: Selarka, Trushti – sequence: 3 givenname: Absar M. surname: Lakdawala fullname: Lakdawala, Absar M. – sequence: 4 givenname: Dhaval B. surname: Shah fullname: Shah, Dhaval B. – sequence: 5 givenname: P. N. surname: Kapil fullname: Kapil, P. N. |
BookMark | eNpN0DtPwzAUBWALFYlSOvEHvKMUv-LEYxSeUoCBxxo5yTUySu3IN0Xqv4eqDEzn6Axn-M7JIsQAhFxytlGcldcAs4_zRuVMnJClUFxlXBqz-NfPyBrxizEmhMq1MUvSVLSO28kmO_tvoFWw4x490ujoh00-7pDeAExZAzYFHz7pUxxgROpios_RI9DX3TQlQPQxXJBTZ0eE9V-uyPvd7Vv9kDUv94911WQ9Z3rORG7koEplCm0KlQ-MGwGD6ZjhjndGqq7UihedLaV2her1oHsnNNeaSyV_1xW5Ov72KSImcO2U_NamfctZe7BojxbtwUL-AMEGU3I |
Cites_doi | 10.1007/978-981-99-3177-4_6 10.1109/CSNT.2015.76 10.3390/w13233470 10.1016/j.apacoust.2012.06.015 10.1109/LCOMM.2021.3091800 10.1007/s12098-017-2579-7 10.1109/ICFHR.2016.0046 10.1007/s13244-018-0639-9 10.1007/978-981-33-6881-1_4 10.1186/s13636-021-00204-9 10.1016/j.sigpro.2021.108378 10.1109/CVPRW.2014.79 10.21437/Interspeech.2018-1484 10.1103/PhysRevResearch.2.033066 10.1186/s13634-020-00707-1 10.1121/10.0005757 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.4108/eetiot.4502 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2414-1399 |
ExternalDocumentID | 10_4108_eetiot_4502 |
GroupedDBID | 8FE 8FG AAYXX ABDBF ADBBV AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CITATION EN8 GROUPED_DOAJ HCIFZ M~E OK1 P62 PIMPY |
ID | FETCH-LOGICAL-c106t-2593d4849769745d0192ed9b091f1b934b86417ba836f74c6d6cf261661343a83 |
ISSN | 2414-1399 |
IngestDate | Fri Dec 06 08:01:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/3.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c106t-2593d4849769745d0192ed9b091f1b934b86417ba836f74c6d6cf261661343a83 |
ParticipantIDs | crossref_primary_10_4108_eetiot_4502 |
PublicationCentury | 2000 |
PublicationDate | 2024-00-00 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024-00-00 |
PublicationDecade | 2020 |
PublicationTitle | EAI endorsed transactions on internet of things |
PublicationYear | 2024 |
References | 49249 49248 49259 49247 49258 49260 49246 49257 49245 49256 49244 49255 49254 49253 49252 49251 49262 49250 49261 |
References_xml | – ident: 49259 – ident: 49260 doi: 10.1007/978-981-99-3177-4_6 – ident: 49262 doi: 10.1109/CSNT.2015.76 – ident: 49261 doi: 10.3390/w13233470 – ident: 49245 doi: 10.1016/j.apacoust.2012.06.015 – ident: 49258 doi: 10.1109/LCOMM.2021.3091800 – ident: 49244 doi: 10.1007/s12098-017-2579-7 – ident: 49247 doi: 10.1109/ICFHR.2016.0046 – ident: 49246 doi: 10.1007/s13244-018-0639-9 – ident: 49251 – ident: 49249 doi: 10.1007/978-981-33-6881-1_4 – ident: 49257 doi: 10.1186/s13636-021-00204-9 – ident: 49252 doi: 10.1016/j.sigpro.2021.108378 – ident: 49250 – ident: 49248 doi: 10.1109/CVPRW.2014.79 – ident: 49254 doi: 10.21437/Interspeech.2018-1484 – ident: 49255 doi: 10.1103/PhysRevResearch.2.033066 – ident: 49253 doi: 10.1186/s13634-020-00707-1 – ident: 49256 doi: 10.1121/10.0005757 |
SSID | ssj0002245699 |
Score | 2.294052 |
Snippet | Excessive noise in speech communication systems is a major issue affecting various fields, including teleconferencing and hearing aid systems. To tackle this... |
SourceID | crossref |
SourceType | Aggregation Database |
Title | A Comparative Analysis of Various Deep-Learning Models for Noise Suppression |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4oXrwYjRrf2YM3UkS6tOVYn2jUi2i8kX1MA0haQktM_PXO7tKyGg7qpWk2HWg7X3e_mZ0HIacChAiFbpPaVMJjCQQeZ1HgMZH4HalwkQh17vDjU9B9YfdvbWej3WSXFKIhP5fmlfxHqziGetVZsn_QbPWjOIDnqF88oobx-Csdx_ZznhfvduuLvKIJrINbrwAm3kPp_tCNz8amAEP9KRvmUNc9PW0gbPrNRR_f1SFV2TRHOlosOoqbrYWh8SFCYaMLXEf7LR-NbLx2F9JF6MYz6BggQ1J701k-KIZVFBB_V_yDj61vV-S6plCjEhtw4_K5GnB8Z_WLhuugsBnRdgZDdsA8pJh2ToQlY-UU3Fw2mzOboQCAT6g7bzRbi0Wr3Kj_sZZVEYZo22jxvhXua-FVsmaqJTp298jU_0EOafqMVrdm8zi1_Jnz5w5zcShIb5NszG0HGlsgbJEVSLfJQ0wdENASBDRL6BwE9BsIqAUBRRBQAwLqgGCHvNxc9y673rxFhifRli88NF59xSKGpBINw7bShB1URyALTM5Fx2ciCth5KHjkB0nIZKACmaDRjKzMZz6O7pJamqWwRyjjYUs2pQzbqs18EB3hy5ZAhUZJEOLF--S0fPz-xFZC6S95ywe_u-yQrGusWGfWEakV0xkcI70rxIlRzxejKFQq |
link.rule.ids | 314,780,784,864,4024,27923,27924,27925 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparative+Analysis+of+Various+Deep-Learning+Models+for+Noise+Suppression&rft.jtitle=EAI+endorsed+transactions+on+internet+of+things&rft.au=Gajjar%2C+Henil&rft.au=Selarka%2C+Trushti&rft.au=Lakdawala%2C+Absar+M.&rft.au=Shah%2C+Dhaval+B.&rft.date=2024&rft.issn=2414-1399&rft.eissn=2414-1399&rft.volume=10&rft_id=info:doi/10.4108%2Feetiot.4502&rft.externalDBID=n%2Fa&rft.externalDocID=10_4108_eetiot_4502 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2414-1399&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2414-1399&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2414-1399&client=summon |