The influence of microbial-based inoculants on N 2 O emissions from soil planted with corn ( Zea mays L.) under greenhouse conditions with different nitrogen fertilizer regimens
Nitrous oxide (N 2 O) emissions are increasing at an unprecedented rate owing to the increased use of nitrogen (N) fertilizers. Thus, new innovative management tools are needed to reduce emissions. One potential approach is the use of microbial inoculants in agricultural production. In a previous in...
Saved in:
Published in | Canadian journal of microbiology Vol. 62; no. 12; pp. 1041 - 1056 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Canada
01.12.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nitrous oxide (N 2 O) emissions are increasing at an unprecedented rate owing to the increased use of nitrogen (N) fertilizers. Thus, new innovative management tools are needed to reduce emissions. One potential approach is the use of microbial inoculants in agricultural production. In a previous incubation study, we observed reductions in N 2 O emissions when microbial-based inoculants were added to soil (no plants present) with N fertilizers under laboratory incubations. This present study evaluated the effects of microbial-based inoculants on N 2 O and carbon dioxide (CO 2 ) emissions when applied to soil planted with corn (Zea mays L.) under controlled greenhouse conditions. Inoculant treatments consisted of (i) SoilBuilder (SB), (ii) a metabolite extract of SoilBuilder (SBF), and (iii) a mixture of 4 strains of plant-growth-promoting Bacillus spp. (BM). Experiments included an unfertilized control and 3 N fertilizers: urea, urea – ammonium nitrate with 32% N (UAN-32), and calcium – ammonium nitrate with 17% N (CAN-17). Cumulative N 2 O fluxes from pots 41 days after planting showed significant reductions in N 2 O of 15% (SB), 41% (BM), and 28% (SBF) with CAN-17 fertilizer. When UAN-32 was used, reductions of 34% (SB), 35% (SBF), and 49% (BM) were obtained. However, no reductions in N 2 O emissions occurred with urea. Microbial-based inoculants did not affect total CO 2 emissions from any of the fertilized treatments or the unfertilized control. N uptake was increased by an average of 56% with microbial inoculants compared with the control (nonmicrobial-based treatments). Significant increases in plant height, SPAD chlorophyll readings, and fresh and dry shoot mass were also observed when the microbial-based treatments were applied (with and without N). Overall, results demonstrate that microbial inoculants can reduce N 2 O emissions following fertilizer application depending on the N fertilizer type used and can enhance N uptake and plant growth. Future studies are planned to evaluate the effectiveness of these microbial inoculants in field-based trials and determine the mechanisms involved in N 2 O reduction. |
---|---|
AbstractList | Nitrous oxide (N 2 O) emissions are increasing at an unprecedented rate owing to the increased use of nitrogen (N) fertilizers. Thus, new innovative management tools are needed to reduce emissions. One potential approach is the use of microbial inoculants in agricultural production. In a previous incubation study, we observed reductions in N 2 O emissions when microbial-based inoculants were added to soil (no plants present) with N fertilizers under laboratory incubations. This present study evaluated the effects of microbial-based inoculants on N 2 O and carbon dioxide (CO 2 ) emissions when applied to soil planted with corn (Zea mays L.) under controlled greenhouse conditions. Inoculant treatments consisted of (i) SoilBuilder (SB), (ii) a metabolite extract of SoilBuilder (SBF), and (iii) a mixture of 4 strains of plant-growth-promoting Bacillus spp. (BM). Experiments included an unfertilized control and 3 N fertilizers: urea, urea – ammonium nitrate with 32% N (UAN-32), and calcium – ammonium nitrate with 17% N (CAN-17). Cumulative N 2 O fluxes from pots 41 days after planting showed significant reductions in N 2 O of 15% (SB), 41% (BM), and 28% (SBF) with CAN-17 fertilizer. When UAN-32 was used, reductions of 34% (SB), 35% (SBF), and 49% (BM) were obtained. However, no reductions in N 2 O emissions occurred with urea. Microbial-based inoculants did not affect total CO 2 emissions from any of the fertilized treatments or the unfertilized control. N uptake was increased by an average of 56% with microbial inoculants compared with the control (nonmicrobial-based treatments). Significant increases in plant height, SPAD chlorophyll readings, and fresh and dry shoot mass were also observed when the microbial-based treatments were applied (with and without N). Overall, results demonstrate that microbial inoculants can reduce N 2 O emissions following fertilizer application depending on the N fertilizer type used and can enhance N uptake and plant growth. Future studies are planned to evaluate the effectiveness of these microbial inoculants in field-based trials and determine the mechanisms involved in N 2 O reduction. Nitrous oxide (N O) emissions are increasing at an unprecedented rate owing to the increased use of nitrogen (N) fertilizers. Thus, new innovative management tools are needed to reduce emissions. One potential approach is the use of microbial inoculants in agricultural production. In a previous incubation study, we observed reductions in N O emissions when microbial-based inoculants were added to soil (no plants present) with N fertilizers under laboratory incubations. This present study evaluated the effects of microbial-based inoculants on N O and carbon dioxide (CO ) emissions when applied to soil planted with corn (Zea mays L.) under controlled greenhouse conditions. Inoculant treatments consisted of (i) SoilBuilder (SB), (ii) a metabolite extract of SoilBuilder (SBF), and (iii) a mixture of 4 strains of plant-growth-promoting Bacillus spp. (BM). Experiments included an unfertilized control and 3 N fertilizers: urea, urea - ammonium nitrate with 32% N (UAN-32), and calcium - ammonium nitrate with 17% N (CAN-17). Cumulative N O fluxes from pots 41 days after planting showed significant reductions in N O of 15% (SB), 41% (BM), and 28% (SBF) with CAN-17 fertilizer. When UAN-32 was used, reductions of 34% (SB), 35% (SBF), and 49% (BM) were obtained. However, no reductions in N O emissions occurred with urea. Microbial-based inoculants did not affect total CO emissions from any of the fertilized treatments or the unfertilized control. N uptake was increased by an average of 56% with microbial inoculants compared with the control (nonmicrobial-based treatments). Significant increases in plant height, SPAD chlorophyll readings, and fresh and dry shoot mass were also observed when the microbial-based treatments were applied (with and without N). Overall, results demonstrate that microbial inoculants can reduce N O emissions following fertilizer application depending on the N fertilizer type used and can enhance N uptake and plant growth. Future studies are planned to evaluate the effectiveness of these microbial inoculants in field-based trials and determine the mechanisms involved in N O reduction. |
Author | Torbert, H. Allen Kloepper, Joseph W. Calvo, Pamela Watts, Dexter B. |
Author_xml | – sequence: 1 givenname: Pamela surname: Calvo fullname: Calvo, Pamela – sequence: 2 givenname: Dexter B. surname: Watts fullname: Watts, Dexter B. – sequence: 3 givenname: Joseph W. surname: Kloepper fullname: Kloepper, Joseph W. – sequence: 4 givenname: H. Allen surname: Torbert fullname: Torbert, H. Allen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27829287$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUFP3DAQha2Kqiy0x17RHOFgajt2kj0i1ALSqlz21Evk2ONdo8Re2YkQ_Kv-wzpAe0DqaTQz3xtp3jshRyEGJOQrZ5ecV-tv5mGkgvGaMi7EB7LismW0Eo06IivGWEslr-tjcpLzA2OcVbL-RI5F04q1aJsV-b3dI_jghhmDQYgORm9S7L0eaK8z2rKMZh50mDLEAD9BwD3g6HP2MWRwKY6Qox_gsDCFf_TTHkxMAc7hF2oY9VOGzeUFzMFigl1CDPs4ZyxQsH56OfMist45TBgmCH5KcYcBSj_5wT8XYcKdHzHkz-Sj00PGL2_1lGx_fN9e39LN_c3d9dWGGs5UQxshldGmrlrbc6U5OlzXUgqhVK1QSqvL3PIeddX3yrSNaaVQratcbZzl1Sk5ez17mPsRbXdIftTpqftrXQHoK1Dsyjmh-4dw1i3RdCWabommW6IpfPWON37Sy_tT0n74j-oPJKiVsg |
CitedBy_id | crossref_primary_10_3390_agriculture14040569 crossref_primary_10_1002_sae2_70051 crossref_primary_10_1016_j_agee_2023_108850 crossref_primary_10_15407_agrisp9_03_064 crossref_primary_10_1016_S1002_0160_20_60075_3 crossref_primary_10_3390_agronomy13122950 crossref_primary_10_1016_j_jenvman_2023_119390 crossref_primary_10_3389_fsufs_2021_606379 crossref_primary_10_1080_17518253_2022_2071593 crossref_primary_10_1016_j_scitotenv_2023_163789 crossref_primary_10_1016_j_ecoenv_2020_110311 crossref_primary_10_3389_fpls_2021_683658 crossref_primary_10_1111_gcb_14025 crossref_primary_10_1007_s00253_019_09710_5 crossref_primary_10_1016_j_tim_2022_04_006 |
Cites_doi | 10.1094/PDIS.2003.87.11.1390 10.2134/jeq2012.0300 10.1016/S0065-2113(01)73005-2 10.2134/jeq2005.0183 10.1016/j.scienta.2006.08.003 10.1016/S1369-5266(00)00183-7 10.2134/jeq1990.00472425001900020013x 10.2134/asaspecpub55.c5 10.5194/bgd-10-10271-2013 10.1007/978-3-642-19577-8_2 10.1007/s003740100350 10.1890/0012-9658(2000)081[1402:TFSODC]2.0.CO;2 10.2136/sssaj2005.0113 10.1016/j.soilbio.2006.06.015 10.1139/W08-081 10.1016/j.apsoil.2010.06.010 10.1007/978-3-642-13612-2_2 10.1007/s11104-008-9796-9 10.1093/forestscience/44.1.139 10.1007/BF00210224 10.2136/sssaj1981.03615995004500020017x 10.1051/agro:2003011 10.2134/agronmonogr9.2.2ed.c33 10.2134/jeq2007.0268 10.1016/S0734-9750(98)00003-2 10.1016/S0038-0717(00)00043-2 10.1016/j.agee.2009.04.021 10.1017/S1466046607070482 10.1007/s00374-005-0034-9 10.3923/jbs.2008.1015.1020 10.1023/A:1014464716261 10.1007/s11104-004-0484-0 10.1007/BF00260843 10.1007/s13213-010-0117-1 10.21273/HORTTECH.13.3.0476 10.1007/s003740000305 10.1128/mr.60.4.609-640.1996 10.1111/j.1475-2743.1997.tb00601.x |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM |
DOI | 10.1139/cjm-2016-0122 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Agriculture |
EISSN | 1480-3275 |
EndPage | 1056 |
ExternalDocumentID | 27829287 10_1139_cjm_2016_0122 |
Genre | Journal Article |
GroupedDBID | --- -~X .55 00T 0R~ 29B 2QL 2XV 36B 3O- 4.4 4IJ 53G 5GY 5RE 5RP 6J9 7RV 7X2 7X7 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FQ 8G5 A8Z AAHBH AAIKC AAMNW AAYXX ABCQX ABDBF ABEFU ABJNI ABUWG ACGFO ACGFS ACGOD ACNCT ACPRK ACUHS ADBBV ADXHL AEGXH AENEX AEUYN AFFNX AFKRA AFRAH AHMBA AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS APEBS ATCPS AZQEC BBNVY BCR BENPR BHPHI BKEYQ BKSAR BLC BPHCQ BVXVI CAG CCPQU CITATION COF CS3 D1J D8U DU5 DWQXO EAD EAP EAS EBC EBD EBS ECC EDH EJD EMB EMK EMOBN EPL EST ESTFP ESX EX3 F5P FYUFA GNUQQ GUQSH HCIFZ HMCUK HZ~ H~9 IAG IAO ICQ IEA IEP IGS IHR INH INR IPNFZ ISN ISR ITC L7B LK8 M0K M1P M2O M2P M2Q M3C M3G M7P ML0 MM. MV1 MVM NAPCQ NEJ NMEPN NRXXU NYCZX O9- OHT ONR OVD P2P PCBAR PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PRG PROAC PSQYO PV9 QF4 QM4 QN7 QO4 QRP RIG RRCRK RRP RZL S10 SV3 TEORI TN5 TUS U5U UKHRP VQG WH7 WOW X7M YZZ ZCG ZGI ZY4 ABTAH CGR CUY CVF ECM EIF NPM |
ID | FETCH-LOGICAL-c1057-7245cac638db15a1efe9644225565e44dadb1d1bea3bb5c87c84258f3f6cfd13 |
ISSN | 0008-4166 |
IngestDate | Thu Apr 03 06:58:54 EDT 2025 Thu Apr 24 22:53:01 EDT 2025 Thu Aug 14 00:05:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | inoculants microbiens microbial inoculants SoilBuilder RFCP greenhouse gas emissions production de N2O PGPR N2O production émissions de gaz à effet de serre |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1057-7245cac638db15a1efe9644225565e44dadb1d1bea3bb5c87c84258f3f6cfd13 |
PMID | 27829287 |
PageCount | 16 |
ParticipantIDs | pubmed_primary_27829287 crossref_primary_10_1139_cjm_2016_0122 crossref_citationtrail_10_1139_cjm_2016_0122 |
PublicationCentury | 2000 |
PublicationDate | 2016-12-00 2016-Dec |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-00 |
PublicationDecade | 2010 |
PublicationPlace | Canada |
PublicationPlace_xml | – name: Canada |
PublicationTitle | Canadian journal of microbiology |
PublicationTitleAlternate | Can J Microbiol |
PublicationYear | 2016 |
References | refg18/ref18 refg22/ref22 refg36/ref36 refg38/ref38 refg45/ref45 refg49/ref49 Eichner M.J. (refg19/ref19) 1989; 19 Kokalis-Burelle N. (refg34/ref34) 2003; 13 refg51/ref51 refg31/ref31 refg9/ref9 refg11/ref11 refg25/ref25 refg15/ref15 refg29/ref29 refg43/ref43 refg26/ref26 refg14/ref14 refg8/ref8 refg5/ref5 refg2/ref2 Conrad R. (refg17/ref17) 1996; 60 refg23/ref23 refg37/ref37 refg30/ref30 Enebak S.A. (refg20/ref20) 1998; 44 refg21/ref21 refg7/ref7 refg4/ref4 refg48/ref48 refg10/ref10 refg12/ref12 refg1/ref1 refg28/ref28 refg41/ref41 refg32/ref32 Halvorson A.D. (refg50/ref50) 2008; 37 refg35/ref35 refg42/ref42 refg44/ref44 Yildirim E. (refg47/ref47) 2006; 111 refg24/ref24 Barabasz W. (refg6/ref6) 2002; 11 refg16/ref16 refg33/ref33 refg13/ref13 refg27/ref27 |
References_xml | – ident: refg31/ref31 doi: 10.1094/PDIS.2003.87.11.1390 – ident: refg44/ref44 – ident: refg14/ref14 doi: 10.2134/jeq2012.0300 – ident: refg24/ref24 doi: 10.1016/S0065-2113(01)73005-2 – ident: refg38/ref38 doi: 10.2134/jeq2005.0183 – ident: refg27/ref27 – volume: 111 start-page: 1 year: 2006 ident: refg47/ref47 publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2006.08.003 – ident: refg11/ref11 doi: 10.1016/S1369-5266(00)00183-7 – volume: 19 start-page: 272 year: 1989 ident: refg19/ref19 publication-title: J. Environ. Qual. doi: 10.2134/jeq1990.00472425001900020013x – ident: refg28/ref28 doi: 10.2134/asaspecpub55.c5 – ident: refg5/ref5 – ident: refg4/ref4 doi: 10.5194/bgd-10-10271-2013 – ident: refg35/ref35 doi: 10.1007/978-3-642-19577-8_2 – ident: refg48/ref48 doi: 10.1007/s003740100350 – ident: refg16/ref16 doi: 10.1890/0012-9658(2000)081[1402:TFSODC]2.0.CO;2 – ident: refg26/ref26 doi: 10.2136/sssaj2005.0113 – ident: refg21/ref21 doi: 10.1016/j.soilbio.2006.06.015 – ident: refg1/ref1 doi: 10.1139/W08-081 – ident: refg2/ref2 doi: 10.1016/j.apsoil.2010.06.010 – ident: refg22/ref22 doi: 10.1007/978-3-642-13612-2_2 – ident: refg41/ref41 doi: 10.1007/s11104-008-9796-9 – volume: 44 start-page: 139 year: 1998 ident: refg20/ref20 publication-title: Forest Sci. doi: 10.1093/forestscience/44.1.139 – ident: refg12/ref12 doi: 10.1007/BF00210224 – ident: refg29/ref29 doi: 10.2136/sssaj1981.03615995004500020017x – ident: refg30/ref30 – ident: refg37/ref37 doi: 10.1051/agro:2003011 – ident: refg18/ref18 – ident: refg32/ref32 doi: 10.2134/agronmonogr9.2.2ed.c33 – volume: 37 start-page: 1337 year: 2008 ident: refg50/ref50 publication-title: J. Environ. Qual. doi: 10.2134/jeq2007.0268 – ident: refg7/ref7 doi: 10.1016/S0734-9750(98)00003-2 – ident: refg8/ref8 doi: 10.1016/S0038-0717(00)00043-2 – ident: refg45/ref45 doi: 10.1016/j.agee.2009.04.021 – volume: 11 start-page: 193 year: 2002 ident: refg6/ref6 publication-title: Pol. J. Environ. Stud. – ident: refg42/ref42 doi: 10.1017/S1466046607070482 – ident: refg15/ref15 doi: 10.1007/s00374-005-0034-9 – ident: refg10/ref10 doi: 10.3923/jbs.2008.1015.1020 – ident: refg23/ref23 – ident: refg33/ref33 doi: 10.1023/A:1014464716261 – ident: refg51/ref51 – ident: refg49/ref49 doi: 10.1007/s11104-004-0484-0 – ident: refg36/ref36 – ident: refg13/ref13 doi: 10.1007/BF00260843 – ident: refg25/ref25 doi: 10.1007/s13213-010-0117-1 – volume: 13 start-page: 476 year: 2003 ident: refg34/ref34 publication-title: Horttechnology doi: 10.21273/HORTTECH.13.3.0476 – ident: refg9/ref9 doi: 10.1007/s003740000305 – volume: 60 start-page: 609 year: 1996 ident: refg17/ref17 publication-title: Microbiol. Rev. doi: 10.1128/mr.60.4.609-640.1996 – ident: refg43/ref43 doi: 10.1111/j.1475-2743.1997.tb00601.x |
SSID | ssj0010346 |
Score | 2.1338277 |
Snippet | Nitrous oxide (N 2 O) emissions are increasing at an unprecedented rate owing to the increased use of nitrogen (N) fertilizers. Thus, new innovative management... Nitrous oxide (N O) emissions are increasing at an unprecedented rate owing to the increased use of nitrogen (N) fertilizers. Thus, new innovative management... |
SourceID | pubmed crossref |
SourceType | Index Database Enrichment Source |
StartPage | 1041 |
SubjectTerms | Agricultural Inoculants - physiology Agriculture Carbon Dioxide - metabolism Fertilizers Nitrates - pharmacology Nitrogen - metabolism Nitrous Oxide - metabolism Plant Shoots - drug effects Plant Shoots - physiology Quaternary Ammonium Compounds - pharmacology Soil - chemistry Urea - analogs & derivatives Urea - pharmacology Zea mays - drug effects Zea mays - physiology |
Title | The influence of microbial-based inoculants on N 2 O emissions from soil planted with corn ( Zea mays L.) under greenhouse conditions with different nitrogen fertilizer regimens |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27829287 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JjtNAEG2FiZC4IHaGTXVACNQ4Ey-xnWMyMIrQkLkEMbeou92GIMeOEgdp5q_4Nz6AKre3REEauFiR0-Ul9VJLd3U9xl4L2xYYhmsr6MvY8lQcWhgVuVbgCMRXILUvaWrg89SffPE-XQ4uO53fraqlbS576vrgvpL_0SqeQ73SLtl_0Gx9UTyBn1G_eEQN4_HGOl5ULCPFSvmi6KskEou8E7VVyqjONDWLAlPu8AtOBG-bovyt2FqyyRYJcUmneVOIviZEhFT3yJfiasPPaTNWwZi75t-oUOd7tjVl7pGp-DKCFdlKztFOrDN8bB5T2XayuEZBooBY6nJycL83QquBRfkOO9P9pyL5mZmAd6mTxpOIPDdpQOFi-LhX-48k06uVgaNZ5OBf6y9n2VqWW5UmPT4iMpn25IfttwpJKoMeWhhTlt20jQ33QnQtjiFkqYy877TB7LRMNuajdsv9Y7zpH3YtLnVmVT-WVvEgtCTZ-NCqbmDPtdYFj0Wq5Q7nKD4n8TmJ32JdB5MbtM7d0fjD-KzbMG-YDWbVy1W9Yd3hyc79d2KpnayoiI5m99jdMq2BkcHofdbR6QN22xCdXj1kvxCpUCMVshj2kAoNUiFLYQoOXECNVCCkAiEVSqQCAQ4IqfAWEKdAOIXz3jsoUAoNSqFBqRGqUQoVSqFBKVQofcRmZx9npxOrJAuxFFFVo3HxBkoodCeRtAfC1rEeYqzvUIu9gfa8SOD5yJZauFIOVBgoWoAOYzf2VRzZ7mN2lGapfsqgr9Dx4hjPC3wv6qthrCMZY2IdoWELY--Yva9-9bkqG-kTn0syP6jlY_amHr4yHWT-NvCJUWE9zMHwfeiEwbObXuI5u9P8S16wo3y91S8xaM7lqxJjfwCKAsfq |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+influence+of+microbial-based+inoculants+on+N+2+O+emissions+from+soil+planted+with+corn+%28+Zea+mays+L.%29+under+greenhouse+conditions+with+different+nitrogen+fertilizer+regimens&rft.jtitle=Canadian+journal+of+microbiology&rft.au=Calvo%2C+Pamela&rft.au=Watts%2C+Dexter+B.&rft.au=Kloepper%2C+Joseph+W.&rft.au=Torbert%2C+H.+Allen&rft.date=2016-12-01&rft.issn=0008-4166&rft.eissn=1480-3275&rft.volume=62&rft.issue=12&rft.spage=1041&rft.epage=1056&rft_id=info:doi/10.1139%2Fcjm-2016-0122&rft.externalDBID=n%2Fa&rft.externalDocID=10_1139_cjm_2016_0122 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4166&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4166&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4166&client=summon |