The influence of microbial-based inoculants on N 2 O emissions from soil planted with corn ( Zea mays L.) under greenhouse conditions with different nitrogen fertilizer regimens

Nitrous oxide (N 2 O) emissions are increasing at an unprecedented rate owing to the increased use of nitrogen (N) fertilizers. Thus, new innovative management tools are needed to reduce emissions. One potential approach is the use of microbial inoculants in agricultural production. In a previous in...

Full description

Saved in:
Bibliographic Details
Published inCanadian journal of microbiology Vol. 62; no. 12; pp. 1041 - 1056
Main Authors Calvo, Pamela, Watts, Dexter B., Kloepper, Joseph W., Torbert, H. Allen
Format Journal Article
LanguageEnglish
Published Canada 01.12.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nitrous oxide (N 2 O) emissions are increasing at an unprecedented rate owing to the increased use of nitrogen (N) fertilizers. Thus, new innovative management tools are needed to reduce emissions. One potential approach is the use of microbial inoculants in agricultural production. In a previous incubation study, we observed reductions in N 2 O emissions when microbial-based inoculants were added to soil (no plants present) with N fertilizers under laboratory incubations. This present study evaluated the effects of microbial-based inoculants on N 2 O and carbon dioxide (CO 2 ) emissions when applied to soil planted with corn (Zea mays L.) under controlled greenhouse conditions. Inoculant treatments consisted of (i) SoilBuilder (SB), (ii) a metabolite extract of SoilBuilder (SBF), and (iii) a mixture of 4 strains of plant-growth-promoting Bacillus spp. (BM). Experiments included an unfertilized control and 3 N fertilizers: urea, urea – ammonium nitrate with 32% N (UAN-32), and calcium – ammonium nitrate with 17% N (CAN-17). Cumulative N 2 O fluxes from pots 41 days after planting showed significant reductions in N 2 O of 15% (SB), 41% (BM), and 28% (SBF) with CAN-17 fertilizer. When UAN-32 was used, reductions of 34% (SB), 35% (SBF), and 49% (BM) were obtained. However, no reductions in N 2 O emissions occurred with urea. Microbial-based inoculants did not affect total CO 2 emissions from any of the fertilized treatments or the unfertilized control. N uptake was increased by an average of 56% with microbial inoculants compared with the control (nonmicrobial-based treatments). Significant increases in plant height, SPAD chlorophyll readings, and fresh and dry shoot mass were also observed when the microbial-based treatments were applied (with and without N). Overall, results demonstrate that microbial inoculants can reduce N 2 O emissions following fertilizer application depending on the N fertilizer type used and can enhance N uptake and plant growth. Future studies are planned to evaluate the effectiveness of these microbial inoculants in field-based trials and determine the mechanisms involved in N 2 O reduction.
AbstractList Nitrous oxide (N 2 O) emissions are increasing at an unprecedented rate owing to the increased use of nitrogen (N) fertilizers. Thus, new innovative management tools are needed to reduce emissions. One potential approach is the use of microbial inoculants in agricultural production. In a previous incubation study, we observed reductions in N 2 O emissions when microbial-based inoculants were added to soil (no plants present) with N fertilizers under laboratory incubations. This present study evaluated the effects of microbial-based inoculants on N 2 O and carbon dioxide (CO 2 ) emissions when applied to soil planted with corn (Zea mays L.) under controlled greenhouse conditions. Inoculant treatments consisted of (i) SoilBuilder (SB), (ii) a metabolite extract of SoilBuilder (SBF), and (iii) a mixture of 4 strains of plant-growth-promoting Bacillus spp. (BM). Experiments included an unfertilized control and 3 N fertilizers: urea, urea – ammonium nitrate with 32% N (UAN-32), and calcium – ammonium nitrate with 17% N (CAN-17). Cumulative N 2 O fluxes from pots 41 days after planting showed significant reductions in N 2 O of 15% (SB), 41% (BM), and 28% (SBF) with CAN-17 fertilizer. When UAN-32 was used, reductions of 34% (SB), 35% (SBF), and 49% (BM) were obtained. However, no reductions in N 2 O emissions occurred with urea. Microbial-based inoculants did not affect total CO 2 emissions from any of the fertilized treatments or the unfertilized control. N uptake was increased by an average of 56% with microbial inoculants compared with the control (nonmicrobial-based treatments). Significant increases in plant height, SPAD chlorophyll readings, and fresh and dry shoot mass were also observed when the microbial-based treatments were applied (with and without N). Overall, results demonstrate that microbial inoculants can reduce N 2 O emissions following fertilizer application depending on the N fertilizer type used and can enhance N uptake and plant growth. Future studies are planned to evaluate the effectiveness of these microbial inoculants in field-based trials and determine the mechanisms involved in N 2 O reduction.
Nitrous oxide (N O) emissions are increasing at an unprecedented rate owing to the increased use of nitrogen (N) fertilizers. Thus, new innovative management tools are needed to reduce emissions. One potential approach is the use of microbial inoculants in agricultural production. In a previous incubation study, we observed reductions in N O emissions when microbial-based inoculants were added to soil (no plants present) with N fertilizers under laboratory incubations. This present study evaluated the effects of microbial-based inoculants on N O and carbon dioxide (CO ) emissions when applied to soil planted with corn (Zea mays L.) under controlled greenhouse conditions. Inoculant treatments consisted of (i) SoilBuilder (SB), (ii) a metabolite extract of SoilBuilder (SBF), and (iii) a mixture of 4 strains of plant-growth-promoting Bacillus spp. (BM). Experiments included an unfertilized control and 3 N fertilizers: urea, urea - ammonium nitrate with 32% N (UAN-32), and calcium - ammonium nitrate with 17% N (CAN-17). Cumulative N O fluxes from pots 41 days after planting showed significant reductions in N O of 15% (SB), 41% (BM), and 28% (SBF) with CAN-17 fertilizer. When UAN-32 was used, reductions of 34% (SB), 35% (SBF), and 49% (BM) were obtained. However, no reductions in N O emissions occurred with urea. Microbial-based inoculants did not affect total CO emissions from any of the fertilized treatments or the unfertilized control. N uptake was increased by an average of 56% with microbial inoculants compared with the control (nonmicrobial-based treatments). Significant increases in plant height, SPAD chlorophyll readings, and fresh and dry shoot mass were also observed when the microbial-based treatments were applied (with and without N). Overall, results demonstrate that microbial inoculants can reduce N O emissions following fertilizer application depending on the N fertilizer type used and can enhance N uptake and plant growth. Future studies are planned to evaluate the effectiveness of these microbial inoculants in field-based trials and determine the mechanisms involved in N O reduction.
Author Torbert, H. Allen
Kloepper, Joseph W.
Calvo, Pamela
Watts, Dexter B.
Author_xml – sequence: 1
  givenname: Pamela
  surname: Calvo
  fullname: Calvo, Pamela
– sequence: 2
  givenname: Dexter B.
  surname: Watts
  fullname: Watts, Dexter B.
– sequence: 3
  givenname: Joseph W.
  surname: Kloepper
  fullname: Kloepper, Joseph W.
– sequence: 4
  givenname: H. Allen
  surname: Torbert
  fullname: Torbert, H. Allen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27829287$$D View this record in MEDLINE/PubMed
BookMark eNp1kUFP3DAQha2Kqiy0x17RHOFgajt2kj0i1ALSqlz21Evk2ONdo8Re2YkQ_Kv-wzpAe0DqaTQz3xtp3jshRyEGJOQrZ5ecV-tv5mGkgvGaMi7EB7LismW0Eo06IivGWEslr-tjcpLzA2OcVbL-RI5F04q1aJsV-b3dI_jghhmDQYgORm9S7L0eaK8z2rKMZh50mDLEAD9BwD3g6HP2MWRwKY6Qox_gsDCFf_TTHkxMAc7hF2oY9VOGzeUFzMFigl1CDPs4ZyxQsH56OfMist45TBgmCH5KcYcBSj_5wT8XYcKdHzHkz-Sj00PGL2_1lGx_fN9e39LN_c3d9dWGGs5UQxshldGmrlrbc6U5OlzXUgqhVK1QSqvL3PIeddX3yrSNaaVQratcbZzl1Sk5ez17mPsRbXdIftTpqftrXQHoK1Dsyjmh-4dw1i3RdCWabommW6IpfPWON37Sy_tT0n74j-oPJKiVsg
CitedBy_id crossref_primary_10_3390_agriculture14040569
crossref_primary_10_1002_sae2_70051
crossref_primary_10_1016_j_agee_2023_108850
crossref_primary_10_15407_agrisp9_03_064
crossref_primary_10_1016_S1002_0160_20_60075_3
crossref_primary_10_3390_agronomy13122950
crossref_primary_10_1016_j_jenvman_2023_119390
crossref_primary_10_3389_fsufs_2021_606379
crossref_primary_10_1080_17518253_2022_2071593
crossref_primary_10_1016_j_scitotenv_2023_163789
crossref_primary_10_1016_j_ecoenv_2020_110311
crossref_primary_10_3389_fpls_2021_683658
crossref_primary_10_1111_gcb_14025
crossref_primary_10_1007_s00253_019_09710_5
crossref_primary_10_1016_j_tim_2022_04_006
Cites_doi 10.1094/PDIS.2003.87.11.1390
10.2134/jeq2012.0300
10.1016/S0065-2113(01)73005-2
10.2134/jeq2005.0183
10.1016/j.scienta.2006.08.003
10.1016/S1369-5266(00)00183-7
10.2134/jeq1990.00472425001900020013x
10.2134/asaspecpub55.c5
10.5194/bgd-10-10271-2013
10.1007/978-3-642-19577-8_2
10.1007/s003740100350
10.1890/0012-9658(2000)081[1402:TFSODC]2.0.CO;2
10.2136/sssaj2005.0113
10.1016/j.soilbio.2006.06.015
10.1139/W08-081
10.1016/j.apsoil.2010.06.010
10.1007/978-3-642-13612-2_2
10.1007/s11104-008-9796-9
10.1093/forestscience/44.1.139
10.1007/BF00210224
10.2136/sssaj1981.03615995004500020017x
10.1051/agro:2003011
10.2134/agronmonogr9.2.2ed.c33
10.2134/jeq2007.0268
10.1016/S0734-9750(98)00003-2
10.1016/S0038-0717(00)00043-2
10.1016/j.agee.2009.04.021
10.1017/S1466046607070482
10.1007/s00374-005-0034-9
10.3923/jbs.2008.1015.1020
10.1023/A:1014464716261
10.1007/s11104-004-0484-0
10.1007/BF00260843
10.1007/s13213-010-0117-1
10.21273/HORTTECH.13.3.0476
10.1007/s003740000305
10.1128/mr.60.4.609-640.1996
10.1111/j.1475-2743.1997.tb00601.x
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1139/cjm-2016-0122
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Agriculture
EISSN 1480-3275
EndPage 1056
ExternalDocumentID 27829287
10_1139_cjm_2016_0122
Genre Journal Article
GroupedDBID ---
-~X
.55
00T
0R~
29B
2QL
2XV
36B
3O-
4.4
4IJ
53G
5GY
5RE
5RP
6J9
7RV
7X2
7X7
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FQ
8G5
A8Z
AAHBH
AAIKC
AAMNW
AAYXX
ABCQX
ABDBF
ABEFU
ABJNI
ABUWG
ACGFO
ACGFS
ACGOD
ACNCT
ACPRK
ACUHS
ADBBV
ADXHL
AEGXH
AENEX
AEUYN
AFFNX
AFKRA
AFRAH
AHMBA
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
APEBS
ATCPS
AZQEC
BBNVY
BCR
BENPR
BHPHI
BKEYQ
BKSAR
BLC
BPHCQ
BVXVI
CAG
CCPQU
CITATION
COF
CS3
D1J
D8U
DU5
DWQXO
EAD
EAP
EAS
EBC
EBD
EBS
ECC
EDH
EJD
EMB
EMK
EMOBN
EPL
EST
ESTFP
ESX
EX3
F5P
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HZ~
H~9
IAG
IAO
ICQ
IEA
IEP
IGS
IHR
INH
INR
IPNFZ
ISN
ISR
ITC
L7B
LK8
M0K
M1P
M2O
M2P
M2Q
M3C
M3G
M7P
ML0
MM.
MV1
MVM
NAPCQ
NEJ
NMEPN
NRXXU
NYCZX
O9-
OHT
ONR
OVD
P2P
PCBAR
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PRG
PROAC
PSQYO
PV9
QF4
QM4
QN7
QO4
QRP
RIG
RRCRK
RRP
RZL
S10
SV3
TEORI
TN5
TUS
U5U
UKHRP
VQG
WH7
WOW
X7M
YZZ
ZCG
ZGI
ZY4
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
ID FETCH-LOGICAL-c1057-7245cac638db15a1efe9644225565e44dadb1d1bea3bb5c87c84258f3f6cfd13
ISSN 0008-4166
IngestDate Thu Apr 03 06:58:54 EDT 2025
Thu Apr 24 22:53:01 EDT 2025
Thu Aug 14 00:05:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords inoculants microbiens
microbial inoculants
SoilBuilder
RFCP
greenhouse gas emissions
production de N2O
PGPR
N2O production
émissions de gaz à effet de serre
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1057-7245cac638db15a1efe9644225565e44dadb1d1bea3bb5c87c84258f3f6cfd13
PMID 27829287
PageCount 16
ParticipantIDs pubmed_primary_27829287
crossref_primary_10_1139_cjm_2016_0122
crossref_citationtrail_10_1139_cjm_2016_0122
PublicationCentury 2000
PublicationDate 2016-12-00
2016-Dec
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-00
PublicationDecade 2010
PublicationPlace Canada
PublicationPlace_xml – name: Canada
PublicationTitle Canadian journal of microbiology
PublicationTitleAlternate Can J Microbiol
PublicationYear 2016
References refg18/ref18
refg22/ref22
refg36/ref36
refg38/ref38
refg45/ref45
refg49/ref49
Eichner M.J. (refg19/ref19) 1989; 19
Kokalis-Burelle N. (refg34/ref34) 2003; 13
refg51/ref51
refg31/ref31
refg9/ref9
refg11/ref11
refg25/ref25
refg15/ref15
refg29/ref29
refg43/ref43
refg26/ref26
refg14/ref14
refg8/ref8
refg5/ref5
refg2/ref2
Conrad R. (refg17/ref17) 1996; 60
refg23/ref23
refg37/ref37
refg30/ref30
Enebak S.A. (refg20/ref20) 1998; 44
refg21/ref21
refg7/ref7
refg4/ref4
refg48/ref48
refg10/ref10
refg12/ref12
refg1/ref1
refg28/ref28
refg41/ref41
refg32/ref32
Halvorson A.D. (refg50/ref50) 2008; 37
refg35/ref35
refg42/ref42
refg44/ref44
Yildirim E. (refg47/ref47) 2006; 111
refg24/ref24
Barabasz W. (refg6/ref6) 2002; 11
refg16/ref16
refg33/ref33
refg13/ref13
refg27/ref27
References_xml – ident: refg31/ref31
  doi: 10.1094/PDIS.2003.87.11.1390
– ident: refg44/ref44
– ident: refg14/ref14
  doi: 10.2134/jeq2012.0300
– ident: refg24/ref24
  doi: 10.1016/S0065-2113(01)73005-2
– ident: refg38/ref38
  doi: 10.2134/jeq2005.0183
– ident: refg27/ref27
– volume: 111
  start-page: 1
  year: 2006
  ident: refg47/ref47
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2006.08.003
– ident: refg11/ref11
  doi: 10.1016/S1369-5266(00)00183-7
– volume: 19
  start-page: 272
  year: 1989
  ident: refg19/ref19
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq1990.00472425001900020013x
– ident: refg28/ref28
  doi: 10.2134/asaspecpub55.c5
– ident: refg5/ref5
– ident: refg4/ref4
  doi: 10.5194/bgd-10-10271-2013
– ident: refg35/ref35
  doi: 10.1007/978-3-642-19577-8_2
– ident: refg48/ref48
  doi: 10.1007/s003740100350
– ident: refg16/ref16
  doi: 10.1890/0012-9658(2000)081[1402:TFSODC]2.0.CO;2
– ident: refg26/ref26
  doi: 10.2136/sssaj2005.0113
– ident: refg21/ref21
  doi: 10.1016/j.soilbio.2006.06.015
– ident: refg1/ref1
  doi: 10.1139/W08-081
– ident: refg2/ref2
  doi: 10.1016/j.apsoil.2010.06.010
– ident: refg22/ref22
  doi: 10.1007/978-3-642-13612-2_2
– ident: refg41/ref41
  doi: 10.1007/s11104-008-9796-9
– volume: 44
  start-page: 139
  year: 1998
  ident: refg20/ref20
  publication-title: Forest Sci.
  doi: 10.1093/forestscience/44.1.139
– ident: refg12/ref12
  doi: 10.1007/BF00210224
– ident: refg29/ref29
  doi: 10.2136/sssaj1981.03615995004500020017x
– ident: refg30/ref30
– ident: refg37/ref37
  doi: 10.1051/agro:2003011
– ident: refg18/ref18
– ident: refg32/ref32
  doi: 10.2134/agronmonogr9.2.2ed.c33
– volume: 37
  start-page: 1337
  year: 2008
  ident: refg50/ref50
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2007.0268
– ident: refg7/ref7
  doi: 10.1016/S0734-9750(98)00003-2
– ident: refg8/ref8
  doi: 10.1016/S0038-0717(00)00043-2
– ident: refg45/ref45
  doi: 10.1016/j.agee.2009.04.021
– volume: 11
  start-page: 193
  year: 2002
  ident: refg6/ref6
  publication-title: Pol. J. Environ. Stud.
– ident: refg42/ref42
  doi: 10.1017/S1466046607070482
– ident: refg15/ref15
  doi: 10.1007/s00374-005-0034-9
– ident: refg10/ref10
  doi: 10.3923/jbs.2008.1015.1020
– ident: refg23/ref23
– ident: refg33/ref33
  doi: 10.1023/A:1014464716261
– ident: refg51/ref51
– ident: refg49/ref49
  doi: 10.1007/s11104-004-0484-0
– ident: refg36/ref36
– ident: refg13/ref13
  doi: 10.1007/BF00260843
– ident: refg25/ref25
  doi: 10.1007/s13213-010-0117-1
– volume: 13
  start-page: 476
  year: 2003
  ident: refg34/ref34
  publication-title: Horttechnology
  doi: 10.21273/HORTTECH.13.3.0476
– ident: refg9/ref9
  doi: 10.1007/s003740000305
– volume: 60
  start-page: 609
  year: 1996
  ident: refg17/ref17
  publication-title: Microbiol. Rev.
  doi: 10.1128/mr.60.4.609-640.1996
– ident: refg43/ref43
  doi: 10.1111/j.1475-2743.1997.tb00601.x
SSID ssj0010346
Score 2.1338277
Snippet Nitrous oxide (N 2 O) emissions are increasing at an unprecedented rate owing to the increased use of nitrogen (N) fertilizers. Thus, new innovative management...
Nitrous oxide (N O) emissions are increasing at an unprecedented rate owing to the increased use of nitrogen (N) fertilizers. Thus, new innovative management...
SourceID pubmed
crossref
SourceType Index Database
Enrichment Source
StartPage 1041
SubjectTerms Agricultural Inoculants - physiology
Agriculture
Carbon Dioxide - metabolism
Fertilizers
Nitrates - pharmacology
Nitrogen - metabolism
Nitrous Oxide - metabolism
Plant Shoots - drug effects
Plant Shoots - physiology
Quaternary Ammonium Compounds - pharmacology
Soil - chemistry
Urea - analogs & derivatives
Urea - pharmacology
Zea mays - drug effects
Zea mays - physiology
Title The influence of microbial-based inoculants on N 2 O emissions from soil planted with corn ( Zea mays L.) under greenhouse conditions with different nitrogen fertilizer regimens
URI https://www.ncbi.nlm.nih.gov/pubmed/27829287
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JjtNAEG2FiZC4IHaGTXVACNQ4Ey-xnWMyMIrQkLkEMbeou92GIMeOEgdp5q_4Nz6AKre3REEauFiR0-Ul9VJLd3U9xl4L2xYYhmsr6MvY8lQcWhgVuVbgCMRXILUvaWrg89SffPE-XQ4uO53fraqlbS576vrgvpL_0SqeQ73SLtl_0Gx9UTyBn1G_eEQN4_HGOl5ULCPFSvmi6KskEou8E7VVyqjONDWLAlPu8AtOBG-bovyt2FqyyRYJcUmneVOIviZEhFT3yJfiasPPaTNWwZi75t-oUOd7tjVl7pGp-DKCFdlKztFOrDN8bB5T2XayuEZBooBY6nJycL83QquBRfkOO9P9pyL5mZmAd6mTxpOIPDdpQOFi-LhX-48k06uVgaNZ5OBf6y9n2VqWW5UmPT4iMpn25IfttwpJKoMeWhhTlt20jQ33QnQtjiFkqYy877TB7LRMNuajdsv9Y7zpH3YtLnVmVT-WVvEgtCTZ-NCqbmDPtdYFj0Wq5Q7nKD4n8TmJ32JdB5MbtM7d0fjD-KzbMG-YDWbVy1W9Yd3hyc79d2KpnayoiI5m99jdMq2BkcHofdbR6QN22xCdXj1kvxCpUCMVshj2kAoNUiFLYQoOXECNVCCkAiEVSqQCAQ4IqfAWEKdAOIXz3jsoUAoNSqFBqRGqUQoVSqFBKVQofcRmZx9npxOrJAuxFFFVo3HxBkoodCeRtAfC1rEeYqzvUIu9gfa8SOD5yJZauFIOVBgoWoAOYzf2VRzZ7mN2lGapfsqgr9Dx4hjPC3wv6qthrCMZY2IdoWELY--Yva9-9bkqG-kTn0syP6jlY_amHr4yHWT-NvCJUWE9zMHwfeiEwbObXuI5u9P8S16wo3y91S8xaM7lqxJjfwCKAsfq
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+influence+of+microbial-based+inoculants+on+N+2+O+emissions+from+soil+planted+with+corn+%28+Zea+mays+L.%29+under+greenhouse+conditions+with+different+nitrogen+fertilizer+regimens&rft.jtitle=Canadian+journal+of+microbiology&rft.au=Calvo%2C+Pamela&rft.au=Watts%2C+Dexter+B.&rft.au=Kloepper%2C+Joseph+W.&rft.au=Torbert%2C+H.+Allen&rft.date=2016-12-01&rft.issn=0008-4166&rft.eissn=1480-3275&rft.volume=62&rft.issue=12&rft.spage=1041&rft.epage=1056&rft_id=info:doi/10.1139%2Fcjm-2016-0122&rft.externalDBID=n%2Fa&rft.externalDocID=10_1139_cjm_2016_0122
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4166&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4166&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4166&client=summon