Applying AI/ML to Kubernetes Logging and Monitoring in Enhancing Observability Through Intelligent Systems
As Kubernetes adoption accelerates in cloud-native architectures, ensuring robust observability across dynamic, large-scale clusters has become a critical operational challenge. Traditional logging and monitoring systems—relying heavily on rule-based alerting and manual log inspection—struggle to sc...
Saved in:
Published in | European Journal of Computer Science and Information Technology Vol. 13; no. 49; pp. 141 - 152 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
26.06.2025
|
Online Access | Get full text |
ISSN | 2054-0957 2054-0965 |
DOI | 10.37745/ejcsit.2013/vol13n49141152 |
Cover
Loading…
Abstract | As Kubernetes adoption accelerates in cloud-native architectures, ensuring robust observability across dynamic, large-scale clusters has become a critical operational challenge. Traditional logging and monitoring systems—relying heavily on rule-based alerting and manual log inspection—struggle to scale with the volume, velocity, and complexity of modern workloads. These approaches often lead to alert fatigue, delayed incident response, and incomplete root cause analysis.This paper explores the application of Artificial Intelligence (AI) and Machine Learning (ML) techniques to enhance observability within Kubernetes environments. By leveraging unsupervised learning for anomaly detection, natural language processing (NLP) for log parsing, and supervised models for event classification, the proposed intelligent observability framework significantly improves signal-to-noise ratios and accelerates troubleshooting processes. Through empirical evaluation on a production-grade Kubernetes testbed, the system demonstrated a 35% improvement in anomaly detection accuracy and reduced mean time to resolution (MTTR) by over 40% compared to baseline tools. These results highlight the transformative potential of AI/ML in enabling proactive, scalable, and context-aware monitoring solutions for complex cloud-native infrastructures. |
---|---|
AbstractList | As Kubernetes adoption accelerates in cloud-native architectures, ensuring robust observability across dynamic, large-scale clusters has become a critical operational challenge. Traditional logging and monitoring systems—relying heavily on rule-based alerting and manual log inspection—struggle to scale with the volume, velocity, and complexity of modern workloads. These approaches often lead to alert fatigue, delayed incident response, and incomplete root cause analysis.This paper explores the application of Artificial Intelligence (AI) and Machine Learning (ML) techniques to enhance observability within Kubernetes environments. By leveraging unsupervised learning for anomaly detection, natural language processing (NLP) for log parsing, and supervised models for event classification, the proposed intelligent observability framework significantly improves signal-to-noise ratios and accelerates troubleshooting processes. Through empirical evaluation on a production-grade Kubernetes testbed, the system demonstrated a 35% improvement in anomaly detection accuracy and reduced mean time to resolution (MTTR) by over 40% compared to baseline tools. These results highlight the transformative potential of AI/ML in enabling proactive, scalable, and context-aware monitoring solutions for complex cloud-native infrastructures. |
Author | Nimmagadda, Srikanth |
Author_xml | – sequence: 1 givenname: Srikanth surname: Nimmagadda fullname: Nimmagadda, Srikanth |
BookMark | eNpVkM9rwjAAhcNwMOf8HwI7q0mTNA07ibhNVvEwdy7Nj9ZITSSJQv_70TkGO7338eAdvkcwct4ZAJ4xmhPOKVuYo4o2zTOEyeLqO0wcFZhizLI7MM4QozMkcjb664w_gGmMViJKOckZ4mNwXJ7PXW9dC5ebxbaEycOPizTBmWQiLH3bDlvtNNx6Z5MPA1oH1-5QOzXATkYTrrW0nU093B-Cv7QHuHHJdJ1tjUvws4_JnOITuG_qLprpb07A1-t6v3qflbu3zWpZzhRGLJsRKakWHDeFkCJjjTI6x4rlRiMqlCqIypBWhuW6NoXmkjQoK3gj8hpzXRSCTMDL7VcFH2MwTXUO9lSHvsKo-jFX3cxVg7nqvznyDbY4aVU |
Cites_doi | 10.1145/3483424 10.1109/CCNC54725.2025.10976032 10.1109/ICNSC52481.2021.9702157 10.52783/tjjpt.v44.i3.2091 10.1145/3538969.3543810 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.37745/ejcsit.2013/vol13n49141152 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2054-0965 |
EndPage | 152 |
ExternalDocumentID | 10_37745_ejcsit_2013_vol13n49141152 |
GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION M~E |
ID | FETCH-LOGICAL-c1052-3bb4d971f89b925fced61c56ed049cc83c20dce56dae8d7b3f0287f96a17d8893 |
ISSN | 2054-0957 |
IngestDate | Thu Jul 10 07:52:47 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 49 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1052-3bb4d971f89b925fced61c56ed049cc83c20dce56dae8d7b3f0287f96a17d8893 |
OpenAccessLink | https://eajournals.org/ejcsit/wp-content/uploads/sites/21/2025/07/Applying-AI-ML.pdf |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_37745_ejcsit_2013_vol13n49141152 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-26 |
PublicationDateYYYYMMDD | 2025-06-26 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-26 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | European Journal of Computer Science and Information Technology |
PublicationYear | 2025 |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref0 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref20 ref22 ref21 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref1 – ident: ref3 – ident: ref24 doi: 10.1145/3483424 – ident: ref5 – ident: ref7 – ident: ref20 – ident: ref22 doi: 10.1109/CCNC54725.2025.10976032 – ident: ref9 – ident: ref19 – ident: ref11 – ident: ref17 – ident: ref23 doi: 10.1109/ICNSC52481.2021.9702157 – ident: ref15 – ident: ref13 – ident: ref4 – ident: ref2 – ident: ref6 doi: 10.52783/tjjpt.v44.i3.2091 – ident: ref21 – ident: ref18 – ident: ref0 – ident: ref8 doi: 10.1145/3538969.3543810 – ident: ref16 – ident: ref10 – ident: ref12 – ident: ref14 |
SSID | ssib044736507 |
Score | 2.295576 |
Snippet | As Kubernetes adoption accelerates in cloud-native architectures, ensuring robust observability across dynamic, large-scale clusters has become a critical... |
SourceID | crossref |
SourceType | Index Database |
StartPage | 141 |
Title | Applying AI/ML to Kubernetes Logging and Monitoring in Enhancing Observability Through Intelligent Systems |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFLZKkRCXaRMgYGyyBDcUGseOkxyrqdMK7TjQSb1FseO0HWqKSnqAA39kf3bPsZM61Q5jl6i1lKek3-fnz69-7yH0Sfpx4UcJ8aRgucfCIvD0n1kw3RWVvEhIHups5Ok1v7phX-fhvNe7c04t7SrxRf59MK_kKajCGOCqs2T_A9nWKAzAZ8AXroAwXB-FsZaQdZrScAxGphMtJL_thNqWdTh1slksmhxEM3e3NoNlVC51nQ348l3UYdn6iOyfzzPbtWfcFuqsOjXND0P4jpxt2kO03sIcNG6TIx8I4l-v1utsAa6vFrA_tqufAPPSjUMAnD73TLK7cVcBiD8PBJtZPpU7ZrpBtP6WOrwy9Uqt9ySmBpZdiIkpbXvo4ykIVl0PQ93K3yt9Gpbo0hNgm9CSJWDC3tetrX2w5rUnEWEPVBtMjblUm0u7xp6h5wHsQXRfkOm_UeOsGIsoqFudjt---Qv0sXnAgfN4g649RwE5UmZ2jI4saHhoCHWCeqp8hW4bMuHheDCd4GqD91TClkoYQMV7KuFViVsq4Q6VsKUSdqiELZVeo5vL0eziyrONODwJ8jvwqICJnESkiBORBGEhVc6JDLnKYX8pZUxl4OdShTzPVJxHghagWqMi4RmJ8hgU8RvULzeleouwH2dRLAuRxVQwBqsHU1wkXAQZESSU0TvEmh8n_WXqraSPwOj90247RS_3VP6A-tV2p85AZFbivAb7HkkFgDU |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+AI%2FML+to+Kubernetes+Logging+and+Monitoring+in+Enhancing+Observability+Through+Intelligent+Systems&rft.jtitle=European+Journal+of+Computer+Science+and+Information+Technology&rft.au=Nimmagadda%2C+Srikanth&rft.date=2025-06-26&rft.issn=2054-0957&rft.eissn=2054-0965&rft.volume=13&rft.issue=49&rft.spage=141&rft.epage=152&rft_id=info:doi/10.37745%2Fejcsit.2013%2Fvol13n49141152&rft.externalDBID=n%2Fa&rft.externalDocID=10_37745_ejcsit_2013_vol13n49141152 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2054-0957&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2054-0957&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2054-0957&client=summon |