Applying AI/ML to Kubernetes Logging and Monitoring in Enhancing Observability Through Intelligent Systems

As Kubernetes adoption accelerates in cloud-native architectures, ensuring robust observability across dynamic, large-scale clusters has become a critical operational challenge. Traditional logging and monitoring systems—relying heavily on rule-based alerting and manual log inspection—struggle to sc...

Full description

Saved in:
Bibliographic Details
Published inEuropean Journal of Computer Science and Information Technology Vol. 13; no. 49; pp. 141 - 152
Main Author Nimmagadda, Srikanth
Format Journal Article
LanguageEnglish
Published 26.06.2025
Online AccessGet full text
ISSN2054-0957
2054-0965
DOI10.37745/ejcsit.2013/vol13n49141152

Cover

Loading…
Abstract As Kubernetes adoption accelerates in cloud-native architectures, ensuring robust observability across dynamic, large-scale clusters has become a critical operational challenge. Traditional logging and monitoring systems—relying heavily on rule-based alerting and manual log inspection—struggle to scale with the volume, velocity, and complexity of modern workloads. These approaches often lead to alert fatigue, delayed incident response, and incomplete root cause analysis.This paper explores the application of Artificial Intelligence (AI) and Machine Learning (ML) techniques to enhance observability within Kubernetes environments. By leveraging unsupervised learning for anomaly detection, natural language processing (NLP) for log parsing, and supervised models for event classification, the proposed intelligent observability framework significantly improves signal-to-noise ratios and accelerates troubleshooting processes. Through empirical evaluation on a production-grade Kubernetes testbed, the system demonstrated a 35% improvement in anomaly detection accuracy and reduced mean time to resolution (MTTR) by over 40% compared to baseline tools. These results highlight the transformative potential of AI/ML in enabling proactive, scalable, and context-aware monitoring solutions for complex cloud-native infrastructures.
AbstractList As Kubernetes adoption accelerates in cloud-native architectures, ensuring robust observability across dynamic, large-scale clusters has become a critical operational challenge. Traditional logging and monitoring systems—relying heavily on rule-based alerting and manual log inspection—struggle to scale with the volume, velocity, and complexity of modern workloads. These approaches often lead to alert fatigue, delayed incident response, and incomplete root cause analysis.This paper explores the application of Artificial Intelligence (AI) and Machine Learning (ML) techniques to enhance observability within Kubernetes environments. By leveraging unsupervised learning for anomaly detection, natural language processing (NLP) for log parsing, and supervised models for event classification, the proposed intelligent observability framework significantly improves signal-to-noise ratios and accelerates troubleshooting processes. Through empirical evaluation on a production-grade Kubernetes testbed, the system demonstrated a 35% improvement in anomaly detection accuracy and reduced mean time to resolution (MTTR) by over 40% compared to baseline tools. These results highlight the transformative potential of AI/ML in enabling proactive, scalable, and context-aware monitoring solutions for complex cloud-native infrastructures.
Author Nimmagadda, Srikanth
Author_xml – sequence: 1
  givenname: Srikanth
  surname: Nimmagadda
  fullname: Nimmagadda, Srikanth
BookMark eNpVkM9rwjAAhcNwMOf8HwI7q0mTNA07ibhNVvEwdy7Nj9ZITSSJQv_70TkGO7338eAdvkcwct4ZAJ4xmhPOKVuYo4o2zTOEyeLqO0wcFZhizLI7MM4QozMkcjb664w_gGmMViJKOckZ4mNwXJ7PXW9dC5ebxbaEycOPizTBmWQiLH3bDlvtNNx6Z5MPA1oH1-5QOzXATkYTrrW0nU093B-Cv7QHuHHJdJ1tjUvws4_JnOITuG_qLprpb07A1-t6v3qflbu3zWpZzhRGLJsRKakWHDeFkCJjjTI6x4rlRiMqlCqIypBWhuW6NoXmkjQoK3gj8hpzXRSCTMDL7VcFH2MwTXUO9lSHvsKo-jFX3cxVg7nqvznyDbY4aVU
Cites_doi 10.1145/3483424
10.1109/CCNC54725.2025.10976032
10.1109/ICNSC52481.2021.9702157
10.52783/tjjpt.v44.i3.2091
10.1145/3538969.3543810
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.37745/ejcsit.2013/vol13n49141152
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2054-0965
EndPage 152
ExternalDocumentID 10_37745_ejcsit_2013_vol13n49141152
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
ID FETCH-LOGICAL-c1052-3bb4d971f89b925fced61c56ed049cc83c20dce56dae8d7b3f0287f96a17d8893
ISSN 2054-0957
IngestDate Thu Jul 10 07:52:47 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 49
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1052-3bb4d971f89b925fced61c56ed049cc83c20dce56dae8d7b3f0287f96a17d8893
OpenAccessLink https://eajournals.org/ejcsit/wp-content/uploads/sites/21/2025/07/Applying-AI-ML.pdf
PageCount 12
ParticipantIDs crossref_primary_10_37745_ejcsit_2013_vol13n49141152
PublicationCentury 2000
PublicationDate 2025-06-26
PublicationDateYYYYMMDD 2025-06-26
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-26
  day: 26
PublicationDecade 2020
PublicationTitle European Journal of Computer Science and Information Technology
PublicationYear 2025
References ref13
ref12
ref15
ref14
ref11
ref10
ref0
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref20
ref22
ref21
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref1
– ident: ref3
– ident: ref24
  doi: 10.1145/3483424
– ident: ref5
– ident: ref7
– ident: ref20
– ident: ref22
  doi: 10.1109/CCNC54725.2025.10976032
– ident: ref9
– ident: ref19
– ident: ref11
– ident: ref17
– ident: ref23
  doi: 10.1109/ICNSC52481.2021.9702157
– ident: ref15
– ident: ref13
– ident: ref4
– ident: ref2
– ident: ref6
  doi: 10.52783/tjjpt.v44.i3.2091
– ident: ref21
– ident: ref18
– ident: ref0
– ident: ref8
  doi: 10.1145/3538969.3543810
– ident: ref16
– ident: ref10
– ident: ref12
– ident: ref14
SSID ssib044736507
Score 2.295576
Snippet As Kubernetes adoption accelerates in cloud-native architectures, ensuring robust observability across dynamic, large-scale clusters has become a critical...
SourceID crossref
SourceType Index Database
StartPage 141
Title Applying AI/ML to Kubernetes Logging and Monitoring in Enhancing Observability Through Intelligent Systems
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFLZKkRCXaRMgYGyyBDcUGseOkxyrqdMK7TjQSb1FseO0HWqKSnqAA39kf3bPsZM61Q5jl6i1lKek3-fnz69-7yH0Sfpx4UcJ8aRgucfCIvD0n1kw3RWVvEhIHups5Ok1v7phX-fhvNe7c04t7SrxRf59MK_kKajCGOCqs2T_A9nWKAzAZ8AXroAwXB-FsZaQdZrScAxGphMtJL_thNqWdTh1slksmhxEM3e3NoNlVC51nQ348l3UYdn6iOyfzzPbtWfcFuqsOjXND0P4jpxt2kO03sIcNG6TIx8I4l-v1utsAa6vFrA_tqufAPPSjUMAnD73TLK7cVcBiD8PBJtZPpU7ZrpBtP6WOrwy9Uqt9ySmBpZdiIkpbXvo4ykIVl0PQ93K3yt9Gpbo0hNgm9CSJWDC3tetrX2w5rUnEWEPVBtMjblUm0u7xp6h5wHsQXRfkOm_UeOsGIsoqFudjt---Qv0sXnAgfN4g649RwE5UmZ2jI4saHhoCHWCeqp8hW4bMuHheDCd4GqD91TClkoYQMV7KuFViVsq4Q6VsKUSdqiELZVeo5vL0eziyrONODwJ8jvwqICJnESkiBORBGEhVc6JDLnKYX8pZUxl4OdShTzPVJxHghagWqMi4RmJ8hgU8RvULzeleouwH2dRLAuRxVQwBqsHU1wkXAQZESSU0TvEmh8n_WXqraSPwOj90247RS_3VP6A-tV2p85AZFbivAb7HkkFgDU
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+AI%2FML+to+Kubernetes+Logging+and+Monitoring+in+Enhancing+Observability+Through+Intelligent+Systems&rft.jtitle=European+Journal+of+Computer+Science+and+Information+Technology&rft.au=Nimmagadda%2C+Srikanth&rft.date=2025-06-26&rft.issn=2054-0957&rft.eissn=2054-0965&rft.volume=13&rft.issue=49&rft.spage=141&rft.epage=152&rft_id=info:doi/10.37745%2Fejcsit.2013%2Fvol13n49141152&rft.externalDBID=n%2Fa&rft.externalDocID=10_37745_ejcsit_2013_vol13n49141152
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2054-0957&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2054-0957&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2054-0957&client=summon