Representation of Integers by Ternary Quadratic Forms
<正> In this paper we give a formula for the number of representations of some square-freeintegers by certain ternary quadratic forms and estimate the lower bound of the 2-power appearing inthis number.
Saved in:
Published in | 数学学报:英文版 no. 4; pp. 715 - 720 |
---|---|
Format | Journal Article |
Language | English |
Published |
2001
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | <正> In this paper we give a formula for the number of representations of some square-freeintegers by certain ternary quadratic forms and estimate the lower bound of the 2-power appearing inthis number. |
---|---|
AbstractList | <正> In this paper we give a formula for the number of representations of some square-freeintegers by certain ternary quadratic forms and estimate the lower bound of the 2-power appearing inthis number. |
BookMark | eNotj71PwzAQxS1UJNrCyO4dBc5xfBePqKJQqRIClbmyk0sIok6xw9D_Hkt0er_h6X0sxCyMgYW4VXCvAOghKVCqgsxKmwsxV5W2BaGi2Zlro_BKLFL6AjDGAs6Feedj5MRhctMwBjl2chMm7jkm6U9yxzG4eJJvv66N2dHI9RgP6Vpcdu478c1Zl-Jj_bRbvRTb1-fN6nFbNAqqqaCqZnTItS0b6z2qXNqiKYlby522tjYlQkVAaJm9a8GCJ2KvbUfglV6Ku__c5nMM_c8Q-v0xDoe8aI9okIhqXea7kF9r_QegNElc |
ContentType | Journal Article |
DBID | 2RA 92L CQIGP W94 ~WA |
DOI | 10.1007/s101140100135 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-自然科学 中文科技期刊数据库- 镜像站点 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
DocumentTitleAlternate | Representation of Integers by Ternary Quadratic Forms |
EISSN | 1439-7617 |
EndPage | 720 |
ExternalDocumentID | 665677783200104013 |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 23M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2RA 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5GY 5VR 5VS 67Z 6NX 7WY 88I 8FE 8FG 8FL 8G5 8TC 8UJ 92L 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABDBF ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJCF ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEOHA AEPOP AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFMKY AFNRJ AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGPAZ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. B0M BA0 BAPOH BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCEZO CCPQU CCVFK CHBEP COF CQIGP CS3 CSCUP CW9 DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG EST ESX F5P FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE GUQSH HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IZQ I~X I~Z J-C JBSCW JZLTJ K60 K6V K6~ K7- KDC KOV L6V LAS LLZTM M0C M0N M2O M2P M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P62 P9R PF0 PQBIZ PQQKQ PROAC PT4 PT5 PTHSS Q2X QOS R4E R89 R9I ROL RPX RSV S16 S1Z S26 S27 S28 S3B SAP SCL SCLPG SDD SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W94 WK8 YLTOR ZMTXR ZWQNP ~8M ~A9 ~WA |
ID | FETCH-LOGICAL-c104t-748e6a6e892c9bb61559d6527ed9ef39985260470769eebad090b77eb39f70b13 |
ISSN | 1439-8516 |
IngestDate | Wed Feb 14 10:09:46 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c104t-748e6a6e892c9bb61559d6527ed9ef39985260470769eebad090b77eb39f70b13 |
Notes | Congruent elliptic curve;Tate-Shafarevich group;Modular form;Class number In this paper we give a formula for the number of representations of some square-free integers by certain ternary quadratic forms and estimate the lower bound of the 2-power appearing in this number. De Lang LI;Chun Lai ZHAO Department of Mathematics, Sichuan University, Chengdu 610064, P. R. China Department of Mathematics, Peking University, Beijing 100871, P. R. China 11-2039/O1 |
PageCount | 6 |
ParticipantIDs | chongqing_primary_665677783200104013 |
PublicationCentury | 2000 |
PublicationDate | 2001 |
PublicationDateYYYYMMDD | 2001-01-01 |
PublicationDate_xml | – year: 2001 text: 2001 |
PublicationDecade | 2000 |
PublicationTitle | 数学学报:英文版 |
PublicationTitleAlternate | Acta Mathematica Sinica |
PublicationYear | 2001 |
SSID | ssj0055906 |
Score | 1.545597 |
Snippet | <正> In this paper we give a formula for the number of representations of some square-freeintegers by certain ternary quadratic forms and estimate the... |
SourceID | chongqing |
SourceType | Publisher |
StartPage | 715 |
SubjectTerms | Congruent curve;Tate-Shafarevich elliptic form;Class group;Modular number |
Title | Representation of Integers by Ternary Quadratic Forms |
URI | http://lib.cqvip.com/qk/85800X/200104/665677783200104013.html |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLDAgnuKtDL0xyElqOx5TSKmQyoBaiQ3FiQtTCm0Z4NdzdpwHggGQoshy4rw--fzZue-OkB4vNAt5xP0iw-5mEm9jlxLU19i7wijPVUCNGnl8x0fT_u0De2hTKFp1yUpd5h8_6kr-gyrWIa5GJfsHZJuLYgWWEV_cI8K4_xXG99aN1amHyloV8mQ0ucgqJ2apb_Fu_DaLhQ3MOkSCuuzSUUg5SAYDCimD5BoS3ilwiBNIGKRDGFyBTCCNIR7AILCt8KiAVEAsocqY16wdBB1Dh0TER7blwlC3dYJXWkqHe79j3EQlvHTjpLAitu8mmNaS5MDM3QzFZO1Y03gAcuSRQgi0JzZCEDWJhzdCNBbGLTMe3tSjKU54aKUQc8_r4qQ6-WN7DxMb43lePr3iiN9hCJMdsu2ovZdUOO2SNV3uka1xExd3uU_YV8S8-cyrEfPUu-cQ8xrEPIvYAZkO08nVyHeJK_wc32Vl4rNqnnEdyzCXStlfvwVnodCF1DOkhDH2D9oXVHCptcoKKqkSQqtIzgRVQXRI1st5qY-Ix4O8yDKqsG3UzwupuMQpYJgxqemMKn5Mes1rP75UAUoev3_ck9-ddko2Kx87s52R9dXiTZ8j6VqpC4vKJ4dxHFk |
link.rule.ids | 315,783,787,4031,27935,27936,27937 |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Representation+of+Integers+by+Ternary+Quadratic+Forms&rft.jtitle=%E6%95%B0%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.date=2001&rft.issn=1439-8516&rft.eissn=1439-7617&rft.issue=4&rft.spage=715&rft.epage=720&rft_id=info:doi/10.1007%2Fs101140100135&rft.externalDocID=665677783200104013 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85800X%2F85800X.jpg |