Inverting Cognitive Models With Neural Networks to Infer Preferences From Fixations

Abstract Inferring an individual's preferences from their observable behavior is a key step in the development of assistive decision‐making technology. Although machine learning models such as neural networks could in principle be deployed toward this inference, a large amount of data is requir...

Full description

Saved in:
Bibliographic Details
Published inCognitive science Vol. 48; no. 11; p. e70015
Main Authors Russek, Evan M., Callaway, Frederick, Griffiths, Thomas L.
Format Journal Article
LanguageEnglish
Published 01.11.2024
Online AccessGet full text

Cover

Loading…
Abstract Abstract Inferring an individual's preferences from their observable behavior is a key step in the development of assistive decision‐making technology. Although machine learning models such as neural networks could in principle be deployed toward this inference, a large amount of data is required to train such models. Here, we present an approach in which a cognitive model generates simulated data to augment limited human data. Using these data, we train a neural network to invert the model, making it possible to infer preferences from behavior. We show how this approach can be used to infer the value that people assign to food items from their eye movements when choosing between those items. We demonstrate first that neural networks can infer the latent preferences used by the model to generate simulated fixations, and second that simulated data can be beneficial in pretraining a network for predicting human‐reported preferences from real fixations. Compared to inferring preferences from choice alone, this approach confers a slight improvement in predicting preferences and also allows prediction to take place prior to the choice being made. Overall, our results suggest that using a combination of neural networks and model‐simulated training data is a promising approach for developing technology that infers human preferences.
AbstractList Abstract Inferring an individual's preferences from their observable behavior is a key step in the development of assistive decision‐making technology. Although machine learning models such as neural networks could in principle be deployed toward this inference, a large amount of data is required to train such models. Here, we present an approach in which a cognitive model generates simulated data to augment limited human data. Using these data, we train a neural network to invert the model, making it possible to infer preferences from behavior. We show how this approach can be used to infer the value that people assign to food items from their eye movements when choosing between those items. We demonstrate first that neural networks can infer the latent preferences used by the model to generate simulated fixations, and second that simulated data can be beneficial in pretraining a network for predicting human‐reported preferences from real fixations. Compared to inferring preferences from choice alone, this approach confers a slight improvement in predicting preferences and also allows prediction to take place prior to the choice being made. Overall, our results suggest that using a combination of neural networks and model‐simulated training data is a promising approach for developing technology that infers human preferences.
Inferring an individual's preferences from their observable behavior is a key step in the development of assistive decision-making technology. Although machine learning models such as neural networks could in principle be deployed toward this inference, a large amount of data is required to train such models. Here, we present an approach in which a cognitive model generates simulated data to augment limited human data. Using these data, we train a neural network to invert the model, making it possible to infer preferences from behavior. We show how this approach can be used to infer the value that people assign to food items from their eye movements when choosing between those items. We demonstrate first that neural networks can infer the latent preferences used by the model to generate simulated fixations, and second that simulated data can be beneficial in pretraining a network for predicting human-reported preferences from real fixations. Compared to inferring preferences from choice alone, this approach confers a slight improvement in predicting preferences and also allows prediction to take place prior to the choice being made. Overall, our results suggest that using a combination of neural networks and model-simulated training data is a promising approach for developing technology that infers human preferences.Inferring an individual's preferences from their observable behavior is a key step in the development of assistive decision-making technology. Although machine learning models such as neural networks could in principle be deployed toward this inference, a large amount of data is required to train such models. Here, we present an approach in which a cognitive model generates simulated data to augment limited human data. Using these data, we train a neural network to invert the model, making it possible to infer preferences from behavior. We show how this approach can be used to infer the value that people assign to food items from their eye movements when choosing between those items. We demonstrate first that neural networks can infer the latent preferences used by the model to generate simulated fixations, and second that simulated data can be beneficial in pretraining a network for predicting human-reported preferences from real fixations. Compared to inferring preferences from choice alone, this approach confers a slight improvement in predicting preferences and also allows prediction to take place prior to the choice being made. Overall, our results suggest that using a combination of neural networks and model-simulated training data is a promising approach for developing technology that infers human preferences.
Author Russek, Evan M.
Griffiths, Thomas L.
Callaway, Frederick
Author_xml – sequence: 1
  givenname: Evan M.
  orcidid: 0000-0002-2929-6912
  surname: Russek
  fullname: Russek, Evan M.
  organization: Department of Computer Science Princeton University
– sequence: 2
  givenname: Frederick
  surname: Callaway
  fullname: Callaway, Frederick
  organization: Department of Psychology New York University, Department of Psychology Harvard University
– sequence: 3
  givenname: Thomas L.
  surname: Griffiths
  fullname: Griffiths, Thomas L.
  organization: Department of Computer Science Princeton University, Department of Psychology Princeton University
BookMark eNotkEtPAjEYRRuDiYBu_AVdGpPBdvqgXRoiSIKPRI3LSel8g9Whxbag_nsH8W7O5ubm5gxQzwcPCJ1TMqJdrmxYpdGYECqOUJ8KQQs5JrqH-oRJXpCSshM0SOmdECIl0330NPc7iNn5FZ6ElXfZ7QDfhRrahF9dfsP3sI2m7ZC_QvxIOAc89w1E_BihA3gLCU9jWOOp-zbZBZ9O0XFj2gRn_xyil-nN8-S2WDzM5pPrRWEp4aKwjFjTUALcaKWYsKVSXDJqGskbWS-p0aYRmuulHitotFGipjWrBVMMhJJsiC4Ou5sYPreQcrV2yULbGg9hmypGSy6V5rLsqpeHqo0hpe55tYlubeJPRUm1N1ftzVV_5tgvzZNjGA
Cites_doi 10.1162/neco.1997.9.8.1735
10.1109/ISCMI.2015.26
10.1073/pnas.1915841117
10.7554/eLife.65074
10.1038/nn.2635
10.31234/osf.io/wh8yu
10.1126/science.abe2629
10.1101/2023.04.21.537666
10.1038/s41562-020-0822-0
10.1146/annurev-control-042920-015547
10.7554/eLife.63436
10.1038/s41562-017-0064
10.7554/eLife.56261
10.1126/sciadv.aax5979
10.1371/journal.pcbi.1008863
10.1016/j.cognition.2017.06.017
10.1371/journal.pone.0092160
10.1016/j.cognition.2021.104885
10.1016/j.cobeha.2019.04.010
10.3115/v1/W14-4012
10.1073/pnas.1101328108
10.1109/TNNLS.2020.3042395
ContentType Journal Article
Copyright 2024 The Author(s). Cognitive Science published by Wiley Periodicals LLC on behalf of Cognitive Science Society (CSS).
Copyright_xml – notice: 2024 The Author(s). Cognitive Science published by Wiley Periodicals LLC on behalf of Cognitive Science Society (CSS).
DBID AAYXX
CITATION
7X8
DOI 10.1111/cogs.70015
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Languages & Literatures
Psychology
EISSN 1551-6709
ExternalDocumentID 10_1111_cogs_70015
GroupedDBID ---
--K
--Z
-DZ
-W8
-~X
.3N
.DC
.GA
.GO
.Y3
05W
0R~
10A
1B1
1OC
1RT
1~5
24P
29F
31~
33P
3EH
3R3
3WU
4.4
4G.
50Y
50Z
51W
51Y
52M
52O
52Q
52S
52T
52U
52W
53G
5GY
5HH
5LA
5VS
66C
6J9
6TJ
7-5
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
9M8
A04
AABNI
AACTN
AAEDT
AAESR
AAHHS
AAHSB
AALRI
AAONW
AAOUF
AAQFI
AAQXK
AASGY
AAXRX
AAXUO
AAYXX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIVO
ABLJU
ABMAC
ABPVW
ABSOO
ABZLS
ACAHQ
ACBKW
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACHQT
ACIUM
ACNCT
ACPOU
ACPRK
ACSCC
ACXQS
ADBBV
ADEMA
ADEOM
ADIYS
ADIZJ
ADJOM
ADKYN
ADMGS
ADMHG
ADMUD
ADVLN
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKFF
AFPWT
AHBTC
AHHHB
AIAGR
AIFKG
AITUG
AIURR
AIWBW
AJBDE
AJWEG
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASTYK
AZBYB
AZVAB
BAFTC
BFHJK
BMXJE
BNVMJ
BQESF
BROTX
BRXPI
BY8
C1A
CAG
CITATION
COF
CS3
D-C
D-D
DCZOG
DPXWK
DR2
DRFUL
DRSSH
DU5
EBD
EBS
EDJ
EJD
EMOBN
F00
F01
F5P
FDB
FEDTE
FGOYB
FIRID
FRP
G-2
G-S
G.N
G50
GODZA
HF~
HGLYW
HHY
HLZ
HMQ
HMW
HVGLF
HZ~
H~9
IHE
IX1
J0M
LATKE
LC2
LC4
LEEKS
LG9
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2V
M3V
M41
MEWTI
MK4
MRFUL
MRSSH
MSFUL
MSSSH
MS~
MVM
MXFUL
MXSSH
N04
N06
N9A
NF~
NQ-
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2Y
P4C
PQQKQ
Q.N
Q11
QB0
QRW
R.K
R2-
RIG
ROL
RPZ
RWI
RWL
RX1
RXW
SBC
SEW
SNS
SPS
SSZ
SUPJJ
SV3
TAE
TAF
TEORI
TN5
TWZ
U5U
UB1
UQL
VAE
W8V
W99
WBKPD
WH7
WHDPE
WHG
WIH
WII
WIN
WOHZO
WQZ
WRC
WSUWO
WUQ
WXSBR
XG1
XJT
XPP
XV2
YYP
ZCG
ZMT
ZZTAW
~IA
~WP
7X8
ID FETCH-LOGICAL-c1045-c30caf10e4a98835c2884631af64f6db1a9af5949b978ef9a85d1d3d5383e5863
ISSN 0364-0213
1551-6709
IngestDate Wed Nov 06 17:18:57 EST 2024
Wed Nov 06 13:17:52 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1045-c30caf10e4a98835c2884631af64f6db1a9af5949b978ef9a85d1d3d5383e5863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2929-6912
OpenAccessLink https://doi.org/10.1111/cogs.70015
PQID 3124689462
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3124689462
crossref_primary_10_1111_cogs_70015
PublicationCentury 2000
PublicationDate 2024-11-00
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-00
PublicationDecade 2020
PublicationTitle Cognitive science
PublicationYear 2024
References e_1_2_9_30_1
e_1_2_9_11_1
e_1_2_9_13_1
e_1_2_9_32_1
Papamakarios G. (e_1_2_9_25_1) 2016
Gonçalves P. J. (e_1_2_9_12_1) 2020; 9
e_1_2_9_15_1
e_1_2_9_17_1
Yildirim I. (e_1_2_9_33_1) 2020; 6
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
Hadfield‐Menell D. (e_1_2_9_14_1) 2016
e_1_2_9_20_1
e_1_2_9_22_1
Glaholt M. G. (e_1_2_9_10_1) 2009; 7
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
Rumelhart D. E. (e_1_2_9_31_1) 1986; 2
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Fengler A. (e_1_2_9_7_1) 2021; 10
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_28_1
e_1_2_9_27_1
Callaway F. (e_1_2_9_5_1) 2021; 17
e_1_2_9_29_1
References_xml – ident: e_1_2_9_16_1
  doi: 10.1162/neco.1997.9.8.1735
– ident: e_1_2_9_13_1
  doi: 10.1109/ISCMI.2015.26
– ident: e_1_2_9_2_1
  doi: 10.1073/pnas.1915841117
– volume: 10
  year: 2021
  ident: e_1_2_9_7_1
  article-title: Likelihood approximation networks (LANs) for fast inference of simulation models in cognitive neuroscience
  publication-title: eLife
  doi: 10.7554/eLife.65074
  contributor:
    fullname: Fengler A.
– ident: e_1_2_9_20_1
  doi: 10.1038/nn.2635
– ident: e_1_2_9_22_1
  doi: 10.31234/osf.io/wh8yu
– volume: 7
  start-page: 141
  issue: 2
  year: 2009
  ident: e_1_2_9_10_1
  article-title: Predicting preference from fixations
  publication-title: PsychNology Journal
  contributor:
    fullname: Glaholt M. G.
– ident: e_1_2_9_27_1
  doi: 10.1126/science.abe2629
– ident: e_1_2_9_28_1
– ident: e_1_2_9_9_1
  doi: 10.1101/2023.04.21.537666
– ident: e_1_2_9_11_1
  doi: 10.1038/s41562-020-0822-0
– ident: e_1_2_9_15_1
  doi: 10.1146/annurev-control-042920-015547
– ident: e_1_2_9_17_1
  doi: 10.7554/eLife.63436
– ident: e_1_2_9_3_1
  doi: 10.1038/s41562-017-0064
– ident: e_1_2_9_4_1
– ident: e_1_2_9_32_1
– ident: e_1_2_9_24_1
– volume: 9
  year: 2020
  ident: e_1_2_9_12_1
  article-title: Training deep neural density estimators to identify mechanistic models of neural dynamics
  publication-title: eLlife
  doi: 10.7554/eLife.56261
  contributor:
    fullname: Gonçalves P. J.
– volume: 6
  issue: 10
  year: 2020
  ident: e_1_2_9_33_1
  article-title: Efficient inverse graphics in biological face processing
  publication-title: Science Advances
  doi: 10.1126/sciadv.aax5979
  contributor:
    fullname: Yildirim I.
– volume: 17
  start-page: 1
  issue: 3
  year: 2021
  ident: e_1_2_9_5_1
  article-title: Fixation patterns in simple choice reflect optimal information sampling
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1008863
  contributor:
    fullname: Callaway F.
– ident: e_1_2_9_19_1
  doi: 10.1016/j.cognition.2017.06.017
– volume: 2
  start-page: 3
  year: 1986
  ident: e_1_2_9_31_1
  article-title: Sequential thought processes in PDP models
  publication-title: Parallel Distributed Processing: Explorations in the Microstructures of Cognition
  contributor:
    fullname: Rumelhart D. E.
– ident: e_1_2_9_23_1
  doi: 10.1371/journal.pone.0092160
– ident: e_1_2_9_8_1
  doi: 10.1016/j.cognition.2021.104885
– ident: e_1_2_9_30_1
– ident: e_1_2_9_26_1
– ident: e_1_2_9_18_1
  doi: 10.1016/j.cobeha.2019.04.010
– ident: e_1_2_9_6_1
  doi: 10.3115/v1/W14-4012
– ident: e_1_2_9_21_1
  doi: 10.1073/pnas.1101328108
– start-page: 3909
  volume-title: Advances in Neural Information Processing Systems 29
  year: 2016
  ident: e_1_2_9_14_1
  contributor:
    fullname: Hadfield‐Menell D.
– start-page: 1028
  volume-title: Advances in Neural Information Processing Systems 29
  year: 2016
  ident: e_1_2_9_25_1
  contributor:
    fullname: Papamakarios G.
– ident: e_1_2_9_29_1
  doi: 10.1109/TNNLS.2020.3042395
SSID ssj0006639
Score 2.465562
Snippet Abstract Inferring an individual's preferences from their observable behavior is a key step in the development of assistive decision‐making technology....
Inferring an individual's preferences from their observable behavior is a key step in the development of assistive decision-making technology. Although machine...
SourceID proquest
crossref
SourceType Aggregation Database
StartPage e70015
Title Inverting Cognitive Models With Neural Networks to Infer Preferences From Fixations
URI https://www.proquest.com/docview/3124689462
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELW29MKlovQLaJGrVr2svIrjj42PVVVE0cKhBYlb5CROiwQbRLIC-us7EydOoFVFe4lWluJEeW9nxp6ZZ0LeqxwlW1TEYl4IJueFZkZIxUo0hEU0N_P2bMDDI71_Ig9O1elkcjCqWlo12Sz_-ce-kv9BFcYAV-yS_Qdkw6QwAL8BX7gCwnB9EMYoknHV-Mx9XwWEh5udY1Vr82OKyhsAwZEv9W61HL5ggx8WXnR9fjWErtXFdO_sZrR11ysXhEk7PxmyM6u6dt6MYvvT4WzIZACrru2tD4lRp6IX3W9LfPz-0KgwabqYjbcdYtn13w3WSWjJIEDw1sl11lNxhoJwY_MqkzGN-F_Mdl59r2eYB1eDc-oT8vd8Vqgk7NcweG_a3vuIPI7B6LQp-6-DlBhEVsbnrf1rd1K1WNU1PPducHLXN7cBx_EGedKtFOhHD_tTMnHLTfJy0e0v1_QDXQRJ7HqTrAdXdvuMfAvMoAFE6plBkRnUM4P2zKBNRVtm0BEzKDKDBmY8Jyd7n48_7bPu-AyWwxpbsVxEuS155KQ1CQTaeZxAsCm4LbUsdZFxa2ypjDSZmSeuNDZRBfxhC3CBwqlEixdkbVkt3StChchgoFRJnGWyiEprcGHtOM-5jm0kt8i7_rull14lJf0dmS3ytv-kKRgxzEzZpatWdSogytSJkTreftBMO2R94ORrstZcrdwbCA6bbLdF_RdHimW_
link.rule.ids 315,783,787,27936,27937
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inverting+Cognitive+Models+With+Neural+Networks+to+Infer+Preferences+From+Fixations&rft.jtitle=Cognitive+science&rft.au=Russek%2C+Evan+M.&rft.au=Callaway%2C+Frederick&rft.au=Griffiths%2C+Thomas+L.&rft.date=2024-11-01&rft.issn=0364-0213&rft.eissn=1551-6709&rft.volume=48&rft.issue=11&rft_id=info:doi/10.1111%2Fcogs.70015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cogs_70015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-0213&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-0213&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-0213&client=summon