Temperature dependent local structure coherence of surface-modified BaTiO 3 nanocubes
Surface functionalized barium titanate (BaTiO 3 ) nanocrystals have been explored for highly tunable chemical and electronic properties, potentially of use in ceramic-polymer composites for flexible ferroelectric device applications, directed synthesis of ferroelectric thin films or other nano-archi...
Saved in:
Published in | Journal of materials chemistry. C, Materials for optical and electronic devices Vol. 10; no. 30; pp. 10832 - 10842 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United Kingdom
Royal Society of Chemistry (RSC)
04.08.2022
|
Online Access | Get full text |
Cover
Loading…
Abstract | Surface functionalized barium titanate (BaTiO
3
) nanocrystals have been explored for highly tunable chemical and electronic properties, potentially of use in ceramic-polymer composites for flexible ferroelectric device applications, directed synthesis of ferroelectric thin films or other nano-architectures, and other potential applications. The detailed temperature dependent local structure evolution of BaTiO
3
nanocubes capped with nonpolar oleic acid (OA) and polar tetrafluoroborate (BF
4
−
) ligands are investigated using
in situ
synchrotron X-ray diffraction and pair distribution function (PDF) analysis, in conjunction with piezoresponse force microscopy (PFM) and
137
Ba nuclear magnetic resonance (NMR) spectroscopy measurements. Diffraction analysis reveals that nanocubes capped by polar BF
4
−
ligands undergo sharper ferroelectric to paraelectric phase transitions than nanocubes capped with nonpolar OA ligands, with the smallest ∼12 nm nanocubes displaying no transition. Local non-centrosymmetric symmetry is observed by PDF analysis and confirmed by NMR, persisting across the phase transition temperature. Local distortion analysis, manifested in tetragonality (
c
/
a
) and Ti off-centering (
z
Ti
) parameters, reveals distinct temperature and length-scale dependencies with particle size and capping group. Ferroelectric order is increased by polar BF
4
−
ligands, which is corroborated by an enhancement of PFM response. |
---|---|
AbstractList | BaTiO
3
nanocubes capped by polar tetrafluoroborate (BF
4
−
) ligands are shown to have enhanced ferroelectric order and undergo sharper ferroelectric to paraelectric phase transitions relative to nanocubes capped with nonpolar oleic acid (OA) ligands. Surface functionalized barium titanate (BaTiO 3 ) nanocrystals have been explored for highly tunable chemical and electronic properties, potentially of use in ceramic-polymer composites for flexible ferroelectric device applications, directed synthesis of ferroelectric thin films or other nano-architectures, and other potential applications. The detailed temperature dependent local structure evolution of BaTiO 3 nanocubes capped with nonpolar oleic acid (OA) and polar tetrafluoroborate (BF 4 − ) ligands are investigated using in situ synchrotron X-ray diffraction and pair distribution function (PDF) analysis, in conjunction with piezoresponse force microscopy (PFM) and 137 Ba nuclear magnetic resonance (NMR) spectroscopy measurements. Diffraction analysis reveals that nanocubes capped by polar BF 4 − ligands undergo sharper ferroelectric to paraelectric phase transitions than nanocubes capped with nonpolar OA ligands, with the smallest ∼12 nm nanocubes displaying no transition. Local non-centrosymmetric symmetry is observed by PDF analysis and confirmed by NMR, persisting across the phase transition temperature. Local distortion analysis, manifested in tetragonality ( c / a ) and Ti off-centering ( z Ti ) parameters, reveals distinct temperature and length-scale dependencies with particle size and capping group. Ferroelectric order is increased by polar BF 4 − ligands, which is corroborated by an enhancement of PFM response. |
Author | Jothi, Palani Raja Zhao, Changhao Reven, Linda Caruntu, Gabriel Lindner-D'Addario, Michael Jiang, Bo Metz, Peter C. Page, Katharine Kavey, Benard Jones, Jacob L. |
Author_xml | – sequence: 1 givenname: Bo orcidid: 0000-0001-8849-6677 surname: Jiang fullname: Jiang, Bo organization: Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA – sequence: 2 givenname: Changhao orcidid: 0000-0003-3739-8406 surname: Zhao fullname: Zhao, Changhao organization: Department of Materials and Earth Sciences, Technical University of Darmastadt, 64287 Darmstadt, Germany, Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA – sequence: 3 givenname: Peter C. orcidid: 0000-0003-3022-5596 surname: Metz fullname: Metz, Peter C. organization: Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA – sequence: 4 givenname: Palani Raja orcidid: 0000-0002-2212-6240 surname: Jothi fullname: Jothi, Palani Raja organization: Department of Materials Science and Engineering and Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN 37996, USA – sequence: 5 givenname: Benard surname: Kavey fullname: Kavey, Benard organization: Department of Chemistry and Biochemistry, Central Michigan University, Mountain Pleasant, MI, 48859, USA – sequence: 6 givenname: Linda orcidid: 0000-0002-6643-6371 surname: Reven fullname: Reven, Linda organization: Department of Chemistry, Centre québécois sur les matériaux fonctionnels/Quebec Centre for Advanced Materials (CQMF/QCAM), McGill University, Montreal, QC H3A 0C5, Canada – sequence: 7 givenname: Michael surname: Lindner-D'Addario fullname: Lindner-D'Addario, Michael organization: Department of Chemistry, Centre québécois sur les matériaux fonctionnels/Quebec Centre for Advanced Materials (CQMF/QCAM), McGill University, Montreal, QC H3A 0C5, Canada – sequence: 8 givenname: Jacob L. orcidid: 0000-0002-9182-0957 surname: Jones fullname: Jones, Jacob L. organization: Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA – sequence: 9 givenname: Gabriel orcidid: 0000-0001-8809-8177 surname: Caruntu fullname: Caruntu, Gabriel organization: Department of Chemistry and Biochemistry, Central Michigan University, Mountain Pleasant, MI, 48859, USA, Department of Electrical Engineering and Computer Science and MANSID Research Center, Stefan Cel Mare’ University, 13, Universitatii St., Suceava, 720229, Romania – sequence: 10 givenname: Katharine orcidid: 0000-0002-9071-3383 surname: Page fullname: Page, Katharine organization: Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA, Department of Materials Science and Engineering and Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN 37996, USA |
BackLink | https://www.osti.gov/biblio/1867318$$D View this record in Osti.gov |
BookMark | eNptkEtLAzEUhYMoWGs3_oLgUhjNY2YyWdb6hEI30_WQSW5oZJqUJLPw3ztaURDv5l643zkczgU69cEDQleU3FLC5d0Da1eElEIsT9CMkYoUouLl6c_N6nO0SOmNTNPQuqnlDG1b2B8gqjxGwAYO4A34jIeg1YBTjqP--uiwgwheAw4WpzFapaHYB-OsA4PvVes2mGOvfNBjD-kSnVk1JFh87znaPj22q5divXl-XS3XhZ4CN0XPe8YkrWxJZCnAWiWl5EyWtbGK67IWhpXAQCpKdQW8kUayXnBhKNhaEj5H10ffkLLrknYZ9E4H70Hnjja14LSZIHKEdAwpRbDdxKnsgs9RuaGjpPusr_utb5Lc_JEcotur-P4f_AHQ5XET |
CitedBy_id | crossref_primary_10_1107_S1600576724008355 crossref_primary_10_1039_D4TA00240G crossref_primary_10_1021_acs_chemrev_3c00101 crossref_primary_10_1002_advs_202303028 crossref_primary_10_1039_D2MA00186A |
Cites_doi | 10.1021/ja108948z 10.1039/C5NR00737B 10.1021/la9035419 10.1063/1.4901169 10.1021/cm8021648 10.1038/nmat3371 10.1021/cm052145g 10.1021/ja303184w 10.1021/ar020204f 10.1063/1.3027067 10.1039/C7CE00279C 10.1063/1.2179971 10.1111/j.1151-2916.1994.tb04568.x 10.1039/D0TC05975G 10.1038/358136a0 10.1063/1.1735245 10.1103/PhysRevB.62.3065 10.1063/1.4751332 10.1063/5.0068703 10.2109/jcersj2.121.156 10.1103/PhysRevB.79.134119 10.1107/S2053273318004977 10.1063/1.4990046 10.1103/PhysRevB.76.155439 10.1002/adfm.201301913 10.1007/s10832-006-9866-4 10.1002/jcc.23115 10.1021/cm100440p 10.1103/PhysRevB.78.054107 10.1080/00150190802026572 10.1103/PhysRevLett.101.036102 10.1063/1.4954276 10.1016/j.jeurceramsoc.2021.12.024 10.1002/chem.202100692 10.1080/08940886.2020.1841498 10.1021/am502547h 10.1021/j100112a043 10.1103/PhysRevB.98.085421 10.1103/PhysRevB.70.024107 10.1021/acs.chemmater.8b04447 10.1063/1.3569619 10.1038/nmat1808 10.1038/nmat2198 10.1080/00150193.2010.505514 10.1016/S0038-1098(00)00491-9 10.1111/j.1551-2916.2010.03935.x 10.1039/c2nr00064d 10.1063/1.1385184 10.1038/s41598-020-60475-8 10.1016/j.physb.2011.01.024 10.1103/PhysRevB.54.3158 10.1021/nl052538e 10.1021/ja0758436 10.1103/PhysRevB.90.014107 10.1088/0957-4484/18/47/475504 10.1103/PhysRevLett.108.087602 10.1103/PhysRevLett.116.207602 10.1107/S0021889813005190 10.1088/1361-6633/aa915a 10.1039/C7NR05212J 10.1080/08957959608201408 10.1111/j.1151-2916.1989.tb07706.x 10.1021/cm9038768 10.1021/acsanm.0c01809 10.1016/j.jeurceramsoc.2020.01.021 10.1080/08927022.2012.754098 |
ContentType | Journal Article |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1039/D2TC00477A |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2050-7534 |
EndPage | 10842 |
ExternalDocumentID | 1867318 10_1039_D2TC00477A |
GroupedDBID | 0-7 0R~ 4.4 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH -JG AAGNR ABGFH AGSTE OTOTI UCJ |
ID | FETCH-LOGICAL-c1038-b3b22915f40947effa99932946dfa3c467d24e2e9a11c5e389d92b737d1ef6903 |
ISSN | 2050-7526 |
IngestDate | Mon May 01 23:02:01 EDT 2023 Thu Apr 24 22:51:40 EDT 2025 Tue Jul 01 04:26:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 30 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1038-b3b22915f40947effa99932946dfa3c467d24e2e9a11c5e389d92b737d1ef6903 |
Notes | USDOE AC05-00OR22725 |
ORCID | 0000-0003-3022-5596 0000-0002-9182-0957 0000-0002-9071-3383 0000-0002-6643-6371 0000-0001-8849-6677 0000-0003-3739-8406 0000-0001-8809-8177 0000-0002-2212-6240 0000000291820957 0000000188496677 0000000330225596 0000000266436371 0000000188098177 0000000337398406 0000000290713383 0000000222126240 |
PageCount | 11 |
ParticipantIDs | osti_scitechconnect_1867318 crossref_citationtrail_10_1039_D2TC00477A crossref_primary_10_1039_D2TC00477A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-04 |
PublicationDateYYYYMMDD | 2022-08-04 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | United Kingdom |
PublicationPlace_xml | – name: United Kingdom |
PublicationTitle | Journal of materials chemistry. C, Materials for optical and electronic devices |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry (RSC) |
Publisher_xml | – name: Royal Society of Chemistry (RSC) |
References | Rabuffetti (D2TC00477A/cit36/1) 2012; 134 Hoshina (D2TC00477A/cit16/1) 2006; 99 Taye (D2TC00477A/cit67/1) 1999; 11 Usher (D2TC00477A/cit53/1) 2018; 74 Li (D2TC00477A/cit45/1) 2008; 7 Höfer (D2TC00477A/cit23/1) 2012; 108 Li (D2TC00477A/cit7/1) 2014; 105 Kwei (D2TC00477A/cit5/1) 1993; 97 Eglitis (D2TC00477A/cit20/1) 2006; 16 El-Sayed (D2TC00477A/cit6/1) 2004; 37 Acosta (D2TC00477A/cit1/1) 2017; 4 Lemos da Silva (D2TC00477A/cit35/1) 2021; 130 Rodriguez (D2TC00477A/cit54/1) 2007; 18 Hammersley (D2TC00477A/cit50/1) 1996; 14 Culbertson (D2TC00477A/cit62/1) 2020; 10 Bastow (D2TC00477A/cit66/1) 2001; 117 Zhao (D2TC00477A/cit15/1) 2004; 70 Begg (D2TC00477A/cit12/1) 1994; 77 Yasui (D2TC00477A/cit43/1) 2013; 117 Uchino (D2TC00477A/cit11/1) 1989; 72 Buscaglia (D2TC00477A/cit19/1) 2020; 40 Parizi (D2TC00477A/cit3/1) 2014; 6 Polking (D2TC00477A/cit40/1) 2012; 11 Caruntu (D2TC00477A/cit41/1) 2015; 7 Won (D2TC00477A/cit4/1) 2011; 109 Juhás (D2TC00477A/cit51/1) 2013; 46 Cohen (D2TC00477A/cit60/1) 1992; 358 Miller (D2TC00477A/cit63/1) 1959; 30 Beier (D2TC00477A/cit8/1) 2010; 26 Eglitis (D2TC00477A/cit21/1) 2007; 76 Usher (D2TC00477A/cit48/1) 2020; 3 Lombardi (D2TC00477A/cit9/1) 2019; 31 Fang (D2TC00477A/cit26/1) 2011; 406 Smith (D2TC00477A/cit29/1) 2008; 130 Ghosh (D2TC00477A/cit34/1) 2014; 24 Senn (D2TC00477A/cit59/1) 2016; 116 Caruntu (D2TC00477A/cit55/1) 2012; 4 Sun (D2TC00477A/cit10/1) 2017; 19 Kalinin (D2TC00477A/cit65/1) 2018; 81 Li (D2TC00477A/cit38/1) 2008; 20 Adireddy (D2TC00477A/cit42/1) 2010; 22 Page (D2TC00477A/cit46/1) 2010; 22 Hao (D2TC00477A/cit37/1) 2021; 9 Sedykh (D2TC00477A/cit68/1) 2008; 363 Dong (D2TC00477A/cit39/1) 2011; 133 Jiang (D2TC00477A/cit47/1) 2021; 27 Sun (D2TC00477A/cit25/1) 2010; 93 Petkov (D2TC00477A/cit58/1) 2008; 78 Sedykh (D2TC00477A/cit31/1) 2009; 79 Yang (D2TC00477A/cit56/1) 2016; 108 Zhu (D2TC00477A/cit30/1) 2012; 112 Dionot (D2TC00477A/cit24/1) 2014; 90 Ruett (D2TC00477A/cit49/1) 2020; 33 Kolpak (D2TC00477A/cit22/1) 2008; 101 Alexe (D2TC00477A/cit64/1) 2001; 79 Sedykh (D2TC00477A/cit69/1) 2010; 400 Hoshina (D2TC00477A/cit17/1) 2008; 93 Tsunekawa (D2TC00477A/cit14/1) 2000; 62 Evarestov (D2TC00477A/cit28/1) 2013; 34 Shi (D2TC00477A/cit32/1) 2018; 98 Jia (D2TC00477A/cit61/1) 2007; 6 Bi (D2TC00477A/cit2/1) 2017; 9 Spanier (D2TC00477A/cit44/1) 2006; 6 Hoshina (D2TC00477A/cit18/1) 2013; 121 Petkov (D2TC00477A/cit57/1) 2006; 18 Salazar-Villanueva (D2TC00477A/cit27/1) 2013; 39 Frey (D2TC00477A/cit13/1) 1996; 54 Lukacs (D2TC00477A/cit33/1) 2022; 42 |
References_xml | – volume: 133 start-page: 998 year: 2011 ident: D2TC00477A/cit39/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja108948z – volume: 7 start-page: 12955 year: 2015 ident: D2TC00477A/cit41/1 publication-title: Nanoscale doi: 10.1039/C5NR00737B – volume: 26 start-page: 5067 year: 2010 ident: D2TC00477A/cit8/1 publication-title: Langmuir doi: 10.1021/la9035419 – volume: 105 start-page: 182901 year: 2014 ident: D2TC00477A/cit7/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4901169 – volume: 20 start-page: 6304 year: 2008 ident: D2TC00477A/cit38/1 publication-title: Chem. Mater. doi: 10.1021/cm8021648 – volume: 11 start-page: 700 year: 2012 ident: D2TC00477A/cit40/1 publication-title: Nat. Mater. doi: 10.1038/nmat3371 – volume: 18 start-page: 814 year: 2006 ident: D2TC00477A/cit57/1 publication-title: Chem. Mater. doi: 10.1021/cm052145g – volume: 134 start-page: 9475 year: 2012 ident: D2TC00477A/cit36/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja303184w – volume: 37 start-page: 326 year: 2004 ident: D2TC00477A/cit6/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar020204f – volume: 93 start-page: 192914 year: 2008 ident: D2TC00477A/cit17/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3027067 – volume: 19 start-page: 3288 year: 2017 ident: D2TC00477A/cit10/1 publication-title: CrystEngComm doi: 10.1039/C7CE00279C – volume: 99 start-page: 054311 year: 2006 ident: D2TC00477A/cit16/1 publication-title: J. Appl. Phys. doi: 10.1063/1.2179971 – volume: 77 start-page: 3186 year: 1994 ident: D2TC00477A/cit12/1 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1994.tb04568.x – volume: 9 start-page: 5267 year: 2021 ident: D2TC00477A/cit37/1 publication-title: J. Mater. Chem. C doi: 10.1039/D0TC05975G – volume: 358 start-page: 136 year: 1992 ident: D2TC00477A/cit60/1 publication-title: Nature doi: 10.1038/358136a0 – volume: 30 start-page: 808 year: 1959 ident: D2TC00477A/cit63/1 publication-title: J. Appl. Phys. doi: 10.1063/1.1735245 – volume: 62 start-page: 3065 year: 2000 ident: D2TC00477A/cit14/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.62.3065 – volume: 112 start-page: 064110 year: 2012 ident: D2TC00477A/cit30/1 publication-title: J. Appl. Phys. doi: 10.1063/1.4751332 – volume: 130 start-page: 234101 year: 2021 ident: D2TC00477A/cit35/1 publication-title: J. Appl. Phys. doi: 10.1063/5.0068703 – volume: 121 start-page: 156 year: 2013 ident: D2TC00477A/cit18/1 publication-title: J. Ceram. Soc. Jpn. doi: 10.2109/jcersj2.121.156 – volume: 79 start-page: 134119 year: 2009 ident: D2TC00477A/cit31/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.79.134119 – volume: 74 start-page: 322 year: 2018 ident: D2TC00477A/cit53/1 publication-title: Acta Crystallogr., Sect. A: Found. Adv. doi: 10.1107/S2053273318004977 – volume: 4 start-page: 041305 year: 2017 ident: D2TC00477A/cit1/1 publication-title: Appl. Phys. Rev. doi: 10.1063/1.4990046 – volume: 76 start-page: 155439 year: 2007 ident: D2TC00477A/cit21/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.76.155439 – volume: 24 start-page: 885 year: 2014 ident: D2TC00477A/cit34/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201301913 – volume: 16 start-page: 289 year: 2006 ident: D2TC00477A/cit20/1 publication-title: J. Electroceram. doi: 10.1007/s10832-006-9866-4 – volume: 34 start-page: 175 year: 2013 ident: D2TC00477A/cit28/1 publication-title: J. Comput. Chem. doi: 10.1002/jcc.23115 – volume: 22 start-page: 4386 year: 2010 ident: D2TC00477A/cit46/1 publication-title: Chem. Mater. doi: 10.1021/cm100440p – volume: 78 start-page: 054107 year: 2008 ident: D2TC00477A/cit58/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.78.054107 – volume: 363 start-page: 215 year: 2008 ident: D2TC00477A/cit68/1 publication-title: Ferroelectrics doi: 10.1080/00150190802026572 – volume: 101 start-page: 036102 year: 2008 ident: D2TC00477A/cit22/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.036102 – volume: 108 start-page: 252902 year: 2016 ident: D2TC00477A/cit56/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4954276 – volume: 42 start-page: 2230 year: 2022 ident: D2TC00477A/cit33/1 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2021.12.024 – volume: 27 start-page: 8365 issue: 32 year: 2021 ident: D2TC00477A/cit47/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.202100692 – volume: 33 start-page: 44 year: 2020 ident: D2TC00477A/cit49/1 publication-title: Synchrotron Radiation News doi: 10.1080/08940886.2020.1841498 – volume: 6 start-page: 17506 year: 2014 ident: D2TC00477A/cit3/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am502547h – volume: 97 start-page: 2368 year: 1993 ident: D2TC00477A/cit5/1 publication-title: J. Phys. Chem. C doi: 10.1021/j100112a043 – volume: 98 start-page: 085421 year: 2018 ident: D2TC00477A/cit32/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.085421 – volume: 70 start-page: 024107 year: 2004 ident: D2TC00477A/cit15/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.70.024107 – volume: 31 start-page: 1318 year: 2019 ident: D2TC00477A/cit9/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b04447 – volume: 109 start-page: 084108 year: 2011 ident: D2TC00477A/cit4/1 publication-title: J. Appl. Phys. doi: 10.1063/1.3569619 – volume: 6 start-page: 64 year: 2007 ident: D2TC00477A/cit61/1 publication-title: Nat. Mater. doi: 10.1038/nmat1808 – volume: 7 start-page: 473 year: 2008 ident: D2TC00477A/cit45/1 publication-title: Nat. Mater. doi: 10.1038/nmat2198 – volume: 400 start-page: 135 year: 2010 ident: D2TC00477A/cit69/1 publication-title: Ferroelectrics doi: 10.1080/00150193.2010.505514 – volume: 117 start-page: 483 year: 2001 ident: D2TC00477A/cit66/1 publication-title: Solid State Commun. doi: 10.1016/S0038-1098(00)00491-9 – volume: 93 start-page: 3808 year: 2010 ident: D2TC00477A/cit25/1 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2010.03935.x – volume: 4 start-page: 3218 year: 2012 ident: D2TC00477A/cit55/1 publication-title: Nanoscale doi: 10.1039/c2nr00064d – volume: 79 start-page: 242 year: 2001 ident: D2TC00477A/cit64/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1385184 – volume: 10 start-page: 1 year: 2020 ident: D2TC00477A/cit62/1 publication-title: Sci. Rep. doi: 10.1038/s41598-020-60475-8 – volume: 406 start-page: 1317 year: 2011 ident: D2TC00477A/cit26/1 publication-title: Phys. B doi: 10.1016/j.physb.2011.01.024 – volume: 54 start-page: 3158 year: 1996 ident: D2TC00477A/cit13/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.54.3158 – volume: 6 start-page: 735 year: 2006 ident: D2TC00477A/cit44/1 publication-title: Nano Lett. doi: 10.1021/nl052538e – volume: 130 start-page: 6955 year: 2008 ident: D2TC00477A/cit29/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0758436 – volume: 117 start-page: 19632 year: 2013 ident: D2TC00477A/cit43/1 publication-title: J. Phys. Chem. C – volume: 90 start-page: 014107 year: 2014 ident: D2TC00477A/cit24/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.90.014107 – volume: 18 start-page: 475504 year: 2007 ident: D2TC00477A/cit54/1 publication-title: Nanotechnology doi: 10.1088/0957-4484/18/47/475504 – volume: 108 start-page: 087602 year: 2012 ident: D2TC00477A/cit23/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.087602 – volume: 116 start-page: 207602 year: 2016 ident: D2TC00477A/cit59/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.207602 – volume: 11 start-page: 871 year: 1999 ident: D2TC00477A/cit67/1 publication-title: J. Phys.: Condens. Matter – volume: 46 start-page: 560 year: 2013 ident: D2TC00477A/cit51/1 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889813005190 – volume: 81 start-page: 036502 year: 2018 ident: D2TC00477A/cit65/1 publication-title: Rep. Prog. Phys. doi: 10.1088/1361-6633/aa915a – volume: 9 start-page: 16386 year: 2017 ident: D2TC00477A/cit2/1 publication-title: Nanoscale doi: 10.1039/C7NR05212J – volume: 14 start-page: 235 year: 1996 ident: D2TC00477A/cit50/1 publication-title: Int. J. High Pressure Res. doi: 10.1080/08957959608201408 – volume: 72 start-page: 1555 year: 1989 ident: D2TC00477A/cit11/1 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1989.tb07706.x – volume: 22 start-page: 1946 year: 2010 ident: D2TC00477A/cit42/1 publication-title: Chem. Mater. doi: 10.1021/cm9038768 – volume: 3 start-page: 9715 year: 2020 ident: D2TC00477A/cit48/1 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.0c01809 – volume: 40 start-page: 3744 year: 2020 ident: D2TC00477A/cit19/1 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2020.01.021 – volume: 39 start-page: 545 year: 2013 ident: D2TC00477A/cit27/1 publication-title: Mol. Simul. doi: 10.1080/08927022.2012.754098 |
SSID | ssj0000816869 |
Score | 2.1913862 |
Snippet | Surface functionalized barium titanate (BaTiO
3
) nanocrystals have been explored for highly tunable chemical and electronic properties, potentially of use in... BaTiO 3 nanocubes capped by polar tetrafluoroborate (BF 4 − ) ligands are shown to have enhanced ferroelectric order and undergo sharper ferroelectric to... |
SourceID | osti crossref |
SourceType | Open Access Repository Enrichment Source Index Database |
StartPage | 10832 |
Title | Temperature dependent local structure coherence of surface-modified BaTiO 3 nanocubes |
URI | https://www.osti.gov/biblio/1867318 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWGqZDoAkEBUQrIEmyQlSGxkwletkNRQTwkmJG6i_xKGVSSqs1s-jl8KdeO4xhaIWATRXEUJb5H9vHN8bkIPc8EhDlXMtGSiSQ3aZlIlfKEpzqrqTEw59rNyR8-zo9W-bvj4ngy-RGpljadnKnLa_eV_E9U4RrE1e6S_YfIhofCBTiH-MIRIgzHv4uxAdLbmyKToZptR9z0RHpjWNui2q_eSxaI4cXmvBbKJN9bva4t_TwQy_UnwkgjmlZtpJcUXqWrwGz7TyJqqBE3I4t-u8_QYiWL7VkXDAiiGjvauCEpCHbWPk990Eap69YLAJoTOA9QMN1lUBKTxWzU_HSuIDGQ4FPRrMln8U3EOQxY_lrNxZjD7DMlg0zVyVD8h7g8ypfFkBVx4yJNizQpC-odtONrPi86DOxpBOD-78-VCSNl1m_1NbU_WPKyDJarkQG3tfyDke8G2qKwFKFTtLV_uHz7PmTyXOkSVzsxvNngg8v4y_HRvzCfaQsjeMRklnfQbR9TvN_j6S6amGYHbUfGlDvophMGq4t7aBVhDAeMYYcxHDCGA8ZwW-PfMYYdxjDDAWP30erN4XJxlPhSHImyDvqJZJJSnhW1TQeUpq4FLCwY5flc14IpmG01zQ01XGSZKgywYM2pLFmpM1PPecoeoGnTNuYhwhqmNS5LqTMtc6Fybtd3RW4d80WRvVK76MXQTZXyPvW2XMpp5fQSjFdjl-6iZ-Hes96d5dq79mxvV8AprTGysgoy1VU-ro_-2LqHbo2AfYym0K_mCdDQTj71OPgJk0GKUw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature+dependent+local+structure+coherence+of+surface-modified+BaTiO+3+nanocubes&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Jiang%2C+Bo&rft.au=Zhao%2C+Changhao&rft.au=Metz%2C+Peter+C.&rft.au=Jothi%2C+Palani+Raja&rft.date=2022-08-04&rft.pub=Royal+Society+of+Chemistry+%28RSC%29&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=10&rft.issue=30&rft_id=info:doi/10.1039%2FD2TC00477A&rft.externalDocID=1867318 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon |