Temperature dependent local structure coherence of surface-modified BaTiO 3 nanocubes

Surface functionalized barium titanate (BaTiO 3 ) nanocrystals have been explored for highly tunable chemical and electronic properties, potentially of use in ceramic-polymer composites for flexible ferroelectric device applications, directed synthesis of ferroelectric thin films or other nano-archi...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. C, Materials for optical and electronic devices Vol. 10; no. 30; pp. 10832 - 10842
Main Authors Jiang, Bo, Zhao, Changhao, Metz, Peter C., Jothi, Palani Raja, Kavey, Benard, Reven, Linda, Lindner-D'Addario, Michael, Jones, Jacob L., Caruntu, Gabriel, Page, Katharine
Format Journal Article
LanguageEnglish
Published United Kingdom Royal Society of Chemistry (RSC) 04.08.2022
Online AccessGet full text

Cover

Loading…
Abstract Surface functionalized barium titanate (BaTiO 3 ) nanocrystals have been explored for highly tunable chemical and electronic properties, potentially of use in ceramic-polymer composites for flexible ferroelectric device applications, directed synthesis of ferroelectric thin films or other nano-architectures, and other potential applications. The detailed temperature dependent local structure evolution of BaTiO 3 nanocubes capped with nonpolar oleic acid (OA) and polar tetrafluoroborate (BF 4 − ) ligands are investigated using in situ synchrotron X-ray diffraction and pair distribution function (PDF) analysis, in conjunction with piezoresponse force microscopy (PFM) and 137 Ba nuclear magnetic resonance (NMR) spectroscopy measurements. Diffraction analysis reveals that nanocubes capped by polar BF 4 − ligands undergo sharper ferroelectric to paraelectric phase transitions than nanocubes capped with nonpolar OA ligands, with the smallest ∼12 nm nanocubes displaying no transition. Local non-centrosymmetric symmetry is observed by PDF analysis and confirmed by NMR, persisting across the phase transition temperature. Local distortion analysis, manifested in tetragonality ( c / a ) and Ti off-centering ( z Ti ) parameters, reveals distinct temperature and length-scale dependencies with particle size and capping group. Ferroelectric order is increased by polar BF 4 − ligands, which is corroborated by an enhancement of PFM response.
AbstractList BaTiO 3 nanocubes capped by polar tetrafluoroborate (BF 4 − ) ligands are shown to have enhanced ferroelectric order and undergo sharper ferroelectric to paraelectric phase transitions relative to nanocubes capped with nonpolar oleic acid (OA) ligands.
Surface functionalized barium titanate (BaTiO 3 ) nanocrystals have been explored for highly tunable chemical and electronic properties, potentially of use in ceramic-polymer composites for flexible ferroelectric device applications, directed synthesis of ferroelectric thin films or other nano-architectures, and other potential applications. The detailed temperature dependent local structure evolution of BaTiO 3 nanocubes capped with nonpolar oleic acid (OA) and polar tetrafluoroborate (BF 4 − ) ligands are investigated using in situ synchrotron X-ray diffraction and pair distribution function (PDF) analysis, in conjunction with piezoresponse force microscopy (PFM) and 137 Ba nuclear magnetic resonance (NMR) spectroscopy measurements. Diffraction analysis reveals that nanocubes capped by polar BF 4 − ligands undergo sharper ferroelectric to paraelectric phase transitions than nanocubes capped with nonpolar OA ligands, with the smallest ∼12 nm nanocubes displaying no transition. Local non-centrosymmetric symmetry is observed by PDF analysis and confirmed by NMR, persisting across the phase transition temperature. Local distortion analysis, manifested in tetragonality ( c / a ) and Ti off-centering ( z Ti ) parameters, reveals distinct temperature and length-scale dependencies with particle size and capping group. Ferroelectric order is increased by polar BF 4 − ligands, which is corroborated by an enhancement of PFM response.
Author Jothi, Palani Raja
Zhao, Changhao
Reven, Linda
Caruntu, Gabriel
Lindner-D'Addario, Michael
Jiang, Bo
Metz, Peter C.
Page, Katharine
Kavey, Benard
Jones, Jacob L.
Author_xml – sequence: 1
  givenname: Bo
  orcidid: 0000-0001-8849-6677
  surname: Jiang
  fullname: Jiang, Bo
  organization: Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
– sequence: 2
  givenname: Changhao
  orcidid: 0000-0003-3739-8406
  surname: Zhao
  fullname: Zhao, Changhao
  organization: Department of Materials and Earth Sciences, Technical University of Darmastadt, 64287 Darmstadt, Germany, Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
– sequence: 3
  givenname: Peter C.
  orcidid: 0000-0003-3022-5596
  surname: Metz
  fullname: Metz, Peter C.
  organization: Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
– sequence: 4
  givenname: Palani Raja
  orcidid: 0000-0002-2212-6240
  surname: Jothi
  fullname: Jothi, Palani Raja
  organization: Department of Materials Science and Engineering and Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN 37996, USA
– sequence: 5
  givenname: Benard
  surname: Kavey
  fullname: Kavey, Benard
  organization: Department of Chemistry and Biochemistry, Central Michigan University, Mountain Pleasant, MI, 48859, USA
– sequence: 6
  givenname: Linda
  orcidid: 0000-0002-6643-6371
  surname: Reven
  fullname: Reven, Linda
  organization: Department of Chemistry, Centre québécois sur les matériaux fonctionnels/Quebec Centre for Advanced Materials (CQMF/QCAM), McGill University, Montreal, QC H3A 0C5, Canada
– sequence: 7
  givenname: Michael
  surname: Lindner-D'Addario
  fullname: Lindner-D'Addario, Michael
  organization: Department of Chemistry, Centre québécois sur les matériaux fonctionnels/Quebec Centre for Advanced Materials (CQMF/QCAM), McGill University, Montreal, QC H3A 0C5, Canada
– sequence: 8
  givenname: Jacob L.
  orcidid: 0000-0002-9182-0957
  surname: Jones
  fullname: Jones, Jacob L.
  organization: Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
– sequence: 9
  givenname: Gabriel
  orcidid: 0000-0001-8809-8177
  surname: Caruntu
  fullname: Caruntu, Gabriel
  organization: Department of Chemistry and Biochemistry, Central Michigan University, Mountain Pleasant, MI, 48859, USA, Department of Electrical Engineering and Computer Science and MANSID Research Center, Stefan Cel Mare’ University, 13, Universitatii St., Suceava, 720229, Romania
– sequence: 10
  givenname: Katharine
  orcidid: 0000-0002-9071-3383
  surname: Page
  fullname: Page, Katharine
  organization: Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA, Department of Materials Science and Engineering and Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN 37996, USA
BackLink https://www.osti.gov/biblio/1867318$$D View this record in Osti.gov
BookMark eNptkEtLAzEUhYMoWGs3_oLgUhjNY2YyWdb6hEI30_WQSW5oZJqUJLPw3ztaURDv5l643zkczgU69cEDQleU3FLC5d0Da1eElEIsT9CMkYoUouLl6c_N6nO0SOmNTNPQuqnlDG1b2B8gqjxGwAYO4A34jIeg1YBTjqP--uiwgwheAw4WpzFapaHYB-OsA4PvVes2mGOvfNBjD-kSnVk1JFh87znaPj22q5divXl-XS3XhZ4CN0XPe8YkrWxJZCnAWiWl5EyWtbGK67IWhpXAQCpKdQW8kUayXnBhKNhaEj5H10ffkLLrknYZ9E4H70Hnjja14LSZIHKEdAwpRbDdxKnsgs9RuaGjpPusr_utb5Lc_JEcotur-P4f_AHQ5XET
CitedBy_id crossref_primary_10_1107_S1600576724008355
crossref_primary_10_1039_D4TA00240G
crossref_primary_10_1021_acs_chemrev_3c00101
crossref_primary_10_1002_advs_202303028
crossref_primary_10_1039_D2MA00186A
Cites_doi 10.1021/ja108948z
10.1039/C5NR00737B
10.1021/la9035419
10.1063/1.4901169
10.1021/cm8021648
10.1038/nmat3371
10.1021/cm052145g
10.1021/ja303184w
10.1021/ar020204f
10.1063/1.3027067
10.1039/C7CE00279C
10.1063/1.2179971
10.1111/j.1151-2916.1994.tb04568.x
10.1039/D0TC05975G
10.1038/358136a0
10.1063/1.1735245
10.1103/PhysRevB.62.3065
10.1063/1.4751332
10.1063/5.0068703
10.2109/jcersj2.121.156
10.1103/PhysRevB.79.134119
10.1107/S2053273318004977
10.1063/1.4990046
10.1103/PhysRevB.76.155439
10.1002/adfm.201301913
10.1007/s10832-006-9866-4
10.1002/jcc.23115
10.1021/cm100440p
10.1103/PhysRevB.78.054107
10.1080/00150190802026572
10.1103/PhysRevLett.101.036102
10.1063/1.4954276
10.1016/j.jeurceramsoc.2021.12.024
10.1002/chem.202100692
10.1080/08940886.2020.1841498
10.1021/am502547h
10.1021/j100112a043
10.1103/PhysRevB.98.085421
10.1103/PhysRevB.70.024107
10.1021/acs.chemmater.8b04447
10.1063/1.3569619
10.1038/nmat1808
10.1038/nmat2198
10.1080/00150193.2010.505514
10.1016/S0038-1098(00)00491-9
10.1111/j.1551-2916.2010.03935.x
10.1039/c2nr00064d
10.1063/1.1385184
10.1038/s41598-020-60475-8
10.1016/j.physb.2011.01.024
10.1103/PhysRevB.54.3158
10.1021/nl052538e
10.1021/ja0758436
10.1103/PhysRevB.90.014107
10.1088/0957-4484/18/47/475504
10.1103/PhysRevLett.108.087602
10.1103/PhysRevLett.116.207602
10.1107/S0021889813005190
10.1088/1361-6633/aa915a
10.1039/C7NR05212J
10.1080/08957959608201408
10.1111/j.1151-2916.1989.tb07706.x
10.1021/cm9038768
10.1021/acsanm.0c01809
10.1016/j.jeurceramsoc.2020.01.021
10.1080/08927022.2012.754098
ContentType Journal Article
DBID AAYXX
CITATION
OTOTI
DOI 10.1039/D2TC00477A
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2050-7534
EndPage 10842
ExternalDocumentID 1867318
10_1039_D2TC00477A
GroupedDBID 0-7
0R~
4.4
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CITATION
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
-JG
AAGNR
ABGFH
AGSTE
OTOTI
UCJ
ID FETCH-LOGICAL-c1038-b3b22915f40947effa99932946dfa3c467d24e2e9a11c5e389d92b737d1ef6903
ISSN 2050-7526
IngestDate Mon May 01 23:02:01 EDT 2023
Thu Apr 24 22:51:40 EDT 2025
Tue Jul 01 04:26:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 30
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1038-b3b22915f40947effa99932946dfa3c467d24e2e9a11c5e389d92b737d1ef6903
Notes USDOE
AC05-00OR22725
ORCID 0000-0003-3022-5596
0000-0002-9182-0957
0000-0002-9071-3383
0000-0002-6643-6371
0000-0001-8849-6677
0000-0003-3739-8406
0000-0001-8809-8177
0000-0002-2212-6240
0000000291820957
0000000188496677
0000000330225596
0000000266436371
0000000188098177
0000000337398406
0000000290713383
0000000222126240
PageCount 11
ParticipantIDs osti_scitechconnect_1867318
crossref_citationtrail_10_1039_D2TC00477A
crossref_primary_10_1039_D2TC00477A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-04
PublicationDateYYYYMMDD 2022-08-04
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-04
  day: 04
PublicationDecade 2020
PublicationPlace United Kingdom
PublicationPlace_xml – name: United Kingdom
PublicationTitle Journal of materials chemistry. C, Materials for optical and electronic devices
PublicationYear 2022
Publisher Royal Society of Chemistry (RSC)
Publisher_xml – name: Royal Society of Chemistry (RSC)
References Rabuffetti (D2TC00477A/cit36/1) 2012; 134
Hoshina (D2TC00477A/cit16/1) 2006; 99
Taye (D2TC00477A/cit67/1) 1999; 11
Usher (D2TC00477A/cit53/1) 2018; 74
Li (D2TC00477A/cit45/1) 2008; 7
Höfer (D2TC00477A/cit23/1) 2012; 108
Li (D2TC00477A/cit7/1) 2014; 105
Kwei (D2TC00477A/cit5/1) 1993; 97
Eglitis (D2TC00477A/cit20/1) 2006; 16
El-Sayed (D2TC00477A/cit6/1) 2004; 37
Acosta (D2TC00477A/cit1/1) 2017; 4
Lemos da Silva (D2TC00477A/cit35/1) 2021; 130
Rodriguez (D2TC00477A/cit54/1) 2007; 18
Hammersley (D2TC00477A/cit50/1) 1996; 14
Culbertson (D2TC00477A/cit62/1) 2020; 10
Bastow (D2TC00477A/cit66/1) 2001; 117
Zhao (D2TC00477A/cit15/1) 2004; 70
Begg (D2TC00477A/cit12/1) 1994; 77
Yasui (D2TC00477A/cit43/1) 2013; 117
Uchino (D2TC00477A/cit11/1) 1989; 72
Buscaglia (D2TC00477A/cit19/1) 2020; 40
Parizi (D2TC00477A/cit3/1) 2014; 6
Polking (D2TC00477A/cit40/1) 2012; 11
Caruntu (D2TC00477A/cit41/1) 2015; 7
Won (D2TC00477A/cit4/1) 2011; 109
Juhás (D2TC00477A/cit51/1) 2013; 46
Cohen (D2TC00477A/cit60/1) 1992; 358
Miller (D2TC00477A/cit63/1) 1959; 30
Beier (D2TC00477A/cit8/1) 2010; 26
Eglitis (D2TC00477A/cit21/1) 2007; 76
Usher (D2TC00477A/cit48/1) 2020; 3
Lombardi (D2TC00477A/cit9/1) 2019; 31
Fang (D2TC00477A/cit26/1) 2011; 406
Smith (D2TC00477A/cit29/1) 2008; 130
Ghosh (D2TC00477A/cit34/1) 2014; 24
Senn (D2TC00477A/cit59/1) 2016; 116
Caruntu (D2TC00477A/cit55/1) 2012; 4
Sun (D2TC00477A/cit10/1) 2017; 19
Kalinin (D2TC00477A/cit65/1) 2018; 81
Li (D2TC00477A/cit38/1) 2008; 20
Adireddy (D2TC00477A/cit42/1) 2010; 22
Page (D2TC00477A/cit46/1) 2010; 22
Hao (D2TC00477A/cit37/1) 2021; 9
Sedykh (D2TC00477A/cit68/1) 2008; 363
Dong (D2TC00477A/cit39/1) 2011; 133
Jiang (D2TC00477A/cit47/1) 2021; 27
Sun (D2TC00477A/cit25/1) 2010; 93
Petkov (D2TC00477A/cit58/1) 2008; 78
Sedykh (D2TC00477A/cit31/1) 2009; 79
Yang (D2TC00477A/cit56/1) 2016; 108
Zhu (D2TC00477A/cit30/1) 2012; 112
Dionot (D2TC00477A/cit24/1) 2014; 90
Ruett (D2TC00477A/cit49/1) 2020; 33
Kolpak (D2TC00477A/cit22/1) 2008; 101
Alexe (D2TC00477A/cit64/1) 2001; 79
Sedykh (D2TC00477A/cit69/1) 2010; 400
Hoshina (D2TC00477A/cit17/1) 2008; 93
Tsunekawa (D2TC00477A/cit14/1) 2000; 62
Evarestov (D2TC00477A/cit28/1) 2013; 34
Shi (D2TC00477A/cit32/1) 2018; 98
Jia (D2TC00477A/cit61/1) 2007; 6
Bi (D2TC00477A/cit2/1) 2017; 9
Spanier (D2TC00477A/cit44/1) 2006; 6
Hoshina (D2TC00477A/cit18/1) 2013; 121
Petkov (D2TC00477A/cit57/1) 2006; 18
Salazar-Villanueva (D2TC00477A/cit27/1) 2013; 39
Frey (D2TC00477A/cit13/1) 1996; 54
Lukacs (D2TC00477A/cit33/1) 2022; 42
References_xml – volume: 133
  start-page: 998
  year: 2011
  ident: D2TC00477A/cit39/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja108948z
– volume: 7
  start-page: 12955
  year: 2015
  ident: D2TC00477A/cit41/1
  publication-title: Nanoscale
  doi: 10.1039/C5NR00737B
– volume: 26
  start-page: 5067
  year: 2010
  ident: D2TC00477A/cit8/1
  publication-title: Langmuir
  doi: 10.1021/la9035419
– volume: 105
  start-page: 182901
  year: 2014
  ident: D2TC00477A/cit7/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4901169
– volume: 20
  start-page: 6304
  year: 2008
  ident: D2TC00477A/cit38/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm8021648
– volume: 11
  start-page: 700
  year: 2012
  ident: D2TC00477A/cit40/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3371
– volume: 18
  start-page: 814
  year: 2006
  ident: D2TC00477A/cit57/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm052145g
– volume: 134
  start-page: 9475
  year: 2012
  ident: D2TC00477A/cit36/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja303184w
– volume: 37
  start-page: 326
  year: 2004
  ident: D2TC00477A/cit6/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar020204f
– volume: 93
  start-page: 192914
  year: 2008
  ident: D2TC00477A/cit17/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3027067
– volume: 19
  start-page: 3288
  year: 2017
  ident: D2TC00477A/cit10/1
  publication-title: CrystEngComm
  doi: 10.1039/C7CE00279C
– volume: 99
  start-page: 054311
  year: 2006
  ident: D2TC00477A/cit16/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2179971
– volume: 77
  start-page: 3186
  year: 1994
  ident: D2TC00477A/cit12/1
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1994.tb04568.x
– volume: 9
  start-page: 5267
  year: 2021
  ident: D2TC00477A/cit37/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D0TC05975G
– volume: 358
  start-page: 136
  year: 1992
  ident: D2TC00477A/cit60/1
  publication-title: Nature
  doi: 10.1038/358136a0
– volume: 30
  start-page: 808
  year: 1959
  ident: D2TC00477A/cit63/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1735245
– volume: 62
  start-page: 3065
  year: 2000
  ident: D2TC00477A/cit14/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.62.3065
– volume: 112
  start-page: 064110
  year: 2012
  ident: D2TC00477A/cit30/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4751332
– volume: 130
  start-page: 234101
  year: 2021
  ident: D2TC00477A/cit35/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0068703
– volume: 121
  start-page: 156
  year: 2013
  ident: D2TC00477A/cit18/1
  publication-title: J. Ceram. Soc. Jpn.
  doi: 10.2109/jcersj2.121.156
– volume: 79
  start-page: 134119
  year: 2009
  ident: D2TC00477A/cit31/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.79.134119
– volume: 74
  start-page: 322
  year: 2018
  ident: D2TC00477A/cit53/1
  publication-title: Acta Crystallogr., Sect. A: Found. Adv.
  doi: 10.1107/S2053273318004977
– volume: 4
  start-page: 041305
  year: 2017
  ident: D2TC00477A/cit1/1
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.4990046
– volume: 76
  start-page: 155439
  year: 2007
  ident: D2TC00477A/cit21/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.76.155439
– volume: 24
  start-page: 885
  year: 2014
  ident: D2TC00477A/cit34/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201301913
– volume: 16
  start-page: 289
  year: 2006
  ident: D2TC00477A/cit20/1
  publication-title: J. Electroceram.
  doi: 10.1007/s10832-006-9866-4
– volume: 34
  start-page: 175
  year: 2013
  ident: D2TC00477A/cit28/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23115
– volume: 22
  start-page: 4386
  year: 2010
  ident: D2TC00477A/cit46/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm100440p
– volume: 78
  start-page: 054107
  year: 2008
  ident: D2TC00477A/cit58/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.78.054107
– volume: 363
  start-page: 215
  year: 2008
  ident: D2TC00477A/cit68/1
  publication-title: Ferroelectrics
  doi: 10.1080/00150190802026572
– volume: 101
  start-page: 036102
  year: 2008
  ident: D2TC00477A/cit22/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.036102
– volume: 108
  start-page: 252902
  year: 2016
  ident: D2TC00477A/cit56/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4954276
– volume: 42
  start-page: 2230
  year: 2022
  ident: D2TC00477A/cit33/1
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2021.12.024
– volume: 27
  start-page: 8365
  issue: 32
  year: 2021
  ident: D2TC00477A/cit47/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.202100692
– volume: 33
  start-page: 44
  year: 2020
  ident: D2TC00477A/cit49/1
  publication-title: Synchrotron Radiation News
  doi: 10.1080/08940886.2020.1841498
– volume: 6
  start-page: 17506
  year: 2014
  ident: D2TC00477A/cit3/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am502547h
– volume: 97
  start-page: 2368
  year: 1993
  ident: D2TC00477A/cit5/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/j100112a043
– volume: 98
  start-page: 085421
  year: 2018
  ident: D2TC00477A/cit32/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.085421
– volume: 70
  start-page: 024107
  year: 2004
  ident: D2TC00477A/cit15/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.70.024107
– volume: 31
  start-page: 1318
  year: 2019
  ident: D2TC00477A/cit9/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b04447
– volume: 109
  start-page: 084108
  year: 2011
  ident: D2TC00477A/cit4/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3569619
– volume: 6
  start-page: 64
  year: 2007
  ident: D2TC00477A/cit61/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1808
– volume: 7
  start-page: 473
  year: 2008
  ident: D2TC00477A/cit45/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2198
– volume: 400
  start-page: 135
  year: 2010
  ident: D2TC00477A/cit69/1
  publication-title: Ferroelectrics
  doi: 10.1080/00150193.2010.505514
– volume: 117
  start-page: 483
  year: 2001
  ident: D2TC00477A/cit66/1
  publication-title: Solid State Commun.
  doi: 10.1016/S0038-1098(00)00491-9
– volume: 93
  start-page: 3808
  year: 2010
  ident: D2TC00477A/cit25/1
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2010.03935.x
– volume: 4
  start-page: 3218
  year: 2012
  ident: D2TC00477A/cit55/1
  publication-title: Nanoscale
  doi: 10.1039/c2nr00064d
– volume: 79
  start-page: 242
  year: 2001
  ident: D2TC00477A/cit64/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1385184
– volume: 10
  start-page: 1
  year: 2020
  ident: D2TC00477A/cit62/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-60475-8
– volume: 406
  start-page: 1317
  year: 2011
  ident: D2TC00477A/cit26/1
  publication-title: Phys. B
  doi: 10.1016/j.physb.2011.01.024
– volume: 54
  start-page: 3158
  year: 1996
  ident: D2TC00477A/cit13/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.54.3158
– volume: 6
  start-page: 735
  year: 2006
  ident: D2TC00477A/cit44/1
  publication-title: Nano Lett.
  doi: 10.1021/nl052538e
– volume: 130
  start-page: 6955
  year: 2008
  ident: D2TC00477A/cit29/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0758436
– volume: 117
  start-page: 19632
  year: 2013
  ident: D2TC00477A/cit43/1
  publication-title: J. Phys. Chem. C
– volume: 90
  start-page: 014107
  year: 2014
  ident: D2TC00477A/cit24/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.90.014107
– volume: 18
  start-page: 475504
  year: 2007
  ident: D2TC00477A/cit54/1
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/47/475504
– volume: 108
  start-page: 087602
  year: 2012
  ident: D2TC00477A/cit23/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.087602
– volume: 116
  start-page: 207602
  year: 2016
  ident: D2TC00477A/cit59/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.207602
– volume: 11
  start-page: 871
  year: 1999
  ident: D2TC00477A/cit67/1
  publication-title: J. Phys.: Condens. Matter
– volume: 46
  start-page: 560
  year: 2013
  ident: D2TC00477A/cit51/1
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889813005190
– volume: 81
  start-page: 036502
  year: 2018
  ident: D2TC00477A/cit65/1
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/1361-6633/aa915a
– volume: 9
  start-page: 16386
  year: 2017
  ident: D2TC00477A/cit2/1
  publication-title: Nanoscale
  doi: 10.1039/C7NR05212J
– volume: 14
  start-page: 235
  year: 1996
  ident: D2TC00477A/cit50/1
  publication-title: Int. J. High Pressure Res.
  doi: 10.1080/08957959608201408
– volume: 72
  start-page: 1555
  year: 1989
  ident: D2TC00477A/cit11/1
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1989.tb07706.x
– volume: 22
  start-page: 1946
  year: 2010
  ident: D2TC00477A/cit42/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm9038768
– volume: 3
  start-page: 9715
  year: 2020
  ident: D2TC00477A/cit48/1
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c01809
– volume: 40
  start-page: 3744
  year: 2020
  ident: D2TC00477A/cit19/1
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2020.01.021
– volume: 39
  start-page: 545
  year: 2013
  ident: D2TC00477A/cit27/1
  publication-title: Mol. Simul.
  doi: 10.1080/08927022.2012.754098
SSID ssj0000816869
Score 2.1913862
Snippet Surface functionalized barium titanate (BaTiO 3 ) nanocrystals have been explored for highly tunable chemical and electronic properties, potentially of use in...
BaTiO 3 nanocubes capped by polar tetrafluoroborate (BF 4 − ) ligands are shown to have enhanced ferroelectric order and undergo sharper ferroelectric to...
SourceID osti
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 10832
Title Temperature dependent local structure coherence of surface-modified BaTiO 3 nanocubes
URI https://www.osti.gov/biblio/1867318
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWGqZDoAkEBUQrIEmyQlSGxkwletkNRQTwkmJG6i_xKGVSSqs1s-jl8KdeO4xhaIWATRXEUJb5H9vHN8bkIPc8EhDlXMtGSiSQ3aZlIlfKEpzqrqTEw59rNyR8-zo9W-bvj4ngy-RGpljadnKnLa_eV_E9U4RrE1e6S_YfIhofCBTiH-MIRIgzHv4uxAdLbmyKToZptR9z0RHpjWNui2q_eSxaI4cXmvBbKJN9bva4t_TwQy_UnwkgjmlZtpJcUXqWrwGz7TyJqqBE3I4t-u8_QYiWL7VkXDAiiGjvauCEpCHbWPk990Eap69YLAJoTOA9QMN1lUBKTxWzU_HSuIDGQ4FPRrMln8U3EOQxY_lrNxZjD7DMlg0zVyVD8h7g8ypfFkBVx4yJNizQpC-odtONrPi86DOxpBOD-78-VCSNl1m_1NbU_WPKyDJarkQG3tfyDke8G2qKwFKFTtLV_uHz7PmTyXOkSVzsxvNngg8v4y_HRvzCfaQsjeMRklnfQbR9TvN_j6S6amGYHbUfGlDvophMGq4t7aBVhDAeMYYcxHDCGA8ZwW-PfMYYdxjDDAWP30erN4XJxlPhSHImyDvqJZJJSnhW1TQeUpq4FLCwY5flc14IpmG01zQ01XGSZKgywYM2pLFmpM1PPecoeoGnTNuYhwhqmNS5LqTMtc6Fybtd3RW4d80WRvVK76MXQTZXyPvW2XMpp5fQSjFdjl-6iZ-Hes96d5dq79mxvV8AprTGysgoy1VU-ro_-2LqHbo2AfYym0K_mCdDQTj71OPgJk0GKUw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature+dependent+local+structure+coherence+of+surface-modified+BaTiO+3+nanocubes&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Jiang%2C+Bo&rft.au=Zhao%2C+Changhao&rft.au=Metz%2C+Peter+C.&rft.au=Jothi%2C+Palani+Raja&rft.date=2022-08-04&rft.pub=Royal+Society+of+Chemistry+%28RSC%29&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=10&rft.issue=30&rft_id=info:doi/10.1039%2FD2TC00477A&rft.externalDocID=1867318
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon