Profile monitoring using synthetic T 2 control chart
In this paper, we propose synthetic T 2 chart for monitoring different parameters including Slope, Intercept and Error variance for simple and multiple linear regression profiles in Phase II. The construction and optimal design of the proposed synthetic T 2 chart are discussed in detail. The steady-...
Saved in:
Published in | Communications in statistics. Simulation and computation Vol. 54; no. 6; pp. 1622 - 1637 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
03.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we propose synthetic
T
2
chart for monitoring different parameters including Slope, Intercept and Error variance for simple and multiple linear regression profiles in Phase II. The construction and optimal design of the proposed synthetic
T
2
chart are discussed in detail. The steady-state performance of the proposed chart is evaluated by the Average Run Length (ARL) and Standard Deviation of Run Length (SDRL) and is compared with the existing charts in the literature for monitoring simple and multiple linear profiles. It turns out that the proposed synthetic
T
2
chart performs uniformly better than the traditional
T
2
chart in detecting different kinds of shifts in the parameters of the simple and multiple linear profiles under steady-state run length performance. An example with a real data set is also presented to explain the implementation of the proposed chart. |
---|---|
AbstractList | In this paper, we propose synthetic
T
2
chart for monitoring different parameters including Slope, Intercept and Error variance for simple and multiple linear regression profiles in Phase II. The construction and optimal design of the proposed synthetic
T
2
chart are discussed in detail. The steady-state performance of the proposed chart is evaluated by the Average Run Length (ARL) and Standard Deviation of Run Length (SDRL) and is compared with the existing charts in the literature for monitoring simple and multiple linear profiles. It turns out that the proposed synthetic
T
2
chart performs uniformly better than the traditional
T
2
chart in detecting different kinds of shifts in the parameters of the simple and multiple linear profiles under steady-state run length performance. An example with a real data set is also presented to explain the implementation of the proposed chart. |
Author | Ghute, Vikas Ghadge, Onkar |
Author_xml | – sequence: 1 givenname: Onkar orcidid: 0000-0002-5468-0449 surname: Ghadge fullname: Ghadge, Onkar organization: Department of Statistics, Punyashlok Ahilyadevi Holkar Solapur University – sequence: 2 givenname: Vikas orcidid: 0000-0002-6862-3891 surname: Ghute fullname: Ghute, Vikas organization: Department of Statistics, Punyashlok Ahilyadevi Holkar Solapur University |
BookMark | eNp9j81KxDAUhYOMYGf0EYS-QOtNbtqkO2XwDwZ0Ma5DJk2cSJtIUpF5ey0zbt2csznfgW9JFiEGS8g1hZqChBvAlkJHZc2AYc1YRxHxjBS0QVZxyumCFPOmmkcXZJnzBwCg5LIg_DVF5wdbjjH4KSYf3suvPGc-hGlvJ2_KbclKE8OU4lCavU7TJTl3esj26tQr8vZwv10_VZuXx-f13aYyFBArgYxbyaB3Uu6oED1iT5lrd0aDc65laEXfOQGsabmWLboGG8Fb2wlhXQ-4Is3x16SYc7JOfSY_6nRQFNSsrv7U1ayuTuq_3O2R88HFNOrvmIZeTfowxOSSDsZnhf9f_AB8H2CV |
Cites_doi | 10.1080/03610910903019905 10.1080/00224065.2002.11980146 10.1080/00949655.2022.2111428 10.1198/004017007000000164 10.1080/08982112.2022.2164725 10.1080/00224065.1991.11979328 10.1002/qre.2491 10.1590/S0103-65132007000300002 10.1080/03610910802305017 10.1007/s00170-018-2149-9 10.1080/03610920701824265 10.1080/03610920802178413 10.1002/qre.2965 10.1002/qre.1551 10.1007/s00170-003-2010-6 10.1080/00224065.2000.11979969 10.1080/16843703.2008.11673401 10.1080/00224065.2000.11980027 10.1109/ACCESS.2020.3006449 10.1080/00224065.2016.11918158 10.1007/s00170-011-3406-3 10.1002/qre.1189 10.1080/00207540500409855 10.1016/j.cie.2018.10.008 10.1016/j.cie.2004.11.001 10.1002/qre.3128 10.1080/00224065.2003.11980225 10.1080/00224065.2004.11980276 |
ContentType | Journal Article |
Copyright | 2023 Taylor & Francis Group, LLC 2023 |
Copyright_xml | – notice: 2023 Taylor & Francis Group, LLC 2023 |
DBID | AAYXX CITATION |
DOI | 10.1080/03610918.2023.2291333 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics Computer Science |
EISSN | 1532-4141 |
EndPage | 1637 |
ExternalDocumentID | 10_1080_03610918_2023_2291333 2291333 |
Genre | Research Article |
GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29F 2DF 30N 4.4 5GY 5VS 8VB AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADXPE ADYSH AEISY AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMPGV AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DKSSO EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 O9- P2P QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UPT UT5 UU3 WH7 ZGOLN ZL0 ~S~ AAYXX CITATION |
ID | FETCH-LOGICAL-c1033-7324e820df88b177d33d12f6bca0fff623e7d9f702564a863f535746e977efd03 |
ISSN | 0361-0918 |
IngestDate | Thu Jul 10 07:42:24 EDT 2025 Thu Jul 03 04:11:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1033-7324e820df88b177d33d12f6bca0fff623e7d9f702564a863f535746e977efd03 |
ORCID | 0000-0002-5468-0449 0000-0002-6862-3891 |
PageCount | 16 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_03610918_2023_2291333 crossref_primary_10_1080_03610918_2023_2291333 |
PublicationCentury | 2000 |
PublicationDate | 6/3/2025 2025-06-03 |
PublicationDateYYYYMMDD | 2025-06-03 |
PublicationDate_xml | – month: 06 year: 2025 text: 6/3/2025 day: 03 |
PublicationDecade | 2020 |
PublicationTitle | Communications in statistics. Simulation and computation |
PublicationYear | 2025 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | e_1_3_3_18_1 e_1_3_3_17_1 e_1_3_3_19_1 e_1_3_3_14_1 e_1_3_3_13_1 e_1_3_3_16_1 e_1_3_3_15_1 e_1_3_3_10_1 e_1_3_3_12_1 e_1_3_3_11_1 e_1_3_3_7_1 e_1_3_3_6_1 e_1_3_3_9_1 e_1_3_3_8_1 e_1_3_3_29_1 e_1_3_3_28_1 e_1_3_3_25_1 e_1_3_3_24_1 e_1_3_3_27_1 e_1_3_3_26_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_4_1 e_1_3_3_22_1 |
References_xml | – ident: e_1_3_3_12_1 doi: 10.1080/03610910903019905 – ident: e_1_3_3_6_1 doi: 10.1080/00224065.2002.11980146 – ident: e_1_3_3_17_1 doi: 10.1080/00949655.2022.2111428 – ident: e_1_3_3_29_1 doi: 10.1198/004017007000000164 – ident: e_1_3_3_24_1 doi: 10.1080/08982112.2022.2164725 – ident: e_1_3_3_4_1 doi: 10.1080/00224065.1991.11979328 – ident: e_1_3_3_22_1 doi: 10.1002/qre.2491 – ident: e_1_3_3_26_1 doi: 10.1590/S0103-65132007000300002 – ident: e_1_3_3_18_1 doi: 10.1080/03610910802305017 – ident: e_1_3_3_19_1 doi: 10.1007/s00170-018-2149-9 – ident: e_1_3_3_7_1 doi: 10.1080/03610920701824265 – ident: e_1_3_3_3_1 doi: 10.1080/03610920802178413 – ident: e_1_3_3_25_1 doi: 10.1002/qre.2965 – ident: e_1_3_3_21_1 doi: 10.1002/qre.1551 – ident: e_1_3_3_5_1 doi: 10.1007/s00170-003-2010-6 – ident: e_1_3_3_28_1 doi: 10.1080/00224065.2000.11979969 – ident: e_1_3_3_8_1 doi: 10.1080/16843703.2008.11673401 – ident: e_1_3_3_11_1 doi: 10.1080/00224065.2000.11980027 – ident: e_1_3_3_23_1 doi: 10.1109/ACCESS.2020.3006449 – ident: e_1_3_3_15_1 doi: 10.1080/00224065.2016.11918158 – ident: e_1_3_3_2_1 doi: 10.1007/s00170-011-3406-3 – ident: e_1_3_3_13_1 doi: 10.1002/qre.1189 – ident: e_1_3_3_9_1 doi: 10.1080/00207540500409855 – ident: e_1_3_3_20_1 doi: 10.1016/j.cie.2018.10.008 – ident: e_1_3_3_10_1 doi: 10.1016/j.cie.2004.11.001 – ident: e_1_3_3_16_1 doi: 10.1002/qre.3128 – ident: e_1_3_3_14_1 doi: 10.1080/00224065.2003.11980225 – ident: e_1_3_3_27_1 doi: 10.1080/00224065.2004.11980276 |
SSID | ssj0003848 |
Score | 2.3655803 |
Snippet | In this paper, we propose synthetic
T
2
chart for monitoring different parameters including Slope, Intercept and Error variance for simple and multiple linear... |
SourceID | crossref informaworld |
SourceType | Index Database Publisher |
StartPage | 1622 |
SubjectTerms | Average run length Control chart Intercept Linear regression profiles Slope |
Title | Profile monitoring using synthetic T 2 control chart |
URI | https://www.tandfonline.com/doi/abs/10.1080/03610918.2023.2291333 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6rXvTgY1VcX-TgbemyTdKmPYr4QPABruLJ0jYJiljF3R701zt5tNvKIuqlLIFN28zXyZdk5huEDjIpADUq8vKYE4-lLPcywQKPBjIT-suUoc4dvrgMz27Z-X1w3-k8NKKWykk2yD9n5pX8x6rQBnbVWbJ_sGzdKTTAb7AvXMHCcP2Vja9twe3-i_kwTSRdadb-448CiJ3WYh31SR2OrjOsWlvxrewQExir84usdPOgf_P04mp7Vclvb2X74P70MXWl2a-K5_R92lzaont3T89pa1-BBCb-iTbcDw19D9iE9Y6yco9gUN9KVVX-04pAO5w0naEf2pRjN7EC8-MznbaLcqRa-d3X4XaEDgiJYfVMp7NUdTL_bfKqQwr9SuvUdZPobhLXzRxaILCM0BUu6PCynqlpZKqr1W9aZXhp7fVZT9PiLi1l2wYnGa2iZbeYwIcWGWuoI4suWqkKdWDnt7to6aIW5x130eJNbeR1xByG8BRD2GAI1xjCI0ywwxA2GNpAtyfHo6Mzz1XS8HJfF-vjQJslcD2hokjrjQlKhU9UmOXpUCkFFFhyESuuCTBLo5CqgAachRJWB1KJId1E88VrIbcQzhiDcdGH8VKwLMpT6oeKR-CQhjTnMe-hQTVGyZsVTEl-tE0Pxc2RTCZmp0rZsjIJ_fG_23-92Q5anGJ9F81P3ku5B6xyku0baHwBCB5s1A |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BGSgDhQKiPD2wJiSxEycjQlQF2oqhlbpF8YsBERBNB_j1-PKoWiRY2HORY5_Pny933wdwJbSyXmNiRyY8cFjGpCMUCx0aaqFwZ-oIe4dH42gwZQ-zcLbSC4NllXiHNhVRRBmrcXNjMropibu2URf5LLEyK6BuECT2okU3YStMIo4qBtQbL6MxjUsFLTRx0Kbp4vntNWvn0xp76cq50--AbEZclZu8uItCuPLrB5nj_z5pD3ZrWEpuKj_ahw2dd6HTSD6QOgJ0YWe0pHmdd6GNULViej4A9lTJf5PXMkxgvpBgVf0zmX_m1sg-RSYkIHVxPMF-r-IQpv27ye3AqTUZHOmj7Bu3AExb1KBMHCNzlaJU-YGJhMw8Y4wFU5qrxHCEUiyLI2pCGnIWaYsztVEePYJW_pbrYyCC2bulj791tWIilhn1I8Nj69oelTzhPXCblUjfK-qN1G8YTevpSnG60nq6epCsrldalDkPUwmUpPRP25N_2F7C9mAyGqbD-_HjKbQDVAjGPA09g1bxsdDnFrYU4qL0y283md1m |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED1BkVAZKBQQ5dMDa0ISO3EyIqAqH606tBJbFMc2AyJUJB3g1-PLR9UiwdI9FyXO-fzsvHsP4EooabJGh1Yacc9iCUstIZlvUV8JiTNTBdg7PBwFgyl7fPEbNmFe0ypxD60roYiyVuPknkndMOKuTdFFOUskZnnU9rzI7LPoJmwFKB6OXRzOaFGMaVgaaGGIhTFNE89ft1lZnlbES5eWnX4HRPPAFdvkzZ4Xwk6_f2k5rvVGe7Bbg1JyU2XRPmyorAudxvCB1PO_CzvDhchr3oU2AtVK5_kA2Lgy_ybvZZHA00KCnPpXkn9lJshcRSbEIzU1nmC3V3EI0_795HZg1Y4MVuqi6Rs38EsZzCB1GKJulaRUup4ORJo4WmsDpRSXkeYIpFgSBlT71OcsUAZlKi0degSt7CNTx0AEMztLF3_qKslEmCbUDTQPTWI7NOUR74HdfIh4VglvxG6jZ1oPV4zDFdfD1YNo-XPFRXnioSt7kpj-G3uyRuwlbI_v-vHzw-jpFNoe2gPjIQ09g1bxOVfnBrMU4qLMyh-MHdwK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Profile+monitoring+using+synthetic+T+2+control+chart&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Ghadge%2C+Onkar&rft.au=Ghute%2C+Vikas&rft.date=2025-06-03&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=54&rft.issue=6&rft.spage=1622&rft.epage=1637&rft_id=info:doi/10.1080%2F03610918.2023.2291333&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03610918_2023_2291333 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon |