A genome-wide association study (GWAS) identifies multiple loci linked with the natural variation for Al
Acid soils limit yields of many important crops including canola (Brassica napus), Australia’s third largest crop. Aluminium (Al3+) stress is the main cause of this limitation primarily because the toxic Al3+ present inhibits root growth. Breeding programmes do not target acid-soil tolerance in B. n...
Saved in:
Published in | Functional plant biology : FPB Vol. 49; no. 10; pp. 845 - 860 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
27.06.2022
|
Online Access | Get full text |
Cover
Loading…
Abstract | Acid soils limit yields of many important crops including canola (Brassica napus), Australia’s third largest crop. Aluminium (Al3+) stress is the main cause of this limitation primarily because the toxic Al3+ present inhibits root growth. Breeding programmes do not target acid-soil tolerance in B. napus because genetic variation and convincing quantitative trait loci have not been reported. We conducted a genome-wide association study (GWAS) using the BnASSYST diversity panel of B. napus genotyped with 35 729 high-quality DArTseq markers. We screened 352 B. napus accessions in hydroponics with and without a toxic concentration of AlCl3 (12 μM, pH 4.3) for 12 days and measured shoot biomass, root biomass, and root length. By accounting for both population structure and kinship matrices, five significant quantitative trait loci for different measures of resistance were identified using incremental Al3+ resistance indices. Within these quantitative trait locus regions of B. napus, 40 Arabidopsis thaliana gene orthologues were identified, including some previously linked with Al3+ resistance. GWAS analysis indicated that multiple genes are responsible for the natural variation in Al3+ resistance in B. napus. The results provide new genetic resources and markers to enhance that Al3+ resistance of B. napus germplasm via genomic and marker-assisted selection. |
---|---|
AbstractList | Acid soils limit yields of many important crops including canola (Brassica napus), Australia’s third largest crop. Aluminium (Al3+) stress is the main cause of this limitation primarily because the toxic Al3+ present inhibits root growth. Breeding programmes do not target acid-soil tolerance in B. napus because genetic variation and convincing quantitative trait loci have not been reported. We conducted a genome-wide association study (GWAS) using the BnASSYST diversity panel of B. napus genotyped with 35 729 high-quality DArTseq markers. We screened 352 B. napus accessions in hydroponics with and without a toxic concentration of AlCl3 (12 μM, pH 4.3) for 12 days and measured shoot biomass, root biomass, and root length. By accounting for both population structure and kinship matrices, five significant quantitative trait loci for different measures of resistance were identified using incremental Al3+ resistance indices. Within these quantitative trait locus regions of B. napus, 40 Arabidopsis thaliana gene orthologues were identified, including some previously linked with Al3+ resistance. GWAS analysis indicated that multiple genes are responsible for the natural variation in Al3+ resistance in B. napus. The results provide new genetic resources and markers to enhance that Al3+ resistance of B. napus germplasm via genomic and marker-assisted selection. |
Author | Diffey, Simon Raman, Rosy Kawasaki, Akitomo Du, Hanmei Perera, Geetha Raman, Harsh Ryan, Peter R. Snowdon, Rod |
Author_xml | – sequence: 1 givenname: Hanmei surname: Du fullname: Du, Hanmei – sequence: 2 givenname: Harsh surname: Raman fullname: Raman, Harsh – sequence: 3 givenname: Akitomo surname: Kawasaki fullname: Kawasaki, Akitomo – sequence: 4 givenname: Geetha surname: Perera fullname: Perera, Geetha – sequence: 5 givenname: Simon surname: Diffey fullname: Diffey, Simon – sequence: 6 givenname: Rod surname: Snowdon fullname: Snowdon, Rod – sequence: 7 givenname: Rosy surname: Raman fullname: Raman, Rosy – sequence: 8 givenname: Peter R. orcidid: 0000-0002-1376-9543 surname: Ryan fullname: Ryan, Peter R. |
BookMark | eNplkM1KAzEAhINUsK3iK-SmHlaTTTapx6XYKhQUVDwu-XWjabYkWUvf3lWLBz3NwHwMw0zAKHTBAHCK0SVGHF8tHsoScXIAxpjSqqAUs9GvR7MjMEnpDSFckZKPQVvDVxO6tSm2ThsoUuqUE9l1Aabc6x08X77UjxdwCEN21pkE173PbuMN9AMKvQvvRsOtyy3MrYFB5D4KDz9E3PfYLsLaH4NDK3wyJ3udgufFzdP8tljdL-_m9apQGBFSMIKYEZgpxZVUmllFkGXaUC2U1VgiTTgXFdWknGl1LTXGStpZxSWlTFJJpqD46VWxSyka2yiXv4fkKJxvMGq-bmr2Nw382R9-E91axN0_8hO85Wpq |
CitedBy_id | crossref_primary_10_1111_ppl_14404 crossref_primary_10_31742_ISGPB_84_4_5 crossref_primary_10_3389_fsoil_2023_1125604 |
Cites_doi | 10.1104/pp.103.3.695 10.1104/pp.106.085233 10.1080/01904169909365601 10.1038/ng.2314 10.1046/j.1439-0523.2002.00723.x 10.1093/jxb/ery357 10.1093/jxb/erq272 10.1007/978-3-540-85546-0_11 10.1111/j.1399-3054.1990.tb06743.x 10.1071/FP09261 10.2134/agronmonogr12.2ed.c2 10.1104/pp.99.4.1461 10.1371/journal.pone.0101673 10.1139/G09-045 10.1007/s10722-020-00989-2 10.1534/genetics.107.080101 10.1007/s00122-011-1676-7 10.1007/s10722-004-5541-2 10.1071/AR05202 10.1016/S1360-1385(01)01961-6 10.1111/j.1365-313X.2003.01991.x 10.1111/j.1365-313X.2008.03696.x 10.1038/ng2074 10.1093/pcp/pcl002 10.2135/cropsci1978.0011183X001800050035x 10.1186/s12864-015-1950-1 10.2135/cropsci2009.06.0352 10.1038/ng1702 10.3389/fpls.2020.00405 10.1126/science.1253435 10.1007/s11104-004-1158-7 10.1038/ng1847 10.1111/nph.13456 10.1186/s12870-015-0496-3 10.1104/pp.99.3.1193 10.1146/annurev-arplant-043014-114822 10.1198/108571106X154443 10.1038/ng.548 10.1093/aob/mct135 10.1104/pp.108.129155 10.1073/pnas.0700117104 10.1007/s00122-007-0562-9 10.1093/pcp/pcu067 10.1093/pcp/pcm091 10.1631/jzus.2006.B0769 10.1071/CP17310 10.1111/j.0031-9317.2004.0290.x 10.1071/CP20046 10.1016/j.febslet.2007.03.057 10.1016/j.tplants.2012.02.008 10.1093/plphys/kiab337 10.1105/tpc.109.070771 10.1007/s10681-005-9056-5 10.3389/fgene.2021.675260 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1071/FP22073 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1445-4416 |
EndPage | 860 |
ExternalDocumentID | 10_1071_FP22073 |
GroupedDBID | 0R~ 29H 4.4 53G 5GY AAHBH AAYXX ABDBF ACUHS AEIBA AENEX ALMA_UNASSIGNED_HOLDINGS CITATION CS3 DU5 F5P MV1 NGGKN RCO TN5 ~KM |
ID | FETCH-LOGICAL-c1033-6306ea16cc7cbcd6fc30f6de4dacfd1b0d377a54d328dc9bd11cbf857b446b4b3 |
ISSN | 1445-4408 |
IngestDate | Tue Jul 01 03:15:04 EDT 2025 Thu Apr 24 23:08:17 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1033-6306ea16cc7cbcd6fc30f6de4dacfd1b0d377a54d328dc9bd11cbf857b446b4b3 |
ORCID | 0000-0002-1376-9543 |
OpenAccessLink | https://www.publish.csiro.au/fp/pdf/FP22073 |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_1071_FP22073 crossref_primary_10_1071_FP22073 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-6-27 |
PublicationDateYYYYMMDD | 2022-06-27 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-6-27 day: 27 |
PublicationDecade | 2020 |
PublicationTitle | Functional plant biology : FPB |
PublicationYear | 2022 |
References | FP22073R14 (FP22073R19) 2008; 178 (FP22073R57) 2009; 21 (FP22073R59) 2013; 112 (FP22073R21) 2021; 187 FP22073R12 (FP22073R30) 2009; 57 (FP22073R32) 2006; 142 (FP22073R49) 2006; 47 (FP22073R38) 2019; 70 (FP22073R50) 2015; 16 (FP22073R39) 1978; 18 (FP22073R48) 2004; 37 (FP22073R15) 2006; 53 (FP22073R41) 2009; 52 FP22073R10 (FP22073R18) 2007; 104 (FP22073R55) 2007; 115 (FP22073R27) 2015; 66 (FP22073R53) 2006; 7 (FP22073R46) 1992; 99 (FP22073R16) 2002; 121 (FP22073R22) 2010; 50 (FP22073R61) 2007; 48 (FP22073R20) 2010; 42 (FP22073R52) 2021; 12 (FP22073R56) 2014; 55 (FP22073R2) 2011; 123 (FP22073R26) 2005; 274 (FP22073R44) 2018; 69 (FP22073R51) 2012; 44 (FP22073R54) 2006; 57 FP22073R40 (FP22073R47) 2011; 62 FP22073R36 (FP22073R62) 2009; 149 (FP22073R6) 2007; 581 (FP22073R43) 2020; 71 (FP22073R31) 2004; 120 (FP22073R37) 2020; 11 (FP22073R58) 2006; 38 (FP22073R5) 1993; 103 (FP22073R29) 2006; 149 (FP22073R35) 1999; 22 (FP22073R7) 2012; 17 (FP22073R11) 2021; 68 FP22073R23 (FP22073R3) 2014; 345 (FP22073R42) 2014; 9 (FP22073R4) 2006; 11 (FP22073R28) 2015; 15 (FP22073R45) 2010; 37 (FP22073R34) 2007; 39 (FP22073R60) 2006; 38 FP22073R9 (FP22073R25) 1992; 99 (FP22073R33) 2001; 6 (FP22073R24) 1990; 79 (FP22073R8) 2015; 208 FP22073R63 |
References_xml | – volume: 103 start-page: 695 year: 1993 ident: FP22073R5 article-title: Aluminum tolerance in wheat ( L.). (II. Aluminum-stimulated excretion of malic acid from root apices). publication-title: Plant Physiology doi: 10.1104/pp.103.3.695 – volume: 142 start-page: 1294 year: 2006 ident: FP22073R32 article-title: The and genes from L. encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells. publication-title: Plant Physiology doi: 10.1104/pp.106.085233 – volume: 22 start-page: 1 year: 1999 ident: FP22073R35 article-title: Callose production as indicator of aluminum toxicity in bean cultivars. publication-title: Journal of Plant Nutrition doi: 10.1080/01904169909365601 – ident: FP22073R63 – volume: 44 start-page: 825 year: 2012 ident: FP22073R51 article-title: An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. publication-title: Nature Genetics doi: 10.1038/ng.2314 – ident: FP22073R14 – volume: 121 start-page: 360 year: 2002 ident: FP22073R16 article-title: Comparison of aluminium tolerance in the brassicas and related species. publication-title: Plant Breeding doi: 10.1046/j.1439-0523.2002.00723.x – volume: 70 start-page: 41 year: 2019 ident: FP22073R38 article-title: The role for transposable elements in the evolution of aluminum resistance in plants. publication-title: Journal of Experimental Botany doi: 10.1093/jxb/ery357 – volume: 62 start-page: 9 year: 2011 ident: FP22073R47 article-title: The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils. publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erq272 – ident: FP22073R10 – ident: FP22073R40 doi: 10.1007/978-3-540-85546-0_11 – volume: 79 start-page: 283 year: 1990 ident: FP22073R24 article-title: Apparent phytotoxicity of mononuclear hydroxy-aluminum to four dicotyledonous species. publication-title: Physiologia Plantarum doi: 10.1111/j.1399-3054.1990.tb06743.x – volume: 37 start-page: 275 year: 2010 ident: FP22073R45 article-title: The convergent evolution of aluminium resistance in plants exploits a convenient currency. publication-title: Functional Plant Biology doi: 10.1071/FP09261 – ident: FP22073R9 doi: 10.2134/agronmonogr12.2ed.c2 – ident: FP22073R23 – volume: 99 start-page: 1461 year: 1992 ident: FP22073R25 article-title: Interactive effects of Al, H and other cations on root elongation considered in terms of cell-surface electrical potential. publication-title: Plant Physiology doi: 10.1104/pp.99.4.1461 – volume: 9 year: 2014 ident: FP22073R42 article-title: Genome-wide delineation of natural variation for pod shatter resistance in . publication-title: PLoS ONE doi: 10.1371/journal.pone.0101673 – volume: 52 start-page: 701 year: 2009 ident: FP22073R41 article-title: Localisation of quantitative trait loci for quality attributes in a doubled haploid population of wheat ( L.). publication-title: Genome doi: 10.1139/G09-045 – volume: 68 start-page: 335 year: 2021 ident: FP22073R11 article-title: Genome-wide association analysis of aluminum tolerance related traits in rapeseed ( L.) during germination. publication-title: Genetic Resources and Crop Evolution doi: 10.1007/s10722-020-00989-2 – volume: 178 start-page: 1709 year: 2008 ident: FP22073R19 article-title: Efficient control of population structure in model organism association mapping. publication-title: Genetics doi: 10.1534/genetics.107.080101 – volume: 123 start-page: 1413 year: 2011 ident: FP22073R2 article-title: Patterns of molecular variation in a species-wide germplasm set of . publication-title: Theoretical and Applied Genetics doi: 10.1007/s00122-011-1676-7 – volume: 53 start-page: 793 year: 2006 ident: FP22073R15 article-title: Analysis of genetic diversity in the L. gene pool using SSR markers. publication-title: Genetic Resources and Crop Evolution doi: 10.1007/s10722-004-5541-2 – volume: 57 start-page: 113 year: 2006 ident: FP22073R54 article-title: Validation of an locus for aluminium tolerance scored with eriochrome cyanine R staining method in barley cultivar Honen ( L.). publication-title: Australian Journal of Agricultural Research doi: 10.1071/AR05202 – volume: 6 start-page: 273 year: 2001 ident: FP22073R33 article-title: Aluminium tolerance in plants and the complexing role of organic acids. publication-title: Trends in Plant Science doi: 10.1016/S1360-1385(01)01961-6 – volume: 37 start-page: 645 year: 2004 ident: FP22073R48 article-title: A wheat gene encoding an aluminum-activated malate transporter. publication-title: The Plant Journal doi: 10.1111/j.1365-313X.2003.01991.x – volume: 57 start-page: 389 year: 2009 ident: FP22073R30 article-title: Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. publication-title: The Plant Journal doi: 10.1111/j.1365-313X.2008.03696.x – volume: 39 start-page: 1156 year: 2007 ident: FP22073R34 article-title: A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. publication-title: Nature Genetics doi: 10.1038/ng2074 – volume: 47 start-page: 1343 year: 2006 ident: FP22073R49 article-title: Sequence upstream of the wheat ( L.) gene and its relationship to aluminum resistance. publication-title: Plant and Cell Physiology doi: 10.1093/pcp/pcl002 – volume: 18 start-page: 823 year: 1978 ident: FP22073R39 article-title: Visual detection of aluminum tolerance levels in wheat by hamatoxylin staining of seedling roots. publication-title: Crop Science doi: 10.2135/cropsci1978.0011183X001800050035x – volume: 16 year: 2015 ident: FP22073R50 article-title: Diverse regulatory factors associate with flowering time and yield responses in winter-type . publication-title: BMC Genomics doi: 10.1186/s12864-015-1950-1 – volume: 50 start-page: 1236 year: 2010 ident: FP22073R22 article-title: Improvement of open-pollinated spring rapeseed ( L.) through introgression of genetic diversity from winter rapeseed. publication-title: Crop Science doi: 10.2135/cropsci2009.06.0352 – volume: 38 start-page: 203 year: 2006 ident: FP22073R58 article-title: A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. publication-title: Nature Genetics doi: 10.1038/ng1702 – volume: 11 year: 2020 ident: FP22073R37 article-title: Genome-wide association study and genomic prediction elucidate the distinct genetic architecture of aluminum and proton tolerance in . publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2020.00405 – volume: 345 start-page: 950 year: 2014 ident: FP22073R3 article-title: Early allopolyploid evolution in the post-Neolithic oilseed genome. publication-title: Science doi: 10.1126/science.1253435 – volume: 274 start-page: 175 year: 2005 ident: FP22073R26 article-title: The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. publication-title: Plant and Soil doi: 10.1007/s11104-004-1158-7 – ident: FP22073R12 – volume: 38 start-page: 904 year: 2006 ident: FP22073R60 article-title: Principal components analysis corrects for stratification in genome-wide association studies. publication-title: Nature Genetics doi: 10.1038/ng1847 – volume: 208 start-page: 456 year: 2015 ident: FP22073R8 article-title: Characterization of an inducible CH-type zinc finger transcription factor VuSTOP1 in rice bean () reveals differential regulation between low pH and aluminum tolerance mechanisms. publication-title: New Phytologist doi: 10.1111/nph.13456 – volume: 15 year: 2015 ident: FP22073R28 article-title: Seedling development traits in examined by gene expression analysis and association mapping. publication-title: BMC Plant Biology doi: 10.1186/s12870-015-0496-3 – volume: 99 start-page: 1193 year: 1992 ident: FP22073R46 article-title: Aluminum toxicity in roots: correlation between ionic currents, ion fluxes and root elongation in Al-tolerant and Al-sensitive wheat cultivars. publication-title: Plant Physiology doi: 10.1104/pp.99.3.1193 – volume: 66 start-page: 571 year: 2015 ident: FP22073R27 article-title: Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. publication-title: Annual Review of Plant Biology doi: 10.1146/annurev-arplant-043014-114822 – volume: 11 start-page: 381 year: 2006 ident: FP22073R4 article-title: On the design of early generation variety trials with correlated data. publication-title: Journal of Agricultural, Biological, and Environmental Statistics doi: 10.1198/108571106X154443 – volume: 42 start-page: 348 year: 2010 ident: FP22073R20 article-title: Variance component model to account for sample structure in genome-wide association studies. publication-title: Nature Genetics doi: 10.1038/ng.548 – volume: 112 start-page: 603 year: 2013 ident: FP22073R59 article-title: The barley gene, , increases citrate efflux and Al tolerance when expressed in wheat and barley. publication-title: Annals of Botany doi: 10.1093/aob/mct135 – volume: 149 start-page: 340 year: 2009 ident: FP22073R62 article-title: A second mechanism for aluminum resistance in wheat maps to chromosome 4BL and relies on constitutive efflux of citrate from roots. publication-title: Plant Physiology doi: 10.1104/pp.108.129155 – volume: 104 start-page: 9900 year: 2007 ident: FP22073R18 article-title: Zinc finger protein STOP1 is critical for proton tolerance in and coregulates a key gene in aluminum tolerance. publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0700117104 – volume: 115 start-page: 265 year: 2007 ident: FP22073R55 article-title: High-resolution mapping of the locus and identification of a candidate gene controlling aluminium tolerance in barley ( L.). publication-title: Theoretical and Applied Genetics doi: 10.1007/s00122-007-0562-9 – volume: 55 start-page: 1426 year: 2014 ident: FP22073R56 article-title: MATE encodes a citrate transporter and enhances aluminum tolerance in . publication-title: Plant and Cell Physiology doi: 10.1093/pcp/pcu067 – volume: 48 start-page: 1081 year: 2007 ident: FP22073R61 article-title: An aluminum-activated citrate transporter in barley. publication-title: Plant and Cell Physiology doi: 10.1093/pcp/pcm091 – volume: 7 start-page: 769 year: 2006 ident: FP22073R53 article-title: Aluminium tolerance in barley ( L.): physiological mechanisms, genetics and screening methods. publication-title: Journal of Zhejiang University SCIENCE B doi: 10.1631/jzus.2006.B0769 – volume: 69 start-page: 242 year: 2018 ident: FP22073R44 article-title: Assessing the role of genetics for improving the yield of Australia’s major grain crops on acid soils. publication-title: Crop & Pasture Science doi: 10.1071/CP17310 – volume: 120 start-page: 575 year: 2004 ident: FP22073R31 article-title: The role of phosphorus in aluminium-induced citrate and malate exudation from rape (). publication-title: Physiologia Plantarum doi: 10.1111/j.0031-9317.2004.0290.x – volume: 71 start-page: 562 year: 2020 ident: FP22073R43 article-title: QTL mapping reveals genomic regions for yield based on an incremental tolerance index to drought stress and related agronomic traits in canola. publication-title: Crop & Pasture Science doi: 10.1071/CP20046 – volume: 581 start-page: 2255 year: 2007 ident: FP22073R6 article-title: The roles of organic anion permeases in aluminium resistance and mineral nutrition. publication-title: FEBS Letters doi: 10.1016/j.febslet.2007.03.057 – volume: 17 start-page: 341 year: 2012 ident: FP22073R7 article-title: Transcriptional regulation of aluminium tolerance genes. publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2012.02.008 – ident: FP22073R36 – volume: 187 start-page: 2279 year: 2021 ident: FP22073R21 article-title: Manipulating exudate composition from root apices shapes the microbiome throughout the root system. publication-title: Plant Physiology doi: 10.1093/plphys/kiab337 – volume: 21 start-page: 3339 year: 2009 ident: FP22073R57 article-title: A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. publication-title: The Plant Cell doi: 10.1105/tpc.109.070771 – volume: 149 start-page: 85 year: 2006 ident: FP22073R29 article-title: Incremental crop tolerance to weeds: a measure for selecting competitive ability in Australian wheats. publication-title: Euphytica doi: 10.1007/s10681-005-9056-5 – volume: 12 year: 2021 ident: FP22073R52 article-title: Aluminum or low pH – which is the bigger enemy of barley? Transcriptome analysis of barley root meristem under Al and low pH stress. publication-title: Frontiers in Genetics doi: 10.3389/fgene.2021.675260 |
SSID | ssj0015327 |
Score | 2.3495088 |
Snippet | Acid soils limit yields of many important crops including canola (Brassica napus), Australia’s third largest crop. Aluminium (Al3+) stress is the main cause of... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 845 |
Title | A genome-wide association study (GWAS) identifies multiple loci linked with the natural variation for Al |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB7WrQ--SL1hvTEPIsoSTSaTSfKYtcZFUQq22LdlLid0cS-l3bW0_6L_2DOZycVV8PISwjCzsPk-zn3OIeQ5WqwVM4wHEvV3wHMZB3kFYZBwmVUgZM7Bxjs-fRaTI_7hODkeDK57VUubtXqtr357r-R_UMU1xNXekv0HZNsfxQV8R3zxiQjj868wLuwA5NUCgouZgZHsvrTrGluHAL4WX6znPzOuLAjOuxpC1GOzkc3gNiXo1gitO30ibt_Rie4KEYt534otURn6GOLpHKEZNa2cbHyhPGizOPubWrPJ5QJmXULJx1wn6FK3seiP8kKeSzdCu_iGUmax6oT2GdTDkEbvAdYnsh-nQBc3FIG79u9FK-dIBh46aQv9NXfbspHHroVpw7uwJ10z13myUdRuEMEvOgCNJgSuPGAsdFNSfu6yvaX92prEOhufRlN_8AbZYeh5sCHZKcb747JNTSVxPQe4_TvuJrY9-sYf7Zk4PVvlcJfc9k4GLRxj7pABLO-Sm-MVOgKX98hJQXu0oT3a0Jo29KUlzSvaUYY2lKGWMtRRhlrKUKQM9ZShLWUoUoYW8_vkqHx3-HYS-IEbgY7sTD-B_iPISGidaqWNqHQcVsIAN1JXJlKhidNUJtzELDM6VyaKtKqyJFWcC8VV_IAMl6slPCSUpwykjJV1XzlAloOsUhEylUojeG72yIvmG02170Zvh6LMp1s47BHabjx1DVi2tzz685bH5FbHySdkuD7bwFO0Jtfqmcf3B6h4dsQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+genome-wide+association+study+%28GWAS%29+identifies+multiple+loci+linked+with+the+natural+variation+for+Al&rft.jtitle=Functional+plant+biology+%3A+FPB&rft.au=Du%2C+Hanmei&rft.au=Raman%2C+Harsh&rft.au=Kawasaki%2C+Akitomo&rft.au=Perera%2C+Geetha&rft.date=2022-06-27&rft.issn=1445-4408&rft.eissn=1445-4416&rft.volume=49&rft.issue=10&rft.spage=845&rft.epage=860&rft_id=info:doi/10.1071%2FFP22073&rft.externalDBID=n%2Fa&rft.externalDocID=10_1071_FP22073 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1445-4408&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1445-4408&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1445-4408&client=summon |