A genome-wide association study (GWAS) identifies multiple loci linked with the natural variation for Al

Acid soils limit yields of many important crops including canola (Brassica napus), Australia’s third largest crop. Aluminium (Al3+) stress is the main cause of this limitation primarily because the toxic Al3+ present inhibits root growth. Breeding programmes do not target acid-soil tolerance in B. n...

Full description

Saved in:
Bibliographic Details
Published inFunctional plant biology : FPB Vol. 49; no. 10; pp. 845 - 860
Main Authors Du, Hanmei, Raman, Harsh, Kawasaki, Akitomo, Perera, Geetha, Diffey, Simon, Snowdon, Rod, Raman, Rosy, Ryan, Peter R.
Format Journal Article
LanguageEnglish
Published 27.06.2022
Online AccessGet full text

Cover

Loading…
Abstract Acid soils limit yields of many important crops including canola (Brassica napus), Australia’s third largest crop. Aluminium (Al3+) stress is the main cause of this limitation primarily because the toxic Al3+ present inhibits root growth. Breeding programmes do not target acid-soil tolerance in B. napus because genetic variation and convincing quantitative trait loci have not been reported. We conducted a genome-wide association study (GWAS) using the BnASSYST diversity panel of B. napus genotyped with 35 729 high-quality DArTseq markers. We screened 352 B. napus accessions in hydroponics with and without a toxic concentration of AlCl3 (12 μM, pH 4.3) for 12 days and measured shoot biomass, root biomass, and root length. By accounting for both population structure and kinship matrices, five significant quantitative trait loci for different measures of resistance were identified using incremental Al3+ resistance indices. Within these quantitative trait locus regions of B. napus, 40 Arabidopsis thaliana gene orthologues were identified, including some previously linked with Al3+ resistance. GWAS analysis indicated that multiple genes are responsible for the natural variation in Al3+ resistance in B. napus. The results provide new genetic resources and markers to enhance that Al3+ resistance of B. napus germplasm via genomic and marker-assisted selection.
AbstractList Acid soils limit yields of many important crops including canola (Brassica napus), Australia’s third largest crop. Aluminium (Al3+) stress is the main cause of this limitation primarily because the toxic Al3+ present inhibits root growth. Breeding programmes do not target acid-soil tolerance in B. napus because genetic variation and convincing quantitative trait loci have not been reported. We conducted a genome-wide association study (GWAS) using the BnASSYST diversity panel of B. napus genotyped with 35 729 high-quality DArTseq markers. We screened 352 B. napus accessions in hydroponics with and without a toxic concentration of AlCl3 (12 μM, pH 4.3) for 12 days and measured shoot biomass, root biomass, and root length. By accounting for both population structure and kinship matrices, five significant quantitative trait loci for different measures of resistance were identified using incremental Al3+ resistance indices. Within these quantitative trait locus regions of B. napus, 40 Arabidopsis thaliana gene orthologues were identified, including some previously linked with Al3+ resistance. GWAS analysis indicated that multiple genes are responsible for the natural variation in Al3+ resistance in B. napus. The results provide new genetic resources and markers to enhance that Al3+ resistance of B. napus germplasm via genomic and marker-assisted selection.
Author Diffey, Simon
Raman, Rosy
Kawasaki, Akitomo
Du, Hanmei
Perera, Geetha
Raman, Harsh
Ryan, Peter R.
Snowdon, Rod
Author_xml – sequence: 1
  givenname: Hanmei
  surname: Du
  fullname: Du, Hanmei
– sequence: 2
  givenname: Harsh
  surname: Raman
  fullname: Raman, Harsh
– sequence: 3
  givenname: Akitomo
  surname: Kawasaki
  fullname: Kawasaki, Akitomo
– sequence: 4
  givenname: Geetha
  surname: Perera
  fullname: Perera, Geetha
– sequence: 5
  givenname: Simon
  surname: Diffey
  fullname: Diffey, Simon
– sequence: 6
  givenname: Rod
  surname: Snowdon
  fullname: Snowdon, Rod
– sequence: 7
  givenname: Rosy
  surname: Raman
  fullname: Raman, Rosy
– sequence: 8
  givenname: Peter R.
  orcidid: 0000-0002-1376-9543
  surname: Ryan
  fullname: Ryan, Peter R.
BookMark eNplkM1KAzEAhINUsK3iK-SmHlaTTTapx6XYKhQUVDwu-XWjabYkWUvf3lWLBz3NwHwMw0zAKHTBAHCK0SVGHF8tHsoScXIAxpjSqqAUs9GvR7MjMEnpDSFckZKPQVvDVxO6tSm2ThsoUuqUE9l1Aabc6x08X77UjxdwCEN21pkE173PbuMN9AMKvQvvRsOtyy3MrYFB5D4KDz9E3PfYLsLaH4NDK3wyJ3udgufFzdP8tljdL-_m9apQGBFSMIKYEZgpxZVUmllFkGXaUC2U1VgiTTgXFdWknGl1LTXGStpZxSWlTFJJpqD46VWxSyka2yiXv4fkKJxvMGq-bmr2Nw382R9-E91axN0_8hO85Wpq
CitedBy_id crossref_primary_10_1111_ppl_14404
crossref_primary_10_31742_ISGPB_84_4_5
crossref_primary_10_3389_fsoil_2023_1125604
Cites_doi 10.1104/pp.103.3.695
10.1104/pp.106.085233
10.1080/01904169909365601
10.1038/ng.2314
10.1046/j.1439-0523.2002.00723.x
10.1093/jxb/ery357
10.1093/jxb/erq272
10.1007/978-3-540-85546-0_11
10.1111/j.1399-3054.1990.tb06743.x
10.1071/FP09261
10.2134/agronmonogr12.2ed.c2
10.1104/pp.99.4.1461
10.1371/journal.pone.0101673
10.1139/G09-045
10.1007/s10722-020-00989-2
10.1534/genetics.107.080101
10.1007/s00122-011-1676-7
10.1007/s10722-004-5541-2
10.1071/AR05202
10.1016/S1360-1385(01)01961-6
10.1111/j.1365-313X.2003.01991.x
10.1111/j.1365-313X.2008.03696.x
10.1038/ng2074
10.1093/pcp/pcl002
10.2135/cropsci1978.0011183X001800050035x
10.1186/s12864-015-1950-1
10.2135/cropsci2009.06.0352
10.1038/ng1702
10.3389/fpls.2020.00405
10.1126/science.1253435
10.1007/s11104-004-1158-7
10.1038/ng1847
10.1111/nph.13456
10.1186/s12870-015-0496-3
10.1104/pp.99.3.1193
10.1146/annurev-arplant-043014-114822
10.1198/108571106X154443
10.1038/ng.548
10.1093/aob/mct135
10.1104/pp.108.129155
10.1073/pnas.0700117104
10.1007/s00122-007-0562-9
10.1093/pcp/pcu067
10.1093/pcp/pcm091
10.1631/jzus.2006.B0769
10.1071/CP17310
10.1111/j.0031-9317.2004.0290.x
10.1071/CP20046
10.1016/j.febslet.2007.03.057
10.1016/j.tplants.2012.02.008
10.1093/plphys/kiab337
10.1105/tpc.109.070771
10.1007/s10681-005-9056-5
10.3389/fgene.2021.675260
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1071/FP22073
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1445-4416
EndPage 860
ExternalDocumentID 10_1071_FP22073
GroupedDBID 0R~
29H
4.4
53G
5GY
AAHBH
AAYXX
ABDBF
ACUHS
AEIBA
AENEX
ALMA_UNASSIGNED_HOLDINGS
CITATION
CS3
DU5
F5P
MV1
NGGKN
RCO
TN5
~KM
ID FETCH-LOGICAL-c1033-6306ea16cc7cbcd6fc30f6de4dacfd1b0d377a54d328dc9bd11cbf857b446b4b3
ISSN 1445-4408
IngestDate Tue Jul 01 03:15:04 EDT 2025
Thu Apr 24 23:08:17 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1033-6306ea16cc7cbcd6fc30f6de4dacfd1b0d377a54d328dc9bd11cbf857b446b4b3
ORCID 0000-0002-1376-9543
OpenAccessLink https://www.publish.csiro.au/fp/pdf/FP22073
PageCount 16
ParticipantIDs crossref_citationtrail_10_1071_FP22073
crossref_primary_10_1071_FP22073
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-6-27
PublicationDateYYYYMMDD 2022-06-27
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-6-27
  day: 27
PublicationDecade 2020
PublicationTitle Functional plant biology : FPB
PublicationYear 2022
References FP22073R14
(FP22073R19) 2008; 178
(FP22073R57) 2009; 21
(FP22073R59) 2013; 112
(FP22073R21) 2021; 187
FP22073R12
(FP22073R30) 2009; 57
(FP22073R32) 2006; 142
(FP22073R49) 2006; 47
(FP22073R38) 2019; 70
(FP22073R50) 2015; 16
(FP22073R39) 1978; 18
(FP22073R48) 2004; 37
(FP22073R15) 2006; 53
(FP22073R41) 2009; 52
FP22073R10
(FP22073R18) 2007; 104
(FP22073R55) 2007; 115
(FP22073R27) 2015; 66
(FP22073R53) 2006; 7
(FP22073R46) 1992; 99
(FP22073R16) 2002; 121
(FP22073R22) 2010; 50
(FP22073R61) 2007; 48
(FP22073R20) 2010; 42
(FP22073R52) 2021; 12
(FP22073R56) 2014; 55
(FP22073R2) 2011; 123
(FP22073R26) 2005; 274
(FP22073R44) 2018; 69
(FP22073R51) 2012; 44
(FP22073R54) 2006; 57
FP22073R40
(FP22073R47) 2011; 62
FP22073R36
(FP22073R62) 2009; 149
(FP22073R6) 2007; 581
(FP22073R43) 2020; 71
(FP22073R31) 2004; 120
(FP22073R37) 2020; 11
(FP22073R58) 2006; 38
(FP22073R5) 1993; 103
(FP22073R29) 2006; 149
(FP22073R35) 1999; 22
(FP22073R7) 2012; 17
(FP22073R11) 2021; 68
FP22073R23
(FP22073R3) 2014; 345
(FP22073R42) 2014; 9
(FP22073R4) 2006; 11
(FP22073R28) 2015; 15
(FP22073R45) 2010; 37
(FP22073R34) 2007; 39
(FP22073R60) 2006; 38
FP22073R9
(FP22073R25) 1992; 99
(FP22073R33) 2001; 6
(FP22073R24) 1990; 79
(FP22073R8) 2015; 208
FP22073R63
References_xml – volume: 103
  start-page: 695
  year: 1993
  ident: FP22073R5
  article-title: Aluminum tolerance in wheat ( L.). (II. Aluminum-stimulated excretion of malic acid from root apices).
  publication-title: Plant Physiology
  doi: 10.1104/pp.103.3.695
– volume: 142
  start-page: 1294
  year: 2006
  ident: FP22073R32
  article-title: The and genes from L. encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells.
  publication-title: Plant Physiology
  doi: 10.1104/pp.106.085233
– volume: 22
  start-page: 1
  year: 1999
  ident: FP22073R35
  article-title: Callose production as indicator of aluminum toxicity in bean cultivars.
  publication-title: Journal of Plant Nutrition
  doi: 10.1080/01904169909365601
– ident: FP22073R63
– volume: 44
  start-page: 825
  year: 2012
  ident: FP22073R51
  article-title: An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations.
  publication-title: Nature Genetics
  doi: 10.1038/ng.2314
– ident: FP22073R14
– volume: 121
  start-page: 360
  year: 2002
  ident: FP22073R16
  article-title: Comparison of aluminium tolerance in the brassicas and related species.
  publication-title: Plant Breeding
  doi: 10.1046/j.1439-0523.2002.00723.x
– volume: 70
  start-page: 41
  year: 2019
  ident: FP22073R38
  article-title: The role for transposable elements in the evolution of aluminum resistance in plants.
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/ery357
– volume: 62
  start-page: 9
  year: 2011
  ident: FP22073R47
  article-title: The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils.
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erq272
– ident: FP22073R10
– ident: FP22073R40
  doi: 10.1007/978-3-540-85546-0_11
– volume: 79
  start-page: 283
  year: 1990
  ident: FP22073R24
  article-title: Apparent phytotoxicity of mononuclear hydroxy-aluminum to four dicotyledonous species.
  publication-title: Physiologia Plantarum
  doi: 10.1111/j.1399-3054.1990.tb06743.x
– volume: 37
  start-page: 275
  year: 2010
  ident: FP22073R45
  article-title: The convergent evolution of aluminium resistance in plants exploits a convenient currency.
  publication-title: Functional Plant Biology
  doi: 10.1071/FP09261
– ident: FP22073R9
  doi: 10.2134/agronmonogr12.2ed.c2
– ident: FP22073R23
– volume: 99
  start-page: 1461
  year: 1992
  ident: FP22073R25
  article-title: Interactive effects of Al, H and other cations on root elongation considered in terms of cell-surface electrical potential.
  publication-title: Plant Physiology
  doi: 10.1104/pp.99.4.1461
– volume: 9
  year: 2014
  ident: FP22073R42
  article-title: Genome-wide delineation of natural variation for pod shatter resistance in .
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0101673
– volume: 52
  start-page: 701
  year: 2009
  ident: FP22073R41
  article-title: Localisation of quantitative trait loci for quality attributes in a doubled haploid population of wheat ( L.).
  publication-title: Genome
  doi: 10.1139/G09-045
– volume: 68
  start-page: 335
  year: 2021
  ident: FP22073R11
  article-title: Genome-wide association analysis of aluminum tolerance related traits in rapeseed ( L.) during germination.
  publication-title: Genetic Resources and Crop Evolution
  doi: 10.1007/s10722-020-00989-2
– volume: 178
  start-page: 1709
  year: 2008
  ident: FP22073R19
  article-title: Efficient control of population structure in model organism association mapping.
  publication-title: Genetics
  doi: 10.1534/genetics.107.080101
– volume: 123
  start-page: 1413
  year: 2011
  ident: FP22073R2
  article-title: Patterns of molecular variation in a species-wide germplasm set of .
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-011-1676-7
– volume: 53
  start-page: 793
  year: 2006
  ident: FP22073R15
  article-title: Analysis of genetic diversity in the L. gene pool using SSR markers.
  publication-title: Genetic Resources and Crop Evolution
  doi: 10.1007/s10722-004-5541-2
– volume: 57
  start-page: 113
  year: 2006
  ident: FP22073R54
  article-title: Validation of an locus for aluminium tolerance scored with eriochrome cyanine R staining method in barley cultivar Honen ( L.).
  publication-title: Australian Journal of Agricultural Research
  doi: 10.1071/AR05202
– volume: 6
  start-page: 273
  year: 2001
  ident: FP22073R33
  article-title: Aluminium tolerance in plants and the complexing role of organic acids.
  publication-title: Trends in Plant Science
  doi: 10.1016/S1360-1385(01)01961-6
– volume: 37
  start-page: 645
  year: 2004
  ident: FP22073R48
  article-title: A wheat gene encoding an aluminum-activated malate transporter.
  publication-title: The Plant Journal
  doi: 10.1111/j.1365-313X.2003.01991.x
– volume: 57
  start-page: 389
  year: 2009
  ident: FP22073R30
  article-title: Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance.
  publication-title: The Plant Journal
  doi: 10.1111/j.1365-313X.2008.03696.x
– volume: 39
  start-page: 1156
  year: 2007
  ident: FP22073R34
  article-title: A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum.
  publication-title: Nature Genetics
  doi: 10.1038/ng2074
– volume: 47
  start-page: 1343
  year: 2006
  ident: FP22073R49
  article-title: Sequence upstream of the wheat ( L.) gene and its relationship to aluminum resistance.
  publication-title: Plant and Cell Physiology
  doi: 10.1093/pcp/pcl002
– volume: 18
  start-page: 823
  year: 1978
  ident: FP22073R39
  article-title: Visual detection of aluminum tolerance levels in wheat by hamatoxylin staining of seedling roots.
  publication-title: Crop Science
  doi: 10.2135/cropsci1978.0011183X001800050035x
– volume: 16
  year: 2015
  ident: FP22073R50
  article-title: Diverse regulatory factors associate with flowering time and yield responses in winter-type .
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-1950-1
– volume: 50
  start-page: 1236
  year: 2010
  ident: FP22073R22
  article-title: Improvement of open-pollinated spring rapeseed ( L.) through introgression of genetic diversity from winter rapeseed.
  publication-title: Crop Science
  doi: 10.2135/cropsci2009.06.0352
– volume: 38
  start-page: 203
  year: 2006
  ident: FP22073R58
  article-title: A unified mixed-model method for association mapping that accounts for multiple levels of relatedness.
  publication-title: Nature Genetics
  doi: 10.1038/ng1702
– volume: 11
  year: 2020
  ident: FP22073R37
  article-title: Genome-wide association study and genomic prediction elucidate the distinct genetic architecture of aluminum and proton tolerance in .
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2020.00405
– volume: 345
  start-page: 950
  year: 2014
  ident: FP22073R3
  article-title: Early allopolyploid evolution in the post-Neolithic oilseed genome.
  publication-title: Science
  doi: 10.1126/science.1253435
– volume: 274
  start-page: 175
  year: 2005
  ident: FP22073R26
  article-title: The physiology, genetics and molecular biology of plant aluminum resistance and toxicity.
  publication-title: Plant and Soil
  doi: 10.1007/s11104-004-1158-7
– ident: FP22073R12
– volume: 38
  start-page: 904
  year: 2006
  ident: FP22073R60
  article-title: Principal components analysis corrects for stratification in genome-wide association studies.
  publication-title: Nature Genetics
  doi: 10.1038/ng1847
– volume: 208
  start-page: 456
  year: 2015
  ident: FP22073R8
  article-title: Characterization of an inducible CH-type zinc finger transcription factor VuSTOP1 in rice bean () reveals differential regulation between low pH and aluminum tolerance mechanisms.
  publication-title: New Phytologist
  doi: 10.1111/nph.13456
– volume: 15
  year: 2015
  ident: FP22073R28
  article-title: Seedling development traits in examined by gene expression analysis and association mapping.
  publication-title: BMC Plant Biology
  doi: 10.1186/s12870-015-0496-3
– volume: 99
  start-page: 1193
  year: 1992
  ident: FP22073R46
  article-title: Aluminum toxicity in roots: correlation between ionic currents, ion fluxes and root elongation in Al-tolerant and Al-sensitive wheat cultivars.
  publication-title: Plant Physiology
  doi: 10.1104/pp.99.3.1193
– volume: 66
  start-page: 571
  year: 2015
  ident: FP22073R27
  article-title: Plant adaptation to acid soils: the molecular basis for crop aluminum resistance.
  publication-title: Annual Review of Plant Biology
  doi: 10.1146/annurev-arplant-043014-114822
– volume: 11
  start-page: 381
  year: 2006
  ident: FP22073R4
  article-title: On the design of early generation variety trials with correlated data.
  publication-title: Journal of Agricultural, Biological, and Environmental Statistics
  doi: 10.1198/108571106X154443
– volume: 42
  start-page: 348
  year: 2010
  ident: FP22073R20
  article-title: Variance component model to account for sample structure in genome-wide association studies.
  publication-title: Nature Genetics
  doi: 10.1038/ng.548
– volume: 112
  start-page: 603
  year: 2013
  ident: FP22073R59
  article-title: The barley gene, , increases citrate efflux and Al tolerance when expressed in wheat and barley.
  publication-title: Annals of Botany
  doi: 10.1093/aob/mct135
– volume: 149
  start-page: 340
  year: 2009
  ident: FP22073R62
  article-title: A second mechanism for aluminum resistance in wheat maps to chromosome 4BL and relies on constitutive efflux of citrate from roots.
  publication-title: Plant Physiology
  doi: 10.1104/pp.108.129155
– volume: 104
  start-page: 9900
  year: 2007
  ident: FP22073R18
  article-title: Zinc finger protein STOP1 is critical for proton tolerance in and coregulates a key gene in aluminum tolerance.
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0700117104
– volume: 115
  start-page: 265
  year: 2007
  ident: FP22073R55
  article-title: High-resolution mapping of the locus and identification of a candidate gene controlling aluminium tolerance in barley ( L.).
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-007-0562-9
– volume: 55
  start-page: 1426
  year: 2014
  ident: FP22073R56
  article-title: MATE encodes a citrate transporter and enhances aluminum tolerance in .
  publication-title: Plant and Cell Physiology
  doi: 10.1093/pcp/pcu067
– volume: 48
  start-page: 1081
  year: 2007
  ident: FP22073R61
  article-title: An aluminum-activated citrate transporter in barley.
  publication-title: Plant and Cell Physiology
  doi: 10.1093/pcp/pcm091
– volume: 7
  start-page: 769
  year: 2006
  ident: FP22073R53
  article-title: Aluminium tolerance in barley ( L.): physiological mechanisms, genetics and screening methods.
  publication-title: Journal of Zhejiang University SCIENCE B
  doi: 10.1631/jzus.2006.B0769
– volume: 69
  start-page: 242
  year: 2018
  ident: FP22073R44
  article-title: Assessing the role of genetics for improving the yield of Australia’s major grain crops on acid soils.
  publication-title: Crop & Pasture Science
  doi: 10.1071/CP17310
– volume: 120
  start-page: 575
  year: 2004
  ident: FP22073R31
  article-title: The role of phosphorus in aluminium-induced citrate and malate exudation from rape ().
  publication-title: Physiologia Plantarum
  doi: 10.1111/j.0031-9317.2004.0290.x
– volume: 71
  start-page: 562
  year: 2020
  ident: FP22073R43
  article-title: QTL mapping reveals genomic regions for yield based on an incremental tolerance index to drought stress and related agronomic traits in canola.
  publication-title: Crop & Pasture Science
  doi: 10.1071/CP20046
– volume: 581
  start-page: 2255
  year: 2007
  ident: FP22073R6
  article-title: The roles of organic anion permeases in aluminium resistance and mineral nutrition.
  publication-title: FEBS Letters
  doi: 10.1016/j.febslet.2007.03.057
– volume: 17
  start-page: 341
  year: 2012
  ident: FP22073R7
  article-title: Transcriptional regulation of aluminium tolerance genes.
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2012.02.008
– ident: FP22073R36
– volume: 187
  start-page: 2279
  year: 2021
  ident: FP22073R21
  article-title: Manipulating exudate composition from root apices shapes the microbiome throughout the root system.
  publication-title: Plant Physiology
  doi: 10.1093/plphys/kiab337
– volume: 21
  start-page: 3339
  year: 2009
  ident: FP22073R57
  article-title: A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice.
  publication-title: The Plant Cell
  doi: 10.1105/tpc.109.070771
– volume: 149
  start-page: 85
  year: 2006
  ident: FP22073R29
  article-title: Incremental crop tolerance to weeds: a measure for selecting competitive ability in Australian wheats.
  publication-title: Euphytica
  doi: 10.1007/s10681-005-9056-5
– volume: 12
  year: 2021
  ident: FP22073R52
  article-title: Aluminum or low pH – which is the bigger enemy of barley? Transcriptome analysis of barley root meristem under Al and low pH stress.
  publication-title: Frontiers in Genetics
  doi: 10.3389/fgene.2021.675260
SSID ssj0015327
Score 2.3495088
Snippet Acid soils limit yields of many important crops including canola (Brassica napus), Australia’s third largest crop. Aluminium (Al3+) stress is the main cause of...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 845
Title A genome-wide association study (GWAS) identifies multiple loci linked with the natural variation for Al
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB7WrQ--SL1hvTEPIsoSTSaTSfKYtcZFUQq22LdlLid0cS-l3bW0_6L_2DOZycVV8PISwjCzsPk-zn3OIeQ5WqwVM4wHEvV3wHMZB3kFYZBwmVUgZM7Bxjs-fRaTI_7hODkeDK57VUubtXqtr357r-R_UMU1xNXekv0HZNsfxQV8R3zxiQjj868wLuwA5NUCgouZgZHsvrTrGluHAL4WX6znPzOuLAjOuxpC1GOzkc3gNiXo1gitO30ibt_Rie4KEYt534otURn6GOLpHKEZNa2cbHyhPGizOPubWrPJ5QJmXULJx1wn6FK3seiP8kKeSzdCu_iGUmax6oT2GdTDkEbvAdYnsh-nQBc3FIG79u9FK-dIBh46aQv9NXfbspHHroVpw7uwJ10z13myUdRuEMEvOgCNJgSuPGAsdFNSfu6yvaX92prEOhufRlN_8AbZYeh5sCHZKcb747JNTSVxPQe4_TvuJrY9-sYf7Zk4PVvlcJfc9k4GLRxj7pABLO-Sm-MVOgKX98hJQXu0oT3a0Jo29KUlzSvaUYY2lKGWMtRRhlrKUKQM9ZShLWUoUoYW8_vkqHx3-HYS-IEbgY7sTD-B_iPISGidaqWNqHQcVsIAN1JXJlKhidNUJtzELDM6VyaKtKqyJFWcC8VV_IAMl6slPCSUpwykjJV1XzlAloOsUhEylUojeG72yIvmG02170Zvh6LMp1s47BHabjx1DVi2tzz685bH5FbHySdkuD7bwFO0Jtfqmcf3B6h4dsQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+genome-wide+association+study+%28GWAS%29+identifies+multiple+loci+linked+with+the+natural+variation+for+Al&rft.jtitle=Functional+plant+biology+%3A+FPB&rft.au=Du%2C+Hanmei&rft.au=Raman%2C+Harsh&rft.au=Kawasaki%2C+Akitomo&rft.au=Perera%2C+Geetha&rft.date=2022-06-27&rft.issn=1445-4408&rft.eissn=1445-4416&rft.volume=49&rft.issue=10&rft.spage=845&rft.epage=860&rft_id=info:doi/10.1071%2FFP22073&rft.externalDBID=n%2Fa&rft.externalDocID=10_1071_FP22073
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1445-4408&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1445-4408&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1445-4408&client=summon