Monitoring Fracture Hydromechanical Evolution in the Lab and Field Using Unsupervised Metric Learning
Fractures evolve in time through thermal‐hydraulic‐mechanical‐chemical (THMC) processes that alter their long‐range hydraulic transport properties and modify subsurface behavior and activities. The location of subsurface fractures makes it necessary to use remote sensing techniques such as passive o...
Saved in:
Published in | Journal of geophysical research. Machine learning and computation Vol. 2; no. 3 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
01.09.2025
|
Online Access | Get full text |
ISSN | 2993-5210 2993-5210 |
DOI | 10.1029/2025JH000657 |
Cover
Loading…
Abstract | Fractures evolve in time through thermal‐hydraulic‐mechanical‐chemical (THMC) processes that alter their long‐range hydraulic transport properties and modify subsurface behavior and activities. The location of subsurface fractures makes it necessary to use remote sensing techniques such as passive or active seismic monitoring for fracture characterization. In this paper, we develop a machine learning approach to monitor the evolution of fracture properties using passive seismic sources in a laboratory setting and using active seismic monitoring from the Sanford Underground Research Facility in Lead, South Dakota, at a depth of 1.25 km in amphibolite rock during stimulation of natural fractures as well as during induced fracturing. The unsupervised metric learning technique applies tandem neural networks (twin (Siamese) or triplet) with contrastive loss and adaptive margins to track slowly varying systems for which class or similarity labels are not available. The approach adopts locality‐sensitive hashing to divide time‐ordered contiguous data into an arbitrary number of pseudo‐classes. Contrastive‐loss training with many hash bins generates an evolving latent‐space trajectory. This approach enables unsupervised metric learning for seismic data stacks under the condition of contiguous state sampling and slowly varying fracture properties. The displacement discontinuity theory provides a mechanistic foundation for the fracture‐dependent trajectories that are related to relaxation of fractures with time‐dependent specific stiffness responding to changes in stress or fluid saturation.
The transmission and reflection of seismic waves propagating across fractures in rock depend on fracture properties related to how easily fluids flow through the fractures. Therefore, by monitoring seismic data, it may be possible to predict fluid flow in geothermal systems. However, the seismic signatures are complicated, which require novel data analysis to extract evolving fracture properties, such as a new machine learning technique developed for continuous active seismic monitoring.
Seismic waves reflecting or transmitting across fractures provide information on changing fluid saturations within the fractures Machine learning is applied to continuous active seismic source monitoring of evolving fracture properties Evolving fracture properties can be detected using unsupervised machine learning with dimensionality reduction |
---|---|
AbstractList | Fractures evolve in time through thermal‐hydraulic‐mechanical‐chemical (THMC) processes that alter their long‐range hydraulic transport properties and modify subsurface behavior and activities. The location of subsurface fractures makes it necessary to use remote sensing techniques such as passive or active seismic monitoring for fracture characterization. In this paper, we develop a machine learning approach to monitor the evolution of fracture properties using passive seismic sources in a laboratory setting and using active seismic monitoring from the Sanford Underground Research Facility in Lead, South Dakota, at a depth of 1.25 km in amphibolite rock during stimulation of natural fractures as well as during induced fracturing. The unsupervised metric learning technique applies tandem neural networks (twin (Siamese) or triplet) with contrastive loss and adaptive margins to track slowly varying systems for which class or similarity labels are not available. The approach adopts locality‐sensitive hashing to divide time‐ordered contiguous data into an arbitrary number of pseudo‐classes. Contrastive‐loss training with many hash bins generates an evolving latent‐space trajectory. This approach enables unsupervised metric learning for seismic data stacks under the condition of contiguous state sampling and slowly varying fracture properties. The displacement discontinuity theory provides a mechanistic foundation for the fracture‐dependent trajectories that are related to relaxation of fractures with time‐dependent specific stiffness responding to changes in stress or fluid saturation.
The transmission and reflection of seismic waves propagating across fractures in rock depend on fracture properties related to how easily fluids flow through the fractures. Therefore, by monitoring seismic data, it may be possible to predict fluid flow in geothermal systems. However, the seismic signatures are complicated, which require novel data analysis to extract evolving fracture properties, such as a new machine learning technique developed for continuous active seismic monitoring.
Seismic waves reflecting or transmitting across fractures provide information on changing fluid saturations within the fractures Machine learning is applied to continuous active seismic source monitoring of evolving fracture properties Evolving fracture properties can be detected using unsupervised machine learning with dimensionality reduction |
Author | Pyrak‐Nolte, Laura J. Nolte, David D. Hopp, Chet |
Author_xml | – sequence: 1 givenname: David D. orcidid: 0000-0002-4872-9357 surname: Nolte fullname: Nolte, David D. organization: Department of Physics and Astronomy Purdue University West Lafayette IN USA – sequence: 2 givenname: Laura J. orcidid: 0000-0001-6826-5214 surname: Pyrak‐Nolte fullname: Pyrak‐Nolte, Laura J. organization: Department of Physics and Astronomy Purdue University West Lafayette IN USA, Department of Earth, Atmospheric and Planetary Sciences Purdue University West Lafayette IN USA, Lyles School of Civil Engineering Purdue University West Lafayette IN USA – sequence: 3 givenname: Chet orcidid: 0000-0002-7980-0494 surname: Hopp fullname: Hopp, Chet organization: Energy Geosciences Division Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory Berkeley CA USA |
BookMark | eNpNUM1OAjEYbAwmInLzAfoArrZft-3u0RBWNEu8wHnTP6RmaUm7kPD2QvDAaSaZn2TmEY1CDA6hZ0peKYH6DQjwrwUhRHB5h8ZQ16zgQMnohj-gac6_Zw9jQCoix8gtY_BDTD784CYpMxySw4uTTXHnzFYFb1SP58fYHwYfA_YBD1uHW6WxChY33vUWr_MlvQ75sHfp6LOzeOmG5A1unUrhLD6h-43qs5v-4wStmvlqtija74_P2XtbmPMEWVBBDbe01JWoy5owoFaDKIl0koOUxoKq6EbquhLCakE155oD09paKDWwCXq51poUc05u0-2T36l06ijpLid1tyexPw5FWwo |
Cites_doi | 10.1109/CVPR.2016.581 10.1785/0120070110 10.1093/gji/ggab316 10.1146/annurev‐earth‐053018‐060119 10.1109/tgrs.2024.3394592 10.1029/jb095ib06p08617 10.1121/1.385077 10.1016/s0148‐9062(96)00022‐8 10.1007/s11042‐015‐2847‐3 10.1080/2150704x.2023.2264493 10.3390/jsan11030050 10.1111/j.1365‐2478.2011.01000.x 10.3390/en16073098 10.1561/2200000006 10.1038/s41467‐020‐19087‐z 10.1029/2020jb021444 10.1109/IGARSS53475.2024.10641807 10.1109/jstars.2020.3038922 10.1190/1.2780781 10.3390/math12182824 10.1109/jstars.2023.3280029 10.1007/s00024‐017‐1569‐z 10.1016/j.neunet.2014.09.003 10.1142/s0218001493000339 10.1109/tpami.2013.50 10.1029/2021JB023005 10.1029/2021rg000744 10.1190/1.1442401 10.1038/s41598‐024‐84067‐y 10.1785/0120210095 10.1190/Geo2017‐0524.1 10.31577/cai_2020_6_1172 10.1016/j.geothermics.2007.03.003 10.1016/j.cviu.2018.08.003 10.1038/ncomms10663 10.3390/sym11091066 10.1111/j.1365‐2478.2007.00688.x 10.1038/s41467‐020‐17841‐x |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1029/2025JH000657 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2993-5210 |
ExternalDocumentID | 10_1029_2025JH000657 |
GroupedDBID | 0R~ 24P AAMMB AAYXX ACCMX AEFGJ AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E WIN |
ID | FETCH-LOGICAL-c1027-161c5d14b869490321db26407e75277cd2a81f7b9866db61b55b523bbdd24b23 |
ISSN | 2993-5210 |
IngestDate | Thu Aug 21 00:36:58 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1027-161c5d14b869490321db26407e75277cd2a81f7b9866db61b55b523bbdd24b23 |
ORCID | 0000-0002-4872-9357 0000-0002-7980-0494 0000-0001-6826-5214 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2025JH000657 |
ParticipantIDs | crossref_primary_10_1029_2025JH000657 |
PublicationCentury | 2000 |
PublicationDate | 2025-09-00 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-00 |
PublicationDecade | 2020 |
PublicationTitle | Journal of geophysical research. Machine learning and computation |
PublicationYear | 2025 |
References | e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 Nolte D. D. (e_1_2_8_32_1) 2025 e_1_2_8_41_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_38_1 Hopp C. (e_1_2_8_14_1) 2024 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 Nolte D. D. (e_1_2_8_31_1) 2022 e_1_2_8_2_1 Kendall K. (e_1_2_8_17_1) 1971; 323 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 Kneafsey T. (e_1_2_8_18_1) 2024 e_1_2_8_40_1 e_1_2_8_39_1 Pyrak‐Nolte L. J. (e_1_2_8_35_1) 2019 e_1_2_8_16_1 e_1_2_8_37_1 Gu B. L. (e_1_2_8_10_1) 1996; 101 Hopp C. (e_1_2_8_15_1) 2025 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_50_1 |
References_xml | – ident: e_1_2_8_19_1 doi: 10.1109/CVPR.2016.581 – ident: e_1_2_8_7_1 doi: 10.1785/0120070110 – ident: e_1_2_8_25_1 doi: 10.1093/gji/ggab316 – ident: e_1_2_8_44_1 doi: 10.1146/annurev‐earth‐053018‐060119 – ident: e_1_2_8_49_1 doi: 10.1109/tgrs.2024.3394592 – ident: e_1_2_8_37_1 doi: 10.1029/jb095ib06p08617 – ident: e_1_2_8_42_1 doi: 10.1121/1.385077 – ident: e_1_2_8_33_1 doi: 10.1016/s0148‐9062(96)00022‐8 – ident: e_1_2_8_51_1 doi: 10.1007/s11042‐015‐2847‐3 – ident: e_1_2_8_9_1 doi: 10.1080/2150704x.2023.2264493 – ident: e_1_2_8_20_1 doi: 10.3390/jsan11030050 – ident: e_1_2_8_12_1 doi: 10.1111/j.1365‐2478.2011.01000.x – ident: e_1_2_8_26_1 doi: 10.3390/en16073098 – ident: e_1_2_8_13_1 – volume-title: EGS collab experiment 2: CASSM system year: 2024 ident: e_1_2_8_14_1 – ident: e_1_2_8_3_1 doi: 10.1561/2200000006 – ident: e_1_2_8_36_1 doi: 10.1038/s41467‐020‐19087‐z – start-page: 233 volume-title: Science of carbon storage in deep saline formations: Process coupling across time and spatial scales year: 2019 ident: e_1_2_8_35_1 – ident: e_1_2_8_48_1 doi: 10.1029/2020jb021444 – ident: e_1_2_8_27_1 doi: 10.1109/IGARSS53475.2024.10641807 – ident: e_1_2_8_8_1 doi: 10.1109/jstars.2020.3038922 – ident: e_1_2_8_34_1 doi: 10.1190/1.2780781 – ident: e_1_2_8_47_1 doi: 10.3390/math12182824 – ident: e_1_2_8_29_1 – ident: e_1_2_8_24_1 doi: 10.1109/jstars.2023.3280029 – ident: e_1_2_8_50_1 – ident: e_1_2_8_11_1 doi: 10.1007/s00024‐017‐1569‐z – ident: e_1_2_8_41_1 doi: 10.1016/j.neunet.2014.09.003 – ident: e_1_2_8_5_1 doi: 10.1142/s0218001493000339 – ident: e_1_2_8_6_1 – ident: e_1_2_8_4_1 doi: 10.1109/tpami.2013.50 – ident: e_1_2_8_30_1 doi: 10.1029/2021JB023005 – volume-title: EGS collab experiment 2: Continous active source seismic monitoring (CASSM) year: 2025 ident: e_1_2_8_15_1 – volume: 323 start-page: 321 year: 1971 ident: e_1_2_8_17_1 article-title: An ultrasonic study of the area of contact between stationary and sliding surfaces publication-title: Proc. Royal Soc. London, Series A – ident: e_1_2_8_46_1 doi: 10.1029/2021rg000744 – ident: e_1_2_8_23_1 doi: 10.1190/1.1442401 – ident: e_1_2_8_28_1 doi: 10.1038/s41598‐024‐84067‐y – ident: e_1_2_8_2_1 doi: 10.1785/0120210095 – volume-title: The EGS collab project – Summaries of experiments 2 and 3: Experiments at 1.25 km depth at the Sanford Underground Research Facility year: 2024 ident: e_1_2_8_18_1 – volume-title: Data for monitoring fracture saturation with internal transportable seismic sources and twin neural networks version 1.0 year: 2022 ident: e_1_2_8_31_1 – ident: e_1_2_8_39_1 doi: 10.1190/Geo2017‐0524.1 – ident: e_1_2_8_45_1 doi: 10.31577/cai_2020_6_1172 – volume: 101 start-page: 25337 issue: 11 year: 1996 ident: e_1_2_8_10_1 article-title: Incidence of plane waves upon a fracture publication-title: Journal of Geophysical Research – ident: e_1_2_8_22_1 doi: 10.1016/j.geothermics.2007.03.003 – ident: e_1_2_8_40_1 doi: 10.1016/j.cviu.2018.08.003 – ident: e_1_2_8_38_1 doi: 10.1038/ncomms10663 – volume-title: Monitoring fracture hydromechanical evolution in the lab and field using unsupervised metric learning year: 2025 ident: e_1_2_8_32_1 – ident: e_1_2_8_16_1 doi: 10.3390/sym11091066 – ident: e_1_2_8_21_1 doi: 10.1111/j.1365‐2478.2007.00688.x – ident: e_1_2_8_43_1 doi: 10.1038/s41467‐020‐17841‐x |
SSID | ssj0003320807 |
Score | 2.3019829 |
Snippet | Fractures evolve in time through thermal‐hydraulic‐mechanical‐chemical (THMC) processes that alter their long‐range hydraulic transport properties and modify... |
SourceID | crossref |
SourceType | Index Database |
Title | Monitoring Fracture Hydromechanical Evolution in the Lab and Field Using Unsupervised Metric Learning |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5TL15EUfE3OehpdK5p07VHUUcZztMEb6NpMhWlK3MT9OCf4N_se0maVZmgXkoJaVryfXl9yfteQsixCnNgSRR7MoZBHiZt4SWjjvSUj2GumPORwgTn_nWU3oS9W37baHzUVEuzqWjlbwvzSv6DKpQBrpgl-wdkXaNQAPeAL1wBYbj-CmMzILWCrovZThgMSF_1DgSY0Kv7__LFfkKlaLzKhI4YdFG71jSSgZvieVai1XgG_7OPh2zl1c6rdz-4r3dqXFYY2x2D7lt4jtE9-q1P1YqLTZsrZ19D_tfjJ3Mun9bUNy9azkS_TrJHp8Bw1TB9O2v2XLV0XJZGLWATuO3CBeNOmWXtG0PpIHgPJiyjFpRZA81qPAwWmv02w11T8SW9VHtVnfnvrQrpf_vrOS2ijsKzZFh_eomsMJh2oKHvv8_X7IKAtU0GvvtOm0sBDZzWG6h5OTV3ZbBO1ixQ9MyQZoM0VLFJ1JwwtCIM_UYY6ghDHwoKhKFAGAowUk0YqglD64ShhjC0IswWGXQvB-epZ8_Z8HIckR44_TmXfijiKIHRGjBfCoYBXtXh0A25ZFnsjzoiiaNIisgXnAvOAiGkZKFgwTZZLsaF2iHUzyUfJT60wrIQpt5QWYFPG8KkW3IZsF1yUnXLsDS7qQwX9f_eL-vtk9U5sw7I8nQyU4fgJE7FkV5cOdL4fQJBMGaM |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+Fracture+Hydromechanical+Evolution+in+the+Lab+and+Field+Using+Unsupervised+Metric+Learning&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Nolte%2C+David+D.&rft.au=Pyrak%E2%80%90Nolte%2C+Laura+J.&rft.au=Hopp%2C+Chet&rft.date=2025-09-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=2&rft.issue=3&rft_id=info:doi/10.1029%2F2025JH000657&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2025JH000657 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon |