Monitoring Fracture Hydromechanical Evolution in the Lab and Field Using Unsupervised Metric Learning

Fractures evolve in time through thermal‐hydraulic‐mechanical‐chemical (THMC) processes that alter their long‐range hydraulic transport properties and modify subsurface behavior and activities. The location of subsurface fractures makes it necessary to use remote sensing techniques such as passive o...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 2; no. 3
Main Authors Nolte, David D., Pyrak‐Nolte, Laura J., Hopp, Chet
Format Journal Article
LanguageEnglish
Published 01.09.2025
Online AccessGet full text
ISSN2993-5210
2993-5210
DOI10.1029/2025JH000657

Cover

Loading…
Abstract Fractures evolve in time through thermal‐hydraulic‐mechanical‐chemical (THMC) processes that alter their long‐range hydraulic transport properties and modify subsurface behavior and activities. The location of subsurface fractures makes it necessary to use remote sensing techniques such as passive or active seismic monitoring for fracture characterization. In this paper, we develop a machine learning approach to monitor the evolution of fracture properties using passive seismic sources in a laboratory setting and using active seismic monitoring from the Sanford Underground Research Facility in Lead, South Dakota, at a depth of 1.25 km in amphibolite rock during stimulation of natural fractures as well as during induced fracturing. The unsupervised metric learning technique applies tandem neural networks (twin (Siamese) or triplet) with contrastive loss and adaptive margins to track slowly varying systems for which class or similarity labels are not available. The approach adopts locality‐sensitive hashing to divide time‐ordered contiguous data into an arbitrary number of pseudo‐classes. Contrastive‐loss training with many hash bins generates an evolving latent‐space trajectory. This approach enables unsupervised metric learning for seismic data stacks under the condition of contiguous state sampling and slowly varying fracture properties. The displacement discontinuity theory provides a mechanistic foundation for the fracture‐dependent trajectories that are related to relaxation of fractures with time‐dependent specific stiffness responding to changes in stress or fluid saturation. The transmission and reflection of seismic waves propagating across fractures in rock depend on fracture properties related to how easily fluids flow through the fractures. Therefore, by monitoring seismic data, it may be possible to predict fluid flow in geothermal systems. However, the seismic signatures are complicated, which require novel data analysis to extract evolving fracture properties, such as a new machine learning technique developed for continuous active seismic monitoring. Seismic waves reflecting or transmitting across fractures provide information on changing fluid saturations within the fractures Machine learning is applied to continuous active seismic source monitoring of evolving fracture properties Evolving fracture properties can be detected using unsupervised machine learning with dimensionality reduction
AbstractList Fractures evolve in time through thermal‐hydraulic‐mechanical‐chemical (THMC) processes that alter their long‐range hydraulic transport properties and modify subsurface behavior and activities. The location of subsurface fractures makes it necessary to use remote sensing techniques such as passive or active seismic monitoring for fracture characterization. In this paper, we develop a machine learning approach to monitor the evolution of fracture properties using passive seismic sources in a laboratory setting and using active seismic monitoring from the Sanford Underground Research Facility in Lead, South Dakota, at a depth of 1.25 km in amphibolite rock during stimulation of natural fractures as well as during induced fracturing. The unsupervised metric learning technique applies tandem neural networks (twin (Siamese) or triplet) with contrastive loss and adaptive margins to track slowly varying systems for which class or similarity labels are not available. The approach adopts locality‐sensitive hashing to divide time‐ordered contiguous data into an arbitrary number of pseudo‐classes. Contrastive‐loss training with many hash bins generates an evolving latent‐space trajectory. This approach enables unsupervised metric learning for seismic data stacks under the condition of contiguous state sampling and slowly varying fracture properties. The displacement discontinuity theory provides a mechanistic foundation for the fracture‐dependent trajectories that are related to relaxation of fractures with time‐dependent specific stiffness responding to changes in stress or fluid saturation. The transmission and reflection of seismic waves propagating across fractures in rock depend on fracture properties related to how easily fluids flow through the fractures. Therefore, by monitoring seismic data, it may be possible to predict fluid flow in geothermal systems. However, the seismic signatures are complicated, which require novel data analysis to extract evolving fracture properties, such as a new machine learning technique developed for continuous active seismic monitoring. Seismic waves reflecting or transmitting across fractures provide information on changing fluid saturations within the fractures Machine learning is applied to continuous active seismic source monitoring of evolving fracture properties Evolving fracture properties can be detected using unsupervised machine learning with dimensionality reduction
Author Pyrak‐Nolte, Laura J.
Nolte, David D.
Hopp, Chet
Author_xml – sequence: 1
  givenname: David D.
  orcidid: 0000-0002-4872-9357
  surname: Nolte
  fullname: Nolte, David D.
  organization: Department of Physics and Astronomy Purdue University West Lafayette IN USA
– sequence: 2
  givenname: Laura J.
  orcidid: 0000-0001-6826-5214
  surname: Pyrak‐Nolte
  fullname: Pyrak‐Nolte, Laura J.
  organization: Department of Physics and Astronomy Purdue University West Lafayette IN USA, Department of Earth, Atmospheric and Planetary Sciences Purdue University West Lafayette IN USA, Lyles School of Civil Engineering Purdue University West Lafayette IN USA
– sequence: 3
  givenname: Chet
  orcidid: 0000-0002-7980-0494
  surname: Hopp
  fullname: Hopp, Chet
  organization: Energy Geosciences Division Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory Berkeley CA USA
BookMark eNpNUM1OAjEYbAwmInLzAfoArrZft-3u0RBWNEu8wHnTP6RmaUm7kPD2QvDAaSaZn2TmEY1CDA6hZ0peKYH6DQjwrwUhRHB5h8ZQ16zgQMnohj-gac6_Zw9jQCoix8gtY_BDTD784CYpMxySw4uTTXHnzFYFb1SP58fYHwYfA_YBD1uHW6WxChY33vUWr_MlvQ75sHfp6LOzeOmG5A1unUrhLD6h-43qs5v-4wStmvlqtija74_P2XtbmPMEWVBBDbe01JWoy5owoFaDKIl0koOUxoKq6EbquhLCakE155oD09paKDWwCXq51poUc05u0-2T36l06ijpLid1tyexPw5FWwo
Cites_doi 10.1109/CVPR.2016.581
10.1785/0120070110
10.1093/gji/ggab316
10.1146/annurev‐earth‐053018‐060119
10.1109/tgrs.2024.3394592
10.1029/jb095ib06p08617
10.1121/1.385077
10.1016/s0148‐9062(96)00022‐8
10.1007/s11042‐015‐2847‐3
10.1080/2150704x.2023.2264493
10.3390/jsan11030050
10.1111/j.1365‐2478.2011.01000.x
10.3390/en16073098
10.1561/2200000006
10.1038/s41467‐020‐19087‐z
10.1029/2020jb021444
10.1109/IGARSS53475.2024.10641807
10.1109/jstars.2020.3038922
10.1190/1.2780781
10.3390/math12182824
10.1109/jstars.2023.3280029
10.1007/s00024‐017‐1569‐z
10.1016/j.neunet.2014.09.003
10.1142/s0218001493000339
10.1109/tpami.2013.50
10.1029/2021JB023005
10.1029/2021rg000744
10.1190/1.1442401
10.1038/s41598‐024‐84067‐y
10.1785/0120210095
10.1190/Geo2017‐0524.1
10.31577/cai_2020_6_1172
10.1016/j.geothermics.2007.03.003
10.1016/j.cviu.2018.08.003
10.1038/ncomms10663
10.3390/sym11091066
10.1111/j.1365‐2478.2007.00688.x
10.1038/s41467‐020‐17841‐x
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1029/2025JH000657
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2993-5210
ExternalDocumentID 10_1029_2025JH000657
GroupedDBID 0R~
24P
AAMMB
AAYXX
ACCMX
AEFGJ
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
WIN
ID FETCH-LOGICAL-c1027-161c5d14b869490321db26407e75277cd2a81f7b9866db61b55b523bbdd24b23
ISSN 2993-5210
IngestDate Thu Aug 21 00:36:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1027-161c5d14b869490321db26407e75277cd2a81f7b9866db61b55b523bbdd24b23
ORCID 0000-0002-4872-9357
0000-0002-7980-0494
0000-0001-6826-5214
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2025JH000657
ParticipantIDs crossref_primary_10_1029_2025JH000657
PublicationCentury 2000
PublicationDate 2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-00
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2025
References e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
Nolte D. D. (e_1_2_8_32_1) 2025
e_1_2_8_41_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_38_1
Hopp C. (e_1_2_8_14_1) 2024
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
Nolte D. D. (e_1_2_8_31_1) 2022
e_1_2_8_2_1
Kendall K. (e_1_2_8_17_1) 1971; 323
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
Kneafsey T. (e_1_2_8_18_1) 2024
e_1_2_8_40_1
e_1_2_8_39_1
Pyrak‐Nolte L. J. (e_1_2_8_35_1) 2019
e_1_2_8_16_1
e_1_2_8_37_1
Gu B. L. (e_1_2_8_10_1) 1996; 101
Hopp C. (e_1_2_8_15_1) 2025
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_50_1
References_xml – ident: e_1_2_8_19_1
  doi: 10.1109/CVPR.2016.581
– ident: e_1_2_8_7_1
  doi: 10.1785/0120070110
– ident: e_1_2_8_25_1
  doi: 10.1093/gji/ggab316
– ident: e_1_2_8_44_1
  doi: 10.1146/annurev‐earth‐053018‐060119
– ident: e_1_2_8_49_1
  doi: 10.1109/tgrs.2024.3394592
– ident: e_1_2_8_37_1
  doi: 10.1029/jb095ib06p08617
– ident: e_1_2_8_42_1
  doi: 10.1121/1.385077
– ident: e_1_2_8_33_1
  doi: 10.1016/s0148‐9062(96)00022‐8
– ident: e_1_2_8_51_1
  doi: 10.1007/s11042‐015‐2847‐3
– ident: e_1_2_8_9_1
  doi: 10.1080/2150704x.2023.2264493
– ident: e_1_2_8_20_1
  doi: 10.3390/jsan11030050
– ident: e_1_2_8_12_1
  doi: 10.1111/j.1365‐2478.2011.01000.x
– ident: e_1_2_8_26_1
  doi: 10.3390/en16073098
– ident: e_1_2_8_13_1
– volume-title: EGS collab experiment 2: CASSM system
  year: 2024
  ident: e_1_2_8_14_1
– ident: e_1_2_8_3_1
  doi: 10.1561/2200000006
– ident: e_1_2_8_36_1
  doi: 10.1038/s41467‐020‐19087‐z
– start-page: 233
  volume-title: Science of carbon storage in deep saline formations: Process coupling across time and spatial scales
  year: 2019
  ident: e_1_2_8_35_1
– ident: e_1_2_8_48_1
  doi: 10.1029/2020jb021444
– ident: e_1_2_8_27_1
  doi: 10.1109/IGARSS53475.2024.10641807
– ident: e_1_2_8_8_1
  doi: 10.1109/jstars.2020.3038922
– ident: e_1_2_8_34_1
  doi: 10.1190/1.2780781
– ident: e_1_2_8_47_1
  doi: 10.3390/math12182824
– ident: e_1_2_8_29_1
– ident: e_1_2_8_24_1
  doi: 10.1109/jstars.2023.3280029
– ident: e_1_2_8_50_1
– ident: e_1_2_8_11_1
  doi: 10.1007/s00024‐017‐1569‐z
– ident: e_1_2_8_41_1
  doi: 10.1016/j.neunet.2014.09.003
– ident: e_1_2_8_5_1
  doi: 10.1142/s0218001493000339
– ident: e_1_2_8_6_1
– ident: e_1_2_8_4_1
  doi: 10.1109/tpami.2013.50
– ident: e_1_2_8_30_1
  doi: 10.1029/2021JB023005
– volume-title: EGS collab experiment 2: Continous active source seismic monitoring (CASSM)
  year: 2025
  ident: e_1_2_8_15_1
– volume: 323
  start-page: 321
  year: 1971
  ident: e_1_2_8_17_1
  article-title: An ultrasonic study of the area of contact between stationary and sliding surfaces
  publication-title: Proc. Royal Soc. London, Series A
– ident: e_1_2_8_46_1
  doi: 10.1029/2021rg000744
– ident: e_1_2_8_23_1
  doi: 10.1190/1.1442401
– ident: e_1_2_8_28_1
  doi: 10.1038/s41598‐024‐84067‐y
– ident: e_1_2_8_2_1
  doi: 10.1785/0120210095
– volume-title: The EGS collab project – Summaries of experiments 2 and 3: Experiments at 1.25 km depth at the Sanford Underground Research Facility
  year: 2024
  ident: e_1_2_8_18_1
– volume-title: Data for monitoring fracture saturation with internal transportable seismic sources and twin neural networks version 1.0
  year: 2022
  ident: e_1_2_8_31_1
– ident: e_1_2_8_39_1
  doi: 10.1190/Geo2017‐0524.1
– ident: e_1_2_8_45_1
  doi: 10.31577/cai_2020_6_1172
– volume: 101
  start-page: 25337
  issue: 11
  year: 1996
  ident: e_1_2_8_10_1
  article-title: Incidence of plane waves upon a fracture
  publication-title: Journal of Geophysical Research
– ident: e_1_2_8_22_1
  doi: 10.1016/j.geothermics.2007.03.003
– ident: e_1_2_8_40_1
  doi: 10.1016/j.cviu.2018.08.003
– ident: e_1_2_8_38_1
  doi: 10.1038/ncomms10663
– volume-title: Monitoring fracture hydromechanical evolution in the lab and field using unsupervised metric learning
  year: 2025
  ident: e_1_2_8_32_1
– ident: e_1_2_8_16_1
  doi: 10.3390/sym11091066
– ident: e_1_2_8_21_1
  doi: 10.1111/j.1365‐2478.2007.00688.x
– ident: e_1_2_8_43_1
  doi: 10.1038/s41467‐020‐17841‐x
SSID ssj0003320807
Score 2.3019829
Snippet Fractures evolve in time through thermal‐hydraulic‐mechanical‐chemical (THMC) processes that alter their long‐range hydraulic transport properties and modify...
SourceID crossref
SourceType Index Database
Title Monitoring Fracture Hydromechanical Evolution in the Lab and Field Using Unsupervised Metric Learning
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5TL15EUfE3OehpdK5p07VHUUcZztMEb6NpMhWlK3MT9OCf4N_se0maVZmgXkoJaVryfXl9yfteQsixCnNgSRR7MoZBHiZt4SWjjvSUj2GumPORwgTn_nWU3oS9W37baHzUVEuzqWjlbwvzSv6DKpQBrpgl-wdkXaNQAPeAL1wBYbj-CmMzILWCrovZThgMSF_1DgSY0Kv7__LFfkKlaLzKhI4YdFG71jSSgZvieVai1XgG_7OPh2zl1c6rdz-4r3dqXFYY2x2D7lt4jtE9-q1P1YqLTZsrZ19D_tfjJ3Mun9bUNy9azkS_TrJHp8Bw1TB9O2v2XLV0XJZGLWATuO3CBeNOmWXtG0PpIHgPJiyjFpRZA81qPAwWmv02w11T8SW9VHtVnfnvrQrpf_vrOS2ijsKzZFh_eomsMJh2oKHvv8_X7IKAtU0GvvtOm0sBDZzWG6h5OTV3ZbBO1ixQ9MyQZoM0VLFJ1JwwtCIM_UYY6ghDHwoKhKFAGAowUk0YqglD64ShhjC0IswWGXQvB-epZ8_Z8HIckR44_TmXfijiKIHRGjBfCoYBXtXh0A25ZFnsjzoiiaNIisgXnAvOAiGkZKFgwTZZLsaF2iHUzyUfJT60wrIQpt5QWYFPG8KkW3IZsF1yUnXLsDS7qQwX9f_eL-vtk9U5sw7I8nQyU4fgJE7FkV5cOdL4fQJBMGaM
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+Fracture+Hydromechanical+Evolution+in+the+Lab+and+Field+Using+Unsupervised+Metric+Learning&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Nolte%2C+David+D.&rft.au=Pyrak%E2%80%90Nolte%2C+Laura+J.&rft.au=Hopp%2C+Chet&rft.date=2025-09-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=2&rft.issue=3&rft_id=info:doi/10.1029%2F2025JH000657&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2025JH000657
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon