Optimization of Process Parameters in Electron Beam Cold Hearth Melting and Casting of Ti-6wt%Al-4wt%V via CFD-ML Approach
During electron beam cold hearth melting (EBCHM) of Ti-6wt%Al-4wt%V titanium alloy, aluminum volatilization causes compositional segregation in the ingot, significantly degrading material performance. Traditional methods (e.g., the Langmuir equation) struggle to accurately predict aluminum diffusion...
Saved in:
Published in | Metals (Basel ) Vol. 15; no. 8; p. 897 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
11.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | During electron beam cold hearth melting (EBCHM) of Ti-6wt%Al-4wt%V titanium alloy, aluminum volatilization causes compositional segregation in the ingot, significantly degrading material performance. Traditional methods (e.g., the Langmuir equation) struggle to accurately predict aluminum diffusion and compensation behaviors, while computational fluid dynamics (CFD), although capable of resolving multiphysics fields in the molten pool, suffer from high computational costs and insufficient research on segregation control. To address these issues, this study proposes a CFD-machine learning (backpropagation neural network, CFD-ML(BP)) approach to achieve precise prediction and optimization of aluminum segregation. First, CFD simulations are performed to obtain the molten pool’s temperature field, flow field, and aluminum concentration distribution, with model reliability validated experimentally. Subsequently, a BP neural network is trained using large-scale CFD datasets to establish an aluminum concentration prediction model, capturing the nonlinear relationships between process parameters (e.g., casting speed, temperature) and compositional segregation. Finally, optimization algorithms are applied to determine optimal process parameters, which are validated via CFD multiphysics coupling simulations. The results demonstrate that this method predicts the average aluminum concentration in the ingot with an error of ≤3%, significantly reducing computational costs. It also elucidates the kinetic mechanisms of aluminum volatilization and diffusion, revealing that non-monotonic segregation trends arise from the dynamic balance of volatilization, diffusion, convection, and solidification. Moreover, the most uniform aluminum distribution (average 6.8 wt.%, R2 = 0.002) is achieved in a double-overflow mold at a casting speed of 18 mm/min and a temperature of 2168 K. |
---|---|
AbstractList | During electron beam cold hearth melting (EBCHM) of Ti-6wt%Al-4wt%V titanium alloy, aluminum volatilization causes compositional segregation in the ingot, significantly degrading material performance. Traditional methods (e.g., the Langmuir equation) struggle to accurately predict aluminum diffusion and compensation behaviors, while computational fluid dynamics (CFD), although capable of resolving multiphysics fields in the molten pool, suffer from high computational costs and insufficient research on segregation control. To address these issues, this study proposes a CFD-machine learning (backpropagation neural network, CFD-ML(BP)) approach to achieve precise prediction and optimization of aluminum segregation. First, CFD simulations are performed to obtain the molten pool’s temperature field, flow field, and aluminum concentration distribution, with model reliability validated experimentally. Subsequently, a BP neural network is trained using large-scale CFD datasets to establish an aluminum concentration prediction model, capturing the nonlinear relationships between process parameters (e.g., casting speed, temperature) and compositional segregation. Finally, optimization algorithms are applied to determine optimal process parameters, which are validated via CFD multiphysics coupling simulations. The results demonstrate that this method predicts the average aluminum concentration in the ingot with an error of ≤3%, significantly reducing computational costs. It also elucidates the kinetic mechanisms of aluminum volatilization and diffusion, revealing that non-monotonic segregation trends arise from the dynamic balance of volatilization, diffusion, convection, and solidification. Moreover, the most uniform aluminum distribution (average 6.8 wt.%, R2 = 0.002) is achieved in a double-overflow mold at a casting speed of 18 mm/min and a temperature of 2168 K. |
Author | Liu, Jianglu Yin, Shubiao Gao, Lei Ji, Haohang Han, Tianrui Shi, Yaming Xin, Yuchen Guo, Shenghui Cheng, Zina Zhao, Qiuni Liu, Yang Zhang, Huanhuan |
Author_xml | – sequence: 1 givenname: Yuchen surname: Xin fullname: Xin, Yuchen – sequence: 2 givenname: Jianglu surname: Liu fullname: Liu, Jianglu – sequence: 3 givenname: Yaming surname: Shi fullname: Shi, Yaming – sequence: 4 givenname: Zina surname: Cheng fullname: Cheng, Zina – sequence: 5 givenname: Yang surname: Liu fullname: Liu, Yang – sequence: 6 givenname: Lei orcidid: 0000-0003-1531-8778 surname: Gao fullname: Gao, Lei – sequence: 7 givenname: Huanhuan surname: Zhang fullname: Zhang, Huanhuan – sequence: 8 givenname: Haohang surname: Ji fullname: Ji, Haohang – sequence: 9 givenname: Tianrui surname: Han fullname: Han, Tianrui – sequence: 10 givenname: Shenghui surname: Guo fullname: Guo, Shenghui – sequence: 11 givenname: Shubiao orcidid: 0009-0003-8424-1652 surname: Yin fullname: Yin, Shubiao – sequence: 12 givenname: Qiuni orcidid: 0000-0001-6623-7092 surname: Zhao fullname: Zhao, Qiuni |
BookMark | eNpNkEFPwjAcxRuDiYic_AJNjCcz_Xdt1-2IE9QEAgf0upS1k5JtxbZo5NM7xAPv8t7hl_eSd4l6rW01QtcE7inN4KHRgXBIIc3EGerHIHjEBJDeSb5AQ-830CmNE8iyPtrPt8E0Zi-DsS22FV44W2rv8UI62TVq57Fp8bjWZXAd8ahlg3NbK_yipQtrPNN1MO0Hlq3CufR_uatZmij5DrejOmKdveMvI3E-eYpmUzzabp2V5foKnVey9nr47wP0Nhkv85doOn9-zUfTqCRARJQQrrkSlFdUckIzUlaxSipgijOARMiVoHS1Ai5JwoWO0xRUSiFVhLNSaUIH6ObY281-7rQPxcbuXNtNFjRmDJhIyIG6O1Kls947XRVbZxrpfgoCxeHf4uRf-gv95GyZ |
Cites_doi | 10.1007/s12613-024-3023-4 10.1016/j.jmatprotec.2024.118346 10.1007/s12613-024-3006-5 10.1007/s11663-020-01866-0 10.1038/s41586-023-05952-6 10.1016/j.jmatprotec.2017.04.016 10.1016/j.jma.2017.09.001 10.1088/2053-1591/ab1807 10.1007/s11663-003-0097-7 10.1016/j.fuel.2020.118338 10.1016/j.apm.2015.08.008 10.1016/j.ijheatmasstransfer.2018.05.081 10.1117/12.3015531 10.1016/j.jmrt.2023.09.274 10.1007/s12613-024-3003-8 10.1016/j.actamat.2012.10.043 10.3390/met13101634 10.1016/j.compag.2022.107350 10.1016/j.jma.2021.04.001 10.1016/j.jmrt.2024.03.096 10.1109/TR.2021.3134369 10.1021/acs.iecr.4c02375 10.3390/ma14237444 10.1016/j.combustflame.2021.111852 10.1016/j.jallcom.2023.169773 10.1007/s00521-016-2195-x 10.1088/2631-7990/ad16bb 10.1016/j.csite.2025.106287 10.1016/j.cep.2022.108900 10.1016/j.enconman.2018.02.062 10.3390/met14080884 10.3390/en12224360 10.1007/s11837-022-05396-9 10.1016/j.ijmst.2022.06.005 10.1016/j.pmatsci.2024.101277 10.1080/00084433.2022.2099731 10.1007/s11837-020-04089-5 10.1007/s12613-022-2455-y 10.1007/s11663-003-0071-4 10.1007/s00521-018-3902-6 10.1016/j.jmrt.2023.08.198 10.1016/j.vacuum.2017.03.009 10.1016/S1003-6326(22)65862-X 10.1016/j.jmrt.2025.05.098 10.3390/min14060601 10.1016/j.conengprac.2020.104454 10.1016/j.ijmst.2023.02.004 10.1016/j.ijheatmasstransfer.2019.118976 10.1007/s11837-022-05504-9 10.1007/s11663-024-03393-8 10.1007/s12613-024-2928-2 10.1007/978-3-031-80676-6_139 10.1038/s41586-021-04223-6 10.2497/jjspm.15F-T14-07 10.1088/2053-1591/abeb4d 10.1016/j.knosys.2011.04.019 10.1007/s11663-004-0025-5 10.1007/s11663-019-01719-5 10.1016/j.ijheatmasstransfer.2019.05.052 10.2991/978-94-6463-514-0_65 10.1016/j.ijheatmasstransfer.2022.123769 |
ContentType | Journal Article |
Copyright | 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.3390/met15080897 |
DatabaseName | CrossRef METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Materials Science Collection Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection METADEX ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2075-4701 |
ExternalDocumentID | 10_3390_met15080897 |
GroupedDBID | .4S 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION D1I GROUPED_DOAJ HCIFZ IAO ITC KB. KQ8 MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PQGLB PROAC TUS 8BQ 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c1017-615e5d735f3a51391cf2d6f04d540067ab733bb05a1657e2880d8308d154cde13 |
IEDL.DBID | BENPR |
ISSN | 2075-4701 |
IngestDate | Thu Aug 28 04:07:48 EDT 2025 Thu Aug 14 00:13:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1017-615e5d735f3a51391cf2d6f04d540067ab733bb05a1657e2880d8308d154cde13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0003-8424-1652 0000-0003-1531-8778 0000-0001-6623-7092 |
OpenAccessLink | https://www.proquest.com/docview/3244047611?pq-origsite=%requestingapplication% |
PQID | 3244047611 |
PQPubID | 2032361 |
ParticipantIDs | proquest_journals_3244047611 crossref_primary_10_3390_met15080897 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-11 |
PublicationDateYYYYMMDD | 2025-08-11 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Metals (Basel ) |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Yang (ref_5) 2021; 9 Segarra (ref_56) 2023; 33 Zhao (ref_49) 2025; 32 Cui (ref_62) 2019; 31 Ouarga (ref_7) 2023; 26 Martin (ref_18) 2024; 327 Li (ref_4) 2023; 27 Qiu (ref_17) 2022; 29 ref_19 Xin (ref_22) 2025; 36 Wright (ref_61) 2022; 601 Klassen (ref_39) 2017; 247 Cui (ref_1) 2024; 144 Liu (ref_8) 2024; 6 Vutova (ref_40) 2016; 40 Chen (ref_52) 2020; 100 ref_60 Kumar (ref_25) 2023; 62 Ceng (ref_26) 2020; 49 Li (ref_50) 2017; 28 Weng (ref_23) 2025; 32 Yang (ref_53) 2018; 164 ref_69 Strumza (ref_16) 2022; 58 ref_24 ref_68 Wang (ref_66) 2019; 6 ref_21 Gao (ref_36) 2020; 72 ref_65 Song (ref_2) 2023; 618 ref_64 You (ref_9) 2017; 5 Bellot (ref_30) 2020; 51 Li (ref_10) 2023; 948 Namchanthra (ref_20) 2025; 72 Nguyen (ref_51) 2023; 202 Sun (ref_12) 2025; 32 ref_29 Guo (ref_63) 2011; 24 Zhong (ref_58) 2021; 71 Kharicha (ref_27) 2020; 51 Cui (ref_55) 2022; 237 Chung (ref_48) 2022; 202 Akhonin (ref_43) 2003; 34 Chen (ref_67) 2018; 126 ref_33 Liu (ref_31) 2016; 45 Ivanchenko (ref_38) 2003; 34 Zhu (ref_45) 2022; 74 Liu (ref_32) 2017; 141 Wang (ref_47) 2024; 56 Banerjee (ref_6) 2013; 61 Pirro (ref_28) 2025; 32 ref_37 Lin (ref_57) 2022; 32 Gao (ref_41) 2020; 147 Ullah (ref_13) 2024; 30 Lee (ref_11) 2025; 72 Zheng (ref_35) 2022; 174 Peng (ref_44) 2021; 8 ref_46 Jin (ref_59) 2024; 63 ref_42 Zhao (ref_15) 2022; 32 Madapana (ref_14) 2023; 75 ref_3 Sevinc (ref_54) 2020; 278 Semiatin (ref_70) 2004; 35 Gao (ref_34) 2019; 139 |
References_xml | – volume: 32 start-page: 1641 year: 2025 ident: ref_12 article-title: Strength–ductility synergy strategy of Ti6Al4V alloy fabricated by metal injection molding publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-024-3023-4 – volume: 327 start-page: 118346 year: 2024 ident: ref_18 article-title: Rheology of Ti-6Al-4V alloy under non equilibrium conditions during β forging publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2024.118346 – volume: 32 start-page: 414 year: 2025 ident: ref_28 article-title: A novel solution treatment and aging for powder bed fusion-laser beam Ti-6Al-2Sn-4Zr-6Mo alloy: Microstructural and mechanical characterization publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-024-3006-5 – volume: 51 start-page: 1329 year: 2020 ident: ref_30 article-title: Numerical simulation of the plasma arc melting cold hearth refining process (PAMCHR) publication-title: Metall. Mater. Trans. B doi: 10.1007/s11663-020-01866-0 – volume: 45 start-page: 9 year: 2016 ident: ref_31 article-title: Research progress of electron beam clod hearth melting for titanium and titanium alloys publication-title: Hot Work. Technol. – volume: 58 start-page: 103045 year: 2022 ident: ref_16 article-title: Thermophysical properties of Ti-6Al-4V fabricated by powder bed fusion methods publication-title: Addit. Manuf. – volume: 618 start-page: 63 year: 2023 ident: ref_2 article-title: Strong and ductile titanium–oxygen–iron alloys by additive manufacturing publication-title: Nature doi: 10.1038/s41586-023-05952-6 – volume: 247 start-page: 280 year: 2017 ident: ref_39 article-title: Numerical simulation of multi-component evaporation during selective electron beam melting of TiAl publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2017.04.016 – volume: 5 start-page: 239 year: 2017 ident: ref_9 article-title: Recent research and developments on wrought magnesium alloys publication-title: J. Magnes. Alloys doi: 10.1016/j.jma.2017.09.001 – ident: ref_68 – volume: 6 start-page: 0865h4 year: 2019 ident: ref_66 article-title: Effect of crystallizer’ s three-dimension on the solid-liquid interface morphology of the large-scale Ti64 during EBCHM publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ab1807 – ident: ref_65 – volume: 34 start-page: 911 year: 2003 ident: ref_38 article-title: Evaluation of Evaporation Losses during Electron-Beam Melting of Ti-Al-V Alloys publication-title: Metall. Mater. Trans. B doi: 10.1007/s11663-003-0097-7 – volume: 278 start-page: 118338 year: 2020 ident: ref_54 article-title: Investigation of performance and exhaust emissions of a chromium oxide coated diesel engine fueled with dibutyl maleate mixtures by experimental and ANN technique publication-title: Fuel doi: 10.1016/j.fuel.2020.118338 – volume: 40 start-page: 1565 year: 2016 ident: ref_40 article-title: Non-stationary heat model for electron beam melting and refining—An economic and conservative numerical method publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2015.08.008 – ident: ref_42 – volume: 126 start-page: 843 year: 2018 ident: ref_67 article-title: Numerical study on the characteristics of solute distribution and the formation of centerline segregation in continuous casting (CC) slab publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.05.081 – ident: ref_33 doi: 10.1117/12.3015531 – volume: 27 start-page: 944 year: 2023 ident: ref_4 article-title: Development and applications of aluminum alloys for aerospace industry publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2023.09.274 – volume: 32 start-page: 154 year: 2025 ident: ref_23 article-title: Robust interface and excellent as-built mechanical properties of Ti–6Al–4V fabricated through laser-aided additive manufacturing with powder and wire publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-024-3003-8 – volume: 61 start-page: 844 year: 2013 ident: ref_6 article-title: Perspectives on titanium science and technology publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.10.043 – ident: ref_24 doi: 10.3390/met13101634 – volume: 202 start-page: 107350 year: 2022 ident: ref_48 article-title: Application of machine-learned metadata-driven model for dairy barn ventilation simulation publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107350 – volume: 9 start-page: 705 year: 2021 ident: ref_5 article-title: Research advances in magnesium and magnesium alloys worldwide in 2020 publication-title: J. Magnes. Alloys doi: 10.1016/j.jma.2021.04.001 – volume: 30 start-page: 894 year: 2024 ident: ref_13 article-title: Thermo-metallo-mechanical based phase transformation modeling for high-speed milling of Ti–6Al–4V through stress-strain and temperature effects publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2024.03.096 – volume: 71 start-page: 457 year: 2021 ident: ref_58 article-title: Unmanned aerial vehicle flight data anomaly detection and recovery prediction based on spatio-temporal correlation publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2021.3134369 – volume: 49 start-page: 833 year: 2020 ident: ref_26 article-title: Calculation of flow, heat transfer and evaporation during the Electron Beam Cold Hearth Melting of Ti-6al-4V Alloy publication-title: RARE Met. Mater. Eng. – volume: 63 start-page: 16598 year: 2024 ident: ref_59 article-title: A Neural Network Method for Characterizing Particle Clusters in Gas–Solid Fluidized Beds publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.4c02375 – ident: ref_19 doi: 10.3390/ma14237444 – volume: 237 start-page: 111852 year: 2022 ident: ref_55 article-title: Investigation on the ignition delay prediction model of multi-component surrogates based on back propagation (BP) neural network publication-title: Combust. Flame doi: 10.1016/j.combustflame.2021.111852 – volume: 948 start-page: 169773 year: 2023 ident: ref_10 article-title: Review of micro-arc oxidation of titanium alloys: Mechanism, properties and applications publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2023.169773 – volume: 28 start-page: 2247 year: 2017 ident: ref_50 article-title: Optimization of iron ore sintering process based on ELM model and multi-criteria evaluation publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2195-x – volume: 6 start-page: 022004 year: 2024 ident: ref_8 article-title: Review on laser directed energy deposited aluminum alloys publication-title: Int. J. Extrem. Manuf. doi: 10.1088/2631-7990/ad16bb – volume: 72 start-page: 106287 year: 2025 ident: ref_20 article-title: Numerical analysis of molten iron flow and heat transfer in plumbing casting defect detection using split tracking approach publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2025.106287 – volume: 174 start-page: 108900 year: 2022 ident: ref_35 article-title: Modeling of process and analysis of drying characteristics for natural TiO2 under microwave heating publication-title: Chem. Eng. Process.-Process Intensif. doi: 10.1016/j.cep.2022.108900 – volume: 164 start-page: 15 year: 2018 ident: ref_53 article-title: Artificial neural network (ANN) based prediction and optimization of an organic Rankine cycle (ORC) for diesel engine waste heat recovery publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.02.062 – ident: ref_69 doi: 10.3390/met14080884 – ident: ref_3 – ident: ref_64 doi: 10.3390/en12224360 – volume: 74 start-page: 3811 year: 2022 ident: ref_45 article-title: Numerical simulation of molybdenum and nickel distribution in large-scale slab ingots of Ti-0.3 wt.% Mo-0.8 wt.% Ni alloys during electron beam cold hearth melting publication-title: JOM doi: 10.1007/s11837-022-05396-9 – volume: 32 start-page: 1021 year: 2022 ident: ref_57 article-title: An investigation of machine learning techniques to estimate minimum horizontal stress magnitude from borehole breakout publication-title: Int. J. Min. Sci. Technol. doi: 10.1016/j.ijmst.2022.06.005 – volume: 144 start-page: 101277 year: 2024 ident: ref_1 article-title: Towards load-bearing biomedical titanium-based alloys: From essential requirements to future developments publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2024.101277 – volume: 62 start-page: 383 year: 2023 ident: ref_25 article-title: Removal of metallic and non-metallic impurities by hydrogen plasma-arc melting publication-title: Can. Metall. Q. doi: 10.1080/00084433.2022.2099731 – volume: 72 start-page: 1953 year: 2020 ident: ref_36 article-title: Numerical study on the solid–Liquid interface evolution of large-Scale titanium alloy ingots during high energy consumption electron beam cold hearth melting publication-title: JOM doi: 10.1007/s11837-020-04089-5 – volume: 29 start-page: 599 year: 2022 ident: ref_17 article-title: Current situation and development trend of titanium metal industry in China publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-022-2455-y – volume: 34 start-page: 447 year: 2003 ident: ref_43 article-title: Mathematical modeling of aluminum evaporation during electron-beam cold-hearth melting of Ti-6Al-4V ingots publication-title: Metall. Mater. Trans. B doi: 10.1007/s11663-003-0071-4 – volume: 31 start-page: 8205 year: 2019 ident: ref_62 article-title: Research on prediction model of geotechnical parameters based on BP neural network publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3902-6 – volume: 26 start-page: 5105 year: 2023 ident: ref_7 article-title: Corrosion of iron and nickel based alloys in sulphuric acid: Challenges and prevention strategies publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2023.08.198 – volume: 141 start-page: 1 year: 2017 ident: ref_32 article-title: Numerical simulation of EBCHM for the large-scale TC4 alloy slab ingot during the solidification process publication-title: Vacuum doi: 10.1016/j.vacuum.2017.03.009 – volume: 32 start-page: 1144 year: 2022 ident: ref_15 article-title: Microstructures and mechanical properties of TC4/AZ91D bimetal prepared by solid–liquid compound casting combined with Zn/Al composite interlayer publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(22)65862-X – volume: 36 start-page: 8671 year: 2025 ident: ref_22 article-title: The numerical simulation of element segregation control during the electron beam cold hearth melting process of large-sized Ti-6wt% Al-4wt% V titanium alloy slab publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2025.05.098 – ident: ref_37 doi: 10.3390/min14060601 – volume: 100 start-page: 104454 year: 2020 ident: ref_52 article-title: A semi-supervised linear–nonlinear least-square learning network for prediction of carbon efficiency in iron ore sintering process publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2020.104454 – volume: 33 start-page: 555 year: 2023 ident: ref_56 article-title: Rock mass structural recognition from drill monitoring technology in underground mining using discontinuity index and machine learning techniques publication-title: Int. J. Min. Sci. Technol. doi: 10.1016/j.ijmst.2023.02.004 – volume: 147 start-page: 118976 year: 2020 ident: ref_41 article-title: Numerical study of aluminum segregation during electron beam cold hearth melting for large-scale Ti-6 wt% Al-4 wt% V alloy slab ingots publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.118976 – volume: 75 start-page: 109 year: 2023 ident: ref_14 article-title: Studies on laser shock peening on nanomechanical and mechano-chemical properties of titanium alloy (Ti6Al4V) publication-title: JOM doi: 10.1007/s11837-022-05504-9 – volume: 56 start-page: 1072 year: 2024 ident: ref_47 article-title: Study on the Evolution Patterns of the Molten Pool and Inclusion Movement in Electron Beam Cold Hearth Melting Process publication-title: Metall. Mater. Trans. B doi: 10.1007/s11663-024-03393-8 – ident: ref_29 – ident: ref_46 – volume: 32 start-page: 439 year: 2025 ident: ref_49 article-title: Understanding the local structure and thermophysical behavior of Mg-La liquid alloys via machine learning potential publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-024-2928-2 – ident: ref_21 doi: 10.1007/978-3-031-80676-6_139 – volume: 601 start-page: 549 year: 2022 ident: ref_61 article-title: Deep physical neural networks trained with backpropagation publication-title: Nature doi: 10.1038/s41586-021-04223-6 – volume: 72 start-page: S787 year: 2025 ident: ref_11 article-title: Effect of High Temperature on Microstructure and Hardness of Ti-6Al-4Dy Alloy by High Energy Ball Milling and Spark Plasma Sintering publication-title: J. Jpn. Soc. Powder Powder Metall. doi: 10.2497/jjspm.15F-T14-07 – volume: 8 start-page: 046505 year: 2021 ident: ref_44 article-title: Simulation study on temperature field and microstructure of Ti-6Al-4V alloy round ingot during EBCHM publication-title: Mater. Res. Express doi: 10.1088/2053-1591/abeb4d – volume: 24 start-page: 1048 year: 2011 ident: ref_63 article-title: A case study on a hybrid wind speed forecasting method using BP neural network publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2011.04.019 – volume: 35 start-page: 235 year: 2004 ident: ref_70 article-title: Diffusion models for evaporation losses during electron-beam melting of alpha/beta-titanium alloys publication-title: Metall. Mater. Trans. B doi: 10.1007/s11663-004-0025-5 – volume: 51 start-page: 222 year: 2020 ident: ref_27 article-title: A parametric study of the vacuum arc remelting (VAR) process: Effects of arc radius, side-arcing, and gas cooling publication-title: Metall. Mater. Trans. B doi: 10.1007/s11663-019-01719-5 – volume: 139 start-page: 764 year: 2019 ident: ref_34 article-title: Numerical study of aluminum segregation during electron beam cold hearth remelting for large-scale Ti-6 wt% Al-4 wt% V alloy round ingot publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.05.052 – ident: ref_60 doi: 10.2991/978-94-6463-514-0_65 – volume: 202 start-page: 123769 year: 2023 ident: ref_51 article-title: Shape optimization of pin fin array in a cooling channel using genetic algorithm and machine learning publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2022.123769 |
SSID | ssj0000826099 |
Score | 2.320386 |
Snippet | During electron beam cold hearth melting (EBCHM) of Ti-6wt%Al-4wt%V titanium alloy, aluminum volatilization causes compositional segregation in the ingot,... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
StartPage | 897 |
SubjectTerms | Aircraft Algorithms Aluminum Aluminum alloys Artificial intelligence Back propagation Back propagation networks Cold Computational fluid dynamics Computer simulation Computing costs Continuous casting Corrosion resistance Diffusion Electron beams Energy consumption Ingot casting Ingots Machine learning Magnesium alloys Manufacturing Mechanical properties Melt pools Neural networks Optimization Prediction models Process parameters Simulation Solidification Temperature distribution Titanium alloys Titanium base alloys Vanadium Vaporization |
Title | Optimization of Process Parameters in Electron Beam Cold Hearth Melting and Casting of Ti-6wt%Al-4wt%V via CFD-ML Approach |
URI | https://www.proquest.com/docview/3244047611 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT8IwFG4ULnow_owokh7w2NDRdisnAwgSI0gMGG5Lt3aRBAbK1MS_3tdRFC-etmRJD-_tvfd97ev3EKrWY6MblCeES6UJ1wJirqHqRDe4HxsWBzqfWtIf-L0xv5-IidtwW7m2yk1OzBO1XsR2j7wGhZ9TDqTbu1m-Ejs1yp6uuhEau6gIKVjKAiq2OoPh088uCxQ4HzDQ-mIeA35fm5vMSqBTaWWetkvR30ycl5fuITpwuBA31448QjsmPUb7W2qBJ-jrEcJ77u5N4kWCXZM_HirbYWVlMvE0xR032Aa3jJrj9mKmcQ9-5-wF983MNjljlWrcVqv8HZYZTYn_mV03Z4TD4xl_TBVud29J_wE3neL4KRp3O6N2j7jRCSS2MQaEUBihAyYSpgSAPC9O6tpPKDiD2wKlooCxKKJCeb4IDJiOasmo1ICoYm08doYK6SI15wjzSGoaRYHygFk1mJEAECgTsT1_A3jDS6i6sWK4XCtkhMAsrLHDLWOXUHlj4dCFySr8derF_58v0V7dDt61WrReGRWyt3dzBWggiypoV3bvKs7xlZxTfwMfArT5 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB6xcNjlgGAfWt5zgKOFE9tJekCoFEpZWnYPZcUt68SOtlKbAg0g-FH8RsZpAuXCjVMiWbKs8XjmG3vmG4AdP7WmwWXGZKQNk0bRmWton5mGDFIr0tCUXUt650HnQv66VJdz8FTXwri0ytomlobajFN3R75Hjl9ySUG3d3B1zVzXKPe6WrfQmKrFmX24p5Btsn96RPu76_vt436rw6quAix16kexkrLKhEJlQivCP16a-SbIOK1TOtutk1CIJOFKe4EKrU8KbiLBI0NgIzXWEzTvJ1iQgjy5q0xvn7zc6ZA7DQhxTcsAaZzvjWzhCNd55EilZh3fW7tfOrP2MixVKBSbU7VZgTmbf4XFGW7Cb_D4m4zJqKrSxHGGVUkB_tEun8uRcuIgx-OqjQ4eWj3C1nhosENSKv5jzw5dSjXq3GBLT8p_mqY_YMF9sdscMkmfv3g30NhqH7FeF5sVv_l3uPgQkf6A-Xyc25-AMokMT5JQexTHNYSNCI5woVL32kdgSq7CTi3F-GrKxxFTHOOEHc8IexU2agnH1aGcxK8qtPb-8DZ87vR73bh7en62Dl981_LXseB6GzBf3NzaTcIhRbJVbj7Cv4_Wtmd8rOw2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJwqHiqpQXm0B6teNf2Pg4IpXkopU2IUIt6W7xrr4iUbArZtqI_rb-OceKFcOHW0660krUaf_Z8Y898A3AYFtakXJZMJtowaRStuVSHzKQyKqwoYrPqWjIaR8ML-elSXW7BfVML49Iqmz1xtVGbReHOyNvk-CWXFHQH7dKnRUx6g49XP5jrIOVuWpt2GmuInNpftxS-LT-c9Giuj8Jw0D_vDpnvMMAKB0WKm5RVJhaqFFoRFwqKMjRRyemfpdvHdR4Lkedc6SBSsQ0J7CYRPDFEPApjA0HjPoLt2EVFLdg-7o8nX_6c8JBzjYh_rYsChUh5e25rJ7_OEycxtekG__UCK9c2eAY7npNiZw2i57BlqxfwdEOp8CXcfaatZe5rNnFRoi8wwIl22V1OohOnFfZ9Ux08tnqO3cXM4JDsVH_HkZ25BGvUlcGuXq7eaZjzKYtu66POjEl6fMWbqcbuoMdGZ9jxauev4OJBjPoaWtWisruAMk8Mz_NYBxTVpcImRE64UIW7-yNqJffgsLFidrVW58goqnHGzjaMvQcHjYUzv0SX2V9Avfn_5_fwmJCWnZ2MT_fhSej6_zpJ3OAAWvXPa_uWSEmdv_Ozj_DtoQH3G3M28cg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Process+Parameters+in+Electron+Beam+Cold+Hearth+Melting+and+Casting+of+Ti-6wt%25Al-4wt%25V+via+CFD-ML+Approach&rft.jtitle=Metals+%28Basel+%29&rft.au=Xin%2C+Yuchen&rft.au=Liu%2C+Jianglu&rft.au=Shi%2C+Yaming&rft.au=Cheng%2C+Zina&rft.date=2025-08-11&rft.issn=2075-4701&rft.eissn=2075-4701&rft.volume=15&rft.issue=8&rft.spage=897&rft_id=info:doi/10.3390%2Fmet15080897&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_met15080897 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4701&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4701&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4701&client=summon |