Optimization of Process Parameters in Electron Beam Cold Hearth Melting and Casting of Ti-6wt%Al-4wt%V via CFD-ML Approach

During electron beam cold hearth melting (EBCHM) of Ti-6wt%Al-4wt%V titanium alloy, aluminum volatilization causes compositional segregation in the ingot, significantly degrading material performance. Traditional methods (e.g., the Langmuir equation) struggle to accurately predict aluminum diffusion...

Full description

Saved in:
Bibliographic Details
Published inMetals (Basel ) Vol. 15; no. 8; p. 897
Main Authors Xin, Yuchen, Liu, Jianglu, Shi, Yaming, Cheng, Zina, Liu, Yang, Gao, Lei, Zhang, Huanhuan, Ji, Haohang, Han, Tianrui, Guo, Shenghui, Yin, Shubiao, Zhao, Qiuni
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 11.08.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract During electron beam cold hearth melting (EBCHM) of Ti-6wt%Al-4wt%V titanium alloy, aluminum volatilization causes compositional segregation in the ingot, significantly degrading material performance. Traditional methods (e.g., the Langmuir equation) struggle to accurately predict aluminum diffusion and compensation behaviors, while computational fluid dynamics (CFD), although capable of resolving multiphysics fields in the molten pool, suffer from high computational costs and insufficient research on segregation control. To address these issues, this study proposes a CFD-machine learning (backpropagation neural network, CFD-ML(BP)) approach to achieve precise prediction and optimization of aluminum segregation. First, CFD simulations are performed to obtain the molten pool’s temperature field, flow field, and aluminum concentration distribution, with model reliability validated experimentally. Subsequently, a BP neural network is trained using large-scale CFD datasets to establish an aluminum concentration prediction model, capturing the nonlinear relationships between process parameters (e.g., casting speed, temperature) and compositional segregation. Finally, optimization algorithms are applied to determine optimal process parameters, which are validated via CFD multiphysics coupling simulations. The results demonstrate that this method predicts the average aluminum concentration in the ingot with an error of ≤3%, significantly reducing computational costs. It also elucidates the kinetic mechanisms of aluminum volatilization and diffusion, revealing that non-monotonic segregation trends arise from the dynamic balance of volatilization, diffusion, convection, and solidification. Moreover, the most uniform aluminum distribution (average 6.8 wt.%, R2 = 0.002) is achieved in a double-overflow mold at a casting speed of 18 mm/min and a temperature of 2168 K.
AbstractList During electron beam cold hearth melting (EBCHM) of Ti-6wt%Al-4wt%V titanium alloy, aluminum volatilization causes compositional segregation in the ingot, significantly degrading material performance. Traditional methods (e.g., the Langmuir equation) struggle to accurately predict aluminum diffusion and compensation behaviors, while computational fluid dynamics (CFD), although capable of resolving multiphysics fields in the molten pool, suffer from high computational costs and insufficient research on segregation control. To address these issues, this study proposes a CFD-machine learning (backpropagation neural network, CFD-ML(BP)) approach to achieve precise prediction and optimization of aluminum segregation. First, CFD simulations are performed to obtain the molten pool’s temperature field, flow field, and aluminum concentration distribution, with model reliability validated experimentally. Subsequently, a BP neural network is trained using large-scale CFD datasets to establish an aluminum concentration prediction model, capturing the nonlinear relationships between process parameters (e.g., casting speed, temperature) and compositional segregation. Finally, optimization algorithms are applied to determine optimal process parameters, which are validated via CFD multiphysics coupling simulations. The results demonstrate that this method predicts the average aluminum concentration in the ingot with an error of ≤3%, significantly reducing computational costs. It also elucidates the kinetic mechanisms of aluminum volatilization and diffusion, revealing that non-monotonic segregation trends arise from the dynamic balance of volatilization, diffusion, convection, and solidification. Moreover, the most uniform aluminum distribution (average 6.8 wt.%, R2 = 0.002) is achieved in a double-overflow mold at a casting speed of 18 mm/min and a temperature of 2168 K.
Author Liu, Jianglu
Yin, Shubiao
Gao, Lei
Ji, Haohang
Han, Tianrui
Shi, Yaming
Xin, Yuchen
Guo, Shenghui
Cheng, Zina
Zhao, Qiuni
Liu, Yang
Zhang, Huanhuan
Author_xml – sequence: 1
  givenname: Yuchen
  surname: Xin
  fullname: Xin, Yuchen
– sequence: 2
  givenname: Jianglu
  surname: Liu
  fullname: Liu, Jianglu
– sequence: 3
  givenname: Yaming
  surname: Shi
  fullname: Shi, Yaming
– sequence: 4
  givenname: Zina
  surname: Cheng
  fullname: Cheng, Zina
– sequence: 5
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
– sequence: 6
  givenname: Lei
  orcidid: 0000-0003-1531-8778
  surname: Gao
  fullname: Gao, Lei
– sequence: 7
  givenname: Huanhuan
  surname: Zhang
  fullname: Zhang, Huanhuan
– sequence: 8
  givenname: Haohang
  surname: Ji
  fullname: Ji, Haohang
– sequence: 9
  givenname: Tianrui
  surname: Han
  fullname: Han, Tianrui
– sequence: 10
  givenname: Shenghui
  surname: Guo
  fullname: Guo, Shenghui
– sequence: 11
  givenname: Shubiao
  orcidid: 0009-0003-8424-1652
  surname: Yin
  fullname: Yin, Shubiao
– sequence: 12
  givenname: Qiuni
  orcidid: 0000-0001-6623-7092
  surname: Zhao
  fullname: Zhao, Qiuni
BookMark eNpNkEFPwjAcxRuDiYic_AJNjCcz_Xdt1-2IE9QEAgf0upS1k5JtxbZo5NM7xAPv8t7hl_eSd4l6rW01QtcE7inN4KHRgXBIIc3EGerHIHjEBJDeSb5AQ-830CmNE8iyPtrPt8E0Zi-DsS22FV44W2rv8UI62TVq57Fp8bjWZXAd8ahlg3NbK_yipQtrPNN1MO0Hlq3CufR_uatZmij5DrejOmKdveMvI3E-eYpmUzzabp2V5foKnVey9nr47wP0Nhkv85doOn9-zUfTqCRARJQQrrkSlFdUckIzUlaxSipgijOARMiVoHS1Ai5JwoWO0xRUSiFVhLNSaUIH6ObY281-7rQPxcbuXNtNFjRmDJhIyIG6O1Kls947XRVbZxrpfgoCxeHf4uRf-gv95GyZ
Cites_doi 10.1007/s12613-024-3023-4
10.1016/j.jmatprotec.2024.118346
10.1007/s12613-024-3006-5
10.1007/s11663-020-01866-0
10.1038/s41586-023-05952-6
10.1016/j.jmatprotec.2017.04.016
10.1016/j.jma.2017.09.001
10.1088/2053-1591/ab1807
10.1007/s11663-003-0097-7
10.1016/j.fuel.2020.118338
10.1016/j.apm.2015.08.008
10.1016/j.ijheatmasstransfer.2018.05.081
10.1117/12.3015531
10.1016/j.jmrt.2023.09.274
10.1007/s12613-024-3003-8
10.1016/j.actamat.2012.10.043
10.3390/met13101634
10.1016/j.compag.2022.107350
10.1016/j.jma.2021.04.001
10.1016/j.jmrt.2024.03.096
10.1109/TR.2021.3134369
10.1021/acs.iecr.4c02375
10.3390/ma14237444
10.1016/j.combustflame.2021.111852
10.1016/j.jallcom.2023.169773
10.1007/s00521-016-2195-x
10.1088/2631-7990/ad16bb
10.1016/j.csite.2025.106287
10.1016/j.cep.2022.108900
10.1016/j.enconman.2018.02.062
10.3390/met14080884
10.3390/en12224360
10.1007/s11837-022-05396-9
10.1016/j.ijmst.2022.06.005
10.1016/j.pmatsci.2024.101277
10.1080/00084433.2022.2099731
10.1007/s11837-020-04089-5
10.1007/s12613-022-2455-y
10.1007/s11663-003-0071-4
10.1007/s00521-018-3902-6
10.1016/j.jmrt.2023.08.198
10.1016/j.vacuum.2017.03.009
10.1016/S1003-6326(22)65862-X
10.1016/j.jmrt.2025.05.098
10.3390/min14060601
10.1016/j.conengprac.2020.104454
10.1016/j.ijmst.2023.02.004
10.1016/j.ijheatmasstransfer.2019.118976
10.1007/s11837-022-05504-9
10.1007/s11663-024-03393-8
10.1007/s12613-024-2928-2
10.1007/978-3-031-80676-6_139
10.1038/s41586-021-04223-6
10.2497/jjspm.15F-T14-07
10.1088/2053-1591/abeb4d
10.1016/j.knosys.2011.04.019
10.1007/s11663-004-0025-5
10.1007/s11663-019-01719-5
10.1016/j.ijheatmasstransfer.2019.05.052
10.2991/978-94-6463-514-0_65
10.1016/j.ijheatmasstransfer.2022.123769
ContentType Journal Article
Copyright 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.3390/met15080897
DatabaseName CrossRef
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Materials Science Collection
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2075-4701
ExternalDocumentID 10_3390_met15080897
GroupedDBID .4S
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
IAO
ITC
KB.
KQ8
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
TUS
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c1017-615e5d735f3a51391cf2d6f04d540067ab733bb05a1657e2880d8308d154cde13
IEDL.DBID BENPR
ISSN 2075-4701
IngestDate Thu Aug 28 04:07:48 EDT 2025
Thu Aug 14 00:13:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1017-615e5d735f3a51391cf2d6f04d540067ab733bb05a1657e2880d8308d154cde13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0003-8424-1652
0000-0003-1531-8778
0000-0001-6623-7092
OpenAccessLink https://www.proquest.com/docview/3244047611?pq-origsite=%requestingapplication%
PQID 3244047611
PQPubID 2032361
ParticipantIDs proquest_journals_3244047611
crossref_primary_10_3390_met15080897
PublicationCentury 2000
PublicationDate 2025-08-11
PublicationDateYYYYMMDD 2025-08-11
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-11
  day: 11
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Metals (Basel )
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Yang (ref_5) 2021; 9
Segarra (ref_56) 2023; 33
Zhao (ref_49) 2025; 32
Cui (ref_62) 2019; 31
Ouarga (ref_7) 2023; 26
Martin (ref_18) 2024; 327
Li (ref_4) 2023; 27
Qiu (ref_17) 2022; 29
ref_19
Xin (ref_22) 2025; 36
Wright (ref_61) 2022; 601
Klassen (ref_39) 2017; 247
Cui (ref_1) 2024; 144
Liu (ref_8) 2024; 6
Vutova (ref_40) 2016; 40
Chen (ref_52) 2020; 100
ref_60
Kumar (ref_25) 2023; 62
Ceng (ref_26) 2020; 49
Li (ref_50) 2017; 28
Weng (ref_23) 2025; 32
Yang (ref_53) 2018; 164
ref_69
Strumza (ref_16) 2022; 58
ref_24
ref_68
Wang (ref_66) 2019; 6
ref_21
Gao (ref_36) 2020; 72
ref_65
Song (ref_2) 2023; 618
ref_64
You (ref_9) 2017; 5
Bellot (ref_30) 2020; 51
Li (ref_10) 2023; 948
Namchanthra (ref_20) 2025; 72
Nguyen (ref_51) 2023; 202
Sun (ref_12) 2025; 32
ref_29
Guo (ref_63) 2011; 24
Zhong (ref_58) 2021; 71
Kharicha (ref_27) 2020; 51
Cui (ref_55) 2022; 237
Chung (ref_48) 2022; 202
Akhonin (ref_43) 2003; 34
Chen (ref_67) 2018; 126
ref_33
Liu (ref_31) 2016; 45
Ivanchenko (ref_38) 2003; 34
Zhu (ref_45) 2022; 74
Liu (ref_32) 2017; 141
Wang (ref_47) 2024; 56
Banerjee (ref_6) 2013; 61
Pirro (ref_28) 2025; 32
ref_37
Lin (ref_57) 2022; 32
Gao (ref_41) 2020; 147
Ullah (ref_13) 2024; 30
Lee (ref_11) 2025; 72
Zheng (ref_35) 2022; 174
Peng (ref_44) 2021; 8
ref_46
Jin (ref_59) 2024; 63
ref_42
Zhao (ref_15) 2022; 32
Madapana (ref_14) 2023; 75
ref_3
Sevinc (ref_54) 2020; 278
Semiatin (ref_70) 2004; 35
Gao (ref_34) 2019; 139
References_xml – volume: 32
  start-page: 1641
  year: 2025
  ident: ref_12
  article-title: Strength–ductility synergy strategy of Ti6Al4V alloy fabricated by metal injection molding
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-024-3023-4
– volume: 327
  start-page: 118346
  year: 2024
  ident: ref_18
  article-title: Rheology of Ti-6Al-4V alloy under non equilibrium conditions during β forging
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2024.118346
– volume: 32
  start-page: 414
  year: 2025
  ident: ref_28
  article-title: A novel solution treatment and aging for powder bed fusion-laser beam Ti-6Al-2Sn-4Zr-6Mo alloy: Microstructural and mechanical characterization
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-024-3006-5
– volume: 51
  start-page: 1329
  year: 2020
  ident: ref_30
  article-title: Numerical simulation of the plasma arc melting cold hearth refining process (PAMCHR)
  publication-title: Metall. Mater. Trans. B
  doi: 10.1007/s11663-020-01866-0
– volume: 45
  start-page: 9
  year: 2016
  ident: ref_31
  article-title: Research progress of electron beam clod hearth melting for titanium and titanium alloys
  publication-title: Hot Work. Technol.
– volume: 58
  start-page: 103045
  year: 2022
  ident: ref_16
  article-title: Thermophysical properties of Ti-6Al-4V fabricated by powder bed fusion methods
  publication-title: Addit. Manuf.
– volume: 618
  start-page: 63
  year: 2023
  ident: ref_2
  article-title: Strong and ductile titanium–oxygen–iron alloys by additive manufacturing
  publication-title: Nature
  doi: 10.1038/s41586-023-05952-6
– volume: 247
  start-page: 280
  year: 2017
  ident: ref_39
  article-title: Numerical simulation of multi-component evaporation during selective electron beam melting of TiAl
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2017.04.016
– volume: 5
  start-page: 239
  year: 2017
  ident: ref_9
  article-title: Recent research and developments on wrought magnesium alloys
  publication-title: J. Magnes. Alloys
  doi: 10.1016/j.jma.2017.09.001
– ident: ref_68
– volume: 6
  start-page: 0865h4
  year: 2019
  ident: ref_66
  article-title: Effect of crystallizer’ s three-dimension on the solid-liquid interface morphology of the large-scale Ti64 during EBCHM
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/ab1807
– ident: ref_65
– volume: 34
  start-page: 911
  year: 2003
  ident: ref_38
  article-title: Evaluation of Evaporation Losses during Electron-Beam Melting of Ti-Al-V Alloys
  publication-title: Metall. Mater. Trans. B
  doi: 10.1007/s11663-003-0097-7
– volume: 278
  start-page: 118338
  year: 2020
  ident: ref_54
  article-title: Investigation of performance and exhaust emissions of a chromium oxide coated diesel engine fueled with dibutyl maleate mixtures by experimental and ANN technique
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.118338
– volume: 40
  start-page: 1565
  year: 2016
  ident: ref_40
  article-title: Non-stationary heat model for electron beam melting and refining—An economic and conservative numerical method
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2015.08.008
– ident: ref_42
– volume: 126
  start-page: 843
  year: 2018
  ident: ref_67
  article-title: Numerical study on the characteristics of solute distribution and the formation of centerline segregation in continuous casting (CC) slab
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.05.081
– ident: ref_33
  doi: 10.1117/12.3015531
– volume: 27
  start-page: 944
  year: 2023
  ident: ref_4
  article-title: Development and applications of aluminum alloys for aerospace industry
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2023.09.274
– volume: 32
  start-page: 154
  year: 2025
  ident: ref_23
  article-title: Robust interface and excellent as-built mechanical properties of Ti–6Al–4V fabricated through laser-aided additive manufacturing with powder and wire
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-024-3003-8
– volume: 61
  start-page: 844
  year: 2013
  ident: ref_6
  article-title: Perspectives on titanium science and technology
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2012.10.043
– ident: ref_24
  doi: 10.3390/met13101634
– volume: 202
  start-page: 107350
  year: 2022
  ident: ref_48
  article-title: Application of machine-learned metadata-driven model for dairy barn ventilation simulation
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107350
– volume: 9
  start-page: 705
  year: 2021
  ident: ref_5
  article-title: Research advances in magnesium and magnesium alloys worldwide in 2020
  publication-title: J. Magnes. Alloys
  doi: 10.1016/j.jma.2021.04.001
– volume: 30
  start-page: 894
  year: 2024
  ident: ref_13
  article-title: Thermo-metallo-mechanical based phase transformation modeling for high-speed milling of Ti–6Al–4V through stress-strain and temperature effects
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2024.03.096
– volume: 71
  start-page: 457
  year: 2021
  ident: ref_58
  article-title: Unmanned aerial vehicle flight data anomaly detection and recovery prediction based on spatio-temporal correlation
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2021.3134369
– volume: 49
  start-page: 833
  year: 2020
  ident: ref_26
  article-title: Calculation of flow, heat transfer and evaporation during the Electron Beam Cold Hearth Melting of Ti-6al-4V Alloy
  publication-title: RARE Met. Mater. Eng.
– volume: 63
  start-page: 16598
  year: 2024
  ident: ref_59
  article-title: A Neural Network Method for Characterizing Particle Clusters in Gas–Solid Fluidized Beds
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.4c02375
– ident: ref_19
  doi: 10.3390/ma14237444
– volume: 237
  start-page: 111852
  year: 2022
  ident: ref_55
  article-title: Investigation on the ignition delay prediction model of multi-component surrogates based on back propagation (BP) neural network
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2021.111852
– volume: 948
  start-page: 169773
  year: 2023
  ident: ref_10
  article-title: Review of micro-arc oxidation of titanium alloys: Mechanism, properties and applications
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2023.169773
– volume: 28
  start-page: 2247
  year: 2017
  ident: ref_50
  article-title: Optimization of iron ore sintering process based on ELM model and multi-criteria evaluation
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2195-x
– volume: 6
  start-page: 022004
  year: 2024
  ident: ref_8
  article-title: Review on laser directed energy deposited aluminum alloys
  publication-title: Int. J. Extrem. Manuf.
  doi: 10.1088/2631-7990/ad16bb
– volume: 72
  start-page: 106287
  year: 2025
  ident: ref_20
  article-title: Numerical analysis of molten iron flow and heat transfer in plumbing casting defect detection using split tracking approach
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2025.106287
– volume: 174
  start-page: 108900
  year: 2022
  ident: ref_35
  article-title: Modeling of process and analysis of drying characteristics for natural TiO2 under microwave heating
  publication-title: Chem. Eng. Process.-Process Intensif.
  doi: 10.1016/j.cep.2022.108900
– volume: 164
  start-page: 15
  year: 2018
  ident: ref_53
  article-title: Artificial neural network (ANN) based prediction and optimization of an organic Rankine cycle (ORC) for diesel engine waste heat recovery
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.02.062
– ident: ref_69
  doi: 10.3390/met14080884
– ident: ref_3
– ident: ref_64
  doi: 10.3390/en12224360
– volume: 74
  start-page: 3811
  year: 2022
  ident: ref_45
  article-title: Numerical simulation of molybdenum and nickel distribution in large-scale slab ingots of Ti-0.3 wt.% Mo-0.8 wt.% Ni alloys during electron beam cold hearth melting
  publication-title: JOM
  doi: 10.1007/s11837-022-05396-9
– volume: 32
  start-page: 1021
  year: 2022
  ident: ref_57
  article-title: An investigation of machine learning techniques to estimate minimum horizontal stress magnitude from borehole breakout
  publication-title: Int. J. Min. Sci. Technol.
  doi: 10.1016/j.ijmst.2022.06.005
– volume: 144
  start-page: 101277
  year: 2024
  ident: ref_1
  article-title: Towards load-bearing biomedical titanium-based alloys: From essential requirements to future developments
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2024.101277
– volume: 62
  start-page: 383
  year: 2023
  ident: ref_25
  article-title: Removal of metallic and non-metallic impurities by hydrogen plasma-arc melting
  publication-title: Can. Metall. Q.
  doi: 10.1080/00084433.2022.2099731
– volume: 72
  start-page: 1953
  year: 2020
  ident: ref_36
  article-title: Numerical study on the solid–Liquid interface evolution of large-Scale titanium alloy ingots during high energy consumption electron beam cold hearth melting
  publication-title: JOM
  doi: 10.1007/s11837-020-04089-5
– volume: 29
  start-page: 599
  year: 2022
  ident: ref_17
  article-title: Current situation and development trend of titanium metal industry in China
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-022-2455-y
– volume: 34
  start-page: 447
  year: 2003
  ident: ref_43
  article-title: Mathematical modeling of aluminum evaporation during electron-beam cold-hearth melting of Ti-6Al-4V ingots
  publication-title: Metall. Mater. Trans. B
  doi: 10.1007/s11663-003-0071-4
– volume: 31
  start-page: 8205
  year: 2019
  ident: ref_62
  article-title: Research on prediction model of geotechnical parameters based on BP neural network
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3902-6
– volume: 26
  start-page: 5105
  year: 2023
  ident: ref_7
  article-title: Corrosion of iron and nickel based alloys in sulphuric acid: Challenges and prevention strategies
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2023.08.198
– volume: 141
  start-page: 1
  year: 2017
  ident: ref_32
  article-title: Numerical simulation of EBCHM for the large-scale TC4 alloy slab ingot during the solidification process
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2017.03.009
– volume: 32
  start-page: 1144
  year: 2022
  ident: ref_15
  article-title: Microstructures and mechanical properties of TC4/AZ91D bimetal prepared by solid–liquid compound casting combined with Zn/Al composite interlayer
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(22)65862-X
– volume: 36
  start-page: 8671
  year: 2025
  ident: ref_22
  article-title: The numerical simulation of element segregation control during the electron beam cold hearth melting process of large-sized Ti-6wt% Al-4wt% V titanium alloy slab
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2025.05.098
– ident: ref_37
  doi: 10.3390/min14060601
– volume: 100
  start-page: 104454
  year: 2020
  ident: ref_52
  article-title: A semi-supervised linear–nonlinear least-square learning network for prediction of carbon efficiency in iron ore sintering process
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2020.104454
– volume: 33
  start-page: 555
  year: 2023
  ident: ref_56
  article-title: Rock mass structural recognition from drill monitoring technology in underground mining using discontinuity index and machine learning techniques
  publication-title: Int. J. Min. Sci. Technol.
  doi: 10.1016/j.ijmst.2023.02.004
– volume: 147
  start-page: 118976
  year: 2020
  ident: ref_41
  article-title: Numerical study of aluminum segregation during electron beam cold hearth melting for large-scale Ti-6 wt% Al-4 wt% V alloy slab ingots
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.118976
– volume: 75
  start-page: 109
  year: 2023
  ident: ref_14
  article-title: Studies on laser shock peening on nanomechanical and mechano-chemical properties of titanium alloy (Ti6Al4V)
  publication-title: JOM
  doi: 10.1007/s11837-022-05504-9
– volume: 56
  start-page: 1072
  year: 2024
  ident: ref_47
  article-title: Study on the Evolution Patterns of the Molten Pool and Inclusion Movement in Electron Beam Cold Hearth Melting Process
  publication-title: Metall. Mater. Trans. B
  doi: 10.1007/s11663-024-03393-8
– ident: ref_29
– ident: ref_46
– volume: 32
  start-page: 439
  year: 2025
  ident: ref_49
  article-title: Understanding the local structure and thermophysical behavior of Mg-La liquid alloys via machine learning potential
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-024-2928-2
– ident: ref_21
  doi: 10.1007/978-3-031-80676-6_139
– volume: 601
  start-page: 549
  year: 2022
  ident: ref_61
  article-title: Deep physical neural networks trained with backpropagation
  publication-title: Nature
  doi: 10.1038/s41586-021-04223-6
– volume: 72
  start-page: S787
  year: 2025
  ident: ref_11
  article-title: Effect of High Temperature on Microstructure and Hardness of Ti-6Al-4Dy Alloy by High Energy Ball Milling and Spark Plasma Sintering
  publication-title: J. Jpn. Soc. Powder Powder Metall.
  doi: 10.2497/jjspm.15F-T14-07
– volume: 8
  start-page: 046505
  year: 2021
  ident: ref_44
  article-title: Simulation study on temperature field and microstructure of Ti-6Al-4V alloy round ingot during EBCHM
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/abeb4d
– volume: 24
  start-page: 1048
  year: 2011
  ident: ref_63
  article-title: A case study on a hybrid wind speed forecasting method using BP neural network
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2011.04.019
– volume: 35
  start-page: 235
  year: 2004
  ident: ref_70
  article-title: Diffusion models for evaporation losses during electron-beam melting of alpha/beta-titanium alloys
  publication-title: Metall. Mater. Trans. B
  doi: 10.1007/s11663-004-0025-5
– volume: 51
  start-page: 222
  year: 2020
  ident: ref_27
  article-title: A parametric study of the vacuum arc remelting (VAR) process: Effects of arc radius, side-arcing, and gas cooling
  publication-title: Metall. Mater. Trans. B
  doi: 10.1007/s11663-019-01719-5
– volume: 139
  start-page: 764
  year: 2019
  ident: ref_34
  article-title: Numerical study of aluminum segregation during electron beam cold hearth remelting for large-scale Ti-6 wt% Al-4 wt% V alloy round ingot
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.05.052
– ident: ref_60
  doi: 10.2991/978-94-6463-514-0_65
– volume: 202
  start-page: 123769
  year: 2023
  ident: ref_51
  article-title: Shape optimization of pin fin array in a cooling channel using genetic algorithm and machine learning
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2022.123769
SSID ssj0000826099
Score 2.320386
Snippet During electron beam cold hearth melting (EBCHM) of Ti-6wt%Al-4wt%V titanium alloy, aluminum volatilization causes compositional segregation in the ingot,...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 897
SubjectTerms Aircraft
Algorithms
Aluminum
Aluminum alloys
Artificial intelligence
Back propagation
Back propagation networks
Cold
Computational fluid dynamics
Computer simulation
Computing costs
Continuous casting
Corrosion resistance
Diffusion
Electron beams
Energy consumption
Ingot casting
Ingots
Machine learning
Magnesium alloys
Manufacturing
Mechanical properties
Melt pools
Neural networks
Optimization
Prediction models
Process parameters
Simulation
Solidification
Temperature distribution
Titanium alloys
Titanium base alloys
Vanadium
Vaporization
Title Optimization of Process Parameters in Electron Beam Cold Hearth Melting and Casting of Ti-6wt%Al-4wt%V via CFD-ML Approach
URI https://www.proquest.com/docview/3244047611
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT8IwFG4ULnow_owokh7w2NDRdisnAwgSI0gMGG5Lt3aRBAbK1MS_3tdRFC-etmRJD-_tvfd97ev3EKrWY6MblCeES6UJ1wJirqHqRDe4HxsWBzqfWtIf-L0xv5-IidtwW7m2yk1OzBO1XsR2j7wGhZ9TDqTbu1m-Ejs1yp6uuhEau6gIKVjKAiq2OoPh088uCxQ4HzDQ-mIeA35fm5vMSqBTaWWetkvR30ycl5fuITpwuBA31448QjsmPUb7W2qBJ-jrEcJ77u5N4kWCXZM_HirbYWVlMvE0xR032Aa3jJrj9mKmcQ9-5-wF983MNjljlWrcVqv8HZYZTYn_mV03Z4TD4xl_TBVud29J_wE3neL4KRp3O6N2j7jRCSS2MQaEUBihAyYSpgSAPC9O6tpPKDiD2wKlooCxKKJCeb4IDJiOasmo1ICoYm08doYK6SI15wjzSGoaRYHygFk1mJEAECgTsT1_A3jDS6i6sWK4XCtkhMAsrLHDLWOXUHlj4dCFySr8derF_58v0V7dDt61WrReGRWyt3dzBWggiypoV3bvKs7xlZxTfwMfArT5
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB6xcNjlgGAfWt5zgKOFE9tJekCoFEpZWnYPZcUt68SOtlKbAg0g-FH8RsZpAuXCjVMiWbKs8XjmG3vmG4AdP7WmwWXGZKQNk0bRmWton5mGDFIr0tCUXUt650HnQv66VJdz8FTXwri0ytomlobajFN3R75Hjl9ySUG3d3B1zVzXKPe6WrfQmKrFmX24p5Btsn96RPu76_vt436rw6quAix16kexkrLKhEJlQivCP16a-SbIOK1TOtutk1CIJOFKe4EKrU8KbiLBI0NgIzXWEzTvJ1iQgjy5q0xvn7zc6ZA7DQhxTcsAaZzvjWzhCNd55EilZh3fW7tfOrP2MixVKBSbU7VZgTmbf4XFGW7Cb_D4m4zJqKrSxHGGVUkB_tEun8uRcuIgx-OqjQ4eWj3C1nhosENSKv5jzw5dSjXq3GBLT8p_mqY_YMF9sdscMkmfv3g30NhqH7FeF5sVv_l3uPgQkf6A-Xyc25-AMokMT5JQexTHNYSNCI5woVL32kdgSq7CTi3F-GrKxxFTHOOEHc8IexU2agnH1aGcxK8qtPb-8DZ87vR73bh7en62Dl981_LXseB6GzBf3NzaTcIhRbJVbj7Cv4_Wtmd8rOw2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJwqHiqpQXm0B6teNf2Pg4IpXkopU2IUIt6W7xrr4iUbArZtqI_rb-OceKFcOHW0660krUaf_Z8Y898A3AYFtakXJZMJtowaRStuVSHzKQyKqwoYrPqWjIaR8ML-elSXW7BfVML49Iqmz1xtVGbReHOyNvk-CWXFHQH7dKnRUx6g49XP5jrIOVuWpt2GmuInNpftxS-LT-c9Giuj8Jw0D_vDpnvMMAKB0WKm5RVJhaqFFoRFwqKMjRRyemfpdvHdR4Lkedc6SBSsQ0J7CYRPDFEPApjA0HjPoLt2EVFLdg-7o8nX_6c8JBzjYh_rYsChUh5e25rJ7_OEycxtekG__UCK9c2eAY7npNiZw2i57BlqxfwdEOp8CXcfaatZe5rNnFRoi8wwIl22V1OohOnFfZ9Ux08tnqO3cXM4JDsVH_HkZ25BGvUlcGuXq7eaZjzKYtu66POjEl6fMWbqcbuoMdGZ9jxauev4OJBjPoaWtWisruAMk8Mz_NYBxTVpcImRE64UIW7-yNqJffgsLFidrVW58goqnHGzjaMvQcHjYUzv0SX2V9Avfn_5_fwmJCWnZ2MT_fhSej6_zpJ3OAAWvXPa_uWSEmdv_Ozj_DtoQH3G3M28cg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Process+Parameters+in+Electron+Beam+Cold+Hearth+Melting+and+Casting+of+Ti-6wt%25Al-4wt%25V+via+CFD-ML+Approach&rft.jtitle=Metals+%28Basel+%29&rft.au=Xin%2C+Yuchen&rft.au=Liu%2C+Jianglu&rft.au=Shi%2C+Yaming&rft.au=Cheng%2C+Zina&rft.date=2025-08-11&rft.issn=2075-4701&rft.eissn=2075-4701&rft.volume=15&rft.issue=8&rft.spage=897&rft_id=info:doi/10.3390%2Fmet15080897&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_met15080897
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4701&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4701&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4701&client=summon