The angle stabilization system of the self-balancing robot
The article is devoted to the consideration of the tilt angle stabilization system of a self-balancing robot. The object of research is self-balancing robots, and the subject is systems for stabilizing their tilt angle. A comprehensive analysis of the principles and algorithms used to ensure the sta...
Saved in:
Published in | Reporter of the Priazovskyi State Technical University. Section: Technical sciences no. 47; pp. 241 - 248 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
28.12.2023
|
Online Access | Get full text |
ISSN | 2225-6733 2519-271X |
DOI | 10.31498/2225-6733.47.2023.300065 |
Cover
Abstract | The article is devoted to the consideration of the tilt angle stabilization system of a self-balancing robot. The object of research is self-balancing robots, and the subject is systems for stabilizing their tilt angle. A comprehensive analysis of the principles and algorithms used to ensure the stability of the robot when the tilt angle is changed is presented. The technical solutions underlying the stabilization system were studied and their effectiveness in relation to maintaining the robot in a vertical position was analyzed. A mathematical model is presented in which the self-balancing robot is represented as an inverted pendulum, i.e. a two-wheeled vehicle balances itself in a vertical position relative to the ground. It is assumed that the structure moves without friction. The main equations describing the movement of the balancing robot, taking into account the dynamics of the pendulum and the wheel, were obtained. As a regulator, the LQR regulator is proposed, which provides optimal control of a closed-loop system. The workability of the model and the proposed stabilization system was verified using simulation modeling. As a result of simulated modeling, oscillograms were obtained, which demonstrate that after an exciting effect, the system stabilizes and enters an equilibrium state. A controllability test was performed, which showed that the proposed controller can effectively control the system. Controllability ensures that a system can be subjected to a control signal in order to achieve the desired behavior. An example of the practical implementation of the robot and selected main components are presented
Стаття присвячена розгляду системи стабілізації кута нахилу самобалансуючого робота. Об'єктом дослідження є самобалансуючі роботи, а предметом – системи стабілізації їхнього кута нахилу. Розглянуті принципи роботи та розвиток алгоритмів, які дозволяють роботу автоматично підтримувати стабільність при зміні кута нахилу. У статті проаналізовані різні рішення, що використовуються для створення системи стабілізації, і їхні переваги та недоліки. Наведена математична модель, у якій самобалансуючий робот представлений як перегорнутий маятник, тобто двоколісний транспортний засіб врівноважує себе у вертикальному положенні відносно землі. У якості регулятора запропонований LQR-регулятор, який забезпечує оптимальне керування замкнутою системою. Працездатність моделі та запропонованої системи стабілізації перевірені за допомогою імітаційного моделювання. Наведений приклад практичної реалізації робота та обрані основні компоненти |
---|---|
AbstractList | The article is devoted to the consideration of the tilt angle stabilization system of a self-balancing robot. The object of research is self-balancing robots, and the subject is systems for stabilizing their tilt angle. A comprehensive analysis of the principles and algorithms used to ensure the stability of the robot when the tilt angle is changed is presented. The technical solutions underlying the stabilization system were studied and their effectiveness in relation to maintaining the robot in a vertical position was analyzed. A mathematical model is presented in which the self-balancing robot is represented as an inverted pendulum, i.e. a two-wheeled vehicle balances itself in a vertical position relative to the ground. It is assumed that the structure moves without friction. The main equations describing the movement of the balancing robot, taking into account the dynamics of the pendulum and the wheel, were obtained. As a regulator, the LQR regulator is proposed, which provides optimal control of a closed-loop system. The workability of the model and the proposed stabilization system was verified using simulation modeling. As a result of simulated modeling, oscillograms were obtained, which demonstrate that after an exciting effect, the system stabilizes and enters an equilibrium state. A controllability test was performed, which showed that the proposed controller can effectively control the system. Controllability ensures that a system can be subjected to a control signal in order to achieve the desired behavior. An example of the practical implementation of the robot and selected main components are presented
Стаття присвячена розгляду системи стабілізації кута нахилу самобалансуючого робота. Об'єктом дослідження є самобалансуючі роботи, а предметом – системи стабілізації їхнього кута нахилу. Розглянуті принципи роботи та розвиток алгоритмів, які дозволяють роботу автоматично підтримувати стабільність при зміні кута нахилу. У статті проаналізовані різні рішення, що використовуються для створення системи стабілізації, і їхні переваги та недоліки. Наведена математична модель, у якій самобалансуючий робот представлений як перегорнутий маятник, тобто двоколісний транспортний засіб врівноважує себе у вертикальному положенні відносно землі. У якості регулятора запропонований LQR-регулятор, який забезпечує оптимальне керування замкнутою системою. Працездатність моделі та запропонованої системи стабілізації перевірені за допомогою імітаційного моделювання. Наведений приклад практичної реалізації робота та обрані основні компоненти |
Author | Savenko, O.S. Chernysh, H.O. |
Author_xml | – sequence: 1 givenname: H.O. surname: Chernysh fullname: Chernysh, H.O. – sequence: 2 givenname: O.S. orcidid: 0000-0002-8108-2575 surname: Savenko fullname: Savenko, O.S. |
BookMark | eNo1kNtKAzEYhINUsNa-Q3yArEn-HHa9k-IJCt5U8C4kmz91YbuRzd7Up3dr9WoGZhiY75oshjwgIbeCVyBUU99JKTUzFqBStpJcQgWcc6MvyFJq0TBpxcdi9v-1K7IupQtcKWuUqcWS3O8-kfph3yMtkw9d3337qcsDLccy4YHmRKe5UbBPLPjeD2037OmYQ55uyGXyfcH1n67I-9PjbvPCtm_Pr5uHLWsFF5rVPDQxgY0iqNTKWSEAGvQ2JtRQi1YoDBjCHMckTKxboyBakDphkxKsSHPebcdcyojJfY3dwY9HJ7j75eBOB93poFPWnTi4Mwf4AcnVU7Y |
Cites_doi | 10.1109/SEATUC.2018.8788880 10.1109/FIT.2016.011 10.1016/j.arcontrol.2013.03.004 10.1109/IWISA.2010.5473610 10.1109/ICITISEE.2017.8285501 10.1016/j.mechatronics.2015.06.011 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.31498/2225-6733.47.2023.300065 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2519-271X |
EndPage | 248 |
ExternalDocumentID | 10_31498_2225_6733_47_2023_300065 |
GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION M~E |
ID | FETCH-LOGICAL-c1015-80b9df37d1b4fc27d13b3e6ea7dfe5381c14ebebbb4fdf16d8c643d7325fe9ff3 |
ISSN | 2225-6733 |
IngestDate | Tue Jul 01 01:52:32 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 47 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1015-80b9df37d1b4fc27d13b3e6ea7dfe5381c14ebebbb4fdf16d8c643d7325fe9ff3 |
ORCID | 0000-0002-8108-2575 |
OpenAccessLink | https://doi.org/10.31498/2225-6733.47.2023.300065 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_31498_2225_6733_47_2023_300065 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-28 |
PublicationDateYYYYMMDD | 2023-12-28 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-28 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | Reporter of the Priazovskyi State Technical University. Section: Technical sciences |
PublicationYear | 2023 |
References | ref-5-4914299 ref-4-4914298 ref-6-4914300 ref-1-4914295 ref-8-4914302 Azliy Bin Junoh (ref-2-4914296) 2015 Saleem (ref-3-4914297) 2015; 3 ref-7-4914301 |
References_xml | – ident: ref-8-4914302 doi: 10.1109/SEATUC.2018.8788880 – volume-title: Two-wheeled balancing robot controller designed using PID year: 2015 ident: ref-2-4914296 – ident: ref-7-4914301 doi: 10.1109/FIT.2016.011 – ident: ref-1-4914295 doi: 10.1016/j.arcontrol.2013.03.004 – volume: 3 start-page: 98 issue: 17 year: 2015 ident: ref-3-4914297 article-title: Attitude control and stabilization of a two-wheeled self-balancing robot publication-title: Control Engineering and Applied Informatics – ident: ref-4-4914298 doi: 10.1109/IWISA.2010.5473610 – ident: ref-5-4914299 doi: 10.1109/ICITISEE.2017.8285501 – ident: ref-6-4914300 doi: 10.1016/j.mechatronics.2015.06.011 |
SSID | ssib044764681 ssib036266416 ssib038075525 |
Score | 2.2421443 |
Snippet | The article is devoted to the consideration of the tilt angle stabilization system of a self-balancing robot. The object of research is self-balancing robots,... |
SourceID | crossref |
SourceType | Index Database |
StartPage | 241 |
Title | The angle stabilization system of the self-balancing robot |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA9nBfFFKip-tUTwdeNtkktufZPScgi1gi30bUk2iQ-W3XI9BYv4tzuTbHb3iqL2Ze_I7c3NMb-dmUzmg5DXbi6MdtoWqrLLQpq5KyrrRGGMMuW84tzGIrHjD2p1Jt-fL85nsx_T6pKNZc31b-tKbiNVWAO5YpXsf0h2IAoL8B7kC1eQMFz_Wcam_XyBXWJjp9xUU9m3Z87H_1f-IhQWUxgbjAusO9ttBeSTD-7X-f6PwPl19w2nHidfNMXfozTHPA6GofqcGTLe0FvUwVM_AEy0369i8GbFTtgQ0cEx9l9inPaEfWLT4AMXmMjBJ_oSd4tYPZB0lE9r4BQWXMdJOBk-qatmVpKp1VVvb3nqtHlTlQvYumF9wvALTGqGLDAR_abRfuUz-xtmbUg2hG1OJFYjKcxjE7XUNZKqE6k75C7XOh7yH_88zNoI-_SoyZksduZfLEbtJ6VWUsUpuAOP98irzPqbPzE-cYAmnszpLnnQb0Hou4Snh2Tm20fkLWCJRizRLSzRhCXaBQrYoNtYohFLj8nZ0eHpwaro52oUDSjgBTgltnJBaFdaGRoOr8IKrzw8tMGDASybUsKzbS187EKp3LIBv9VpwTEzMQTxhOy0XeufElotKx-8V1gPIkMZTCmWRiulg7FOBvuM8Pxn68vUPqX-qzye3-ZLL8j9EaAvyc5m_dXvgb-4sftRrL8AJilgAA |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+angle+stabilization+system+of+the+self-balancing+robot&rft.jtitle=Reporter+of+the+Priazovskyi+State+Technical+University.+Section%3A+Technical+sciences&rft.au=Chernysh%2C+H.O.&rft.au=Savenko%2C+O.S.&rft.date=2023-12-28&rft.issn=2225-6733&rft.eissn=2519-271X&rft.issue=47&rft.spage=241&rft.epage=248&rft_id=info:doi/10.31498%2F2225-6733.47.2023.300065&rft.externalDBID=n%2Fa&rft.externalDocID=10_31498_2225_6733_47_2023_300065 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2225-6733&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2225-6733&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2225-6733&client=summon |