Self-Adjuvanting Adenoviral Nanovaccine for Effective T-Cell-Mediated Immunity and Long-Lasting Memory Cell Activation against Tuberculosis

An enhanced vaccine is immediately required to swap the more than 100 year-old bacillus Calmette-Guerin (BCG) vaccine against tuberculosis. Here, trimethyl chitosan-loaded inactivated (MST), along with potent adenovirus hexon protein (AdHP), and toll-like receptor (TLR)-1/2 as a nanovaccine, was dev...

Full description

Saved in:
Bibliographic Details
Published inACS infectious diseases Vol. 10; no. 11; p. 3939
Main Authors Sowndharya, Chithaiyan Kamaladevi, Mehnath, Sivaraj, Ponbharathi, Arivalagan, Jeyaraj, Murugaraj
Format Journal Article
LanguageEnglish
Published United States 28.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An enhanced vaccine is immediately required to swap the more than 100 year-old bacillus Calmette-Guerin (BCG) vaccine against tuberculosis. Here, trimethyl chitosan-loaded inactivated (MST), along with potent adenovirus hexon protein (AdHP), and toll-like receptor (TLR)-1/2 as a nanovaccine, was developed against tuberculosis (TB). The nanoformulation increased the bioavailability of MST and elicited the targeting ability. Nanovaccines have a size range of 183.5 ± 9.5 nm with a spherical morphology and uniform distribution. The nanovaccine exhibited a higher release of antigen in acidic pH, and this is mainly due to protonation of ionizable groups in polymeric materials. The nanovaccine facilitated the effective cellular uptake of bone-marrow-derived dendritic cells and progressive endosomal escape in a shorter period. In vitro analyses indicated that the nanovaccine activated cytokine and T-cell production and also assisted in humoral immunity by producing antibodies. The nanovaccine was able to induce more cellular and humoral memory cells and a better protective immune response. Nanomaterials effectively delivered the MST, AdHP, and TLR1/2 antigens to the major histocompatibility complex class I and II pathways to generate protective cytotoxic CD8 and CD4 T-cells. In vivo experiments, compared with free MST and BCG, showed that mice immunized with the nanovaccine induced more specific CD4 , CD8 , and memory T-cell activations. Overall, the fabricated nanovaccine was able to control the release of antigens and adjuvants and enhance memory cell activation and humoral immunity against TB.
AbstractList An enhanced vaccine is immediately required to swap the more than 100 year-old bacillus Calmette-Guerin (BCG) vaccine against tuberculosis. Here, trimethyl chitosan-loaded inactivated Mycobacterium smegmatis (MST), along with potent adenovirus hexon protein (AdHP), and toll-like receptor (TLR)-1/2 as a nanovaccine, was developed against tuberculosis (TB). The nanoformulation increased the bioavailability of MST and elicited the targeting ability. Nanovaccines have a size range of 183.5 ± 9.5 nm with a spherical morphology and uniform distribution. The nanovaccine exhibited a higher release of antigen in acidic pH, and this is mainly due to protonation of ionizable groups in polymeric materials. The nanovaccine facilitated the effective cellular uptake of bone-marrow-derived dendritic cells and progressive endosomal escape in a shorter period. In vitro analyses indicated that the nanovaccine activated cytokine and T-cell production and also assisted in humoral immunity by producing antibodies. The nanovaccine was able to induce more cellular and humoral memory cells and a better protective immune response. Nanomaterials effectively delivered the MST, AdHP, and TLR1/2 antigens to the major histocompatibility complex class I and II pathways to generate protective cytotoxic CD8+ and CD4+ T-cells. In vivo experiments, compared with free MST and BCG, showed that mice immunized with the nanovaccine induced more specific CD4+, CD8+, and memory T-cell activations. Overall, the fabricated nanovaccine was able to control the release of antigens and adjuvants and enhance memory cell activation and humoral immunity against TB.An enhanced vaccine is immediately required to swap the more than 100 year-old bacillus Calmette-Guerin (BCG) vaccine against tuberculosis. Here, trimethyl chitosan-loaded inactivated Mycobacterium smegmatis (MST), along with potent adenovirus hexon protein (AdHP), and toll-like receptor (TLR)-1/2 as a nanovaccine, was developed against tuberculosis (TB). The nanoformulation increased the bioavailability of MST and elicited the targeting ability. Nanovaccines have a size range of 183.5 ± 9.5 nm with a spherical morphology and uniform distribution. The nanovaccine exhibited a higher release of antigen in acidic pH, and this is mainly due to protonation of ionizable groups in polymeric materials. The nanovaccine facilitated the effective cellular uptake of bone-marrow-derived dendritic cells and progressive endosomal escape in a shorter period. In vitro analyses indicated that the nanovaccine activated cytokine and T-cell production and also assisted in humoral immunity by producing antibodies. The nanovaccine was able to induce more cellular and humoral memory cells and a better protective immune response. Nanomaterials effectively delivered the MST, AdHP, and TLR1/2 antigens to the major histocompatibility complex class I and II pathways to generate protective cytotoxic CD8+ and CD4+ T-cells. In vivo experiments, compared with free MST and BCG, showed that mice immunized with the nanovaccine induced more specific CD4+, CD8+, and memory T-cell activations. Overall, the fabricated nanovaccine was able to control the release of antigens and adjuvants and enhance memory cell activation and humoral immunity against TB.
An enhanced vaccine is immediately required to swap the more than 100 year-old bacillus Calmette-Guerin (BCG) vaccine against tuberculosis. Here, trimethyl chitosan-loaded inactivated (MST), along with potent adenovirus hexon protein (AdHP), and toll-like receptor (TLR)-1/2 as a nanovaccine, was developed against tuberculosis (TB). The nanoformulation increased the bioavailability of MST and elicited the targeting ability. Nanovaccines have a size range of 183.5 ± 9.5 nm with a spherical morphology and uniform distribution. The nanovaccine exhibited a higher release of antigen in acidic pH, and this is mainly due to protonation of ionizable groups in polymeric materials. The nanovaccine facilitated the effective cellular uptake of bone-marrow-derived dendritic cells and progressive endosomal escape in a shorter period. In vitro analyses indicated that the nanovaccine activated cytokine and T-cell production and also assisted in humoral immunity by producing antibodies. The nanovaccine was able to induce more cellular and humoral memory cells and a better protective immune response. Nanomaterials effectively delivered the MST, AdHP, and TLR1/2 antigens to the major histocompatibility complex class I and II pathways to generate protective cytotoxic CD8 and CD4 T-cells. In vivo experiments, compared with free MST and BCG, showed that mice immunized with the nanovaccine induced more specific CD4 , CD8 , and memory T-cell activations. Overall, the fabricated nanovaccine was able to control the release of antigens and adjuvants and enhance memory cell activation and humoral immunity against TB.
Author Ponbharathi, Arivalagan
Sowndharya, Chithaiyan Kamaladevi
Mehnath, Sivaraj
Jeyaraj, Murugaraj
Author_xml – sequence: 1
  givenname: Chithaiyan Kamaladevi
  surname: Sowndharya
  fullname: Sowndharya, Chithaiyan Kamaladevi
  organization: National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
– sequence: 2
  givenname: Sivaraj
  surname: Mehnath
  fullname: Mehnath, Sivaraj
  organization: National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
– sequence: 3
  givenname: Arivalagan
  surname: Ponbharathi
  fullname: Ponbharathi, Arivalagan
  organization: National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
– sequence: 4
  givenname: Murugaraj
  orcidid: 0000-0002-9727-2154
  surname: Jeyaraj
  fullname: Jeyaraj, Murugaraj
  organization: National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39463350$$D View this record in MEDLINE/PubMed
BookMark eNpNUclu2zAQJYoUzdJ8QYGCx16UcpFM6mgYSWPAaQ91z8KQHBoMJDIlJQP-hvx05cQNcpp3eMvMvEtyFlNEQr5wdsOZ4N_BlhA9WhfKTW0ZW_D2A7kQUslKC6HO3uFzcl3KI2OMS93UdfOJnMu2XkjZsAvy_Bt7Xy3d47SHOIa4o0uHMe1Dhp7-hBmBtSEi9SnTWz8njmGPdFutsO-rB3QBRnR0PQxTDOOBQnR0k-Ku2kB5sXvAIeUDPdLp8iiGMaRIYQchlpFuJ4PZTn0qoXwmHz30Ba9P84r8ubvdru6rza8f69VyU1k-X1FxpY13WnG0hgM0agFGN6ZuVSOU55YZcH7maGdQKqOlZwLFAkG1gMxpeUW-vfo-5fR3wjJ2Qyh2XhAipql0kgsuNGubZqbKV6rNqZSMvnvKYYB86DjrjkV074roTkXMqq-ngMkM6N40_98u_wHq84vW
Cites_doi 10.1021/acs.molpharmaceut.2c00750
10.3389/fimmu.2018.00562
10.1136/bmj.g4643
10.3389/fimmu.2023.1234785
10.1021/acsami.6b01135
10.1016/j.addr.2021.113914
10.1016/j.jddst.2021.102856
10.3390/vaccines11081302
10.1038/nm.2420
10.1016/j.dmpk.2021.100432
10.3389/fbioe.2023.1200729
10.1016/j.ijbiomac.2018.10.167
10.1038/s41541-020-00243-x
10.1021/acs.biomac.5b00603
10.1016/j.jiph.2020.06.023
10.1007/s00216-022-04368-x
10.1002/smll.202104763
10.1021/acsami.3c04063
10.1021/acsami.2c10684
10.3389/fmicb.2021.750124
10.1021/acsbiomaterials.0c01496
10.1038/s41590-020-0782-6
10.1084/jem.20130555
10.1021/acsinfecdis.3c00463
10.1021/acs.langmuir.8b03920
10.3390/ijms24032914
10.1371/journal.pone.0200227
10.1021/mp400685v
10.1016/j.jasms.2005.02.023
10.1021/acsnano.0c04188
10.3389/fimmu.2022.900080
10.1016/j.xcrm.2021.100372
10.3389/fimmu.2020.01116
10.1038/s41541-022-00466-0
10.1039/C6CS00177G
10.3389/fcimb.2020.564565
10.1046/j.1365-2567.1999.00667.x
10.1208/s12249-021-02146-z
10.1021/acsinfecdis.3c00328
10.1128/IAI.00004-07
10.1038/s41541-021-00356-x
10.1002/jcb.24199
10.1021/acsinfecdis.2c00610
10.1021/nn8000565
10.3390/cancers15123240
10.1021/acs.molpharmaceut.9b00730
10.1021/acsami.6b08356
10.12659/MSM.896951
10.1038/s41598-018-21039-z
10.1016/j.jpha.2015.11.005
10.1038/s41541-024-00895-z
10.1371/journal.pmed.1002152
10.1016/j.molimm.2014.06.007
10.1016/j.carbpol.2020.116978
10.1021/acsomega.3c02259
10.3390/vaccines11081304
10.1038/s41467-021-22308-8
ContentType Journal Article
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1021/acsinfecdis.4c00619
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2373-8227
ExternalDocumentID 10_1021_acsinfecdis_4c00619
39463350
Genre Journal Article
GroupedDBID 53G
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CUPRZ
EBS
GGK
NPM
UI2
VF5
VG9
W1F
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c1000-178bfd871ecb1aa576ab85b497527f1c0badf78b8dbe37b83f02e26ea79ae0d83
IEDL.DBID ACS
ISSN 2373-8227
IngestDate Fri Nov 08 20:28:14 EST 2024
Wed Oct 30 12:31:12 EDT 2024
Sat Nov 02 12:31:44 EDT 2024
IsPeerReviewed false
IsScholarly true
Issue 11
Keywords Mycobacterium smegmatis
nanovaccine
adenovirus hexon protein
dendritic cells
memory cells
tuberculosis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1000-178bfd871ecb1aa576ab85b497527f1c0badf78b8dbe37b83f02e26ea79ae0d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9727-2154
PMID 39463350
PQID 3121280955
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3121280955
crossref_primary_10_1021_acsinfecdis_4c00619
pubmed_primary_39463350
PublicationCentury 2000
PublicationDate 2024-Oct-28
PublicationDateYYYYMMDD 2024-10-28
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS infectious diseases
PublicationTitleAlternate ACS Infect Dis
PublicationYear 2024
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref36/cit36
  doi: 10.1021/acs.molpharmaceut.2c00750
– ident: ref21/cit21
  doi: 10.3389/fimmu.2018.00562
– ident: ref6/cit6
  doi: 10.1136/bmj.g4643
– ident: ref1/cit1
  doi: 10.3389/fimmu.2023.1234785
– ident: ref29/cit29
  doi: 10.1021/acsami.6b01135
– ident: ref44/cit44
  doi: 10.1016/j.addr.2021.113914
– ident: ref43/cit43
  doi: 10.1016/j.jddst.2021.102856
– ident: ref14/cit14
  doi: 10.3390/vaccines11081302
– ident: ref55/cit55
  doi: 10.1038/nm.2420
– ident: ref17/cit17
  doi: 10.1016/j.dmpk.2021.100432
– ident: ref13/cit13
  doi: 10.3389/fbioe.2023.1200729
– ident: ref48/cit48
  doi: 10.1016/j.ijbiomac.2018.10.167
– ident: ref46/cit46
  doi: 10.1038/s41541-020-00243-x
– ident: ref23/cit23
  doi: 10.1021/acs.biomac.5b00603
– ident: ref7/cit7
  doi: 10.1016/j.jiph.2020.06.023
– ident: ref15/cit15
  doi: 10.1007/s00216-022-04368-x
– ident: ref41/cit41
  doi: 10.1002/smll.202104763
– ident: ref5/cit5
  doi: 10.1021/acsami.3c04063
– ident: ref31/cit31
  doi: 10.1021/acsami.2c10684
– ident: ref9/cit9
  doi: 10.3389/fmicb.2021.750124
– ident: ref53/cit53
  doi: 10.1021/acsbiomaterials.0c01496
– ident: ref37/cit37
  doi: 10.1038/s41590-020-0782-6
– ident: ref38/cit38
  doi: 10.1084/jem.20130555
– ident: ref3/cit3
  doi: 10.1021/acsinfecdis.3c00463
– ident: ref20/cit20
  doi: 10.1021/acs.langmuir.8b03920
– ident: ref25/cit25
  doi: 10.3390/ijms24032914
– ident: ref40/cit40
  doi: 10.1371/journal.pone.0200227
– ident: ref27/cit27
  doi: 10.1021/mp400685v
– ident: ref10/cit10
  doi: 10.1016/j.jasms.2005.02.023
– ident: ref51/cit51
  doi: 10.1021/acsnano.0c04188
– ident: ref26/cit26
  doi: 10.3389/fimmu.2022.900080
– ident: ref39/cit39
  doi: 10.1016/j.xcrm.2021.100372
– ident: ref34/cit34
  doi: 10.3389/fimmu.2020.01116
– ident: ref4/cit4
  doi: 10.1038/s41541-022-00466-0
– ident: ref12/cit12
  doi: 10.1039/C6CS00177G
– ident: ref49/cit49
  doi: 10.3389/fcimb.2020.564565
– ident: ref33/cit33
  doi: 10.1046/j.1365-2567.1999.00667.x
– ident: ref24/cit24
  doi: 10.1208/s12249-021-02146-z
– ident: ref52/cit52
  doi: 10.1021/acsinfecdis.3c00328
– ident: ref56/cit56
  doi: 10.1128/IAI.00004-07
– ident: ref57/cit57
  doi: 10.1038/s41541-021-00356-x
– ident: ref11/cit11
  doi: 10.1002/jcb.24199
– ident: ref35/cit35
  doi: 10.1021/acsinfecdis.2c00610
– ident: ref19/cit19
  doi: 10.1021/nn8000565
– ident: ref16/cit16
  doi: 10.3390/cancers15123240
– ident: ref32/cit32
  doi: 10.1021/acs.molpharmaceut.9b00730
– ident: ref22/cit22
  doi: 10.1021/acsami.6b08356
– ident: ref28/cit28
  doi: 10.12659/MSM.896951
– ident: ref45/cit45
  doi: 10.1038/s41598-018-21039-z
– ident: ref47/cit47
  doi: 10.1016/j.jpha.2015.11.005
– ident: ref54/cit54
  doi: 10.1038/s41541-024-00895-z
– ident: ref2/cit2
  doi: 10.1371/journal.pmed.1002152
– ident: ref50/cit50
  doi: 10.1016/j.molimm.2014.06.007
– ident: ref42/cit42
  doi: 10.1016/j.carbpol.2020.116978
– ident: ref18/cit18
  doi: 10.1021/acsomega.3c02259
– ident: ref8/cit8
  doi: 10.3390/vaccines11081304
– ident: ref30/cit30
  doi: 10.1038/s41467-021-22308-8
SSID ssj0001385445
Score 2.337016
Snippet An enhanced vaccine is immediately required to swap the more than 100 year-old bacillus Calmette-Guerin (BCG) vaccine against tuberculosis. Here, trimethyl...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 3939
Title Self-Adjuvanting Adenoviral Nanovaccine for Effective T-Cell-Mediated Immunity and Long-Lasting Memory Cell Activation against Tuberculosis
URI https://www.ncbi.nlm.nih.gov/pubmed/39463350
https://www.proquest.com/docview/3121280955
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9RADB6hHhAX3o-lgAaJI7PsZPKYPa5WVAV1e-lW6i2yZ5xqIUqqZoNU_kL_NJ7JBspLgmtkOco87M-x_VmINwbBeNSoHBKolDQpfpAq9BbSChOXR7qm1XF-eJp-PMvObjSr_5LBT_Q7cF2sS_Kbbpq64HJjux6jwgCElic__qgYG5hl4jS5wij2fMVIM_RnNT-7or_gy-hnDu6J47FbZygv-Tzttzh1X38nb_y3T7gv7u4Qp1wMR-SBuEXNQ3F7tcupPxLXJ1RXauE_9QyqQxG0XLAtakPxby3Z-LZfwAVJyfBWDmTHbCHlWi2prtUqjvogLz_ERpPtlYTGy6O2OVdH0EV1q1DMeyWDuFy4cZyahHPYMDaV6x7p0vV12226x-L04P16eah2IxqUC4kBpQuLleegixxqAA5eAG2G6bzIkqLSbobgK5axHskUaE01SyjJCYo50Mxb80TsNW1Dz4T0DBwL7bPKEKUWc0usYW45eM90DlBNxNtxt8qLgYmjjBn0RJc3FrjcLfBEvB53tOQbE9Ig0FDbd6XR7K5toN6biKfDVn9XaOZpbkw2e_5_L9sXdxIGO8GnJfaF2Nte9vSSwcoWX8Uz-g0kvuqX
link.rule.ids 315,783,787,2772,27936,27937
linkProvider American Chemical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Adjuvanting+Adenoviral+Nanovaccine+for+Effective+T-Cell-Mediated+Immunity+and+Long-Lasting+Memory+Cell+Activation+against+Tuberculosis&rft.jtitle=ACS+infectious+diseases&rft.au=Sowndharya%2C+Chithaiyan+Kamaladevi&rft.au=Mehnath%2C+Sivaraj&rft.au=Ponbharathi%2C+Arivalagan&rft.au=Jeyaraj%2C+Murugaraj&rft.date=2024-10-28&rft.eissn=2373-8227&rft_id=info:doi/10.1021%2Facsinfecdis.4c00619&rft_id=info%3Apmid%2F39463350&rft.externalDocID=39463350
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2373-8227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2373-8227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2373-8227&client=summon