A Novel Clustering Method for Patient Stratification
Patient stratification or disease subtyping is crucial for precision medicine and personalized treatment of complex diseases. The increasing availability of high-throughput molecular data provides a great opportunity for patient stratification. In particular, many clustering methods have been employ...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , , |
Format | Paper |
Language | English |
Published |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
03.09.2016
Cold Spring Harbor Laboratory |
Edition | 1.1 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Patient stratification or disease subtyping is crucial for precision medicine and personalized treatment of complex diseases. The increasing availability of high-throughput molecular data provides a great opportunity for patient stratification. In particular, many clustering methods have been employed to tackle this problem in a purely data-driven manner. Yet, existing methods leveraging high-throughput molecular data often suffers from various limitations, e.g., noise, data heterogeneity, high dimensionality or poor interpretability. Here we introduced an Entropy-based Consensus Clustering (ECC) method that overcomes those limitations all together. Our ECC method employs an entropy-based utility function to fuse many basic partitions to a consensus one that agrees with the basic ones as much as possible. Maximizing the utility function in ECC has a much more meaningful interpretation than any other consensus clustering methods. Moreover, we exactly map the complex utility maximization problem to the classic K-means clustering problem with a modified distance function, which can then be efficiently solved with linear time and space complexity. Our ECC method can also naturally integrate multiple molecular data types measured from the same set of subjects, and easily handle missing values without any imputation. We applied ECC to both synthetic and real data, including 35 cancer gene expression benchmark datasets and 13 cancer types with four molecular data types from The Cancer Genome Atlas. We found that ECC shows superior performance against existing clustering methods. Our results clearly demonstrate the power of ECC in clinically relevant patient stratification. |
---|---|
AbstractList | Patient stratification or disease subtyping is crucial for precision medicine and personalized treatment of complex diseases. The increasing availability of high-throughput molecular data provides a great opportunity for patient stratification. In particular, many clustering methods have been employed to tackle this problem in a purely data-driven manner. Yet, existing methods leveraging high-throughput molecular data often suffers from various limitations, e.g., noise, data heterogeneity, high dimensionality or poor interpretability. Here we introduced an Entropy-based Consensus Clustering (ECC) method that overcomes those limitations all together. Our ECC method employs an entropy-based utility function to fuse many basic partitions to a consensus one that agrees with the basic ones as much as possible. Maximizing the utility function in ECC has a much more meaningful interpretation than any other consensus clustering methods. Moreover, we exactly map the complex utility maximization problem to the classic K-means clustering problem with a modified distance function, which can then be efficiently solved with linear time and space complexity. Our ECC method can also naturally integrate multiple molecular data types measured from the same set of subjects, and easily handle missing values without any imputation. We applied ECC to both synthetic and real data, including 35 cancer gene expression benchmark datasets and 13 cancer types with four molecular data types from The Cancer Genome Atlas. We found that ECC shows superior performance against existing clustering methods. Our results clearly demonstrate the power of ECC in clinically relevant patient stratification. |
Author | Fu, Yun Liu, Hongfu Fang, Hongsheng Cheng, Feixiong Zhao, Rui Yang-Yu, Liu |
Author_xml | – sequence: 1 givenname: Hongfu surname: Liu fullname: Liu, Hongfu – sequence: 2 givenname: Rui surname: Zhao fullname: Zhao, Rui – sequence: 3 givenname: Hongsheng surname: Fang fullname: Fang, Hongsheng – sequence: 4 givenname: Feixiong surname: Cheng fullname: Cheng, Feixiong – sequence: 5 givenname: Yun surname: Fu fullname: Fu, Yun – sequence: 6 givenname: Liu surname: Yang-Yu fullname: Yang-Yu, Liu |
BookMark | eNpNj0tLAzEAhINUsNb6D4SA59W8No9jWbQK9QH2vmxemrImNZsW_fcurAcvMwMfDDPnYBZTdABcYnSDMcK3SFAs1QmYE65IJQmqZ__yGVgOww4hRBTHVLA5YCv4nI6uh01_GIrLIb7DJ1c-koU-ZfjaleBigW8lj8kHM2qKF-DUd_3gln--ANv7u23zUG1e1o_NalNpSVRlELOMa9F1UkhTS-2V1spKqzCvtfaEWCoF1URj0jGlGTE1p9RIZ4xy3tIFuJpqdUj5OxzbfQ6fXf5pp5Mjv574PqevgxtKu0uHHMdFLUECMSkl4_QXPLhQ_w |
ContentType | Paper |
Copyright | 2016. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.biorxiv.org/content/early/2016/09/03/073189 2016, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2016. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.biorxiv.org/content/early/2016/09/03/073189 – notice: 2016, Posted by Cold Spring Harbor Laboratory |
DBID | 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS FX. |
DOI | 10.1101/073189 |
DatabaseName | ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China bioRxiv |
DatabaseTitle | Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2692-8205 |
Edition | 1.1 |
ExternalDocumentID | 073189v1 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FH ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P NQS PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC RHI FX. |
ID | FETCH-LOGICAL-b829-c04d46b7aa878c58bf9bb9d8d9165bbf22d3873b2b12a49b42c5633c8ecc9efd3 |
IEDL.DBID | FX. |
ISSN | 2692-8205 |
IngestDate | Tue Jan 07 18:50:18 EST 2025 Fri Jul 25 09:12:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
License | The copyright holder for this pre-print is the author. All rights reserved. The material may not be redistributed, re-used or adapted without the author's permission. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b829-c04d46b7aa878c58bf9bb9d8d9165bbf22d3873b2b12a49b42c5633c8ecc9efd3 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
OpenAccessLink | https://www.biorxiv.org/content/10.1101/073189 |
PQID | 2070488846 |
PQPubID | 2050091 |
PageCount | 61 |
ParticipantIDs | biorxiv_primary_073189 proquest_journals_2070488846 |
PublicationCentury | 2000 |
PublicationDate | 20160903 |
PublicationDateYYYYMMDD | 2016-09-03 |
PublicationDate_xml | – month: 09 year: 2016 text: 20160903 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | Cold Spring Harbor |
PublicationPlace_xml | – name: Cold Spring Harbor |
PublicationTitle | bioRxiv |
PublicationYear | 2016 |
Publisher | Cold Spring Harbor Laboratory Press Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press – name: Cold Spring Harbor Laboratory |
References | Gentles (073189v1.3) 2015; 21 Wu, Xiong, Chen (073189v1.14) 2009 Aerts (073189v1.19) 2014; 5 Wu, Liu, Xiong, Cao, Chen (073189v1.11) 2015; 27 Fred, Ghosh (073189v1.9) 2002; 3 Andor (073189v1.7) 2016; 22 Galdi, Francesco, Roberto (073189v1.23) 2014 (073189v1.49) 2015; 161 Souto, Costa, de Araujo, Ludermir, Schliep (073189v1.27) 2008; 9 (073189v1.42) 2015; 517 Uhlen (073189v1.1) 2016; 12 Zelnik-Manor, Perona (073189v1.33) 2004 Galdi, Napolitano, Tagliaferri (073189v1.12) 2015; 8623 Denny (073189v1.20) 2013; 31 de Souto, Costa, de Araujo, Ludermir, Schliep (073189v1.15) 2008; 9 Cheung, Jia (073189v1.30) 2013; 46 (073189v1.45) 2014; 511 Strehl, Ghosh (073189v1.21) 2003; 3 (073189v1.46) 2012; 489 Jain (073189v1.28) 2010; 31 Borjigin, Guo (073189v1.31) 2013; 36 Schaffter, Marbach, Floreano (073189v1.13) 2011; 27 Brat (073189v1.44) 2015; 372 Zhu (073189v1.2) 2015; 12 (073189v1.41) 2012; 487 Friedman, Letai, Fisher, Flaherty (073189v1.4) 2015; 15 Wu, Xiong, Chen (073189v1.32) 2009 (073189v1.47) 2011; 474 Wu, Liu, Xiong, Cao, Chen (073189v1.24) 2015; 27 (073189v1.48) 2015; 163 (073189v1.39) 2014; 507 (073189v1.40) 2012; 490 Schaffter, Marbach, Floreano (073189v1.25) 2011; 27 (073189v1.50) 2014; 159 Fred, Jain (073189v1.10) 2005; 27 Chang (073189v1.6) 2005; 102 Arnedos (073189v1.8) 2015; 12 Sanchez-Rivera, Jacks (073189v1.17) 2015; 15 (073189v1.51) 2013; 497 Banerjee, Merugu, Dhillon, Ghosh (073189v1.36) 2005; 6 Galdi, Napolitano, Tagliaferri (073189v1.29) 2014 Jain (073189v1.16) 2010; 31 Schaffter, Marbach, Floreano (073189v1.34) 2011; 27 Han (073189v1.26) 2015; 5 Liu, Wu, Tao, Zhang, Fu (073189v1.37) 2015 Souto, Costa, de Araujo, Ludermir, Schliep (073189v1.35) 2008; 9 Zhang (073189v1.18) 2014; 13 Klein (073189v1.38) 2005 (073189v1.43) 2013; 499 Biankin, Piantadosi, Hollingsworth (073189v1.5) 2015; 526 Iam-on, Boongoen, Garrett (073189v1.22) 2010; 26 |
References_xml | – volume: 12 start-page: 693 year: 2015 end-page: 704 ident: 073189v1.8 publication-title: Nat. Rev. Clin. Oncol – volume: 27 start-page: 155 year: 2015 end-page: 169 ident: 073189v1.24 article-title: K-means-based consensus clustering: A unifiedview publication-title: IEEE Transaction on Knowledge and Data Engineering – volume: 15 start-page: 747 year: 2015 end-page: 756 ident: 073189v1.4 publication-title: Nat. Rev Cancer – volume: 27 start-page: 835 year: 2005 end-page: 850 ident: 073189v1.10 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 507 start-page: 315 year: 2014 end-page: 322 ident: 073189v1.39 article-title: Comprehensive molecular characterization of urothelial bladder carcinoma publication-title: Nature – volume: 474 start-page: 609 year: 2011 end-page: 615 ident: 073189v1.47 article-title: Integrated genomic analyses of ovarian carcinoma publication-title: Nature – volume: 26 start-page: 1513 year: 2010 end-page: 1519 ident: 073189v1.22 article-title: Lce: a link-based cluster ensemble method for improved gene expression data analysis publication-title: Bioinformatics – volume: 36 start-page: 439 year: 2013 end-page: 458 ident: 073189v1.31 article-title: Non-unique cluster numbers determination methods based on stability in spectral clustering publication-title: Knowledge and Information Systems – volume: 6 start-page: 1705 year: 2005 end-page: 1749 ident: 073189v1.36 article-title: Clustering with bregman divergences publication-title: Journal of Machine Learning Research – volume: 31 start-page: 651 year: 2010 end-page: 666 ident: 073189v1.16 publication-title: Pattern Recogn. Lett – volume: 490 start-page: 61 year: 2012 end-page: 70 ident: 073189v1.40 article-title: Comprehensive molecular portraits of human breast tumours publication-title: Nature – volume: 159 start-page: 676 year: 2014 end-page: 690 ident: 073189v1.50 article-title: Integrated genomic characterization of papillary thyroid carcinoma publication-title: Cell – volume: 9 start-page: 1 year: 2008 end-page: 14 ident: 073189v1.27 article-title: Clustering cancer gene expression data: a comparative study publication-title: BMC bioinformatics – volume: 526 start-page: 361 year: 2015 end-page: 370 ident: 073189v1.5 publication-title: Nature – volume: 31 start-page: 1102 year: 2013 end-page: 1110 ident: 073189v1.20 publication-title: Nat. Biotechnol – year: 2015 ident: 073189v1.37 article-title: Dias: A disassemble-assemble framework for highly sparse text clustering publication-title: In Proceedings of SIAM International Conference on Data Mining – volume: 15 start-page: 387 year: 2015 end-page: 395 ident: 073189v1.17 publication-title: Nat. Rev. Cancer – volume: 161 start-page: 1681 year: 2015 end-page: 1696 ident: 073189v1.49 article-title: Genomic classification of cutaneous melanoma publication-title: Cell – volume: 3 start-page: 587 year: 2003 end-page: 617 ident: 073189v1.21 article-title: Cluster ensembles—a knowledge reuse framework for combining multiple partitions publication-title: Journal of Machine Learning Research – volume: 8623 start-page: 57 year: 2015 end-page: 67 ident: 073189v1.12 publication-title: Comput. Intell. Methods Bioinformat. Biostatist. – volume: 489 start-page: 519 year: 2012 end-page: 525 ident: 073189v1.46 article-title: Comprehensive genomic characterization of squamous cell lung cancers publication-title: Nature – volume: 46 start-page: 2228 year: 2013 end-page: 2238 ident: 073189v1.30 article-title: Categorical-and-numerical-attribute data clustering based on a unified similarity metric without knowing cluster number publication-title: Pattern Recognition – year: 2009 ident: 073189v1.32 article-title: Adapting the right measures for k-means clustering publication-title: In Proceedings of ACMSIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 27 start-page: 2263 year: 2011 end-page: 2270 ident: 073189v1.13 publication-title: Bioinformatics – volume: 517 start-page: 576 year: 2015 end-page: 582 ident: 073189v1.42 article-title: Comprehensive genomic characterization of head and neck squamous cell carcinomas publication-title: Nature – volume: 22 start-page: 105 year: 2016 end-page: 113 ident: 073189v1.7 publication-title: Nat. Med – year: 2005 ident: 073189v1.38 publication-title: Survival Analysis: A Self-Learning Text – volume: 9 start-page: 497 year: 2008 ident: 073189v1.15 publication-title: BMC Bioinformatics – volume: 27 start-page: 2263 year: 2011 end-page: 2270 ident: 073189v1.34 article-title: Genenetweaver: in silico benchmark generation and performance profiling of network inference methods publication-title: Bioinformatics – volume: 5 year: 2015 ident: 073189v1.26 article-title: Trrust: a reference database of human transcriptional regulatory interactions publication-title: Scientific reports – year: 2004 ident: 073189v1.33 article-title: Self-tuning spectral clustering publication-title: In Proceedings of Advances in neural information processing systems – volume: 3 start-page: 587 year: 2002 end-page: 617 ident: 073189v1.9 publication-title: J. Mach. Learn. Res – volume: 499 start-page: 43 year: 2013 end-page: 49 ident: 073189v1.43 article-title: Comprehensive molecular characterization of clear cell renal cell carcinoma publication-title: Nature – volume: 487 start-page: 330 year: 2012 end-page: 337 ident: 073189v1.41 article-title: Comprehensive molecular characterization of human colon and rectal cancer publication-title: Nature – volume: 9 start-page: 1 year: 2008 end-page: 14 ident: 073189v1.35 article-title: Clustering cancer gene expression data: a comparative study publication-title: BMC bioinformatics – volume: 27 start-page: 155 year: 2015 end-page: 169 ident: 073189v1.11 publication-title: IEEE Trans. Knowledge Data Engin – volume: 163 start-page: 1011 year: 2015 end-page: 1025 ident: 073189v1.48 article-title: The molecular taxonomy of primary prostate cancer publication-title: Cell – volume: 31 start-page: 651 year: 2010 end-page: 666 ident: 073189v1.28 article-title: Data clustering: 50 years beyond k-means publication-title: Pattern recognition letters – volume: 5 start-page: 4006 year: 2014 ident: 073189v1.19 publication-title: Nat. Commun – volume: 27 start-page: 2263 year: 2011 end-page: 2270 ident: 073189v1.25 article-title: Genenetweaver: in silico benchmark generation and performance profiling of network inference methods publication-title: Bioinformatics – volume: 511 start-page: 543 year: 2014 end-page: 550 ident: 073189v1.45 article-title: Comprehensive molecular profiling of lung adenocarcinoma publication-title: Nature – start-page: 877 year: 2009 end-page: 885 ident: 073189v1.14 publication-title: KDD-09: 15th ACMSIGKDD Conf. Knowledge Discov. Data Mining – start-page: 57 year: 2014 end-page: 67 ident: 073189v1.23 article-title: Consensus clustering in gene expression publication-title: Computational Intelligence Methods for Bioinformatics and Biostatistics – volume: 372 start-page: 2481 year: 2015 end-page: 2498 ident: 073189v1.44 article-title: Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas publication-title: The New England journal of medicine – volume: 12 start-page: 211 year: 2015 end-page: 214 ident: 073189v1.2 publication-title: Nat.Methods – year: 2014 ident: 073189v1.29 article-title: Consensus clustering in gene expression publication-title: In Proceedings of Computational Intelligence Methods for Bioinformatics and Biostatistics – volume: 102 start-page: 3738 year: 2005 end-page: 3743 ident: 073189v1.6 publication-title: Proc. Natl. Acad. Sci – volume: 497 start-page: 67 year: 2013 end-page: 73 ident: 073189v1.51 article-title: Integrated genomic characterization of endometrial carcinoma publication-title: Nature – volume: 13 start-page: 382 year: 2014 end-page: 387 ident: 073189v1.18 publication-title: Nature – volume: 21 start-page: 938 year: 2015 end-page: 945 ident: 073189v1.3 publication-title: Nat. Med – volume: 12 start-page: 862 year: 2016 ident: 073189v1.1 publication-title: Mol. Syst. Biol |
SSID | ssj0002961374 |
Score | 1.4907151 |
SecondaryResourceType | preprint |
Snippet | Patient stratification or disease subtyping is crucial for precision medicine and personalized treatment of complex diseases. The increasing availability of... |
SourceID | biorxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Bioinformatics Cancer Entropy Gene expression Genomes Methods Precision medicine Utility functions |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NSwMxEA3aUvDmV7G1yh68Bnez2WxyEi0tRWgpUqG3ZSfJQqF0a7_Qf-9kN9WD4DmnzEzmTSaT9wh5QMdqRB6gXBpLuWaWKpARFYUILd6JClG4_87jiRi989d5MvcNt60fqzzmxCpRm1K7HrnrhLhgQ7h8Wn9QpxrlXle9hMYpaWIKlnj5ar4MJtO3ny4LUwhXFRUzEwqPPgsTLzCEofiI4R05ffcWLMrN5-LwJx9XIDM8J81pvrabC3JiV5ekVatEfl0R_hxMyoNdBv3l3tEaINgE40r4OcCKM5jWzKhBxTPrBn8qW1-T2XAw64-oFzugIJmiOuSGC0jzXKZSJxIKBaCMNFi-JQAFYyaWaQwMIpZzBZzpRMSxlugCZQsTt0ljVa7sDQlCaQzYVKWRsTyWVmoj09wU4KjXDVMd0vb7zdY1o0VWG6JDesftZz6St9mv3bv_L9-SMywmRDV_FfdIY7fZ2zsE7B3ce698AyaVlMM priority: 102 providerName: ProQuest |
Title | A Novel Clustering Method for Patient Stratification |
URI | https://www.proquest.com/docview/2070488846 https://www.biorxiv.org/content/10.1101/073189 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LSwMxEB60RfDmq1itZQ9eV3eTbDY5amkpQkuRCr0tO3lAobSlL-q_d_ahHsT77kImM_m-JLPfB_BIE2sIeTAUyrpQGOZCjSoOpZeRoz2Rl77433k0lsMP8TZLZvVGcVu3VeJ8tTnOD-U9ftGwTatvVdxR_EwZGSt9Ck3KI1FYNQxmTz9nKkwTOKWithD6fZy4bf3NPytuCSODC2hO8rXbXMKJW17BWeUD-XkN4iUYrw5uEfQW-0K4gOAkGJXWzgFxymBSaZ8GpZJs0dpTRvMGpoP-tDcMazuDEBXToYmEFRLTPFepMolCrxG1VZYIWoLoGbNcpRwZxiwXGgUzieTcKAqydt7yFjSWq6W7hSBS1qJLdRpbJ7hyyliV5tZjIa5umW5Dqx5vtq40K7IqEG3ofA8_q3N1mzGqeipjIiJ3_713D-dEFGTZW8U70Nht9u6BwHiHXWi-9seT9245E19ARIoI |
linkProvider | Cold Spring Harbor Laboratory Press |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4ghOjNFxFF7UGPjWW7bXcPxihCQKAhBhNuTbe7TUgIRV7Kj_I_OtsWPZh447zJJrMzO6-d_T6AG1RshJFHmJRJZdKIKJMLVjfd2LUU1kSxG-v_zn3fbb_Rl5EzKsDX9i-MHqvc-sTUUcsk0j1y3QnRxobh8mH2bmrWKP26uqXQyMyiqzYfWLIt7jvPqN9bQlrNYaNt5qwCpmCEm5FFJXWFF4bMY5HDRMyF4JJJzJMcIWJCpM08WxBRJyHlgpLIcW07YigrV7G0cds9KFEbK5kilJ6a_uD1p6lDOEbHFPmZuBw9DbGcnM8ILf8Ob1Nd08mXxTiZf47Xf9x_GtNah1AahDM1P4KCmh5DOSOl3JwAfTT8ZK0mRmOy0igKGNuMfsozbWCCawwyIFYjhbXVc0apak9huItTqEBxmkzVGRgWk1Ioj3t1qajNFIsk80IZC430LgmvQiWXN5hlABpBdhBVqG3FD_KLswh-1Xz-__I17LeH_V7Q6_jdCzjAPMZNR7_sGhSX85W6xFxhKa5yDRkQ7NgmvgH9CNIi |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LT8MwDLZgE4gbr4nBgB64drRpmiZHNKjGY9MOQ9qtqptEmjRt016Cf4_TFjggfkAixbHzfXGczwB3tLEFIQ_6XGrj84IZX6EMfWFFYOhOZIV1_50HQ9F_5y-TeFKnLtZ1WSVOF6uP6a58x3cF23T6VsEdhPfkkaFUXZeb7i613YemUzhz7pxOuj_JFaYIpRJe9xL6HUckt578z9Fb4kl6DM1RvjSrE9gz81M4qBpCfp4Bf_CGi52Zeb3Z1ikYEK54g7LHs0fk0htVIqheKSnranxKs57DOH0a9_p-3dfAR8mUXwRcc4FJnstEFrFEqxCVlpqYWoxoGdORTCJkGLKcK-SsiEUUFZKsrYzVUQsa88XcXIAXSK3RJCoJteGRNLLQMsm1RaeyrplqQ6teb7asxCuyyhBt6HwvP6uddp0xCn-KZ2Ikl_-Nu4XD0WOavT0PX6_giMiDKOutog40NqutuSaA3uBNuRlfVs6OVg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Clustering+Method+for+Patient+Stratification&rft.jtitle=bioRxiv&rft.au=Liu%2C+Hongfu&rft.au=Zhao%2C+Rui&rft.au=Fang%2C+Hongsheng&rft.au=Cheng%2C+Feixiong&rft.date=2016-09-03&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F073189&rft.externalDocID=073189v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |