A Novel Clustering Method for Patient Stratification

Patient stratification or disease subtyping is crucial for precision medicine and personalized treatment of complex diseases. The increasing availability of high-throughput molecular data provides a great opportunity for patient stratification. In particular, many clustering methods have been employ...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Liu, Hongfu, Zhao, Rui, Fang, Hongsheng, Cheng, Feixiong, Fu, Yun, Yang-Yu, Liu
Format Paper
LanguageEnglish
Published Cold Spring Harbor Cold Spring Harbor Laboratory Press 03.09.2016
Cold Spring Harbor Laboratory
Edition1.1
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Patient stratification or disease subtyping is crucial for precision medicine and personalized treatment of complex diseases. The increasing availability of high-throughput molecular data provides a great opportunity for patient stratification. In particular, many clustering methods have been employed to tackle this problem in a purely data-driven manner. Yet, existing methods leveraging high-throughput molecular data often suffers from various limitations, e.g., noise, data heterogeneity, high dimensionality or poor interpretability. Here we introduced an Entropy-based Consensus Clustering (ECC) method that overcomes those limitations all together. Our ECC method employs an entropy-based utility function to fuse many basic partitions to a consensus one that agrees with the basic ones as much as possible. Maximizing the utility function in ECC has a much more meaningful interpretation than any other consensus clustering methods. Moreover, we exactly map the complex utility maximization problem to the classic K-means clustering problem with a modified distance function, which can then be efficiently solved with linear time and space complexity. Our ECC method can also naturally integrate multiple molecular data types measured from the same set of subjects, and easily handle missing values without any imputation. We applied ECC to both synthetic and real data, including 35 cancer gene expression benchmark datasets and 13 cancer types with four molecular data types from The Cancer Genome Atlas. We found that ECC shows superior performance against existing clustering methods. Our results clearly demonstrate the power of ECC in clinically relevant patient stratification.
AbstractList Patient stratification or disease subtyping is crucial for precision medicine and personalized treatment of complex diseases. The increasing availability of high-throughput molecular data provides a great opportunity for patient stratification. In particular, many clustering methods have been employed to tackle this problem in a purely data-driven manner. Yet, existing methods leveraging high-throughput molecular data often suffers from various limitations, e.g., noise, data heterogeneity, high dimensionality or poor interpretability. Here we introduced an Entropy-based Consensus Clustering (ECC) method that overcomes those limitations all together. Our ECC method employs an entropy-based utility function to fuse many basic partitions to a consensus one that agrees with the basic ones as much as possible. Maximizing the utility function in ECC has a much more meaningful interpretation than any other consensus clustering methods. Moreover, we exactly map the complex utility maximization problem to the classic K-means clustering problem with a modified distance function, which can then be efficiently solved with linear time and space complexity. Our ECC method can also naturally integrate multiple molecular data types measured from the same set of subjects, and easily handle missing values without any imputation. We applied ECC to both synthetic and real data, including 35 cancer gene expression benchmark datasets and 13 cancer types with four molecular data types from The Cancer Genome Atlas. We found that ECC shows superior performance against existing clustering methods. Our results clearly demonstrate the power of ECC in clinically relevant patient stratification.
Author Fu, Yun
Liu, Hongfu
Fang, Hongsheng
Cheng, Feixiong
Zhao, Rui
Yang-Yu, Liu
Author_xml – sequence: 1
  givenname: Hongfu
  surname: Liu
  fullname: Liu, Hongfu
– sequence: 2
  givenname: Rui
  surname: Zhao
  fullname: Zhao, Rui
– sequence: 3
  givenname: Hongsheng
  surname: Fang
  fullname: Fang, Hongsheng
– sequence: 4
  givenname: Feixiong
  surname: Cheng
  fullname: Cheng, Feixiong
– sequence: 5
  givenname: Yun
  surname: Fu
  fullname: Fu, Yun
– sequence: 6
  givenname: Liu
  surname: Yang-Yu
  fullname: Yang-Yu, Liu
BookMark eNpNj0tLAzEAhINUsNb6D4SA59W8No9jWbQK9QH2vmxemrImNZsW_fcurAcvMwMfDDPnYBZTdABcYnSDMcK3SFAs1QmYE65IJQmqZ__yGVgOww4hRBTHVLA5YCv4nI6uh01_GIrLIb7DJ1c-koU-ZfjaleBigW8lj8kHM2qKF-DUd_3gln--ANv7u23zUG1e1o_NalNpSVRlELOMa9F1UkhTS-2V1spKqzCvtfaEWCoF1URj0jGlGTE1p9RIZ4xy3tIFuJpqdUj5OxzbfQ6fXf5pp5Mjv574PqevgxtKu0uHHMdFLUECMSkl4_QXPLhQ_w
ContentType Paper
Copyright 2016. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.biorxiv.org/content/early/2016/09/03/073189
2016, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2016. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.biorxiv.org/content/early/2016/09/03/073189
– notice: 2016, Posted by Cold Spring Harbor Laboratory
DBID 8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
FX.
DOI 10.1101/073189
DatabaseName ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
bioRxiv
DatabaseTitle Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 073189v1
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FH
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
NQS
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
RHI
FX.
ID FETCH-LOGICAL-b829-c04d46b7aa878c58bf9bb9d8d9165bbf22d3873b2b12a49b42c5633c8ecc9efd3
IEDL.DBID FX.
ISSN 2692-8205
IngestDate Tue Jan 07 18:50:18 EST 2025
Fri Jul 25 09:12:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License The copyright holder for this pre-print is the author. All rights reserved. The material may not be redistributed, re-used or adapted without the author's permission.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b829-c04d46b7aa878c58bf9bb9d8d9165bbf22d3873b2b12a49b42c5633c8ecc9efd3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.biorxiv.org/content/10.1101/073189
PQID 2070488846
PQPubID 2050091
PageCount 61
ParticipantIDs biorxiv_primary_073189
proquest_journals_2070488846
PublicationCentury 2000
PublicationDate 20160903
PublicationDateYYYYMMDD 2016-09-03
PublicationDate_xml – month: 09
  year: 2016
  text: 20160903
  day: 03
PublicationDecade 2010
PublicationPlace Cold Spring Harbor
PublicationPlace_xml – name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationYear 2016
Publisher Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Cold Spring Harbor Laboratory
References Gentles (073189v1.3) 2015; 21
Wu, Xiong, Chen (073189v1.14) 2009
Aerts (073189v1.19) 2014; 5
Wu, Liu, Xiong, Cao, Chen (073189v1.11) 2015; 27
Fred, Ghosh (073189v1.9) 2002; 3
Andor (073189v1.7) 2016; 22
Galdi, Francesco, Roberto (073189v1.23) 2014
(073189v1.49) 2015; 161
Souto, Costa, de Araujo, Ludermir, Schliep (073189v1.27) 2008; 9
(073189v1.42) 2015; 517
Uhlen (073189v1.1) 2016; 12
Zelnik-Manor, Perona (073189v1.33) 2004
Galdi, Napolitano, Tagliaferri (073189v1.12) 2015; 8623
Denny (073189v1.20) 2013; 31
de Souto, Costa, de Araujo, Ludermir, Schliep (073189v1.15) 2008; 9
Cheung, Jia (073189v1.30) 2013; 46
(073189v1.45) 2014; 511
Strehl, Ghosh (073189v1.21) 2003; 3
(073189v1.46) 2012; 489
Jain (073189v1.28) 2010; 31
Borjigin, Guo (073189v1.31) 2013; 36
Schaffter, Marbach, Floreano (073189v1.13) 2011; 27
Brat (073189v1.44) 2015; 372
Zhu (073189v1.2) 2015; 12
(073189v1.41) 2012; 487
Friedman, Letai, Fisher, Flaherty (073189v1.4) 2015; 15
Wu, Xiong, Chen (073189v1.32) 2009
(073189v1.47) 2011; 474
Wu, Liu, Xiong, Cao, Chen (073189v1.24) 2015; 27
(073189v1.48) 2015; 163
(073189v1.39) 2014; 507
(073189v1.40) 2012; 490
Schaffter, Marbach, Floreano (073189v1.25) 2011; 27
(073189v1.50) 2014; 159
Fred, Jain (073189v1.10) 2005; 27
Chang (073189v1.6) 2005; 102
Arnedos (073189v1.8) 2015; 12
Sanchez-Rivera, Jacks (073189v1.17) 2015; 15
(073189v1.51) 2013; 497
Banerjee, Merugu, Dhillon, Ghosh (073189v1.36) 2005; 6
Galdi, Napolitano, Tagliaferri (073189v1.29) 2014
Jain (073189v1.16) 2010; 31
Schaffter, Marbach, Floreano (073189v1.34) 2011; 27
Han (073189v1.26) 2015; 5
Liu, Wu, Tao, Zhang, Fu (073189v1.37) 2015
Souto, Costa, de Araujo, Ludermir, Schliep (073189v1.35) 2008; 9
Zhang (073189v1.18) 2014; 13
Klein (073189v1.38) 2005
(073189v1.43) 2013; 499
Biankin, Piantadosi, Hollingsworth (073189v1.5) 2015; 526
Iam-on, Boongoen, Garrett (073189v1.22) 2010; 26
References_xml – volume: 12
  start-page: 693
  year: 2015
  end-page: 704
  ident: 073189v1.8
  publication-title: Nat. Rev. Clin. Oncol
– volume: 27
  start-page: 155
  year: 2015
  end-page: 169
  ident: 073189v1.24
  article-title: K-means-based consensus clustering: A unifiedview
  publication-title: IEEE Transaction on Knowledge and Data Engineering
– volume: 15
  start-page: 747
  year: 2015
  end-page: 756
  ident: 073189v1.4
  publication-title: Nat. Rev Cancer
– volume: 27
  start-page: 835
  year: 2005
  end-page: 850
  ident: 073189v1.10
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 507
  start-page: 315
  year: 2014
  end-page: 322
  ident: 073189v1.39
  article-title: Comprehensive molecular characterization of urothelial bladder carcinoma
  publication-title: Nature
– volume: 474
  start-page: 609
  year: 2011
  end-page: 615
  ident: 073189v1.47
  article-title: Integrated genomic analyses of ovarian carcinoma
  publication-title: Nature
– volume: 26
  start-page: 1513
  year: 2010
  end-page: 1519
  ident: 073189v1.22
  article-title: Lce: a link-based cluster ensemble method for improved gene expression data analysis
  publication-title: Bioinformatics
– volume: 36
  start-page: 439
  year: 2013
  end-page: 458
  ident: 073189v1.31
  article-title: Non-unique cluster numbers determination methods based on stability in spectral clustering
  publication-title: Knowledge and Information Systems
– volume: 6
  start-page: 1705
  year: 2005
  end-page: 1749
  ident: 073189v1.36
  article-title: Clustering with bregman divergences
  publication-title: Journal of Machine Learning Research
– volume: 31
  start-page: 651
  year: 2010
  end-page: 666
  ident: 073189v1.16
  publication-title: Pattern Recogn. Lett
– volume: 490
  start-page: 61
  year: 2012
  end-page: 70
  ident: 073189v1.40
  article-title: Comprehensive molecular portraits of human breast tumours
  publication-title: Nature
– volume: 159
  start-page: 676
  year: 2014
  end-page: 690
  ident: 073189v1.50
  article-title: Integrated genomic characterization of papillary thyroid carcinoma
  publication-title: Cell
– volume: 9
  start-page: 1
  year: 2008
  end-page: 14
  ident: 073189v1.27
  article-title: Clustering cancer gene expression data: a comparative study
  publication-title: BMC bioinformatics
– volume: 526
  start-page: 361
  year: 2015
  end-page: 370
  ident: 073189v1.5
  publication-title: Nature
– volume: 31
  start-page: 1102
  year: 2013
  end-page: 1110
  ident: 073189v1.20
  publication-title: Nat. Biotechnol
– year: 2015
  ident: 073189v1.37
  article-title: Dias: A disassemble-assemble framework for highly sparse text clustering
  publication-title: In Proceedings of SIAM International Conference on Data Mining
– volume: 15
  start-page: 387
  year: 2015
  end-page: 395
  ident: 073189v1.17
  publication-title: Nat. Rev. Cancer
– volume: 161
  start-page: 1681
  year: 2015
  end-page: 1696
  ident: 073189v1.49
  article-title: Genomic classification of cutaneous melanoma
  publication-title: Cell
– volume: 3
  start-page: 587
  year: 2003
  end-page: 617
  ident: 073189v1.21
  article-title: Cluster ensembles—a knowledge reuse framework for combining multiple partitions
  publication-title: Journal of Machine Learning Research
– volume: 8623
  start-page: 57
  year: 2015
  end-page: 67
  ident: 073189v1.12
  publication-title: Comput. Intell. Methods Bioinformat. Biostatist.
– volume: 489
  start-page: 519
  year: 2012
  end-page: 525
  ident: 073189v1.46
  article-title: Comprehensive genomic characterization of squamous cell lung cancers
  publication-title: Nature
– volume: 46
  start-page: 2228
  year: 2013
  end-page: 2238
  ident: 073189v1.30
  article-title: Categorical-and-numerical-attribute data clustering based on a unified similarity metric without knowing cluster number
  publication-title: Pattern Recognition
– year: 2009
  ident: 073189v1.32
  article-title: Adapting the right measures for k-means clustering
  publication-title: In Proceedings of ACMSIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 27
  start-page: 2263
  year: 2011
  end-page: 2270
  ident: 073189v1.13
  publication-title: Bioinformatics
– volume: 517
  start-page: 576
  year: 2015
  end-page: 582
  ident: 073189v1.42
  article-title: Comprehensive genomic characterization of head and neck squamous cell carcinomas
  publication-title: Nature
– volume: 22
  start-page: 105
  year: 2016
  end-page: 113
  ident: 073189v1.7
  publication-title: Nat. Med
– year: 2005
  ident: 073189v1.38
  publication-title: Survival Analysis: A Self-Learning Text
– volume: 9
  start-page: 497
  year: 2008
  ident: 073189v1.15
  publication-title: BMC Bioinformatics
– volume: 27
  start-page: 2263
  year: 2011
  end-page: 2270
  ident: 073189v1.34
  article-title: Genenetweaver: in silico benchmark generation and performance profiling of network inference methods
  publication-title: Bioinformatics
– volume: 5
  year: 2015
  ident: 073189v1.26
  article-title: Trrust: a reference database of human transcriptional regulatory interactions
  publication-title: Scientific reports
– year: 2004
  ident: 073189v1.33
  article-title: Self-tuning spectral clustering
  publication-title: In Proceedings of Advances in neural information processing systems
– volume: 3
  start-page: 587
  year: 2002
  end-page: 617
  ident: 073189v1.9
  publication-title: J. Mach. Learn. Res
– volume: 499
  start-page: 43
  year: 2013
  end-page: 49
  ident: 073189v1.43
  article-title: Comprehensive molecular characterization of clear cell renal cell carcinoma
  publication-title: Nature
– volume: 487
  start-page: 330
  year: 2012
  end-page: 337
  ident: 073189v1.41
  article-title: Comprehensive molecular characterization of human colon and rectal cancer
  publication-title: Nature
– volume: 9
  start-page: 1
  year: 2008
  end-page: 14
  ident: 073189v1.35
  article-title: Clustering cancer gene expression data: a comparative study
  publication-title: BMC bioinformatics
– volume: 27
  start-page: 155
  year: 2015
  end-page: 169
  ident: 073189v1.11
  publication-title: IEEE Trans. Knowledge Data Engin
– volume: 163
  start-page: 1011
  year: 2015
  end-page: 1025
  ident: 073189v1.48
  article-title: The molecular taxonomy of primary prostate cancer
  publication-title: Cell
– volume: 31
  start-page: 651
  year: 2010
  end-page: 666
  ident: 073189v1.28
  article-title: Data clustering: 50 years beyond k-means
  publication-title: Pattern recognition letters
– volume: 5
  start-page: 4006
  year: 2014
  ident: 073189v1.19
  publication-title: Nat. Commun
– volume: 27
  start-page: 2263
  year: 2011
  end-page: 2270
  ident: 073189v1.25
  article-title: Genenetweaver: in silico benchmark generation and performance profiling of network inference methods
  publication-title: Bioinformatics
– volume: 511
  start-page: 543
  year: 2014
  end-page: 550
  ident: 073189v1.45
  article-title: Comprehensive molecular profiling of lung adenocarcinoma
  publication-title: Nature
– start-page: 877
  year: 2009
  end-page: 885
  ident: 073189v1.14
  publication-title: KDD-09: 15th ACMSIGKDD Conf. Knowledge Discov. Data Mining
– start-page: 57
  year: 2014
  end-page: 67
  ident: 073189v1.23
  article-title: Consensus clustering in gene expression
  publication-title: Computational Intelligence Methods for Bioinformatics and Biostatistics
– volume: 372
  start-page: 2481
  year: 2015
  end-page: 2498
  ident: 073189v1.44
  article-title: Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas
  publication-title: The New England journal of medicine
– volume: 12
  start-page: 211
  year: 2015
  end-page: 214
  ident: 073189v1.2
  publication-title: Nat.Methods
– year: 2014
  ident: 073189v1.29
  article-title: Consensus clustering in gene expression
  publication-title: In Proceedings of Computational Intelligence Methods for Bioinformatics and Biostatistics
– volume: 102
  start-page: 3738
  year: 2005
  end-page: 3743
  ident: 073189v1.6
  publication-title: Proc. Natl. Acad. Sci
– volume: 497
  start-page: 67
  year: 2013
  end-page: 73
  ident: 073189v1.51
  article-title: Integrated genomic characterization of endometrial carcinoma
  publication-title: Nature
– volume: 13
  start-page: 382
  year: 2014
  end-page: 387
  ident: 073189v1.18
  publication-title: Nature
– volume: 21
  start-page: 938
  year: 2015
  end-page: 945
  ident: 073189v1.3
  publication-title: Nat. Med
– volume: 12
  start-page: 862
  year: 2016
  ident: 073189v1.1
  publication-title: Mol. Syst. Biol
SSID ssj0002961374
Score 1.4907151
SecondaryResourceType preprint
Snippet Patient stratification or disease subtyping is crucial for precision medicine and personalized treatment of complex diseases. The increasing availability of...
SourceID biorxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Bioinformatics
Cancer
Entropy
Gene expression
Genomes
Methods
Precision medicine
Utility functions
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NSwMxEA3aUvDmV7G1yh68Bnez2WxyEi0tRWgpUqG3ZSfJQqF0a7_Qf-9kN9WD4DmnzEzmTSaT9wh5QMdqRB6gXBpLuWaWKpARFYUILd6JClG4_87jiRi989d5MvcNt60fqzzmxCpRm1K7HrnrhLhgQ7h8Wn9QpxrlXle9hMYpaWIKlnj5ar4MJtO3ny4LUwhXFRUzEwqPPgsTLzCEofiI4R05ffcWLMrN5-LwJx9XIDM8J81pvrabC3JiV5ekVatEfl0R_hxMyoNdBv3l3tEaINgE40r4OcCKM5jWzKhBxTPrBn8qW1-T2XAw64-oFzugIJmiOuSGC0jzXKZSJxIKBaCMNFi-JQAFYyaWaQwMIpZzBZzpRMSxlugCZQsTt0ljVa7sDQlCaQzYVKWRsTyWVmoj09wU4KjXDVMd0vb7zdY1o0VWG6JDesftZz6St9mv3bv_L9-SMywmRDV_FfdIY7fZ2zsE7B3ce698AyaVlMM
  priority: 102
  providerName: ProQuest
Title A Novel Clustering Method for Patient Stratification
URI https://www.proquest.com/docview/2070488846
https://www.biorxiv.org/content/10.1101/073189
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LSwMxEB60RfDmq1itZQ9eV3eTbDY5amkpQkuRCr0tO3lAobSlL-q_d_ahHsT77kImM_m-JLPfB_BIE2sIeTAUyrpQGOZCjSoOpZeRoz2Rl77433k0lsMP8TZLZvVGcVu3VeJ8tTnOD-U9ftGwTatvVdxR_EwZGSt9Ck3KI1FYNQxmTz9nKkwTOKWithD6fZy4bf3NPytuCSODC2hO8rXbXMKJW17BWeUD-XkN4iUYrw5uEfQW-0K4gOAkGJXWzgFxymBSaZ8GpZJs0dpTRvMGpoP-tDcMazuDEBXToYmEFRLTPFepMolCrxG1VZYIWoLoGbNcpRwZxiwXGgUzieTcKAqydt7yFjSWq6W7hSBS1qJLdRpbJ7hyyliV5tZjIa5umW5Dqx5vtq40K7IqEG3ofA8_q3N1mzGqeipjIiJ3_713D-dEFGTZW8U70Nht9u6BwHiHXWi-9seT9245E19ARIoI
linkProvider Cold Spring Harbor Laboratory Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4ghOjNFxFF7UGPjWW7bXcPxihCQKAhBhNuTbe7TUgIRV7Kj_I_OtsWPZh447zJJrMzO6-d_T6AG1RshJFHmJRJZdKIKJMLVjfd2LUU1kSxG-v_zn3fbb_Rl5EzKsDX9i-MHqvc-sTUUcsk0j1y3QnRxobh8mH2bmrWKP26uqXQyMyiqzYfWLIt7jvPqN9bQlrNYaNt5qwCpmCEm5FFJXWFF4bMY5HDRMyF4JJJzJMcIWJCpM08WxBRJyHlgpLIcW07YigrV7G0cds9KFEbK5kilJ6a_uD1p6lDOEbHFPmZuBw9DbGcnM8ILf8Ob1Nd08mXxTiZf47Xf9x_GtNah1AahDM1P4KCmh5DOSOl3JwAfTT8ZK0mRmOy0igKGNuMfsozbWCCawwyIFYjhbXVc0apak9huItTqEBxmkzVGRgWk1Ioj3t1qajNFIsk80IZC430LgmvQiWXN5hlABpBdhBVqG3FD_KLswh-1Xz-__I17LeH_V7Q6_jdCzjAPMZNR7_sGhSX85W6xFxhKa5yDRkQ7NgmvgH9CNIi
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LT8MwDLZgE4gbr4nBgB64drRpmiZHNKjGY9MOQ9qtqptEmjRt016Cf4_TFjggfkAixbHzfXGczwB3tLEFIQ_6XGrj84IZX6EMfWFFYOhOZIV1_50HQ9F_5y-TeFKnLtZ1WSVOF6uP6a58x3cF23T6VsEdhPfkkaFUXZeb7i613YemUzhz7pxOuj_JFaYIpRJe9xL6HUckt578z9Fb4kl6DM1RvjSrE9gz81M4qBpCfp4Bf_CGi52Zeb3Z1ikYEK54g7LHs0fk0htVIqheKSnranxKs57DOH0a9_p-3dfAR8mUXwRcc4FJnstEFrFEqxCVlpqYWoxoGdORTCJkGLKcK-SsiEUUFZKsrYzVUQsa88XcXIAXSK3RJCoJteGRNLLQMsm1RaeyrplqQ6teb7asxCuyyhBt6HwvP6uddp0xCn-KZ2Ikl_-Nu4XD0WOavT0PX6_giMiDKOutog40NqutuSaA3uBNuRlfVs6OVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Clustering+Method+for+Patient+Stratification&rft.jtitle=bioRxiv&rft.au=Liu%2C+Hongfu&rft.au=Zhao%2C+Rui&rft.au=Fang%2C+Hongsheng&rft.au=Cheng%2C+Feixiong&rft.date=2016-09-03&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F073189&rft.externalDocID=073189v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon