Temporal Multiple Kernel Learning (tMKL) model for predicting resting state FC via characterizing fMRI connectivity dynamics

Over the last decade there has been growing interest in understanding the brain activity in the absence of any task or stimulus captured by the resting-state functional magnetic resonance imaging (rsfMRI). These resting state patterns are not static, but exhibit complex spatio-temporal dynamics. In...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Surampudi, Sriniwas Govinda, Misra, Joyneel, Deco, Gustavo, Surampudi, Raju Bapi, Sharma, Avinash, Roy, Dipanjan
Format Paper
LanguageEnglish
Published Cold Spring Harbor Cold Spring Harbor Laboratory Press 11.07.2018
Cold Spring Harbor Laboratory
Edition1.1
Subjects
Online AccessGet full text
ISSN2692-8205
2692-8205
DOI10.1101/367276

Cover

Abstract Over the last decade there has been growing interest in understanding the brain activity in the absence of any task or stimulus captured by the resting-state functional magnetic resonance imaging (rsfMRI). These resting state patterns are not static, but exhibit complex spatio-temporal dynamics. In the recent years substantial effort has been put to characterize different FC configurations while brain states makes transitions over time. The dynamics governing this transitions and their relationship with stationary functional connectivity remains elusive. Over the last years a multitude of methods has been proposed to discover and characterize FC dynamics and one of the most accepted method is sliding window approach. Moreover, as these FC configurations are observed to be cyclically repeating in time there was further motivation to use of a generic clustering scheme to identify latent states of dynamics. We discover the underlying lower-dimensional manifold of the temporal structure which is further parameterized as a set of local density distributions, or latent transient states. We propose an innovative method that learns parameters specific to these latent states using a graph-theoretic model (temporal Multiple Kernel Learning, tMKL) and finally predicts the grand average functional connectivity (FC) of the unseen subjects by leveraging a state transition Markov model. tMKL thus learns a mapping between the underlying anatomical network and the temporal structure. Training and testing were done using the rs-fMRI data of 46 healthy participants and the results establish the viability of the proposed solution. Parameters of the model are learned via state-specific optimization formulations and yet the model performs at par or better than state-of-the-art models for predicting the grand average FC. Moreover, the model shows sensitivity towards subject-specific anatomy. The proposed model performs significantly better than the established models of predicting resting state functional connectivity based on whole-brain dynamic mean-field model, single diffusion kernel model and another version of multiple kernel learning model. In summary, We provide a novel solution that does not make strong assumption about underlying data and is generally applicable to resting or task data to learn subject specific state transitions and successful characterization of SC-dFC-FC relationship through an unifying framework.
AbstractList Over the last decade there has been growing interest in understanding the brain activity in the absence of any task or stimulus captured by the resting-state functional magnetic resonance imaging (rsfMRI). These resting state patterns are not static, but exhibit complex spatio-temporal dynamics. In the recent years substantial effort has been put to characterize different FC configurations while brain states makes transitions over time. The dynamics governing this transitions and their relationship with stationary functional connectivity remains elusive. Over the last years a multitude of methods has been proposed to discover and characterize FC dynamics and one of the most accepted method is sliding window approach. Moreover, as these FC configurations are observed to be cyclically repeating in time there was further motivation to use of a generic clustering scheme to identify latent states of dynamics. We discover the underlying lower-dimensional manifold of the temporal structure which is further parameterized as a set of local density distributions, or latent transient states. We propose an innovative method that learns parameters specific to these latent states using a graph-theoretic model (temporal Multiple Kernel Learning, tMKL) and finally predicts the grand average functional connectivity (FC) of the unseen subjects by leveraging a state transition Markov model. tMKL thus learns a mapping between the underlying anatomical network and the temporal structure. Training and testing were done using the rs-fMRI data of 46 healthy participants and the results establish the viability of the proposed solution. Parameters of the model are learned via state-specific optimization formulations and yet the model performs at par or better than state-of-the-art models for predicting the grand average FC. Moreover, the model shows sensitivity towards subject-specific anatomy. The proposed model performs significantly better than the established models of predicting resting state functional connectivity based on whole-brain dynamic mean-field model, single diffusion kernel model and another version of multiple kernel learning model. In summary, We provide a novel solution that does not make strong assumption about underlying data and is generally applicable to resting or task data to learn subject specific state transitions and successful characterization of SC-dFC-FC relationship through an unifying framework.
Author Misra, Joyneel
Deco, Gustavo
Surampudi, Raju Bapi
Sharma, Avinash
Roy, Dipanjan
Surampudi, Sriniwas Govinda
Author_xml – sequence: 1
  givenname: Sriniwas
  surname: Surampudi
  middlename: Govinda
  fullname: Surampudi, Sriniwas Govinda
– sequence: 2
  givenname: Joyneel
  surname: Misra
  fullname: Misra, Joyneel
– sequence: 3
  givenname: Gustavo
  surname: Deco
  fullname: Deco, Gustavo
– sequence: 4
  givenname: Raju
  surname: Surampudi
  middlename: Bapi
  fullname: Surampudi, Raju Bapi
– sequence: 5
  givenname: Avinash
  surname: Sharma
  fullname: Sharma, Avinash
– sequence: 6
  givenname: Dipanjan
  surname: Roy
  fullname: Roy, Dipanjan
BookMark eNpNkF9LwzAUxYNMcM75DYSAL_pQzb8m3aMMp7INQfdekvRWM9qkpt1w4oe3cz74dC73x72cc07RwAcPCJ1TckMpobdcKqbkERoyOWFJxkg6-DefoHHbrgkhbCIpV2KIvldQNyHqCi83VeeaCvAcoocKL0BH7_wbvuqW88U1rkPRb8sQcROhcLbbswjtr7ad7gDPpnjrNLbvOmrbQXRfe1YuX56wDd5Df7N13Q4XO69rZ9szdFzqqoXxn47Q6-x-NX1MFs8PT9O7RWIyJhPTBxMZV6bsXQslGAcpUmEzxqk22lBQmiomuJHGloLLjJgyLYiG1PIy4yN0cfhqXIifbps30dU67vJDVz2_PPAmho9NHyhfh030vaGcEZkJoiaU8h_GFWoJ
ContentType Paper
Copyright 2018. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.biorxiv.org/content/early/2018/07/11/367276
2018, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2018. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.biorxiv.org/content/early/2018/07/11/367276
– notice: 2018, Posted by Cold Spring Harbor Laboratory
DBID 8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
FX.
DOI 10.1101/367276
DatabaseName ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
bioRxiv
DatabaseTitle Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 367276v1
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FH
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
NQS
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
RHI
FX.
ID FETCH-LOGICAL-b826-b1104837bf29647423e6454c8231abab1e7a17243b6bcf43680bf5d0ae5c3f83
IEDL.DBID FX.
ISSN 2692-8205
IngestDate Tue Jan 07 18:54:24 EST 2025
Fri Jul 25 09:21:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords SC
dFC
rsfMRI
FC
tMKL
Language English
License The copyright holder for this pre-print is the author. All rights reserved. The material may not be redistributed, re-used or adapted without the author's permission.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b826-b1104837bf29647423e6454c8231abab1e7a17243b6bcf43680bf5d0ae5c3f83
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.biorxiv.org/content/10.1101/367276
PQID 2068407911
PQPubID 2050091
PageCount 31
ParticipantIDs biorxiv_primary_367276
proquest_journals_2068407911
PublicationCentury 2000
PublicationDate 20180711
PublicationDateYYYYMMDD 2018-07-11
PublicationDate_xml – month: 07
  year: 2018
  text: 20180711
  day: 11
PublicationDecade 2010
PublicationPlace Cold Spring Harbor
PublicationPlace_xml – name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationYear 2018
Publisher Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Cold Spring Harbor Laboratory
References Allen, Damaraju, Plis, Erhardt, Eichele, Calhoun (367276v1.21) 2014; 24
Den Heuvel, Pol (367276v1.3) 2010; 20
Damoiseaux, Rombouts, Barkhof, Scheltens, Stam, Smith, Beckmann (367276v1.5) 2006; 103
Belkin, Niyogi (367276v1.31) 2002
Shi, Malik (367276v1.35) 2000; 22
Pernice, Staude, Cardanobile, Rotter (367276v1.13) 2011; 7
Xia, Wang, He (367276v1.38) 2013; 8
Vidaurre, Smith, Woolrich (367276v1.27) 2017; 114
Gong, He, Concha, Lebel, Gross, Evans, Beaulieu (367276v1.9) 2008; 19
Beckmann, DeLuca, Devlin, Smith (367276v1.4) 2005; 360
Mori, van Zijl (367276v1.8) 2002; 15
Power, Cohen, Nelson, Wig, Barnes, Church, Vogel, Laumann, Miezin, Schlaggar (367276v1.6) 2011; 72
Vemuri, Surampudi (367276v1.24) 2015; 5
Ryali, Supekar, Chen, Kochalka, Cai, Nicholas, Padmanabhan, Menon (367276v1.26) 2016; 12
Becker, Pequito, Pappas, Miller, Grafton, Bassett, Preciado (367276v1.15) 2018; 8
Biswal, Yetkin, Haughton, Hyde (367276v1.1) 1995; 34
Abdelnour, Dayan, Devinsky, Thesen, Raj (367276v1.18) 2018; 172
Damaraju, Allen, Belger, Ford, McEwen, Mathalon, Mueller, Pearlson, Potkin, Preda (367276v1.39) 2014; 5
Rubinov, Sporns (367276v1.37) 2010; 52
Rashid, Damaraju, Pearlson, Calhoun (367276v1.40) 2014; 8
Surampudi, Naik, Surampudi, Jirsa, Sharma, Roy (367276v1.17) 2018; 8
Biswal, Mennes, Zuo, Gohel, Kelly, Smith, Beckmann, Adelstein, Buckner, Colcombe (367276v1.2) 2010; 107
Belkin, Niyogi (367276v1.32) 2003; 15
Baker, Brookes, Rezek, Smith, Behrens, Smith, Woolrich (367276v1.25); 3
Pillai, Jirsa (367276v1.28) 2017; 94
Deco, Kringelbach, Jirsa, Ritter (367276v1.23); 7
Hindriks, Adhikari, Murayama, Ganzetti, Mantini, Logothetis, Deco (367276v1.41) 2016; 127
Abdelnour, Voss, Raj (367276v1.16) 2014; 90
Preti, Bolton, De Ville (367276v1.20) 2017; 160
Robinson (367276v1.11) 2012; 85
Desikan, Ségonne, Fischl, Quinn, Dickerson, Blacker, Buckner, Dale, Maguire, Hyman (367276v1.29) 2006; 31
Schirner, Rothmeier, Jirsa, McIntosh, Ritter (367276v1.30) 2015; 117
Deco, Ponce-Alvarez, Mantini, Romani, Hagmann, Corbetta (367276v1.12) 2013; 33
Surampudi, Naik, Shrama, Bapi, Roy (367276v1.14) 2016) 078766
Kiviniemi, Vire, Remes, Elseoud, Starck, Tervonen, Nikkinen (367276v1.22) 2011; 1
Bishop (367276v1.36) 2016
Luxburg (367276v1.33) 2007; 17
Ng, Jordan, Weiss (367276v1.34) 2002
Yeo, Krienen, Sepulcre, Sabuncu, Lashkari, Hollinshead, Roffman, Smoller, Zöllei, Polimeni (367276v1.7) 2011; 106
Chang, Glover (367276v1.19) 2010; 50
Vincent, Patel, Fox, Snyder, Baker, Essen, Zempel, Snyder, Corbetta, Raichle (367276v1.10) 2007; 447
References_xml – volume: 33
  start-page: 11239
  issue: 27
  year: 2013
  end-page: 11252
  ident: 367276v1.12
  article-title: Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations
  publication-title: Journal of Neuroscience
– volume: 72
  start-page: 665
  issue: 4
  year: 2011
  end-page: 678
  ident: 367276v1.6
  article-title: Functional network organization of the human brain
  publication-title: Neuron
– volume: 19
  start-page: 524
  issue: 3
  year: 2008
  end-page: 536
  ident: 367276v1.9
  article-title: Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography
  publication-title: Cerebral cortex
– volume: 5
  start-page: 298
  year: 2014
  end-page: 308
  ident: 367276v1.39
  article-title: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia
  publication-title: Neuroimage: Clinical
– volume: 52
  start-page: 1059
  issue: 3
  year: 2010
  end-page: 1069
  ident: 367276v1.37
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: Neuroimage
– volume: 7
  issue: 3095
  ident: 367276v1.23
  article-title: The dynamics of resting fluctuations in the brain: metastability and its dynamical cortical core
  publication-title: Scientific Reports
– year: 2016
  ident: 367276v1.36
  publication-title: Pattern Recognition and Machine Learning
– volume: 8
  start-page: 3265
  issue: 1
  year: 2018
  ident: 367276v1.17
  article-title: Multiple kernel learning model for relating structural and functional connectivity in the brain
  publication-title: Scientific reports
– volume: 127
  start-page: 242
  year: 2016
  end-page: 256
  ident: 367276v1.41
  article-title: Can sliding-window correlations reveal dynamic functional connectivity in resting-state fmri?
  publication-title: Neuroimage
– volume: 447
  start-page: 83
  issue: 7140
  year: 2007
  ident: 367276v1.10
  article-title: Intrinsic functional architecture in the anaesthetized monkey brain
  publication-title: Nature
– volume: 20
  start-page: 519
  issue: 8
  year: 2010
  end-page: 534
  ident: 367276v1.3
  article-title: Exploring the brain network: a review on resting-state fmri functional connectivity
  publication-title: European neuropsychopharmacology
– volume: 160
  start-page: 41
  year: 2017
  end-page: 54
  ident: 367276v1.20
  article-title: The dynamic functional connec-tome: State-of-the-art and perspectives
  publication-title: NeuroImage
– volume: 172
  start-page: 728
  year: 2018
  end-page: 739
  ident: 367276v1.18
  article-title: Functional brain connectivity is predictable from anatomic network’s laplacian eigen-structure
  publication-title: NeuroImage
– volume: 114
  start-page: 12827
  issue: 48
  year: 2017
  end-page: 12832
  ident: 367276v1.27
  article-title: Brain network dynamics are hierarchically organized in time
  publication-title: Proceedings of the National Academy of Sciences
– volume: 15
  start-page: 468
  issue: 7–8
  year: 2002
  end-page: 480
  ident: 367276v1.8
  article-title: Fiber tracking: principles and strategies–a technical review
  publication-title: NMR in Biomedicine
– start-page: 849
  year: 2002
  end-page: 856
  ident: 367276v1.34
  publication-title: Advances in neural information processing systems
– volume: 8
  start-page: 897
  year: 2014
  ident: 367276v1.40
  article-title: Dynamic connectivity states estimated from resting fmri identify differences among schizophrenia, bipolar disorder, and healthy control subjects
  publication-title: Frontiers in human neuroscience
– volume: 360
  start-page: 1001
  issue: 1457
  year: 2005
  end-page: 1013
  ident: 367276v1.4
  article-title: Investigations into resting-state connectivity using independent component analysis
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 3
  ident: 367276v1.25
  article-title: Fast transient networks in spontaneous human brain activity
  publication-title: Elife
– volume: 107
  start-page: 4734
  issue: 10
  year: 2010
  end-page: 4739
  ident: 367276v1.2
  article-title: Toward discovery science of human brain function
  publication-title: Proceedings of the National Academy of Sciences
– volume: 103
  start-page: 13848
  issue: 37
  year: 2006
  end-page: 13853
  ident: 367276v1.5
  article-title: Consistent resting-state networks across healthy subjects
  publication-title: Proceedings of the national academy of sciences
– year: 2016) 078766
  ident: 367276v1.14
  article-title: Combining multiscale diffusion kernels for learning the structural and functional brain connectivity
  publication-title: bioRxiv
– start-page: 585
  year: 2002
  end-page: 591
  ident: 367276v1.31
  publication-title: Advances in neural information processing systems
– volume: 17
  start-page: 395
  issue: 4
  year: 2007
  end-page: 416
  ident: 367276v1.33
  article-title: A tutorial on spectral clustering
  publication-title: Statistics and computing
– volume: 1
  start-page: 339
  issue: 4
  year: 2011
  end-page: 347
  ident: 367276v1.22
  article-title: A sliding time-window ica reveals spatial variability of the default mode network in time
  publication-title: Brain connectivity
– volume: 24
  start-page: 663
  issue: 3
  year: 2014
  end-page: 676
  ident: 367276v1.21
  article-title: Tracking whole-brain connectivity dynamics in the resting state
  publication-title: Cerebral cortex
– volume: 117
  start-page: 343
  year: 2015
  end-page: 357
  ident: 367276v1.30
  article-title: An automated pipeline for constructing personalized virtual brains from multimodal neuroimaging data
  publication-title: Neuroimage
– volume: 22
  start-page: 888
  issue: 8
  year: 2000
  end-page: 905
  ident: 367276v1.35
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Transactions on pattern analysis and machine intelligence
– volume: 90
  start-page: 335
  year: 2014
  end-page: 347
  ident: 367276v1.16
  article-title: Network diffusion accurately models the relationship between structural and functional brain connectivity networks
  publication-title: Neuroimage
– volume: 5
  start-page: 384
  issue: 6
  year: 2015
  end-page: 400
  ident: 367276v1.24
  article-title: An exploratory investigation of functional network connectivity of empathy and default mode networks in a free-viewing task
  publication-title: Brain Connectivity
– volume: 34
  start-page: 537
  issue: 4
  year: 1995
  end-page: 541
  ident: 367276v1.1
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
  publication-title: Magnetic Resonance in Medicine
– volume: 31
  start-page: 968
  issue: 3
  year: 2006
  end-page: 980
  ident: 367276v1.29
  article-title: An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest
  publication-title: Neuroimage
– volume: 7
  start-page: e1002059
  issue: 5
  year: 2011
  ident: 367276v1.13
  article-title: How structure determines correlations in neuronal networks
  publication-title: PLoS computational biology
– volume: 94
  start-page: 1010
  issue: 5
  year: 2017
  end-page: 1026
  ident: 367276v1.28
  article-title: Symmetry breaking in space-time hierarchies shapes brain dynamics and behavior
  publication-title: Neuron
– volume: 8
  start-page: 1411
  issue: 1
  year: 2018
  ident: 367276v1.15
  article-title: Spectral mapping of brain functional connectivity from diffusion imaging
  publication-title: Scientific reports
– volume: 106
  start-page: 1125
  issue: 3
  year: 2011
  end-page: 1165
  ident: 367276v1.7
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: Journal of neurophysiology
– volume: 85
  start-page: 011912
  issue: 1
  year: 2012
  ident: 367276v1.11
  article-title: Interrelating anatomical, effective, and functional brain connectivity using propagators and neural field theory
  publication-title: Physical Review E
– volume: 8
  start-page: e68910
  issue: 7
  year: 2013
  ident: 367276v1.38
  article-title: Brainnet viewer: a network visualization tool for human brain connectomics
  publication-title: PloS one
– volume: 15
  start-page: 1373
  issue: 6
  year: 2003
  end-page: 1396
  ident: 367276v1.32
  article-title: Laplacian eigenmaps for dimensionality reduction and data representation
  publication-title: Neural computation
– volume: 50
  start-page: 81
  issue: 1
  year: 2010
  end-page: 98
  ident: 367276v1.19
  article-title: Time–frequency dynamics of resting-state brain connectivity measured with fmri
  publication-title: Neuroimage
– volume: 12
  start-page: e1005138
  issue: 12
  year: 2016
  ident: 367276v1.26
  article-title: Temporal dynamics and developmental maturation of salience, default and central-executive network interactions revealed by variational bayes hidden markov modeling
  publication-title: PLoS Computational Biology
SSID ssj0002961374
Score 1.5396377
SecondaryResourceType preprint
Snippet Over the last decade there has been growing interest in understanding the brain activity in the absence of any task or stimulus captured by the resting-state...
SourceID biorxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Brain mapping
Functional magnetic resonance imaging
Motivation
Neural networks
Neuroimaging
Neuroscience
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LSsNAFB1qi-DOV7FaZRYudDGYpHlMFiJYWqo1pdQK3YV5RQoljWktKn68c5NJXQiushiyyJ3JnXNf5yB0qTgVjgwUcWlIiSu5ICFPOPEFo4GGIzrogtnhaOQPXtzHmTeroVE1CwNtlZVPLBy1XArIkesgHWhJ9Ov2XfZGQDUKqquVhAYz0grytqAY20EN7ZKpPveN-95oPNlmXZxQX18FNbPjh9oVOJZnBIf00bzpQFkSkDCfL_OP-eaPfy4unf4-aoxZpvIDVFPpIdotVSM_j9D3tKSTWuDIdAPiocpTtcCGLPUVX62j4dM1LmRusIalOMuhIAMtzhjEOOBZjBLhfhdv5gyLLW_zF6wl0eQBC-iBEaW6BJalcv3qGD33e9PugBgRBcJ15EC4_jAgjecJ1FehLKuAw0tA9Y9xxm0VMI1h3A73uUiAjt7iiSctpjzRSWinierpMlUnCFuSeSDoKSVVriMoUyyQ3Ka-0JhSJHYLNY3Z4qwkyohLe7ZQu7JibH6QVfy7naf_L5-hPY1RKKRTbbuN6uv8XZ1rHLDmF2ZzfwC3a7NM
  priority: 102
  providerName: ProQuest
Title Temporal Multiple Kernel Learning (tMKL) model for predicting resting state FC via characterizing fMRI connectivity dynamics
URI https://www.proquest.com/docview/2068407911
https://www.biorxiv.org/content/10.1101/367276
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1NT8JAEJ0oxMSbX0QQyR486KHa7y5XCQ2KJQQx4dbsVw0JKaQgUeOPd6dd8WA89dBuk-5ud97sm30P4EpxKlwZKcunXWr5kguryzNuhYLRSMMRnXTh2eFkFA5e_MdZMDOJ4tqUVfL5snifb0seHwu29epb_dy2c-chcxjuQ13PIxetGuLZ7W5Pxe3q4BT5xkLo93GNbc07_6y4ZRiJj6A-ZitVHMOeyk_goPKB_DiFr2klELUgianvI0NV5GpBjPzpK7neJMOnG1Ia1xANNMmqQIoFi5YJ2mvgtTwcROIe2c4ZETsl5k-8lyWTByKwqkVUfhFEVl706zN4jvvT3sAytggW17mAxfWHoQw8z5AxRaJVoSqXQD6PccYdFTGNSnyPh1xkKDBv8yyQNlOB8DLqNaCWL3N1DsSWLECLTimp8l1BmWKR5A4NhUaJInOa0DDdlq4q6Yu06s8mtH96MTVTfp26NurG6PF1Wv-1u4BDjTcobo06Thtqm-JNXeqYvuEdqN_3R-NJpxzQb7W9o3o
linkProvider Cold Spring Harbor Laboratory Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5Boore-kLQprAHKrUHq_Ezm0NUqSlRguMIQZA4Ye3LVSTqpE4aCOKn9ccxY6_hUKk3Tj6svIfZ3Zlvd2a-D-DISK483TFOwLvcCbRUTldm0omU4B2EI3jpot7hZBINL4KTy_ByC_7WvTBUVln7xNJR67miN3K8pBMtCf7uflv8dkg1irKrtYSGsNIKuldSjNnGjthsbvAKt-yNfuB6f_K8wfG0P3SsyoAjEVo7EuMfsarLjBKQlLc0RHKlKD0mpJCu6QgM8oEvI6ky4mtvyyzUbWFC5Wfcx1m3oRlQf2sDmt-PJ6dnj288OKPrl0TQXtRFx-O1QytvhAfhq09JUMLdcjYvbmfrf6JBGeIGr6B5KhameA1bJn8DLyqNys1buJ9W5FXXLLG1hyw2RW6umaVm_ck-r5J4_IWVojoMQTBbFJT-oYJqRtIf9C0bl9igz9YzwdQjS_QdjWXJ2YgpqrhRlZYF05tc_Jqp5Ts4fwZj7kIjn-dmD1hbi5DkQ7XmJvAUF0Z0tHR5pBDBqszdh11rtnRR0XKklT33oVVbMbXHcZk-bZ73_x8-hJ3hNBmn49Ek_gAvER1xesh13RY0VsUf8xERyEoe2IVmcPW8O-sBFs3tyQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1NT8JAEN0oROPNLyKKugcPeih229IuZ7QRoYQoJtya_TQkpDQFiRp_vDvtigfjqYdmm3R2dmd23ux7CF0pToUnI-UEtEudQHLhdLnmTigYjUw6Yg5dcHc4GYUPL8HjtDO1pYulbavks0XxPluXOD40bJvdt1rcLrn1ATkM21CbbudSb6O6cSgC7hxP25viitc1USoKrJbQ7ziT5NqP_9l6y3gS76P6mOWqOEBbKjtEO5Ug5McR-ppUTFFznNhGPzxQRabm2PKgvuLrVTIY3uBSwQabjBPnBWAt0L2MQWcDnuUtIRz38HrGsNhQMn_CO5089bGA9hZRCUdgWYnSL4_Rc3w_6T04Vh_B4eZQ4HDzY8AHzzVAp4C4KqDnEgDsMc44UREz6Ung85ALDUzzLtcd6TLVEb6mfgPVskWmThB2JeuAVqeUVAWeoEyxSHJCQ2HSRaFJEzWs2dK84sBIK3s2UevHiqn1_WXquUAgYyaanP437hLtju_idNgfDc7QnslBKJRLCWmh2qp4U-cmzq_4RTmn3wtOp8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+Multiple+Kernel+Learning+%28tMKL%29+model+for+predicting+resting+state+FC+via+characterizing+fMRI+connectivity+dynamics&rft.jtitle=bioRxiv&rft.au=Surampudi%2C+Sriniwas+Govinda&rft.au=Misra%2C+Joyneel&rft.au=Deco%2C+Gustavo&rft.au=Surampudi%2C+Raju+Bapi&rft.date=2018-07-11&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F367276&rft.externalDocID=367276v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon