MELD: Mixed Effects for Large Datasets
Mixed effects models provide significant advantages in sensitivity and flexibility over typical statistical approaches to neural data analysis, but mass univariate application of mixed effects models to large neural datasets is computationally intensive. Threshold free cluster enhancement also provi...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , |
Format | Paper |
Language | English |
Published |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
27.06.2017
Cold Spring Harbor Laboratory |
Edition | 1.1 |
Subjects | |
Online Access | Get full text |
ISSN | 2692-8205 2692-8205 |
DOI | 10.1101/156315 |
Cover
Abstract | Mixed effects models provide significant advantages in sensitivity and flexibility over typical statistical approaches to neural data analysis, but mass univariate application of mixed effects models to large neural datasets is computationally intensive. Threshold free cluster enhancement also provides a significant increase in sensitivity, but requires computationally-intensive permutation-based significance testing. Not surprisingly, the combination of mixed effects models with threshold free cluster enhancement and nonparametric permutation-based significance testing is currently completely impractical. With mixed effects for large datasets (MELD) we circumvent this impasse by means of a singular value decomposition to reduce the dimensionality of neural data while maximizing signal. Singular value decompositions become unstable when there are large numbers of noise features, so we precede it with a bootstrap-based feature selection step employing threshold free cluster enhancement to identify stable features across subjects. By projecting the dependent data into the reduced space of the singular value decomposition we gain the power of a multivariate approach and we can greatly reduce the number of mixed effects models that need to be run, making it feasible to use permutation testing to determine feature level significance. Due to these innovations, MELD is much faster than an element-wise mixed effects analysis, and on simulated data MELD was more sensitive than standard techniques, such as element-wise t-tests combined with threshold-free cluster enhancement. When evaluated on an EEG dataset, MELD identified more significant features than the t-tests with threshold free cluster enhancement in a comparable amount of time. |
---|---|
AbstractList | Mixed effects models provide significant advantages in sensitivity and flexibility over typical statistical approaches to neural data analysis, but mass univariate application of mixed effects models to large neural datasets is computationally intensive. Threshold free cluster enhancement also provides a significant increase in sensitivity, but requires computationally-intensive permutation-based significance testing. Not surprisingly, the combination of mixed effects models with threshold free cluster enhancement and nonparametric permutation-based significance testing is currently completely impractical. With mixed effects for large datasets (MELD) we circumvent this impasse by means of a singular value decomposition to reduce the dimensionality of neural data while maximizing signal. Singular value decompositions become unstable when there are large numbers of noise features, so we precede it with a bootstrap-based feature selection step employing threshold free cluster enhancement to identify stable features across subjects. By projecting the dependent data into the reduced space of the singular value decomposition we gain the power of a multivariate approach and we can greatly reduce the number of mixed effects models that need to be run, making it feasible to use permutation testing to determine feature level significance. Due to these innovations, MELD is much faster than an element-wise mixed effects analysis, and on simulated data MELD was more sensitive than standard techniques, such as element-wise t-tests combined with threshold-free cluster enhancement. When evaluated on an EEG dataset, MELD identified more significant features than the t-tests with threshold free cluster enhancement in a comparable amount of time. |
Author | Sederberg, Per B Nielson, Dylan M |
Author_xml | – sequence: 1 givenname: Dylan surname: Nielson middlename: M fullname: Nielson, Dylan M – sequence: 2 givenname: Per surname: Sederberg middlename: B fullname: Sederberg, Per B |
BookMark | eNpNj01Lw0AURQepYK31HwgBwV30zUxm8uJO2vgBKW66D2-aN5KiSZ1Jpf33FuLC1b1w4HDvpZh0fcdCXEu4lxLkgzRWS3MmpsoWKkUFZvKvX4h5jFsAUIWVOs-m4m5VVsvHZNUeuElK73kzxMT3IakofHCypIEiD_FKnHv6jDz_y5lYP5frxWtavb-8LZ6q1KEyqVOWgHSBnomxAWmgcLn17B1So21uGzByoxk96swieiLSGZkMleMM9EzcjFrX9uHQ_tS70H5RONbjrRO_Hfku9N97jkO97fehOy2qFeRSaWs16l8mpEok |
ContentType | Paper |
Copyright | 2017. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ ( the License ). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2017, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2017. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ ( the License ). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2017, Posted by Cold Spring Harbor Laboratory |
DBID | 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS FX. |
DOI | 10.1101/156315 |
DatabaseName | ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological science database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China bioRxiv |
DatabaseTitle | Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2692-8205 |
Edition | 1.1 |
ExternalDocumentID | 156315v1 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FH ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P NQS PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC RHI FX. |
ID | FETCH-LOGICAL-b825-b26a0a398feae8d01509b76fefb8ad3676d051c3e8f834688faaa34a5482be403 |
IEDL.DBID | FX. |
ISSN | 2692-8205 |
IngestDate | Tue Jan 07 18:54:01 EST 2025 Fri Jul 25 09:13:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Linear Mixed Effects TFCE Multivariate Modeling EEG Nonparametric statistics |
Language | English |
License | This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b825-b26a0a398feae8d01509b76fefb8ad3676d051c3e8f834688faaa34a5482be403 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
ORCID | 0000-0001-8586-4542 0000-0003-4613-6643 |
OpenAccessLink | https://www.biorxiv.org/content/10.1101/156315 |
PQID | 2071236638 |
PQPubID | 2050091 |
PageCount | 32 |
ParticipantIDs | biorxiv_primary_156315 proquest_journals_2071236638 |
PublicationCentury | 2000 |
PublicationDate | 20170627 |
PublicationDateYYYYMMDD | 2017-06-27 |
PublicationDate_xml | – month: 06 year: 2017 text: 20170627 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | Cold Spring Harbor |
PublicationPlace_xml | – name: Cold Spring Harbor |
PublicationTitle | bioRxiv |
PublicationYear | 2017 |
Publisher | Cold Spring Harbor Laboratory Press Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press – name: Cold Spring Harbor Laboratory |
References | Rugg, Curran (156315v1.26) 2007; 11 Mensen, Khatami (156315v1.5) 2013; 67 Satterthwaite (156315v1.13) 1946; 2 Hunter (156315v1.18) 2007; 9 Cnaan, Laird, Slasor (156315v1.9) 1997; 16 Gratton, Coles, Donchin (156315v1.25) 1983; 55 Smith, Nichols (156315v1.4) 2009; 44 Waskom, Botvinnik, Hobson, Cole, Halchenko, Hoyer (156315v1.19) 2014 Welch (156315v1.14) 1947; 34 Gershman, Blei, Norman, Sederberg (156315v1.20) 2014 Sep; 98 Degabriele, Lagopoulos, Malhi (156315v1.2) 2011; 133 Bagiella, Sloan, Heitjan (156315v1.10) 2000; 37 Düzel, Yonelinas, Mangun, Heinze, Tulving (156315v1.28) 1997; 94 Strózak, Bird, Corby, Frishkoff, Curran (156315v1.30) 2016; 53 Efron, Tibshirani (156315v1.16) 1994 Smith (156315v1.29) 1993; 5 Curran (156315v1.27) 2004; 42 Barr, Levy, Scheepers, Tily (156315v1.15) 2013; 68 Krishnan, Williams, McIntosh, Abdi (156315v1.31) 2011; 56 Beckmann, Jenkinson, Smith (156315v1.8) 2003; 20 Brysbaert, New (156315v1.22) 2009 Nov; 41 Maris, Oostenveld (156315v1.3) 2007; 164 Matthews (156315v1.17) 1975; 405 Pernet, Latinus, Nichols, Rousselet (156315v1.6) 2014 Amsel (156315v1.11) 2011; 49 Geller, Schleifer, Sederberg, Jacobs, Kahana (156315v1.23) 2007; 39 Kenward, Roger (156315v1.12) 1997; 53 Rossion, Caharel (156315v1.1) 2011; 51 Baayen, Davidson, Bates (156315v1.7) 2008; 59 Ratcliff, Sederberg, Smith, Childers (156315v1.21) 2016 Dec; 93 Castellanos, Makarov (156315v1.24) 2006; 158 |
References_xml | – volume: 405 start-page: 442 issue: 2 year: 1975 end-page: 51 ident: 156315v1.17 article-title: Comparison of the predicted and observed secondary structure of T4 phage lysozyme publication-title: Biochimica et Biophysica Acta (BBA) - Protein Structure – volume: 44 start-page: 83 issue: 1 year: 2009 end-page: 98 ident: 156315v1.4 article-title: Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference publication-title: NeuroImage – volume: 55 start-page: 468 issue: 4 year: 1983 end-page: 84 ident: 156315v1.25 article-title: A new method for off-line removal of ocular artifact publication-title: Electroencephalography and Clinical Neurophysiology – volume: 67 start-page: 111 year: 2013 end-page: 8 ident: 156315v1.5 article-title: Advanced EEG analysis using threshold-free cluster-enhancement and non-parametric statistics publication-title: NeuroImage – issue: November 2014 year: 2014 ident: 156315v1.19 publication-title: Seaborn: V0.5.0 – volume: 49 start-page: 970 issue: 5 year: 2011 end-page: 83 ident: 156315v1.11 article-title: Tracking real-time neural activation of conceptual knowledge using single-trial event-related potentials publication-title: Neuropsychologia – year: 2014 ident: 156315v1.6 article-title: Cluster-based computational methods for mass univariate analyses of event-related brain potentials/fields: A simulation study publication-title: Journal of Neuroscience Methods – volume: 94 start-page: 5973 issue: 11 year: 1997 end-page: 8 ident: 156315v1.28 article-title: Event-related brain potential 5 correlates of two states of conscious awareness in memory publication-title: Proceedings of the National Academy of Sciences – volume: 158 start-page: 300 issue: 2 year: 2006 end-page: 12 ident: 156315v1.24 article-title: Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis publication-title: Journal of Neuroscience Methods – volume: 2 start-page: 110 issue: 6 year: 1946 end-page: 4 ident: 156315v1.13 article-title: An Approximate Distribution of Estimates of Variance Components publication-title: Biometrics Bulletin – volume: 68 start-page: 255 issue: 3 year: 2013 end-page: 78 ident: 156315v1.15 article-title: Random effects structure for confirmatory hypothesis testing: Keep it maximal publication-title: Journal of memory and language – volume: 59 start-page: 390 issue: 4 year: 2008 end-page: 412 ident: 156315v1.7 article-title: Mixed-effects modeling with crossed random effects for subjects and items publication-title: Journal of Memory and Language – volume: 5 start-page: 1 issue: 1 year: 1993 end-page: 13 ident: 156315v1.29 article-title: Neurophysiological Manifestations of Recollective Experience during Recognition Memory Judgments publication-title: Journal of Cognitive Neuroscience – volume: 53 start-page: 983 issue: 3 year: 1997 end-page: 97 ident: 156315v1.12 article-title: Small sample inference for fixed effects from restricted maximum likelihood publication-title: Biometrics – volume: 9 start-page: 90 issue: 3 year: 2007 end-page: 5 ident: 156315v1.18 article-title: Matplotlib: A 2D graphics environment publication-title: Computing In Science & Engineering – volume: 53 start-page: 1669 issue: 11 year: 2016 end-page: 78 ident: 156315v1.30 article-title: FN400 and LPC memory effects for 0 concrete and abstract words publication-title: Psychophysiology – volume: 20 start-page: 1052 issue: 2 year: 2003 end-page: 63 ident: 156315v1.8 article-title: General multilevel linear modeling for group analysis in FMRI publication-title: NeuroImage – volume: 11 start-page: 251 issue: 6 year: 2007 end-page: 7 ident: 156315v1.26 article-title: Event-related potentials and recognition memory publication-title: Trends in Cognitive Sciences – volume: 56 start-page: 455 issue: 2 year: 2011 end-page: 75 ident: 156315v1.31 article-title: Partial Least Squares (PLS) methods for neuroimaging publication-title: A tutorial and review. NeuroImage. – volume: 51 start-page: 1297 issue: 12 year: 2011 end-page: 311 ident: 156315v1.1 article-title: ERP evidence for the speed of face categorization in the human brain: Disentangling the contribution of low-level visual cues from face perception publication-title: Vision Research – volume: 42 start-page: 1088 issue: 8 year: 2004 end-page: 106 ident: 156315v1.27 article-title: Effects of attention and confidence on the hypothesized ERP correlates of recollection and familiarity publication-title: Neuropsychologia – volume: 34 start-page: 28 issue: 1/2 year: 1947 end-page: 35 ident: 156315v1.14 article-title: The Generalization of “Student’s” Problem when Several Different Population Variances are Involved publication-title: Biometrika – volume: 98 start-page: 91 year: 2014 Sep end-page: 102 ident: 156315v1.20 article-title: Decomposing spatiotemporal brain patterns into topographic latent sources publication-title: NeuroImage – volume: 37 start-page: 13 issue: 1 year: 2000 end-page: 20 ident: 156315v1.10 article-title: Mixed-effects models in psychophysiology publication-title: Psychophysiology – volume: 16 start-page: 2349 issue: 20 year: 1997 end-page: 80 ident: 156315v1.9 article-title: Using the general linear mixed model to analyse unbalanced repeated measures and longitudinal data publication-title: Statistics in Medicine – volume: 39 start-page: 950 issue: 4 year: 2007 end-page: 8 ident: 156315v1.23 article-title: PyEPL: A cross-platform experiment-programming library publication-title: Behavior research methods – volume: 41 start-page: 977 issue: 4 year: 2009 Nov end-page: 90 ident: 156315v1.22 article-title: Moving beyond Kucera and Francis: A critical evaluation of current word frequency norms and the introduction of a new and improved word frequency measure for American English publication-title: Behavior Research Methods – volume: 164 start-page: 177 issue: 1 year: 2007 end-page: 90 ident: 156315v1.3 article-title: Nonparametric statistical testing of EEG- and MEG-data publication-title: Journal of Neuroscience Methods – volume: 93 start-page: 128 issue: Pt A year: 2016 Dec end-page: 41 ident: 156315v1.21 article-title: A single trial analysis of EEG in recognition memory: Tracking the neural correlates of memory strength publication-title: Neuropsychologia. – year: 1994 ident: 156315v1.16 publication-title: An Introduction to the Bootstrap – volume: 133 start-page: 212 issue: 1 year: 2011 end-page: 20 ident: 156315v1.2 article-title: Neural correlates of emotional face processing in bipolar disorder: An event-related potential study publication-title: Journal of Affective Disorders |
SSID | ssj0002961374 |
Score | 1.5111157 |
SecondaryResourceType | preprint |
Snippet | Mixed effects models provide significant advantages in sensitivity and flexibility over typical statistical approaches to neural data analysis, but mass... |
SourceID | biorxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Datasets EEG Neuroscience Statistical analysis |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTwIxEG0UQuLNLyKKZg_GW-PS7XanXkwUCDFAiMGE26bdbRMugLurwX_vlC16MPHc07TTeZ3X9j1CbntRxsHkGQWbSMpVElNg2lIrY-e8h4Cg3UfhyVSM3vjLIl54wq30zyr3NXFXqPN15jhyx4Q4oRBMl8fNO3WuUe521VtoHJImlmDAPG8-Daaz1x-WhUmEq50UMxMStz4LY28whKl4j71L5PxwW3q5LrbLzz_1eAcyw2PSnKmNKU7IgVmdklbtEvl1Ru4mg3H_IZgstyYParXhMsCzZjB2r7iDvqoQiarynMyHg_nziHp7A6qxLaOaCRWqSII1ykDumAepE2GN1aByJ6SW44bJIgMWIi4ArFIq4gpbDKYND6M2aazWK3NBApCgEVWwUwPgsQxV3tMiCYXCs5KWWdIhbR9huqk1LNI69A7p7gNOfe6W6e9MX_4_fEWOmAO5UFCWdEmjKj7MNUJ0pW_8OnwDc06MeA priority: 102 providerName: ProQuest |
Title | MELD: Mixed Effects for Large Datasets |
URI | https://www.proquest.com/docview/2071236638 https://www.biorxiv.org/content/10.1101/156315 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1NTwIxEG0MxMSbX0QUyR6Mt-rSdtupRwVCDBBiMOG2aXfbhAsQdjH4752yqx6M97bJNG3fe-10HiF3PZ4JcHlGwStNhVEJBWY99ToJznsICDZ8FJ5M5ehdvC6SRS0Uizqt0i7X2_3y4_COHxK28fStNnfce0S5wcOf8iauIxasGoaLh587FaYRnJSoLYR-myO3rcf8c-IeYGR4Spozs3HbM3LkVufkuPKB_Lwg95PBuP8UTZZ7l0dVPeEiQjYZjUOedtQ3JWJNWVyS-XAwfxnR2sCAWhRe1DJpYsM1eGcc5OFuQVslvfMWTB5KpeW4JTLuwAMXEsAbY7gwKCKYdSLmLdJYrVfuikSgwSJuoBYDEImOTd6zUsXSIBuyOlNt0qojTDdVlYq0Cr1NOt8Bp_XqLFKGvIJx5Bpw_V-_G3LCAoDFkjLVIY1yu3O3CL-l7ZLm82A6e-se5v4LIgOBww |
linkProvider | Cold Spring Harbor Laboratory Press |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT8JAEJ0ghOjNLyKK2oN621i2X7smxkSBgLSEGEy4NbvtNuECSKvCj_I_OkuLHky8cd6kyWRm582b7swDuGpakc1UHBGWeJzYwnMIozIhCXe08h4CgtSDwsHA7b7az2NnXIKvzSyMfla5yYnrRB3PIt0j150QvSgEw-Vh_ka0apT-u7qR0MjDoq9Wn0jZ0vteC_17TWmnPXrqkkJVgEhkQ0RSV5jC4ixRQrFYE34uPTdRiWQi1vvLYozTyFIsYZbtMpYIISxbYGVPpbJNCz-7AxVbD7SWofLYHgxffpo6lCM6rjc_U5djpqGmU-gZYeTfIlWytPxuVU5mi-Xk40_6X2NaZx8qQzFXiwMoqekhVHNRytUR3ARtv3VnBJOlio18uXFqYGlr-PrRuNESGQJflh7DaBt216A8nU3VCRiMM4kghsSQMdvhpoib0vVMV2BpJnnk1aFWWBjO85UZYW56HRobg8PiqqThr2NP_z--hN3uKPBDvzfon8Ee1fhquoR6DShni3d1jtVBJi8KnxgQbjkKvgEn98kL |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1NT8MwDLVgE4gbXxODAT0gbhltkrYJV7ZqwDbtMKTdqqRNpF22ai1o_HuctcAB8QMcyZHt9-w4NsBdwDIuTJ4RYWNJuIpDIqi2xMrQbd5DQNDuo_BkGo3e-MsiXDSli7Jpq9TL9Wa7_Ni947uGbYy-tXP7wQOmGywI-6423S9yuw9tNKjAmXOy6P8UV6hElIp5s0voVw5JbnP4n9C7w5PkGNozVZjNCeyZ1Skc1AshP8_gfjIcDx69yXJrcq8eLFx6SCu9sWvY9gaqQtCpynOYJ8P504g0mwyIxgyMaBopXzEprFFG5K7IIHUcWWO1ULmbmZajb2TMCCsYj4SwSinGFWYTVBvusw60VuuVuQBPSKERQDApE4KH0ld5oKPYjxTSIi2zuAudRsO0qMdVpLXqXeh9K5w2ZlqmFAkGZUg6xOV_crdwOBsk6fh5-noFR9SBmh8RGvegVW3ezTVCcqVvdtf_Be-bhhE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MELD%3A+Mixed+Effects+for+Large+Datasets&rft.jtitle=bioRxiv&rft.au=Nielson%2C+Dylan+M.&rft.au=Sederberg%2C+Per+B.&rft.date=2017-06-27&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F156315&rft.externalDocID=156315v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |