MELD: Mixed Effects for Large Datasets

Mixed effects models provide significant advantages in sensitivity and flexibility over typical statistical approaches to neural data analysis, but mass univariate application of mixed effects models to large neural datasets is computationally intensive. Threshold free cluster enhancement also provi...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Nielson, Dylan M, Sederberg, Per B
Format Paper
LanguageEnglish
Published Cold Spring Harbor Cold Spring Harbor Laboratory Press 27.06.2017
Cold Spring Harbor Laboratory
Edition1.1
Subjects
Online AccessGet full text
ISSN2692-8205
2692-8205
DOI10.1101/156315

Cover

Abstract Mixed effects models provide significant advantages in sensitivity and flexibility over typical statistical approaches to neural data analysis, but mass univariate application of mixed effects models to large neural datasets is computationally intensive. Threshold free cluster enhancement also provides a significant increase in sensitivity, but requires computationally-intensive permutation-based significance testing. Not surprisingly, the combination of mixed effects models with threshold free cluster enhancement and nonparametric permutation-based significance testing is currently completely impractical. With mixed effects for large datasets (MELD) we circumvent this impasse by means of a singular value decomposition to reduce the dimensionality of neural data while maximizing signal. Singular value decompositions become unstable when there are large numbers of noise features, so we precede it with a bootstrap-based feature selection step employing threshold free cluster enhancement to identify stable features across subjects. By projecting the dependent data into the reduced space of the singular value decomposition we gain the power of a multivariate approach and we can greatly reduce the number of mixed effects models that need to be run, making it feasible to use permutation testing to determine feature level significance. Due to these innovations, MELD is much faster than an element-wise mixed effects analysis, and on simulated data MELD was more sensitive than standard techniques, such as element-wise t-tests combined with threshold-free cluster enhancement. When evaluated on an EEG dataset, MELD identified more significant features than the t-tests with threshold free cluster enhancement in a comparable amount of time.
AbstractList Mixed effects models provide significant advantages in sensitivity and flexibility over typical statistical approaches to neural data analysis, but mass univariate application of mixed effects models to large neural datasets is computationally intensive. Threshold free cluster enhancement also provides a significant increase in sensitivity, but requires computationally-intensive permutation-based significance testing. Not surprisingly, the combination of mixed effects models with threshold free cluster enhancement and nonparametric permutation-based significance testing is currently completely impractical. With mixed effects for large datasets (MELD) we circumvent this impasse by means of a singular value decomposition to reduce the dimensionality of neural data while maximizing signal. Singular value decompositions become unstable when there are large numbers of noise features, so we precede it with a bootstrap-based feature selection step employing threshold free cluster enhancement to identify stable features across subjects. By projecting the dependent data into the reduced space of the singular value decomposition we gain the power of a multivariate approach and we can greatly reduce the number of mixed effects models that need to be run, making it feasible to use permutation testing to determine feature level significance. Due to these innovations, MELD is much faster than an element-wise mixed effects analysis, and on simulated data MELD was more sensitive than standard techniques, such as element-wise t-tests combined with threshold-free cluster enhancement. When evaluated on an EEG dataset, MELD identified more significant features than the t-tests with threshold free cluster enhancement in a comparable amount of time.
Author Sederberg, Per B
Nielson, Dylan M
Author_xml – sequence: 1
  givenname: Dylan
  surname: Nielson
  middlename: M
  fullname: Nielson, Dylan M
– sequence: 2
  givenname: Per
  surname: Sederberg
  middlename: B
  fullname: Sederberg, Per B
BookMark eNpNj01Lw0AURQepYK31HwgBwV30zUxm8uJO2vgBKW66D2-aN5KiSZ1Jpf33FuLC1b1w4HDvpZh0fcdCXEu4lxLkgzRWS3MmpsoWKkUFZvKvX4h5jFsAUIWVOs-m4m5VVsvHZNUeuElK73kzxMT3IakofHCypIEiD_FKnHv6jDz_y5lYP5frxWtavb-8LZ6q1KEyqVOWgHSBnomxAWmgcLn17B1So21uGzByoxk96swieiLSGZkMleMM9EzcjFrX9uHQ_tS70H5RONbjrRO_Hfku9N97jkO97fehOy2qFeRSaWs16l8mpEok
ContentType Paper
Copyright 2017. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ ( the License ). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2017, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2017. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ ( the License ). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2017, Posted by Cold Spring Harbor Laboratory
DBID 8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
FX.
DOI 10.1101/156315
DatabaseName ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological science database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
bioRxiv
DatabaseTitle Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 156315v1
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FH
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
NQS
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
RHI
FX.
ID FETCH-LOGICAL-b825-b26a0a398feae8d01509b76fefb8ad3676d051c3e8f834688faaa34a5482be403
IEDL.DBID FX.
ISSN 2692-8205
IngestDate Tue Jan 07 18:54:01 EST 2025
Fri Jul 25 09:13:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords Linear Mixed Effects
TFCE
Multivariate Modeling
EEG
Nonparametric statistics
Language English
License This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b825-b26a0a398feae8d01509b76fefb8ad3676d051c3e8f834688faaa34a5482be403
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ORCID 0000-0001-8586-4542
0000-0003-4613-6643
OpenAccessLink https://www.biorxiv.org/content/10.1101/156315
PQID 2071236638
PQPubID 2050091
PageCount 32
ParticipantIDs biorxiv_primary_156315
proquest_journals_2071236638
PublicationCentury 2000
PublicationDate 20170627
PublicationDateYYYYMMDD 2017-06-27
PublicationDate_xml – month: 06
  year: 2017
  text: 20170627
  day: 27
PublicationDecade 2010
PublicationPlace Cold Spring Harbor
PublicationPlace_xml – name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationYear 2017
Publisher Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Cold Spring Harbor Laboratory
References Rugg, Curran (156315v1.26) 2007; 11
Mensen, Khatami (156315v1.5) 2013; 67
Satterthwaite (156315v1.13) 1946; 2
Hunter (156315v1.18) 2007; 9
Cnaan, Laird, Slasor (156315v1.9) 1997; 16
Gratton, Coles, Donchin (156315v1.25) 1983; 55
Smith, Nichols (156315v1.4) 2009; 44
Waskom, Botvinnik, Hobson, Cole, Halchenko, Hoyer (156315v1.19) 2014
Welch (156315v1.14) 1947; 34
Gershman, Blei, Norman, Sederberg (156315v1.20) 2014 Sep; 98
Degabriele, Lagopoulos, Malhi (156315v1.2) 2011; 133
Bagiella, Sloan, Heitjan (156315v1.10) 2000; 37
Düzel, Yonelinas, Mangun, Heinze, Tulving (156315v1.28) 1997; 94
Strózak, Bird, Corby, Frishkoff, Curran (156315v1.30) 2016; 53
Efron, Tibshirani (156315v1.16) 1994
Smith (156315v1.29) 1993; 5
Curran (156315v1.27) 2004; 42
Barr, Levy, Scheepers, Tily (156315v1.15) 2013; 68
Krishnan, Williams, McIntosh, Abdi (156315v1.31) 2011; 56
Beckmann, Jenkinson, Smith (156315v1.8) 2003; 20
Brysbaert, New (156315v1.22) 2009 Nov; 41
Maris, Oostenveld (156315v1.3) 2007; 164
Matthews (156315v1.17) 1975; 405
Pernet, Latinus, Nichols, Rousselet (156315v1.6) 2014
Amsel (156315v1.11) 2011; 49
Geller, Schleifer, Sederberg, Jacobs, Kahana (156315v1.23) 2007; 39
Kenward, Roger (156315v1.12) 1997; 53
Rossion, Caharel (156315v1.1) 2011; 51
Baayen, Davidson, Bates (156315v1.7) 2008; 59
Ratcliff, Sederberg, Smith, Childers (156315v1.21) 2016 Dec; 93
Castellanos, Makarov (156315v1.24) 2006; 158
References_xml – volume: 405
  start-page: 442
  issue: 2
  year: 1975
  end-page: 51
  ident: 156315v1.17
  article-title: Comparison of the predicted and observed secondary structure of T4 phage lysozyme
  publication-title: Biochimica et Biophysica Acta (BBA) - Protein Structure
– volume: 44
  start-page: 83
  issue: 1
  year: 2009
  end-page: 98
  ident: 156315v1.4
  article-title: Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference
  publication-title: NeuroImage
– volume: 55
  start-page: 468
  issue: 4
  year: 1983
  end-page: 84
  ident: 156315v1.25
  article-title: A new method for off-line removal of ocular artifact
  publication-title: Electroencephalography and Clinical Neurophysiology
– volume: 67
  start-page: 111
  year: 2013
  end-page: 8
  ident: 156315v1.5
  article-title: Advanced EEG analysis using threshold-free cluster-enhancement and non-parametric statistics
  publication-title: NeuroImage
– issue: November 2014
  year: 2014
  ident: 156315v1.19
  publication-title: Seaborn: V0.5.0
– volume: 49
  start-page: 970
  issue: 5
  year: 2011
  end-page: 83
  ident: 156315v1.11
  article-title: Tracking real-time neural activation of conceptual knowledge using single-trial event-related potentials
  publication-title: Neuropsychologia
– year: 2014
  ident: 156315v1.6
  article-title: Cluster-based computational methods for mass univariate analyses of event-related brain potentials/fields: A simulation study
  publication-title: Journal of Neuroscience Methods
– volume: 94
  start-page: 5973
  issue: 11
  year: 1997
  end-page: 8
  ident: 156315v1.28
  article-title: Event-related brain potential 5 correlates of two states of conscious awareness in memory
  publication-title: Proceedings of the National Academy of Sciences
– volume: 158
  start-page: 300
  issue: 2
  year: 2006
  end-page: 12
  ident: 156315v1.24
  article-title: Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis
  publication-title: Journal of Neuroscience Methods
– volume: 2
  start-page: 110
  issue: 6
  year: 1946
  end-page: 4
  ident: 156315v1.13
  article-title: An Approximate Distribution of Estimates of Variance Components
  publication-title: Biometrics Bulletin
– volume: 68
  start-page: 255
  issue: 3
  year: 2013
  end-page: 78
  ident: 156315v1.15
  article-title: Random effects structure for confirmatory hypothesis testing: Keep it maximal
  publication-title: Journal of memory and language
– volume: 59
  start-page: 390
  issue: 4
  year: 2008
  end-page: 412
  ident: 156315v1.7
  article-title: Mixed-effects modeling with crossed random effects for subjects and items
  publication-title: Journal of Memory and Language
– volume: 5
  start-page: 1
  issue: 1
  year: 1993
  end-page: 13
  ident: 156315v1.29
  article-title: Neurophysiological Manifestations of Recollective Experience during Recognition Memory Judgments
  publication-title: Journal of Cognitive Neuroscience
– volume: 53
  start-page: 983
  issue: 3
  year: 1997
  end-page: 97
  ident: 156315v1.12
  article-title: Small sample inference for fixed effects from restricted maximum likelihood
  publication-title: Biometrics
– volume: 9
  start-page: 90
  issue: 3
  year: 2007
  end-page: 5
  ident: 156315v1.18
  article-title: Matplotlib: A 2D graphics environment
  publication-title: Computing In Science & Engineering
– volume: 53
  start-page: 1669
  issue: 11
  year: 2016
  end-page: 78
  ident: 156315v1.30
  article-title: FN400 and LPC memory effects for 0 concrete and abstract words
  publication-title: Psychophysiology
– volume: 20
  start-page: 1052
  issue: 2
  year: 2003
  end-page: 63
  ident: 156315v1.8
  article-title: General multilevel linear modeling for group analysis in FMRI
  publication-title: NeuroImage
– volume: 11
  start-page: 251
  issue: 6
  year: 2007
  end-page: 7
  ident: 156315v1.26
  article-title: Event-related potentials and recognition memory
  publication-title: Trends in Cognitive Sciences
– volume: 56
  start-page: 455
  issue: 2
  year: 2011
  end-page: 75
  ident: 156315v1.31
  article-title: Partial Least Squares (PLS) methods for neuroimaging
  publication-title: A tutorial and review. NeuroImage.
– volume: 51
  start-page: 1297
  issue: 12
  year: 2011
  end-page: 311
  ident: 156315v1.1
  article-title: ERP evidence for the speed of face categorization in the human brain: Disentangling the contribution of low-level visual cues from face perception
  publication-title: Vision Research
– volume: 42
  start-page: 1088
  issue: 8
  year: 2004
  end-page: 106
  ident: 156315v1.27
  article-title: Effects of attention and confidence on the hypothesized ERP correlates of recollection and familiarity
  publication-title: Neuropsychologia
– volume: 34
  start-page: 28
  issue: 1/2
  year: 1947
  end-page: 35
  ident: 156315v1.14
  article-title: The Generalization of “Student’s” Problem when Several Different Population Variances are Involved
  publication-title: Biometrika
– volume: 98
  start-page: 91
  year: 2014 Sep
  end-page: 102
  ident: 156315v1.20
  article-title: Decomposing spatiotemporal brain patterns into topographic latent sources
  publication-title: NeuroImage
– volume: 37
  start-page: 13
  issue: 1
  year: 2000
  end-page: 20
  ident: 156315v1.10
  article-title: Mixed-effects models in psychophysiology
  publication-title: Psychophysiology
– volume: 16
  start-page: 2349
  issue: 20
  year: 1997
  end-page: 80
  ident: 156315v1.9
  article-title: Using the general linear mixed model to analyse unbalanced repeated measures and longitudinal data
  publication-title: Statistics in Medicine
– volume: 39
  start-page: 950
  issue: 4
  year: 2007
  end-page: 8
  ident: 156315v1.23
  article-title: PyEPL: A cross-platform experiment-programming library
  publication-title: Behavior research methods
– volume: 41
  start-page: 977
  issue: 4
  year: 2009 Nov
  end-page: 90
  ident: 156315v1.22
  article-title: Moving beyond Kucera and Francis: A critical evaluation of current word frequency norms and the introduction of a new and improved word frequency measure for American English
  publication-title: Behavior Research Methods
– volume: 164
  start-page: 177
  issue: 1
  year: 2007
  end-page: 90
  ident: 156315v1.3
  article-title: Nonparametric statistical testing of EEG- and MEG-data
  publication-title: Journal of Neuroscience Methods
– volume: 93
  start-page: 128
  issue: Pt A
  year: 2016 Dec
  end-page: 41
  ident: 156315v1.21
  article-title: A single trial analysis of EEG in recognition memory: Tracking the neural correlates of memory strength
  publication-title: Neuropsychologia.
– year: 1994
  ident: 156315v1.16
  publication-title: An Introduction to the Bootstrap
– volume: 133
  start-page: 212
  issue: 1
  year: 2011
  end-page: 20
  ident: 156315v1.2
  article-title: Neural correlates of emotional face processing in bipolar disorder: An event-related potential study
  publication-title: Journal of Affective Disorders
SSID ssj0002961374
Score 1.5111157
SecondaryResourceType preprint
Snippet Mixed effects models provide significant advantages in sensitivity and flexibility over typical statistical approaches to neural data analysis, but mass...
SourceID biorxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Datasets
EEG
Neuroscience
Statistical analysis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTwIxEG0UQuLNLyKKZg_GW-PS7XanXkwUCDFAiMGE26bdbRMugLurwX_vlC16MPHc07TTeZ3X9j1CbntRxsHkGQWbSMpVElNg2lIrY-e8h4Cg3UfhyVSM3vjLIl54wq30zyr3NXFXqPN15jhyx4Q4oRBMl8fNO3WuUe521VtoHJImlmDAPG8-Daaz1x-WhUmEq50UMxMStz4LY28whKl4j71L5PxwW3q5LrbLzz_1eAcyw2PSnKmNKU7IgVmdklbtEvl1Ru4mg3H_IZgstyYParXhMsCzZjB2r7iDvqoQiarynMyHg_nziHp7A6qxLaOaCRWqSII1ykDumAepE2GN1aByJ6SW44bJIgMWIi4ArFIq4gpbDKYND6M2aazWK3NBApCgEVWwUwPgsQxV3tMiCYXCs5KWWdIhbR9huqk1LNI69A7p7gNOfe6W6e9MX_4_fEWOmAO5UFCWdEmjKj7MNUJ0pW_8OnwDc06MeA
  priority: 102
  providerName: ProQuest
Title MELD: Mixed Effects for Large Datasets
URI https://www.proquest.com/docview/2071236638
https://www.biorxiv.org/content/10.1101/156315
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1NTwIxEG0MxMSbX0QUyR6Mt-rSdtupRwVCDBBiMOG2aXfbhAsQdjH4752yqx6M97bJNG3fe-10HiF3PZ4JcHlGwStNhVEJBWY99ToJznsICDZ8FJ5M5ehdvC6SRS0Uizqt0i7X2_3y4_COHxK28fStNnfce0S5wcOf8iauIxasGoaLh587FaYRnJSoLYR-myO3rcf8c-IeYGR4Spozs3HbM3LkVufkuPKB_Lwg95PBuP8UTZZ7l0dVPeEiQjYZjUOedtQ3JWJNWVyS-XAwfxnR2sCAWhRe1DJpYsM1eGcc5OFuQVslvfMWTB5KpeW4JTLuwAMXEsAbY7gwKCKYdSLmLdJYrVfuikSgwSJuoBYDEImOTd6zUsXSIBuyOlNt0qojTDdVlYq0Cr1NOt8Bp_XqLFKGvIJx5Bpw_V-_G3LCAoDFkjLVIY1yu3O3CL-l7ZLm82A6e-se5v4LIgOBww
linkProvider Cold Spring Harbor Laboratory Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT8JAEJ0ghOjNLyKK2oN621i2X7smxkSBgLSEGEy4NbvtNuECSKvCj_I_OkuLHky8cd6kyWRm582b7swDuGpakc1UHBGWeJzYwnMIozIhCXe08h4CgtSDwsHA7b7az2NnXIKvzSyMfla5yYnrRB3PIt0j150QvSgEw-Vh_ka0apT-u7qR0MjDoq9Wn0jZ0vteC_17TWmnPXrqkkJVgEhkQ0RSV5jC4ixRQrFYE34uPTdRiWQi1vvLYozTyFIsYZbtMpYIISxbYGVPpbJNCz-7AxVbD7SWofLYHgxffpo6lCM6rjc_U5djpqGmU-gZYeTfIlWytPxuVU5mi-Xk40_6X2NaZx8qQzFXiwMoqekhVHNRytUR3ARtv3VnBJOlio18uXFqYGlr-PrRuNESGQJflh7DaBt216A8nU3VCRiMM4kghsSQMdvhpoib0vVMV2BpJnnk1aFWWBjO85UZYW56HRobg8PiqqThr2NP_z--hN3uKPBDvzfon8Ee1fhquoR6DShni3d1jtVBJi8KnxgQbjkKvgEn98kL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1NT8MwDLVgE4gbXxODAT0gbhltkrYJV7ZqwDbtMKTdqqRNpF22ai1o_HuctcAB8QMcyZHt9-w4NsBdwDIuTJ4RYWNJuIpDIqi2xMrQbd5DQNDuo_BkGo3e-MsiXDSli7Jpq9TL9Wa7_Ni947uGbYy-tXP7wQOmGywI-6423S9yuw9tNKjAmXOy6P8UV6hElIp5s0voVw5JbnP4n9C7w5PkGNozVZjNCeyZ1Skc1AshP8_gfjIcDx69yXJrcq8eLFx6SCu9sWvY9gaqQtCpynOYJ8P504g0mwyIxgyMaBopXzEprFFG5K7IIHUcWWO1ULmbmZajb2TMCCsYj4SwSinGFWYTVBvusw60VuuVuQBPSKERQDApE4KH0ld5oKPYjxTSIi2zuAudRsO0qMdVpLXqXeh9K5w2ZlqmFAkGZUg6xOV_crdwOBsk6fh5-noFR9SBmh8RGvegVW3ezTVCcqVvdtf_Be-bhhE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MELD%3A+Mixed+Effects+for+Large+Datasets&rft.jtitle=bioRxiv&rft.au=Nielson%2C+Dylan+M.&rft.au=Sederberg%2C+Per+B.&rft.date=2017-06-27&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F156315&rft.externalDocID=156315v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon