Joint Modeling of Reaction Times and Choice Improves Parameter Identifiability in Reinforcement Learning Models

Background: Reinforcement learning models provide excellent descriptions of learning in multiple species across a variety of tasks. Many researchers are interested in relating parameters of reinforcement learning models to neural measures, psychological variables or experimental manipulations. We de...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Ballard, Ian C, Mcclure, Samuel M
Format Paper
LanguageEnglish
Published Cold Spring Harbor Cold Spring Harbor Laboratory Press 12.11.2018
Cold Spring Harbor Laboratory
Edition1.3
Subjects
Online AccessGet full text
ISSN2692-8205
2692-8205
DOI10.1101/306720

Cover

Abstract Background: Reinforcement learning models provide excellent descriptions of learning in multiple species across a variety of tasks. Many researchers are interested in relating parameters of reinforcement learning models to neural measures, psychological variables or experimental manipulations. We demonstrate that parameter identification is difficult because a range of parameter values provide approximately equal quality fits to data. This identification problem has a large impact on power: we show that a researcher who wants to detect a medium sized correlation (r = .3) with 80% power between a variable and learning rate must collect 60% more subjects than specified by a typical power analysis in order to account for the noise introduced by model fitting. New Method: We derive a Bayesian optimal model fitting technique that takes advantage of information contained in choices and reaction times to constrain parameter estimates. Results: We show using simulation and empirical data that this method substantially improves the ability to recover learning rates. Comparison with Existing Methods: We compare this method against the use of Bayesian priors. We show in simulations that the combined use of Bayesian priors and reaction times confers the highest parameter identifiability. However, in real data where the priors may have been misspecified, the use of Bayesian priors interferes with the ability of reaction time data to improve parameter identifiability. Conclusions: We present a simple technique that takes advantage of readily available data to substantially improve the quality of inferences that can be drawn from parameters of reinforcement learning models. Footnotes * Reworked exposition to more clearly describe the use of RL models in the literature and better explain why the proposed method is effective.
AbstractList Background: Reinforcement learning models provide excellent descriptions of learning in multiple species across a variety of tasks. Many researchers are interested in relating parameters of reinforcement learning models to neural measures, psychological variables or experimental manipulations. We demonstrate that parameter identification is difficult because a range of parameter values provide approximately equal quality fits to data. This identification problem has a large impact on power: we show that a researcher who wants to detect a medium sized correlation (r = .3) with 80% power between a variable and learning rate must collect 60% more subjects than specified by a typical power analysis in order to account for the noise introduced by model fitting. New Method: We derive a Bayesian optimal model fitting technique that takes advantage of information contained in choices and reaction times to constrain parameter estimates. Results: We show using simulation and empirical data that this method substantially improves the ability to recover learning rates. Comparison with Existing Methods: We compare this method against the use of Bayesian priors. We show in simulations that the combined use of Bayesian priors and reaction times confers the highest parameter identifiability. However, in real data where the priors may have been misspecified, the use of Bayesian priors interferes with the ability of reaction time data to improve parameter identifiability. Conclusions: We present a simple technique that takes advantage of readily available data to substantially improve the quality of inferences that can be drawn from parameters of reinforcement learning models. Footnotes * Reworked exposition to more clearly describe the use of RL models in the literature and better explain why the proposed method is effective.
Reinforcement learning models provide excellent descriptions of learning in multiple species across a variety of tasks. Many researchers are interested in relating parameters of reinforcement learning models to neural measures, psychological variables or experimental manipulations. We demonstrate that parameter identification is difficult because a range of parameter values provide approximately equal quality fits to data. This identification problem has a large impact on power: we show that a researcher who wants to detect a medium sized correlation (r = .3) with 80% power between a variable and learning rate must collect 60% more subjects than specified by a typical power analysis in order to account for the noise introduced by model fitting. We derive a Bayesian optimal model fitting technique that takes advantage of information contained in choices and reaction times to constrain parameter estimates. We show using simulation and empirical data that this method substantially improves the ability to recover learning rates. We compare this method against the use of Bayesian priors. We show in simulations that the combined use of Bayesian priors and reaction times confers the highest parameter identifiability. However, in real data where the priors may have been misspecified, the use of Bayesian priors interferes with the ability of reaction time data to improve parameter identifiability. We present a simple technique that takes advantage of readily available data to substantially improve the quality of inferences that can be drawn from parameters of reinforcement learning models. Parameters of reinforcement learning models are particularly difficult to estimate Incorporating reaction times into model fitting improves parameter identifiability Bayesian weighting of choice and reaction times improves the power of analyses assessing learning rate
Author Mcclure, Samuel M
Ballard, Ian C
Author_xml – sequence: 1
  givenname: Ian
  surname: Ballard
  middlename: C
  fullname: Ballard, Ian C
– sequence: 2
  givenname: Samuel
  surname: Mcclure
  middlename: M
  fullname: Mcclure, Samuel M
BookMark eNpNUMtOwzAQtFCRKKX8AZIlzgE_Ers5oopHUREI5R7Zzga2auzipBX9e1zKgdOuZnZnZvecjHzwQMglZzecM34rmdKCnZCxUKXIZoIVo3_9GZn2_YoxJkrFpc7HJDwH9AN9CQ2s0X_Q0NJ3MG7A4GmFHfTU-IbOPwM6oItuE8MuYW8mmg4GiHTRgB-wRWNxjcOeok_76NsQHXSJoksw0R-Ufy36C3LamnUP0786IdXDfTV_ypavj4v53TKzKWeWK9dK5pS0nDe6dXmhdVMWTickdzYhxiqrhHOHSWtBFMCslaXUTPBmJifk6ihrMcRv3NWbiJ2J-_r4n8RfH_l00NcW-qFehW30KVEtmOZClLNSyB_M32bE
ContentType Paper
Copyright 2018. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ ( the License ). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2018. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ ( the License ). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018, Posted by Cold Spring Harbor Laboratory
DBID 8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
FX.
DOI 10.1101/306720
DatabaseName ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (ProQuest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
bioRxiv
DatabaseTitle Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.3
ExternalDocumentID 306720v3
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FH
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
NQS
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
RHI
FX.
ID FETCH-LOGICAL-b820-46cf30c63b11d7fc4577d95c763b4cb7fcab6b62cc46cfbbe25e0bb3937021d83
IEDL.DBID FX.
ISSN 2692-8205
IngestDate Tue Jan 07 18:53:51 EST 2025
Fri Jul 25 09:20:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords Q-learning
striatum
reproducibility
parameter estimation
intertemporal choice
power
delay discounting
Language English
License This pre-print is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), CC BY-NC 4.0, as described at http://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b820-46cf30c63b11d7fc4577d95c763b4cb7fcab6b62cc46cfbbe25e0bb3937021d83
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.biorxiv.org/content/10.1101/306720
PQID 2071229892
PQPubID 2050091
PageCount 25
ParticipantIDs biorxiv_primary_306720
proquest_journals_2071229892
PublicationCentury 2000
PublicationDate 20181112
PublicationDateYYYYMMDD 2018-11-12
PublicationDate_xml – month: 11
  year: 2018
  text: 20181112
  day: 12
PublicationDecade 2010
PublicationPlace Cold Spring Harbor
PublicationPlace_xml – name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationYear 2018
Publisher Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Cold Spring Harbor Laboratory
References Bartra, McGuire, Kable (306720v3.2) 2013; 76
Gershman (306720v3.18) 2016; 71
Kaiser, Treadway, Wooten, Kumar, Goer, Murray, Beltzer, Pechtel, Whitton, Cohen, Alpert, El Fakhri, Normandin, Pizzagalli (306720v3.22) 2018; 28
Bornstein, Daw (306720v3.5) 2012; 35
Button, Ioannidis, Mokrysz (306720v3.7) 2013
McClure, Berns, Montague (306720v3.28) 2003; 38
Schönberg, Daw, Joel, O’Doherty (306720v3.34) 2007; 27
Walton, Behrens, Buckley, Rudebeck, Rushworth (306720v3.40) 2010; 65
Cohen, McClure, Yu (306720v3.9) 2007; 362
Otto, Raio, Chiang, Phelps, Daw (306720v3.30) 2013; 110
Spektor, Kellen (306720v3.38) 2018
Rescorla, Wagner (306720v3.32) 1972
Behrens, Woolrich, Walton, Rushworth (306720v3.4) 2007; 10
Constantino, Daw (306720v3.10) 2015; 15
Bayer, Glimcher (306720v3.3) 2005; 47
Frank, Moustafa, Haughey, Curran, Hutchison (306720v3.16) 2007; 104
McClure, Laibson, Loewenstein, Cohen (306720v3.29) 2004; 306
Shenhav, Botvinick, Cohen (306720v3.37) 2013; 79
Gläscher, O’Doherty (306720v3.21) 2010; 1
Garrison, Erdeniz, Done (306720v3.17) 2014; 47
Maia, Frank (306720v3.27) 2011; 14
Daw, Gershman, Seymour, Dayan, Dolan (306720v3.13) 2011; 69
Lau, Glimcher (306720v3.25) 2008; 58
Rouhani, Norman, Niv (306720v3.33) 2018
Yarkoni (306720v3.44) 2009; 4
Wunderlich, Rangel, O’Doherty (306720v3.43) 2009; 106
Brody, Hanks (306720v3.6) 2016; 37
Shadlen, Newsome (306720v3.36) 1998; 18
Leong, Radulescu, Daniel, DeWoskin, Niv (306720v3.26) 2017; 93
D’Ardenne, McClure, Nystrom, Cohen (306720v3.12) 2008; 319
Costa, Dal Monte, Lucas, Murray, Averbeck (306720v3.11) 2016; 92
Krajbich, Rangel (306720v3.24) 2011; 108
Daw, O’Doherty, Dayan, Seymour, Dolan (306720v3.14) 2006; 441
Ballard, Kim, Liatsis, Aydogan, Cohen, McClure (306720v3.1) 2017; 27
Gillan, Otto, Phelps, Daw (306720v3.20) 2015; 15
Doll, Duncan, Simon, Shohamy, Daw (306720v3.15) 2015; 18
Kolling, Behrens, Mars, Rushworth (306720v3.23) 2012; 336
Gillan, Kosinski, Whelan, Phelps, Daw (306720v3.19) 2016; 5
Wilson, Niv (306720v3.41) 2015; 11
Schultz (306720v3.35) 1997; 275
Wimmer, Braun, Daw, Shohamy (306720v3.42) 2014; 34
Ratcliff, McKoon (306720v3.31) 2008; 20
Stone (306720v3.39) 1960; 25
Chávez, Villalobos, Baroja, Bouzas (306720v3.8) 2017; 12
References_xml – volume: 1
  start-page: 501
  year: 2010
  end-page: 510
  ident: 306720v3.21
  article-title: Model-based approaches to neuroimaging: combining reinforcement learning theory with fMRI data
  publication-title: Wiley Interdiscip. Rev. Cogn. Sci
– volume: 110
  start-page: 20941
  year: 2013
  end-page: 20946
  ident: 306720v3.30
  article-title: Working-memory capacity protects model-based learning from stress
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– year: 2018
  ident: 306720v3.33
  article-title: Dissociable effects of surprising rewards on learning and memory
  publication-title: J. Exp. Psychol. Learn. Mem. Cogn
– volume: 47
  start-page: 129
  year: 2005
  end-page: 141
  ident: 306720v3.3
  article-title: Midbrain dopamine neurons encode a quantitative reward prediction error signal
  publication-title: Neuro
– volume: 28
  start-page: 4281
  year: 2018
  end-page: 4290
  ident: 306720v3.22
  article-title: Frontostriatal and Dopamine Markers of Individual Differences in Reinforcement Learning: A Multi-modal Investigation
  publication-title: Cereb. Corte
– volume: 106
  start-page: 17199
  year: 2009
  end-page: 17204
  ident: 306720v3.43
  article-title: Neural computations underlying action-based decision making in the human brain
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 34
  start-page: 14901
  year: 2014
  end-page: 14912
  ident: 306720v3.42
  article-title: Episodic Memory Encoding Interferes with Reward Learning and Decreases Striatal Prediction Errors
  publication-title: J. Neurosci
– volume: 79
  start-page: 217
  year: 2013
  end-page: 240
  ident: 306720v3.37
  article-title: The expected value of control: an integrative theory of anterior cingulate cortex function
  publication-title: Neuro
– start-page: 1
  year: 2018
  end-page: 22
  ident: 306720v3.38
  article-title: The relative merit of empirical priors in non-identifiable and sloppy models: Applications to models of learning and decision-making: Empirical priors
  publication-title: Psychon. Bull. Rev
– volume: 27
  start-page: 956797617711455
  year: 2017
  end-page: 956797617711454
  ident: 306720v3.1
  article-title: More Is Meaningful: The Magnitude Effect in Intertemporal Choice Depends on Self-Control
  publication-title: Psychol. Sci
– volume: 104
  start-page: 16311
  year: 2007
  end-page: 16316
  ident: 306720v3.16
  article-title: Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning
  publication-title: Proceedings of the National Academy of Science
– volume: 14
  start-page: 154
  year: 2011
  end-page: 162
  ident: 306720v3.27
  article-title: From reinforcement learning models to psychiatric and neurological disorders
  publication-title: Nature Publishing Grou
– volume: 65
  start-page: 927
  year: 2010
  end-page: 939
  ident: 306720v3.40
  article-title: Separable Learning Systems in the Macaque Brain and the Role of Orbitofrontal Cortex in Contingent Learning
  publication-title: Neuro
– volume: 4
  start-page: 294
  year: 2009
  end-page: 298
  ident: 306720v3.44
  article-title: Big Correlations in Little Studies: Inflated fMRI Correlations Reflect Low Statistical Power—Commentary on Vul et al. (2009)
  publication-title: Perspect. Psychol. Sci
– volume: 25
  start-page: 251
  year: 1960
  end-page: 260
  ident: 306720v3.39
  article-title: Models for choice-reaction time
  publication-title: Psychometrik
– volume: 5
  start-page: e94778
  year: 2016
  ident: 306720v3.19
  article-title: Characterizing a psychiatric symptom dimension related to deficits in goal-directed control
  publication-title: Elif
– volume: 20
  start-page: 873
  year: 2008
  end-page: 922
  ident: 306720v3.31
  article-title: The Diffusion Decision Model: Theory and Data for Two-Choice Decision Tasks
  publication-title: dx.doi.org.stanford.idm.oclc.or
– volume: 35
  start-page: 1011
  year: 2012
  end-page: 1023
  ident: 306720v3.5
  article-title: Dissociating hippocampal and striatal contributions to sequential prediction learning
  publication-title: Eur. J. Neurosci
– volume: 27
  start-page: 12860
  year: 2007
  end-page: 12867
  ident: 306720v3.34
  article-title: Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making
  publication-title: J. Neurosci
– volume: 15
  start-page: 523
  year: 2015
  end-page: 536
  ident: 306720v3.20
  article-title: Model-based learning protects against forming habits
  publication-title: Cogn. Affect. Behav. Neurosci
– volume: 441
  start-page: 876
  year: 2006
  end-page: 879
  ident: 306720v3.14
  article-title: Cortical substrates for exploratory decisions in humans
  publication-title: Natur
– volume: 11
  start-page: e1004237
  year: 2015
  end-page: 21
  ident: 306720v3.41
  article-title: Is Model Fitting Necessary for Model-Based fMRI?
  publication-title: PLoS Comput. Biol
– volume: 275
  start-page: 1593
  year: 1997
  end-page: 1599
  ident: 306720v3.35
  article-title: A Neural Substrate of Prediction and Reward
  publication-title: Scienc
– volume: 93
  start-page: 451
  year: 2017
  end-page: 463
  ident: 306720v3.26
  article-title: Dynamic Interaction between Reinforcement Learning and Attention in Multidimensional Environments
  publication-title: Neuro
– year: 1972
  ident: 306720v3.32
– volume: 69
  start-page: 1204
  year: 2011
  end-page: 1215
  ident: 306720v3.13
  article-title: Model-based influences on humans’ choices and striatal prediction errors
  publication-title: Neuro
– volume: 76
  start-page: 412
  year: 2013
  end-page: 427
  ident: 306720v3.2
  article-title: The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value
  publication-title: Neuroimag
– volume: 108
  start-page: 13852
  year: 2011
  end-page: 13857
  ident: 306720v3.24
  article-title: Multialternative drift-diffusion model predicts the relationship between visual fixations and choice in value-based decisions
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 38
  start-page: 339
  year: 2003
  end-page: 346
  ident: 306720v3.28
  article-title: Temporal prediction errors in a passive learning task activate human striatum
  publication-title: Neuro
– volume: 306
  start-page: 503
  year: 2004
  end-page: 507
  ident: 306720v3.29
  article-title: Separate neural systems value immediate and delayed monetary rewards
  publication-title: Scienc
– volume: 319
  start-page: 1264
  year: 2008
  end-page: 1267
  ident: 306720v3.12
  article-title: BOLD responses reflecting dopaminergic signals in the human ventral tegmental area
  publication-title: Scienc
– volume: 47
  start-page: 754
  year: 2014
  ident: 306720v3.17
  article-title: Corrigendum to “Prediction error in reinforcement learning: A meta-analysis of neuroimaging studies” [Neurosci
  publication-title: Biobehav. Rev. 37 (7), (2013) 1297–1310]. Neurosci. Biobehav. Rev
– volume: 37
  start-page: 149
  year: 2016
  end-page: 157
  ident: 306720v3.6
  article-title: Neural underpinnings of the evidence accumulator
  publication-title: Curr. Opin. Neurobiol
– year: 2013
  ident: 306720v3.7
  article-title: Power failure: why small sample size undermines the reliability of neuroscience
  publication-title: … Reviews Neuroscience
– volume: 362
  start-page: 933
  year: 2007
  end-page: 942
  ident: 306720v3.9
  article-title: Should I stay or should I go? How the human brain manages the trade-off between exploitation and exploration
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci
– volume: 18
  start-page: 767
  year: 2015
  end-page: 772
  ident: 306720v3.15
  article-title: Model-based choices involve prospective neural activity
  publication-title: Nat. Neurosci
– volume: 336
  start-page: 95
  year: 2012
  end-page: 98
  ident: 306720v3.23
  article-title: Neural Mechanisms of Foraging
  publication-title: Scienc
– volume: 12
  start-page: 19
  year: 2017
  end-page: 28
  ident: 306720v3.8
  article-title: Hierarchical Bayesian modeling of intertemporal choice
  publication-title: Judgement and Decision Makin
– volume: 58
  start-page: 451
  year: 2008
  end-page: 463
  ident: 306720v3.25
  article-title: Value Representations in the Primate Striatum during Matching Behavior
  publication-title: Neuro
– volume: 18
  start-page: 3870
  year: 1998
  end-page: 3896
  ident: 306720v3.36
  article-title: The variable discharge of cortical neurons: implications for connectivity, computation, and information coding
  publication-title: J. Neurosci
– volume: 10
  start-page: 1214
  year: 2007
  ident: 306720v3.4
  article-title: Learning the value of information in an uncertain world
  publication-title: Nature Publishing Grou
– volume: 92
  start-page: 505
  year: 2016
  end-page: 517
  ident: 306720v3.11
  article-title: Amygdala and Ventral Striatum Make Distinct Contributions to Reinforcement Learning
  publication-title: Neuro
– volume: 15
  start-page: 837
  year: 2015
  end-page: 853
  ident: 306720v3.10
  article-title: Learning the opportunity cost of time in a patch-foraging task
  publication-title: Cogn. Affect. Behav. Neurosci
– volume: 71
  start-page: 1
  year: 2016
  end-page: 6
  ident: 306720v3.18
  article-title: Empirical priors for reinforcement learning models
  publication-title: J. Math. Psychol
SSID ssj0002961374
Score 1.5486594
SecondaryResourceType preprint
Snippet Background: Reinforcement learning models provide excellent descriptions of learning in multiple species across a variety of tasks. Many researchers are...
Reinforcement learning models provide excellent descriptions of learning in multiple species across a variety of tasks. Many researchers are interested in...
SourceID biorxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Bayesian analysis
Learning
Mathematical models
Neuroscience
Parameter identification
Reinforcement
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6MfDm13A6JQevxS5N0_QkODbGwDHGhN1KX5poL-3cprj_3pcm04PgNW0pfd95zfv9CLkXioXc4LYkAZkGXKEZg05w48pjZnKsIIrETiM_z8TkhU9X8co33Lb-WOUhJjaBuqiV7ZHbTsiAWbhw9rh-DyxrlP276ik0jkkbQ7BEO28_jWbzxU-XhaWYrhooZiZSdH0Wxp5gCE3xwZbLlui7A2W9-So__8TjJsmMT0l7nq_15owc6eqcdBxL5P6C1NO6rHbUspbZ2XFaG7rQbh6BNhMcNK8KOnyr0eepaxLg2jy3x65QatTN4prSIXLvaVnh8w1gqmp6g9RjrL66V2wvyXI8Wg4ngedJCAA_KOBCmShUIoLBoEiM4nGSFGmsMHIAV4ArOQgQTCl7J4BmsQ4BLBIeJvhCRl3SqupKXxGKyd9EgEpVUnAplNRRoSTEOYMoN4z1SNeLKls7MIzMybBH-gfJZd4Jttmvyq7_v3xDTrAOkXbEb8D6pLXbfOhbzPU7uPMK_QZdkKo5
  priority: 102
  providerName: ProQuest
Title Joint Modeling of Reaction Times and Choice Improves Parameter Identifiability in Reinforcement Learning Models
URI https://www.proquest.com/docview/2071229892
https://www.biorxiv.org/content/10.1101/306720
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3fS8MwEA6yIfjmr-F0jjz4Wm3TNMleHRsycIwxYW-llybal3ZsU9x_76WJ-iC-hiSFy-W-u_S-O0LuhGYxtxiWSFCjiGtUYzASA1eeMVugB1FKx0Z-nounFz5bZ-sQKO5CWiVUzfaz-mj_47uEbbS-_nLHyYPzcBmG6F3UI-ZaNUzX9z9vKmyE4CR5aCH0Ox1927DnH4vbwsj0lHQXxcZsz8iRqc_Jse8Debggzayp6j11fckcO5w2li6NZxzQlqNBMd6n47cGbzX1zwA4tihcYhXKhXq2ra18ze0DrWpc35ZE1e3rHw1VVF_9J3aXZDWdrMZPUeiEEAEidMSFtmmsRQpJUkqreSZlOco02gbgGnCkAAGCae1mAhiWmRjA1bpDCC9V2iOduqnNFaEI7zYFPDatBFdCK5OWWkFWMEgLy1if9IKo8o0vd5F7GfbJ4FtyeVDzXc7QQWGuhju7_m_dDTlBH0M5-l7CBqSz376bW8TxPQxJ93EyXyyH7SF-ATRYn3Y
linkProvider Cold Spring Harbor Laboratory Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BKwQ3VlFWH-AY0TqOkx4QElDUjapCReIWZRwHcklKW5Z-FP_IOE7hgMStV2eTxuOZ8cTvPYAzqXhdJLQt8TFoOkKRG6P2aeMqPJ5EVEHEvkEj3w9k-1F0n7ynFfhaYGHMscpFTCwCdZwr0yM3nZAGN3Th_Gr86hjVKPN3dSGhYd2ip-cftGWbXnZuaX7POb9rjW7aTqkq4CBlO0dIlbh1JV1sNGI_UcLz_bjpKVpnKBTSSIQSJVfK3ImouafriIY3jtJhHLj02lWoCgNorUD1ujUYPvw0dXiTsmPB_MxlkyINr3ulnhF5_oWpzo2u-Bqm-eQzff8T_oucdrcJ1WE01pMtWNHZNqxZUcr5DuTdPM1mzIikGag6yxP2oC38gRWAERZlMbt5ySnEMNuToLFhZE550SQxC_1NUksAPmdpRs8X_KyqaEWyktL12X5iugujZRhwDypZnul9YFRrJC6SD6lAikCqQLuxCtCLOLpRwnkN9kpThWPLvRFaG9bgaGG5sFxz0_DXQw7-v3wK6-3RfT_sdwa9Q9igEigw6MIGP4LKbPKmj6nMmOFJObkMwiW70zePNudo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1NT8MwDI1gE4gbXxODATlw7WjTNO3Og2oMmCY0pN2qOk2gl3baxsT-PU4T4IC4Rk0rOY6f7drPhNwIyXyuMSyJIRl4XKIag4oxcOUR0zl6EEVsupGfJ2L0ysfzaO5SFytXVgllvfwsN81_fFOwjdbXXm4_uDUeLvP7JjfdXxR6l7RRoQKjzum8_5NcYQNEqZi7WUK_-9DJdS__Y3obPEkPSXuaL9TyiOyo6pjs2YGQ2xNSj-uyWlMzoMy0idNa0xdlWw9o06xBMfCnw_carze1-QBcm-amwgoFRG3brS4t-faWlhXub7hRZZMGpI5O9c1-YnVKZun9bDjy3EgEDxCqPS6kDn0pQgiCItaSR3FcDCKJRgK4BFzJQYBgUponARSLlA9gSO8Qy4sk7JBWVVfqjFDEeR0Cnp9MBE-ETFRYyASinEGYa8a6pONElS0s70VmZdglvW_JZU7fVxlDT4UZMnd2_t--a7I_vUuzp4fJ4wU5QL8jMS19AeuR1nr5oS4R29dw1ZzjF02so8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Modeling+of+Reaction+Times+and+Choice+Improves+Parameter+Identifiability+in+Reinforcement+Learning+Models&rft.jtitle=bioRxiv&rft.au=Ballard%2C+Ian+C.&rft.au=McClure%2C+Samuel+M.&rft.date=2018-11-12&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F306720&rft.externalDocID=306720v3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon