Joint Modeling of Reaction Times and Choice Improves Parameter Identifiability in Reinforcement Learning Models
Background: Reinforcement learning models provide excellent descriptions of learning in multiple species across a variety of tasks. Many researchers are interested in relating parameters of reinforcement learning models to neural measures, psychological variables or experimental manipulations. We de...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , |
Format | Paper |
Language | English |
Published |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
12.11.2018
Cold Spring Harbor Laboratory |
Edition | 1.3 |
Subjects | |
Online Access | Get full text |
ISSN | 2692-8205 2692-8205 |
DOI | 10.1101/306720 |
Cover
Abstract | Background: Reinforcement learning models provide excellent descriptions of learning in multiple species across a variety of tasks. Many researchers are interested in relating parameters of reinforcement learning models to neural measures, psychological variables or experimental manipulations. We demonstrate that parameter identification is difficult because a range of parameter values provide approximately equal quality fits to data. This identification problem has a large impact on power: we show that a researcher who wants to detect a medium sized correlation (r = .3) with 80% power between a variable and learning rate must collect 60% more subjects than specified by a typical power analysis in order to account for the noise introduced by model fitting. New Method: We derive a Bayesian optimal model fitting technique that takes advantage of information contained in choices and reaction times to constrain parameter estimates. Results: We show using simulation and empirical data that this method substantially improves the ability to recover learning rates. Comparison with Existing Methods: We compare this method against the use of Bayesian priors. We show in simulations that the combined use of Bayesian priors and reaction times confers the highest parameter identifiability. However, in real data where the priors may have been misspecified, the use of Bayesian priors interferes with the ability of reaction time data to improve parameter identifiability. Conclusions: We present a simple technique that takes advantage of readily available data to substantially improve the quality of inferences that can be drawn from parameters of reinforcement learning models. Footnotes * Reworked exposition to more clearly describe the use of RL models in the literature and better explain why the proposed method is effective. |
---|---|
AbstractList | Background: Reinforcement learning models provide excellent descriptions of learning in multiple species across a variety of tasks. Many researchers are interested in relating parameters of reinforcement learning models to neural measures, psychological variables or experimental manipulations. We demonstrate that parameter identification is difficult because a range of parameter values provide approximately equal quality fits to data. This identification problem has a large impact on power: we show that a researcher who wants to detect a medium sized correlation (r = .3) with 80% power between a variable and learning rate must collect 60% more subjects than specified by a typical power analysis in order to account for the noise introduced by model fitting. New Method: We derive a Bayesian optimal model fitting technique that takes advantage of information contained in choices and reaction times to constrain parameter estimates. Results: We show using simulation and empirical data that this method substantially improves the ability to recover learning rates. Comparison with Existing Methods: We compare this method against the use of Bayesian priors. We show in simulations that the combined use of Bayesian priors and reaction times confers the highest parameter identifiability. However, in real data where the priors may have been misspecified, the use of Bayesian priors interferes with the ability of reaction time data to improve parameter identifiability. Conclusions: We present a simple technique that takes advantage of readily available data to substantially improve the quality of inferences that can be drawn from parameters of reinforcement learning models. Footnotes * Reworked exposition to more clearly describe the use of RL models in the literature and better explain why the proposed method is effective. Reinforcement learning models provide excellent descriptions of learning in multiple species across a variety of tasks. Many researchers are interested in relating parameters of reinforcement learning models to neural measures, psychological variables or experimental manipulations. We demonstrate that parameter identification is difficult because a range of parameter values provide approximately equal quality fits to data. This identification problem has a large impact on power: we show that a researcher who wants to detect a medium sized correlation (r = .3) with 80% power between a variable and learning rate must collect 60% more subjects than specified by a typical power analysis in order to account for the noise introduced by model fitting. We derive a Bayesian optimal model fitting technique that takes advantage of information contained in choices and reaction times to constrain parameter estimates. We show using simulation and empirical data that this method substantially improves the ability to recover learning rates. We compare this method against the use of Bayesian priors. We show in simulations that the combined use of Bayesian priors and reaction times confers the highest parameter identifiability. However, in real data where the priors may have been misspecified, the use of Bayesian priors interferes with the ability of reaction time data to improve parameter identifiability. We present a simple technique that takes advantage of readily available data to substantially improve the quality of inferences that can be drawn from parameters of reinforcement learning models. Parameters of reinforcement learning models are particularly difficult to estimate Incorporating reaction times into model fitting improves parameter identifiability Bayesian weighting of choice and reaction times improves the power of analyses assessing learning rate |
Author | Mcclure, Samuel M Ballard, Ian C |
Author_xml | – sequence: 1 givenname: Ian surname: Ballard middlename: C fullname: Ballard, Ian C – sequence: 2 givenname: Samuel surname: Mcclure middlename: M fullname: Mcclure, Samuel M |
BookMark | eNpNUMtOwzAQtFCRKKX8AZIlzgE_Ers5oopHUREI5R7Zzga2auzipBX9e1zKgdOuZnZnZvecjHzwQMglZzecM34rmdKCnZCxUKXIZoIVo3_9GZn2_YoxJkrFpc7HJDwH9AN9CQ2s0X_Q0NJ3MG7A4GmFHfTU-IbOPwM6oItuE8MuYW8mmg4GiHTRgB-wRWNxjcOeok_76NsQHXSJoksw0R-Ufy36C3LamnUP0786IdXDfTV_ypavj4v53TKzKWeWK9dK5pS0nDe6dXmhdVMWTickdzYhxiqrhHOHSWtBFMCslaXUTPBmJifk6ihrMcRv3NWbiJ2J-_r4n8RfH_l00NcW-qFehW30KVEtmOZClLNSyB_M32bE |
ContentType | Paper |
Copyright | 2018. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ ( the License ). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2018. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ ( the License ). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018, Posted by Cold Spring Harbor Laboratory |
DBID | 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS FX. |
DOI | 10.1101/306720 |
DatabaseName | ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (ProQuest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China bioRxiv |
DatabaseTitle | Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2692-8205 |
Edition | 1.3 |
ExternalDocumentID | 306720v3 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FH ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P NQS PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC RHI FX. |
ID | FETCH-LOGICAL-b820-46cf30c63b11d7fc4577d95c763b4cb7fcab6b62cc46cfbbe25e0bb3937021d83 |
IEDL.DBID | FX. |
ISSN | 2692-8205 |
IngestDate | Tue Jan 07 18:53:51 EST 2025 Fri Jul 25 09:20:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Q-learning striatum reproducibility parameter estimation intertemporal choice power delay discounting |
Language | English |
License | This pre-print is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), CC BY-NC 4.0, as described at http://creativecommons.org/licenses/by-nc/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b820-46cf30c63b11d7fc4577d95c763b4cb7fcab6b62cc46cfbbe25e0bb3937021d83 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
OpenAccessLink | https://www.biorxiv.org/content/10.1101/306720 |
PQID | 2071229892 |
PQPubID | 2050091 |
PageCount | 25 |
ParticipantIDs | biorxiv_primary_306720 proquest_journals_2071229892 |
PublicationCentury | 2000 |
PublicationDate | 20181112 |
PublicationDateYYYYMMDD | 2018-11-12 |
PublicationDate_xml | – month: 11 year: 2018 text: 20181112 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | Cold Spring Harbor |
PublicationPlace_xml | – name: Cold Spring Harbor |
PublicationTitle | bioRxiv |
PublicationYear | 2018 |
Publisher | Cold Spring Harbor Laboratory Press Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press – name: Cold Spring Harbor Laboratory |
References | Bartra, McGuire, Kable (306720v3.2) 2013; 76 Gershman (306720v3.18) 2016; 71 Kaiser, Treadway, Wooten, Kumar, Goer, Murray, Beltzer, Pechtel, Whitton, Cohen, Alpert, El Fakhri, Normandin, Pizzagalli (306720v3.22) 2018; 28 Bornstein, Daw (306720v3.5) 2012; 35 Button, Ioannidis, Mokrysz (306720v3.7) 2013 McClure, Berns, Montague (306720v3.28) 2003; 38 Schönberg, Daw, Joel, O’Doherty (306720v3.34) 2007; 27 Walton, Behrens, Buckley, Rudebeck, Rushworth (306720v3.40) 2010; 65 Cohen, McClure, Yu (306720v3.9) 2007; 362 Otto, Raio, Chiang, Phelps, Daw (306720v3.30) 2013; 110 Spektor, Kellen (306720v3.38) 2018 Rescorla, Wagner (306720v3.32) 1972 Behrens, Woolrich, Walton, Rushworth (306720v3.4) 2007; 10 Constantino, Daw (306720v3.10) 2015; 15 Bayer, Glimcher (306720v3.3) 2005; 47 Frank, Moustafa, Haughey, Curran, Hutchison (306720v3.16) 2007; 104 McClure, Laibson, Loewenstein, Cohen (306720v3.29) 2004; 306 Shenhav, Botvinick, Cohen (306720v3.37) 2013; 79 Gläscher, O’Doherty (306720v3.21) 2010; 1 Garrison, Erdeniz, Done (306720v3.17) 2014; 47 Maia, Frank (306720v3.27) 2011; 14 Daw, Gershman, Seymour, Dayan, Dolan (306720v3.13) 2011; 69 Lau, Glimcher (306720v3.25) 2008; 58 Rouhani, Norman, Niv (306720v3.33) 2018 Yarkoni (306720v3.44) 2009; 4 Wunderlich, Rangel, O’Doherty (306720v3.43) 2009; 106 Brody, Hanks (306720v3.6) 2016; 37 Shadlen, Newsome (306720v3.36) 1998; 18 Leong, Radulescu, Daniel, DeWoskin, Niv (306720v3.26) 2017; 93 D’Ardenne, McClure, Nystrom, Cohen (306720v3.12) 2008; 319 Costa, Dal Monte, Lucas, Murray, Averbeck (306720v3.11) 2016; 92 Krajbich, Rangel (306720v3.24) 2011; 108 Daw, O’Doherty, Dayan, Seymour, Dolan (306720v3.14) 2006; 441 Ballard, Kim, Liatsis, Aydogan, Cohen, McClure (306720v3.1) 2017; 27 Gillan, Otto, Phelps, Daw (306720v3.20) 2015; 15 Doll, Duncan, Simon, Shohamy, Daw (306720v3.15) 2015; 18 Kolling, Behrens, Mars, Rushworth (306720v3.23) 2012; 336 Gillan, Kosinski, Whelan, Phelps, Daw (306720v3.19) 2016; 5 Wilson, Niv (306720v3.41) 2015; 11 Schultz (306720v3.35) 1997; 275 Wimmer, Braun, Daw, Shohamy (306720v3.42) 2014; 34 Ratcliff, McKoon (306720v3.31) 2008; 20 Stone (306720v3.39) 1960; 25 Chávez, Villalobos, Baroja, Bouzas (306720v3.8) 2017; 12 |
References_xml | – volume: 1 start-page: 501 year: 2010 end-page: 510 ident: 306720v3.21 article-title: Model-based approaches to neuroimaging: combining reinforcement learning theory with fMRI data publication-title: Wiley Interdiscip. Rev. Cogn. Sci – volume: 110 start-page: 20941 year: 2013 end-page: 20946 ident: 306720v3.30 article-title: Working-memory capacity protects model-based learning from stress publication-title: Proc. Natl. Acad. Sci. U. S. A – year: 2018 ident: 306720v3.33 article-title: Dissociable effects of surprising rewards on learning and memory publication-title: J. Exp. Psychol. Learn. Mem. Cogn – volume: 47 start-page: 129 year: 2005 end-page: 141 ident: 306720v3.3 article-title: Midbrain dopamine neurons encode a quantitative reward prediction error signal publication-title: Neuro – volume: 28 start-page: 4281 year: 2018 end-page: 4290 ident: 306720v3.22 article-title: Frontostriatal and Dopamine Markers of Individual Differences in Reinforcement Learning: A Multi-modal Investigation publication-title: Cereb. Corte – volume: 106 start-page: 17199 year: 2009 end-page: 17204 ident: 306720v3.43 article-title: Neural computations underlying action-based decision making in the human brain publication-title: Proc. Natl. Acad. Sci. U. S. A – volume: 34 start-page: 14901 year: 2014 end-page: 14912 ident: 306720v3.42 article-title: Episodic Memory Encoding Interferes with Reward Learning and Decreases Striatal Prediction Errors publication-title: J. Neurosci – volume: 79 start-page: 217 year: 2013 end-page: 240 ident: 306720v3.37 article-title: The expected value of control: an integrative theory of anterior cingulate cortex function publication-title: Neuro – start-page: 1 year: 2018 end-page: 22 ident: 306720v3.38 article-title: The relative merit of empirical priors in non-identifiable and sloppy models: Applications to models of learning and decision-making: Empirical priors publication-title: Psychon. Bull. Rev – volume: 27 start-page: 956797617711455 year: 2017 end-page: 956797617711454 ident: 306720v3.1 article-title: More Is Meaningful: The Magnitude Effect in Intertemporal Choice Depends on Self-Control publication-title: Psychol. Sci – volume: 104 start-page: 16311 year: 2007 end-page: 16316 ident: 306720v3.16 article-title: Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning publication-title: Proceedings of the National Academy of Science – volume: 14 start-page: 154 year: 2011 end-page: 162 ident: 306720v3.27 article-title: From reinforcement learning models to psychiatric and neurological disorders publication-title: Nature Publishing Grou – volume: 65 start-page: 927 year: 2010 end-page: 939 ident: 306720v3.40 article-title: Separable Learning Systems in the Macaque Brain and the Role of Orbitofrontal Cortex in Contingent Learning publication-title: Neuro – volume: 4 start-page: 294 year: 2009 end-page: 298 ident: 306720v3.44 article-title: Big Correlations in Little Studies: Inflated fMRI Correlations Reflect Low Statistical Power—Commentary on Vul et al. (2009) publication-title: Perspect. Psychol. Sci – volume: 25 start-page: 251 year: 1960 end-page: 260 ident: 306720v3.39 article-title: Models for choice-reaction time publication-title: Psychometrik – volume: 5 start-page: e94778 year: 2016 ident: 306720v3.19 article-title: Characterizing a psychiatric symptom dimension related to deficits in goal-directed control publication-title: Elif – volume: 20 start-page: 873 year: 2008 end-page: 922 ident: 306720v3.31 article-title: The Diffusion Decision Model: Theory and Data for Two-Choice Decision Tasks publication-title: dx.doi.org.stanford.idm.oclc.or – volume: 35 start-page: 1011 year: 2012 end-page: 1023 ident: 306720v3.5 article-title: Dissociating hippocampal and striatal contributions to sequential prediction learning publication-title: Eur. J. Neurosci – volume: 27 start-page: 12860 year: 2007 end-page: 12867 ident: 306720v3.34 article-title: Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making publication-title: J. Neurosci – volume: 15 start-page: 523 year: 2015 end-page: 536 ident: 306720v3.20 article-title: Model-based learning protects against forming habits publication-title: Cogn. Affect. Behav. Neurosci – volume: 441 start-page: 876 year: 2006 end-page: 879 ident: 306720v3.14 article-title: Cortical substrates for exploratory decisions in humans publication-title: Natur – volume: 11 start-page: e1004237 year: 2015 end-page: 21 ident: 306720v3.41 article-title: Is Model Fitting Necessary for Model-Based fMRI? publication-title: PLoS Comput. Biol – volume: 275 start-page: 1593 year: 1997 end-page: 1599 ident: 306720v3.35 article-title: A Neural Substrate of Prediction and Reward publication-title: Scienc – volume: 93 start-page: 451 year: 2017 end-page: 463 ident: 306720v3.26 article-title: Dynamic Interaction between Reinforcement Learning and Attention in Multidimensional Environments publication-title: Neuro – year: 1972 ident: 306720v3.32 – volume: 69 start-page: 1204 year: 2011 end-page: 1215 ident: 306720v3.13 article-title: Model-based influences on humans’ choices and striatal prediction errors publication-title: Neuro – volume: 76 start-page: 412 year: 2013 end-page: 427 ident: 306720v3.2 article-title: The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value publication-title: Neuroimag – volume: 108 start-page: 13852 year: 2011 end-page: 13857 ident: 306720v3.24 article-title: Multialternative drift-diffusion model predicts the relationship between visual fixations and choice in value-based decisions publication-title: Proc. Natl. Acad. Sci. U. S. A – volume: 38 start-page: 339 year: 2003 end-page: 346 ident: 306720v3.28 article-title: Temporal prediction errors in a passive learning task activate human striatum publication-title: Neuro – volume: 306 start-page: 503 year: 2004 end-page: 507 ident: 306720v3.29 article-title: Separate neural systems value immediate and delayed monetary rewards publication-title: Scienc – volume: 319 start-page: 1264 year: 2008 end-page: 1267 ident: 306720v3.12 article-title: BOLD responses reflecting dopaminergic signals in the human ventral tegmental area publication-title: Scienc – volume: 47 start-page: 754 year: 2014 ident: 306720v3.17 article-title: Corrigendum to “Prediction error in reinforcement learning: A meta-analysis of neuroimaging studies” [Neurosci publication-title: Biobehav. Rev. 37 (7), (2013) 1297–1310]. Neurosci. Biobehav. Rev – volume: 37 start-page: 149 year: 2016 end-page: 157 ident: 306720v3.6 article-title: Neural underpinnings of the evidence accumulator publication-title: Curr. Opin. Neurobiol – year: 2013 ident: 306720v3.7 article-title: Power failure: why small sample size undermines the reliability of neuroscience publication-title: … Reviews Neuroscience – volume: 362 start-page: 933 year: 2007 end-page: 942 ident: 306720v3.9 article-title: Should I stay or should I go? How the human brain manages the trade-off between exploitation and exploration publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci – volume: 18 start-page: 767 year: 2015 end-page: 772 ident: 306720v3.15 article-title: Model-based choices involve prospective neural activity publication-title: Nat. Neurosci – volume: 336 start-page: 95 year: 2012 end-page: 98 ident: 306720v3.23 article-title: Neural Mechanisms of Foraging publication-title: Scienc – volume: 12 start-page: 19 year: 2017 end-page: 28 ident: 306720v3.8 article-title: Hierarchical Bayesian modeling of intertemporal choice publication-title: Judgement and Decision Makin – volume: 58 start-page: 451 year: 2008 end-page: 463 ident: 306720v3.25 article-title: Value Representations in the Primate Striatum during Matching Behavior publication-title: Neuro – volume: 18 start-page: 3870 year: 1998 end-page: 3896 ident: 306720v3.36 article-title: The variable discharge of cortical neurons: implications for connectivity, computation, and information coding publication-title: J. Neurosci – volume: 10 start-page: 1214 year: 2007 ident: 306720v3.4 article-title: Learning the value of information in an uncertain world publication-title: Nature Publishing Grou – volume: 92 start-page: 505 year: 2016 end-page: 517 ident: 306720v3.11 article-title: Amygdala and Ventral Striatum Make Distinct Contributions to Reinforcement Learning publication-title: Neuro – volume: 15 start-page: 837 year: 2015 end-page: 853 ident: 306720v3.10 article-title: Learning the opportunity cost of time in a patch-foraging task publication-title: Cogn. Affect. Behav. Neurosci – volume: 71 start-page: 1 year: 2016 end-page: 6 ident: 306720v3.18 article-title: Empirical priors for reinforcement learning models publication-title: J. Math. Psychol |
SSID | ssj0002961374 |
Score | 1.5486594 |
SecondaryResourceType | preprint |
Snippet | Background: Reinforcement learning models provide excellent descriptions of learning in multiple species across a variety of tasks. Many researchers are... Reinforcement learning models provide excellent descriptions of learning in multiple species across a variety of tasks. Many researchers are interested in... |
SourceID | biorxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Bayesian analysis Learning Mathematical models Neuroscience Parameter identification Reinforcement |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6MfDm13A6JQevxS5N0_QkODbGwDHGhN1KX5poL-3cprj_3pcm04PgNW0pfd95zfv9CLkXioXc4LYkAZkGXKEZg05w48pjZnKsIIrETiM_z8TkhU9X8co33Lb-WOUhJjaBuqiV7ZHbTsiAWbhw9rh-DyxrlP276ik0jkkbQ7BEO28_jWbzxU-XhaWYrhooZiZSdH0Wxp5gCE3xwZbLlui7A2W9-So__8TjJsmMT0l7nq_15owc6eqcdBxL5P6C1NO6rHbUspbZ2XFaG7rQbh6BNhMcNK8KOnyr0eepaxLg2jy3x65QatTN4prSIXLvaVnh8w1gqmp6g9RjrL66V2wvyXI8Wg4ngedJCAA_KOBCmShUIoLBoEiM4nGSFGmsMHIAV4ArOQgQTCl7J4BmsQ4BLBIeJvhCRl3SqupKXxGKyd9EgEpVUnAplNRRoSTEOYMoN4z1SNeLKls7MIzMybBH-gfJZd4Jttmvyq7_v3xDTrAOkXbEb8D6pLXbfOhbzPU7uPMK_QZdkKo5 priority: 102 providerName: ProQuest |
Title | Joint Modeling of Reaction Times and Choice Improves Parameter Identifiability in Reinforcement Learning Models |
URI | https://www.proquest.com/docview/2071229892 https://www.biorxiv.org/content/10.1101/306720 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3fS8MwEA6yIfjmr-F0jjz4Wm3TNMleHRsycIwxYW-llybal3ZsU9x_76WJ-iC-hiSFy-W-u_S-O0LuhGYxtxiWSFCjiGtUYzASA1eeMVugB1FKx0Z-nounFz5bZ-sQKO5CWiVUzfaz-mj_47uEbbS-_nLHyYPzcBmG6F3UI-ZaNUzX9z9vKmyE4CR5aCH0Ox1927DnH4vbwsj0lHQXxcZsz8iRqc_Jse8Debggzayp6j11fckcO5w2li6NZxzQlqNBMd6n47cGbzX1zwA4tihcYhXKhXq2ra18ze0DrWpc35ZE1e3rHw1VVF_9J3aXZDWdrMZPUeiEEAEidMSFtmmsRQpJUkqreSZlOco02gbgGnCkAAGCae1mAhiWmRjA1bpDCC9V2iOduqnNFaEI7zYFPDatBFdCK5OWWkFWMEgLy1if9IKo8o0vd5F7GfbJ4FtyeVDzXc7QQWGuhju7_m_dDTlBH0M5-l7CBqSz376bW8TxPQxJ93EyXyyH7SF-ATRYn3Y |
linkProvider | Cold Spring Harbor Laboratory Press |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BKwQ3VlFWH-AY0TqOkx4QElDUjapCReIWZRwHcklKW5Z-FP_IOE7hgMStV2eTxuOZ8cTvPYAzqXhdJLQt8TFoOkKRG6P2aeMqPJ5EVEHEvkEj3w9k-1F0n7ynFfhaYGHMscpFTCwCdZwr0yM3nZAGN3Th_Gr86hjVKPN3dSGhYd2ip-cftGWbXnZuaX7POb9rjW7aTqkq4CBlO0dIlbh1JV1sNGI_UcLz_bjpKVpnKBTSSIQSJVfK3ImouafriIY3jtJhHLj02lWoCgNorUD1ujUYPvw0dXiTsmPB_MxlkyINr3ulnhF5_oWpzo2u-Bqm-eQzff8T_oucdrcJ1WE01pMtWNHZNqxZUcr5DuTdPM1mzIikGag6yxP2oC38gRWAERZlMbt5ySnEMNuToLFhZE550SQxC_1NUksAPmdpRs8X_KyqaEWyktL12X5iugujZRhwDypZnul9YFRrJC6SD6lAikCqQLuxCtCLOLpRwnkN9kpThWPLvRFaG9bgaGG5sFxz0_DXQw7-v3wK6-3RfT_sdwa9Q9igEigw6MIGP4LKbPKmj6nMmOFJObkMwiW70zePNudo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1NT8MwDI1gE4gbXxODATlw7WjTNO3Og2oMmCY0pN2qOk2gl3baxsT-PU4T4IC4Rk0rOY6f7drPhNwIyXyuMSyJIRl4XKIag4oxcOUR0zl6EEVsupGfJ2L0ysfzaO5SFytXVgllvfwsN81_fFOwjdbXXm4_uDUeLvP7JjfdXxR6l7RRoQKjzum8_5NcYQNEqZi7WUK_-9DJdS__Y3obPEkPSXuaL9TyiOyo6pjs2YGQ2xNSj-uyWlMzoMy0idNa0xdlWw9o06xBMfCnw_carze1-QBcm-amwgoFRG3brS4t-faWlhXub7hRZZMGpI5O9c1-YnVKZun9bDjy3EgEDxCqPS6kDn0pQgiCItaSR3FcDCKJRgK4BFzJQYBgUponARSLlA9gSO8Qy4sk7JBWVVfqjFDEeR0Cnp9MBE-ETFRYyASinEGYa8a6pONElS0s70VmZdglvW_JZU7fVxlDT4UZMnd2_t--a7I_vUuzp4fJ4wU5QL8jMS19AeuR1nr5oS4R29dw1ZzjF02so8Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Modeling+of+Reaction+Times+and+Choice+Improves+Parameter+Identifiability+in+Reinforcement+Learning+Models&rft.jtitle=bioRxiv&rft.au=Ballard%2C+Ian+C.&rft.au=McClure%2C+Samuel+M.&rft.date=2018-11-12&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F306720&rft.externalDocID=306720v3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |