Searching for resistance genes to Bursaphelenchus xylophilus using high throughput screening

Pine wilt disease (PWD), caused by the pinewood nematode (PWN; Bursaphelenchus xylophilus), damages and kills pine trees and is causing serious economic damage worldwide. Although the ecological mechanism of infestation is well described, the plant's molecular response to the pathogen is not we...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 13; no. 1; p. 599
Main Authors Santos, Carla S, Pinheiro, Miguel, Silva, Ana I, Egas, Conceição, Vasconcelos, Marta W
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 07.11.2012
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pine wilt disease (PWD), caused by the pinewood nematode (PWN; Bursaphelenchus xylophilus), damages and kills pine trees and is causing serious economic damage worldwide. Although the ecological mechanism of infestation is well described, the plant's molecular response to the pathogen is not well known. This is due mainly to the lack of genomic information and the complexity of the disease. High throughput sequencing is now an efficient approach for detecting the expression of genes in non-model organisms, thus providing valuable information in spite of the lack of the genome sequence. In an attempt to unravel genes potentially involved in the pine defense against the pathogen, we hereby report the high throughput comparative sequence analysis of infested and non-infested stems of Pinus pinaster (very susceptible to PWN) and Pinus pinea (less susceptible to PWN). Four cDNA libraries from infested and non-infested stems of P. pinaster and P. pinea were sequenced in a full 454 GS FLX run, producing a total of 2,083,698 reads. The putative amino acid sequences encoded by the assembled transcripts were annotated according to Gene Ontology, to assign Pinus contigs into Biological Processes, Cellular Components and Molecular Functions categories. Most of the annotated transcripts corresponded to Picea genes-25.4-39.7%, whereas a smaller percentage, matched Pinus genes, 1.8-12.8%, probably a consequence of more public genomic information available for Picea than for Pinus. The comparative transcriptome analysis showed that when P. pinaster was infested with PWN, the genes malate dehydrogenase, ABA, water deficit stress related genes and PAR1 were highly expressed, while in PWN-infested P. pinea, the highly expressed genes were ricin B-related lectin, and genes belonging to the SNARE and high mobility group families. Quantitative PCR experiments confirmed the differential gene expression between the two pine species. Defense-related genes triggered by nematode infestation were detected in both P. pinaster and P. pinea transcriptomes utilizing 454 pyrosequencing technology. P. pinaster showed higher abundance of genes related to transcriptional regulation, terpenoid secondary metabolism (including some with nematicidal activity) and pathogen attack. P. pinea showed higher abundance of genes related to oxidative stress and higher levels of expression in general of stress responsive genes. This study provides essential information about the molecular defense mechanisms utilized by P. pinaster and P. pinea against PWN infestation and contributes to a better understanding of PWD.
AbstractList Background Pine wilt disease (PWD), caused by the pinewood nematode (PWN; Bursaphelenchus xylophilus), damages and kills pine trees and is causing serious economic damage worldwide. Although the ecological mechanism of infestation is well described, the plant's molecular response to the pathogen is not well known. This is due mainly to the lack of genomic information and the complexity of the disease. High throughput sequencing is now an efficient approach for detecting the expression of genes in non-model organisms, thus providing valuable information in spite of the lack of the genome sequence. In an attempt to unravel genes potentially involved in the pine defense against the pathogen, we hereby report the high throughput comparative sequence analysis of infested and non-infested stems of Pinus pinaster (very susceptible to PWN) and Pinus pinea (less susceptible to PWN). Results Four cDNA libraries from infested and non-infested stems of P. pinaster and P. pinea were sequenced in a full 454 GS FLX run, producing a total of 2,083,698 reads. The putative amino acid sequences encoded by the assembled transcripts were annotated according to Gene Ontology, to assign Pinus contigs into Biological Processes, Cellular Components and Molecular Functions categories. Most of the annotated transcripts corresponded to Picea genes-25.4-39.7%, whereas a smaller percentage, matched Pinus genes, 1.8-12.8%, probably a consequence of more public genomic information available for Picea than for Pinus. The comparative transcriptome analysis showed that when P. pinaster was infested with PWN, the genes malate dehydrogenase, ABA, water deficit stress related genes and PAR1 were highly expressed, while in PWN-infested P. pinea, the highly expressed genes were ricin B-related lectin, and genes belonging to the SNARE and high mobility group families. Quantitative PCR experiments confirmed the differential gene expression between the two pine species. Conclusions Defense-related genes triggered by nematode infestation were detected in both P. pinaster and P. pinea transcriptomes utilizing 454 pyrosequencing technology. P. pinaster showed higher abundance of genes related to transcriptional regulation, terpenoid secondary metabolism (including some with nematicidal activity) and pathogen attack. P. pinea showed higher abundance of genes related to oxidative stress and higher levels of expression in general of stress responsive genes. This study provides essential information about the molecular defense mechanisms utilized by P. pinaster and P. pinea against PWN infestation and contributes to a better understanding of PWD.
Pine wilt disease (PWD), caused by the pinewood nematode (PWN; Bursaphelenchus xylophilus), damages and kills pine trees and is causing serious economic damage worldwide. Although the ecological mechanism of infestation is well described, the plant's molecular response to the pathogen is not well known. This is due mainly to the lack of genomic information and the complexity of the disease. High throughput sequencing is now an efficient approach for detecting the expression of genes in non-model organisms, thus providing valuable information in spite of the lack of the genome sequence. In an attempt to unravel genes potentially involved in the pine defense against the pathogen, we hereby report the high throughput comparative sequence analysis of infested and non-infested stems of Pinus pinaster (very susceptible to PWN) and Pinus pinea (less susceptible to PWN). Four cDNA libraries from infested and non-infested stems of P. pinaster and P. pinea were sequenced in a full 454 GS FLX run, producing a total of 2,083,698 reads. The putative amino acid sequences encoded by the assembled transcripts were annotated according to Gene Ontology, to assign Pinus contigs into Biological Processes, Cellular Components and Molecular Functions categories. Most of the annotated transcripts corresponded to Picea genes-25.4-39.7%, whereas a smaller percentage, matched Pinus genes, 1.8-12.8%, probably a consequence of more public genomic information available for Picea than for Pinus. The comparative transcriptome analysis showed that when P. pinaster was infested with PWN, the genes malate dehydrogenase, ABA, water deficit stress related genes and PAR1 were highly expressed, while in PWN-infested P. pinea, the highly expressed genes were ricin B-related lectin, and genes belonging to the SNARE and high mobility group families. Quantitative PCR experiments confirmed the differential gene expression between the two pine species. Defense-related genes triggered by nematode infestation were detected in both P. pinaster and P. pinea transcriptomes utilizing 454 pyrosequencing technology. P. pinaster showed higher abundance of genes related to transcriptional regulation, terpenoid secondary metabolism (including some with nematicidal activity) and pathogen attack. P. pinea showed higher abundance of genes related to oxidative stress and higher levels of expression in general of stress responsive genes. This study provides essential information about the molecular defense mechanisms utilized by P. pinaster and P. pinea against PWN infestation and contributes to a better understanding of PWD.
Doc number: 599 Abstract Background: Pine wilt disease (PWD), caused by the pinewood nematode (PWN; Bursaphelenchus xylophilus) , damages and kills pine trees and is causing serious economic damage worldwide. Although the ecological mechanism of infestation is well described, the plant's molecular response to the pathogen is not well known. This is due mainly to the lack of genomic information and the complexity of the disease. High throughput sequencing is now an efficient approach for detecting the expression of genes in non-model organisms, thus providing valuable information in spite of the lack of the genome sequence. In an attempt to unravel genes potentially involved in the pine defense against the pathogen, we hereby report the high throughput comparative sequence analysis of infested and non-infested stems of Pinus pinaster (very susceptible to PWN) and Pinus pinea (less susceptible to PWN). Results: Four cDNA libraries from infested and non-infested stems of P. pinaster and P. pinea were sequenced in a full 454 GS FLX run, producing a total of 2,083,698 reads. The putative amino acid sequences encoded by the assembled transcripts were annotated according to Gene Ontology, to assign Pinus contigs into Biological Processes, Cellular Components and Molecular Functions categories. Most of the annotated transcripts corresponded to Picea genes-25.4-39.7%, whereas a smaller percentage, matched Pinus genes, 1.8-12.8%, probably a consequence of more public genomic information available for Picea than for Pinus . The comparative transcriptome analysis showed that when P. pinaster was infested with PWN, the genes malate dehydrogenase, ABA, water deficit stress related genes and PAR1 were highly expressed, while in PWN-infested P. pinea, the highly expressed genes were ricin B-related lectin, and genes belonging to the SNARE and high mobility group families. Quantitative PCR experiments confirmed the differential gene expression between the two pine species. Conclusions: Defense-related genes triggered by nematode infestation were detected in both P. pinaster and P. pinea transcriptomes utilizing 454 pyrosequencing technology. P. pinaster showed higher abundance of genes related to transcriptional regulation, terpenoid secondary metabolism (including some with nematicidal activity) and pathogen attack. P. pinea showed higher abundance of genes related to oxidative stress and higher levels of expression in general of stress responsive genes. This study provides essential information about the molecular defense mechanisms utilized by P. pinaster and P. pinea against PWN infestation and contributes to a better understanding of PWD.
Pine wilt disease (PWD), caused by the pinewood nematode (PWN; Bursaphelenchus xylophilus), damages and kills pine trees and is causing serious economic damage worldwide. Although the ecological mechanism of infestation is well described, the plant's molecular response to the pathogen is not well known. This is due mainly to the lack of genomic information and the complexity of the disease. High throughput sequencing is now an efficient approach for detecting the expression of genes in non-model organisms, thus providing valuable information in spite of the lack of the genome sequence. In an attempt to unravel genes potentially involved in the pine defense against the pathogen, we hereby report the high throughput comparative sequence analysis of infested and non-infested stems of Pinus pinaster (very susceptible to PWN) and Pinus pinea (less susceptible to PWN). Four cDNA libraries from infested and non-infested stems of P. pinaster and P. pinea were sequenced in a full 454 GS FLX run, producing a total of 2,083,698 reads. The putative amino acid sequences encoded by the assembled transcripts were annotated according to Gene Ontology, to assign Pinus contigs into Biological Processes, Cellular Components and Molecular Functions categories. Most of the annotated transcripts corresponded to Picea genes-25.4-39.7%, whereas a smaller percentage, matched Pinus genes, 1.8-12.8%, probably a consequence of more public genomic information available for Picea than for Pinus. The comparative transcriptome analysis showed that when P. pinaster was infested with PWN, the genes malate dehydrogenase, ABA, water deficit stress related genes and PAR1 were highly expressed, while in PWN-infested P. pinea, the highly expressed genes were ricin B-related lectin, and genes belonging to the SNARE and high mobility group families. Quantitative PCR experiments confirmed the differential gene expression between the two pine species. Defense-related genes triggered by nematode infestation were detected in both P. pinaster and P. pinea transcriptomes utilizing 454 pyrosequencing technology. P. pinaster showed higher abundance of genes related to transcriptional regulation, terpenoid secondary metabolism (including some with nematicidal activity) and pathogen attack. P. pinea showed higher abundance of genes related to oxidative stress and higher levels of expression in general of stress responsive genes. This study provides essential information about the molecular defense mechanisms utilized by P. pinaster and P. pinea against PWN infestation and contributes to a better understanding of PWD.
Abstract Background Pine wilt disease (PWD), caused by the pinewood nematode (PWN; Bursaphelenchus xylophilus), damages and kills pine trees and is causing serious economic damage worldwide. Although the ecological mechanism of infestation is well described, the plant’s molecular response to the pathogen is not well known. This is due mainly to the lack of genomic information and the complexity of the disease. High throughput sequencing is now an efficient approach for detecting the expression of genes in non-model organisms, thus providing valuable information in spite of the lack of the genome sequence. In an attempt to unravel genes potentially involved in the pine defense against the pathogen, we hereby report the high throughput comparative sequence analysis of infested and non-infested stems of Pinus pinaster (very susceptible to PWN) and Pinus pinea (less susceptible to PWN). Results Four cDNA libraries from infested and non-infested stems of P. pinaster and P. pinea were sequenced in a full 454 GS FLX run, producing a total of 2,083,698 reads. The putative amino acid sequences encoded by the assembled transcripts were annotated according to Gene Ontology, to assign Pinus contigs into Biological Processes, Cellular Components and Molecular Functions categories. Most of the annotated transcripts corresponded to Picea genes-25.4-39.7%, whereas a smaller percentage, matched Pinus genes, 1.8-12.8%, probably a consequence of more public genomic information available for Picea than for Pinus. The comparative transcriptome analysis showed that when P. pinaster was infested with PWN, the genes malate dehydrogenase, ABA, water deficit stress related genes and PAR1 were highly expressed, while in PWN-infested P. pinea, the highly expressed genes were ricin B-related lectin, and genes belonging to the SNARE and high mobility group families. Quantitative PCR experiments confirmed the differential gene expression between the two pine species. Conclusions Defense-related genes triggered by nematode infestation were detected in both P. pinaster and P. pinea transcriptomes utilizing 454 pyrosequencing technology. P. pinaster showed higher abundance of genes related to transcriptional regulation, terpenoid secondary metabolism (including some with nematicidal activity) and pathogen attack. P. pinea showed higher abundance of genes related to oxidative stress and higher levels of expression in general of stress responsive genes. This study provides essential information about the molecular defense mechanisms utilized by P. pinaster and P. pinea against PWN infestation and contributes to a better understanding of PWD.
Pine wilt disease (PWD), caused by the pinewood nematode (PWN; Bursaphelenchus xylophilus), damages and kills pine trees and is causing serious economic damage worldwide. Although the ecological mechanism of infestation is well described, the plant's molecular response to the pathogen is not well known. This is due mainly to the lack of genomic information and the complexity of the disease. High throughput sequencing is now an efficient approach for detecting the expression of genes in non-model organisms, thus providing valuable information in spite of the lack of the genome sequence. In an attempt to unravel genes potentially involved in the pine defense against the pathogen, we hereby report the high throughput comparative sequence analysis of infested and non-infested stems of Pinus pinaster (very susceptible to PWN) and Pinus pinea (less susceptible to PWN).BACKGROUNDPine wilt disease (PWD), caused by the pinewood nematode (PWN; Bursaphelenchus xylophilus), damages and kills pine trees and is causing serious economic damage worldwide. Although the ecological mechanism of infestation is well described, the plant's molecular response to the pathogen is not well known. This is due mainly to the lack of genomic information and the complexity of the disease. High throughput sequencing is now an efficient approach for detecting the expression of genes in non-model organisms, thus providing valuable information in spite of the lack of the genome sequence. In an attempt to unravel genes potentially involved in the pine defense against the pathogen, we hereby report the high throughput comparative sequence analysis of infested and non-infested stems of Pinus pinaster (very susceptible to PWN) and Pinus pinea (less susceptible to PWN).Four cDNA libraries from infested and non-infested stems of P. pinaster and P. pinea were sequenced in a full 454 GS FLX run, producing a total of 2,083,698 reads. The putative amino acid sequences encoded by the assembled transcripts were annotated according to Gene Ontology, to assign Pinus contigs into Biological Processes, Cellular Components and Molecular Functions categories. Most of the annotated transcripts corresponded to Picea genes-25.4-39.7%, whereas a smaller percentage, matched Pinus genes, 1.8-12.8%, probably a consequence of more public genomic information available for Picea than for Pinus. The comparative transcriptome analysis showed that when P. pinaster was infested with PWN, the genes malate dehydrogenase, ABA, water deficit stress related genes and PAR1 were highly expressed, while in PWN-infested P. pinea, the highly expressed genes were ricin B-related lectin, and genes belonging to the SNARE and high mobility group families. Quantitative PCR experiments confirmed the differential gene expression between the two pine species.RESULTSFour cDNA libraries from infested and non-infested stems of P. pinaster and P. pinea were sequenced in a full 454 GS FLX run, producing a total of 2,083,698 reads. The putative amino acid sequences encoded by the assembled transcripts were annotated according to Gene Ontology, to assign Pinus contigs into Biological Processes, Cellular Components and Molecular Functions categories. Most of the annotated transcripts corresponded to Picea genes-25.4-39.7%, whereas a smaller percentage, matched Pinus genes, 1.8-12.8%, probably a consequence of more public genomic information available for Picea than for Pinus. The comparative transcriptome analysis showed that when P. pinaster was infested with PWN, the genes malate dehydrogenase, ABA, water deficit stress related genes and PAR1 were highly expressed, while in PWN-infested P. pinea, the highly expressed genes were ricin B-related lectin, and genes belonging to the SNARE and high mobility group families. Quantitative PCR experiments confirmed the differential gene expression between the two pine species.Defense-related genes triggered by nematode infestation were detected in both P. pinaster and P. pinea transcriptomes utilizing 454 pyrosequencing technology. P. pinaster showed higher abundance of genes related to transcriptional regulation, terpenoid secondary metabolism (including some with nematicidal activity) and pathogen attack. P. pinea showed higher abundance of genes related to oxidative stress and higher levels of expression in general of stress responsive genes. This study provides essential information about the molecular defense mechanisms utilized by P. pinaster and P. pinea against PWN infestation and contributes to a better understanding of PWD.CONCLUSIONSDefense-related genes triggered by nematode infestation were detected in both P. pinaster and P. pinea transcriptomes utilizing 454 pyrosequencing technology. P. pinaster showed higher abundance of genes related to transcriptional regulation, terpenoid secondary metabolism (including some with nematicidal activity) and pathogen attack. P. pinea showed higher abundance of genes related to oxidative stress and higher levels of expression in general of stress responsive genes. This study provides essential information about the molecular defense mechanisms utilized by P. pinaster and P. pinea against PWN infestation and contributes to a better understanding of PWD.
ArticleNumber 599
Audience Academic
Author Santos, Carla S
Vasconcelos, Marta W
Silva, Ana I
Egas, Conceição
Pinheiro, Miguel
AuthorAffiliation 1 CBQF – Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Centro Regional do Porto da Universidade Católica Portuguesa, Rua Dr. António Bernardino Almeida, Porto, 4200-072, Portugal
2 Bioinformatics Unit, Biocant, Parque Tecnológico de Cantanhede, Núcleo 04, Lote 03, Cantanhede, 3060-197, Portugal
3 Advanced Services Unit, Biocant, Parque Tecnológico de Cantanhede, Núcleo 04, Lote 03, Cantanhede, 3060-197, Portugal
AuthorAffiliation_xml – name: 1 CBQF – Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Centro Regional do Porto da Universidade Católica Portuguesa, Rua Dr. António Bernardino Almeida, Porto, 4200-072, Portugal
– name: 2 Bioinformatics Unit, Biocant, Parque Tecnológico de Cantanhede, Núcleo 04, Lote 03, Cantanhede, 3060-197, Portugal
– name: 3 Advanced Services Unit, Biocant, Parque Tecnológico de Cantanhede, Núcleo 04, Lote 03, Cantanhede, 3060-197, Portugal
Author_xml – sequence: 1
  givenname: Carla S
  surname: Santos
  fullname: Santos, Carla S
– sequence: 2
  givenname: Miguel
  surname: Pinheiro
  fullname: Pinheiro, Miguel
– sequence: 3
  givenname: Ana I
  surname: Silva
  fullname: Silva, Ana I
– sequence: 4
  givenname: Conceição
  surname: Egas
  fullname: Egas, Conceição
– sequence: 5
  givenname: Marta W
  surname: Vasconcelos
  fullname: Vasconcelos, Marta W
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23134679$$D View this record in MEDLINE/PubMed
BookMark eNqNkstr3DAQxk1JaR7tvadi6KU9ONXLsn0ppEsfC4FC094KQpbGthavtJXkkvz3lbtJGocEig8eZr75MZpvjrMD6yxk2UuMTjGu-TvMKlwQzFmBaVE2zZPs6DZ1cCc-zI5D2CCEq5qUz7JDQjFlvGqOsp8XIL0ajO3zzvncQzAhSqsg78FCyKPLP0w-yN0AI1g1TCG_vBrdbjBjCqcwNw6mH_I4eDf1w26KeVAewKbK8-xpJ8cAL67_J9mPTx-_r74U518_r1dn50VbVXUsNOMN1VLNT6qV7hSpOsY0akECUwRTWUqOOsRbAi0lpMFdqzrUSKWVZk1JT7L1nqud3IidN1vpr4STRvxNON8L6aNRI4iyrjQg2lCKEWtTUHe6oho46xAQRBPr_Z61m9otaAU2ejkuoMuKNYPo3W9BS0ZIiRJgtQe0xj0CWFaU24rZKTE7JTAVychEeXM9hne_JghRbE1QMI7SgpuCwKQuUUMbVv2HtKJsnm6Wvr4n3bjJ2-RNUvEa87pq6D9VL9PGjO1cmlPNUHFWUoYxL_k84ekDqvRp2BqV7rQzKb9oeLtoSJoIl7GXUwhiffFtqX1114Xb7d0cbhLwvUB5F4KHTigTZTRu3qkZBUZiPqeHFovuNd6wH235A12MESI
CitedBy_id crossref_primary_10_3389_fpls_2021_640459
crossref_primary_10_3389_fpls_2021_690857
crossref_primary_10_1007_s11676_021_01416_7
crossref_primary_10_3389_fpls_2016_01859
crossref_primary_10_1007_s10142_019_00717_9
crossref_primary_10_3390_f8080279
crossref_primary_10_1007_s12192_015_0573_4
crossref_primary_10_1016_j_supflu_2020_104784
crossref_primary_10_3389_fpls_2021_822289
crossref_primary_10_1007_s10530_016_1173_7
crossref_primary_10_1098_rstb_2018_0323
crossref_primary_10_1111_ppa_13827
crossref_primary_10_1007_s00468_024_02594_7
crossref_primary_10_3390_ijms222011195
crossref_primary_10_1007_s11738_016_2159_x
crossref_primary_10_1007_s11295_015_0899_1
crossref_primary_10_1186_1471_2164_14_647
crossref_primary_10_3390_ijms16035216
crossref_primary_10_1016_j_gene_2014_09_014
crossref_primary_10_1093_treephys_tpv046
crossref_primary_10_3390_f11020204
crossref_primary_10_1016_j_jplph_2015_03_004
crossref_primary_10_3390_ijms140611356
crossref_primary_10_1016_j_heliyon_2021_e06718
crossref_primary_10_1111_eea_12105
crossref_primary_10_1007_s00438_020_01739_w
crossref_primary_10_1007_s44154_023_00131_z
crossref_primary_10_1111_1755_0998_12464
crossref_primary_10_3389_fpls_2022_916138
crossref_primary_10_3390_cells11203208
crossref_primary_10_1093_treephys_tpac088
crossref_primary_10_1371_journal_pone_0083542
crossref_primary_10_2903_j_efsa_2013_3163
crossref_primary_10_1007_s11676_018_0847_7
crossref_primary_10_1111_pce_14224
crossref_primary_10_1094_PHYTO_01_24_0026_R
crossref_primary_10_1038_s41598_021_83445_0
crossref_primary_10_3390_genes15010084
crossref_primary_10_1186_s12864_020_06876_5
crossref_primary_10_1371_journal_pone_0078063
crossref_primary_10_3390_ijms20184520
crossref_primary_10_1371_journal_pone_0241613
crossref_primary_10_3390_f14030650
crossref_primary_10_1016_j_molbiopara_2022_111460
crossref_primary_10_1186_1471_2164_15_334
crossref_primary_10_1186_s12870_024_04771_9
crossref_primary_10_3389_fmicb_2020_523142
Cites_doi 10.1186/1471-2229-12-13
10.1093/treephys/tpn034
10.1186/1471-2164-12-368
10.1016/j.pbi.2004.07.012
10.1093/treephys/28.7.1099
10.1186/1471-2164-11-180
10.1094/PDIS.2000.84.6.675
10.1007/s10658-011-9886-z
10.1093/pcp/pcq100
10.1104/pp.110.161612
10.1093/nar/29.1.44
10.1093/nar/gkn785
10.1105/tpc.108.058479
10.1074/jbc.R110.113795
10.1016/j.phytochem.2011.02.024
10.1007/BF02348216
10.1371/journal.pone.0022269
10.1093/treephys/tpp002
10.1007/s00425-007-0616-x
10.1046/j.1365-313x.1998.00329.x
10.1074/jbc.M110.202226
10.1038/75556
10.1016/j.jplph.2010.07.014
10.1007/BF00014975
10.1074/jbc.M409823200
10.1105/tpc.104.025684
10.1111/j.1364-3703.2007.00461.x
10.1105/tpc.013854
10.1016/S1360-1385(97)82565-4
10.1007/978-4-431-75655-2_6
10.4161/psb.6.3.14451
10.12681/eh.11606
10.1186/1471-2164-11-296
10.1093/jxb/erq313
10.1021/bi9003759
10.1101/gr.1917404
10.1111/j.1439-0329.2010.00646.x
10.1093/jxb/err287
10.1186/1471-2164-12-366
10.1007/s11103-007-9133-3
10.1007/s11103-009-9576-9
10.1016/j.exppara.2011.04.008
10.1186/1471-2164-12-264
10.1023/A:1006297731456
10.4067/S0716-97602007000400003
10.1093/bioinformatics/btg1067
10.1016/S0014-5793(98)00786-8
10.1016/j.cub.2011.02.045
10.1104/pp.111.192617
10.2174/138920211795564368
10.1016/S0022-2836(05)80360-2
10.1111/j.1399-3054.2006.00772.x
10.1093/jxb/erh185
10.1104/pp.110.167163
10.1104/pp.108.119131
10.1016/j.jplph.2011.09.005
10.1016/j.molbiopara.2007.05.002
10.1007/s11103-008-9358-9
10.1074/jbc.M111.252619
10.1007/s00284-010-9681-7
10.1163/156854107780739027
10.1186/1471-2105-9-386
10.1186/1471-2229-10-248
10.1016/S0031-9422(00)00514-8
10.1016/j.jmb.2008.09.014
10.1093/treephys/27.7.969
10.1016/j.jplph.2011.01.012
10.1074/jbc.M109.014761
10.1074/jbc.274.1.397
10.1016/j.phytochem.2011.12.011
10.1007/s10658-009-9574-4
ContentType Journal Article
Copyright COPYRIGHT 2012 BioMed Central Ltd.
2012 Santos et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright ©2012 Santos et al.; licensee BioMed Central Ltd. 2012 Santos et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2012 BioMed Central Ltd.
– notice: 2012 Santos et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright ©2012 Santos et al.; licensee BioMed Central Ltd. 2012 Santos et al.; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QP
7QR
7SS
7TK
7U7
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOA
DOI 10.1186/1471-2164-13-599
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database

Genetics Abstracts
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Economics
EISSN 1471-2164
EndPage 599
ExternalDocumentID oai_doaj_org_article_587de03933104b0398fd73de64f0e203
PMC3542250
oai_biomedcentral_com_1471_2164_13_599
2862008571
A534116569
23134679
10_1186_1471_2164_13_599
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GeographicLocations Portugal
GeographicLocations_xml – name: Portugal
GroupedDBID ---
0R~
23N
2VQ
2WC
2XV
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
3V.
7QP
7QR
7SS
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
-A0
ABVAZ
ACRMQ
ADINQ
AFGXO
AFNRJ
AIXEN
C24
5PM
PUEGO
ID FETCH-LOGICAL-b778t-d4693dac11868cdfc27f44d0beae4c213a5a60f06b2eb32291fbcf09acdcd4953
IEDL.DBID RBZ
ISSN 1471-2164
IngestDate Wed Aug 27 01:30:58 EDT 2025
Thu Aug 21 18:24:10 EDT 2025
Wed May 22 07:14:54 EDT 2024
Mon Jul 21 09:28:08 EDT 2025
Thu Jul 10 19:20:42 EDT 2025
Fri Jul 25 10:32:14 EDT 2025
Tue Jun 17 22:04:52 EDT 2025
Mon Jul 21 10:57:38 EDT 2025
Fri Jun 27 05:57:30 EDT 2025
Mon Jul 21 05:45:12 EDT 2025
Tue Jul 01 02:22:00 EDT 2025
Thu Apr 24 22:51:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b778t-d4693dac11868cdfc27f44d0beae4c213a5a60f06b2eb32291fbcf09acdcd4953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink http://dx.doi.org/10.1186/1471-2164-13-599
PMID 23134679
PQID 1268168793
PQPubID 44682
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_587de03933104b0398fd73de64f0e203
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3542250
biomedcentral_primary_oai_biomedcentral_com_1471_2164_13_599
proquest_miscellaneous_1285093947
proquest_miscellaneous_1273435427
proquest_journals_1268168793
gale_infotracmisc_A534116569
gale_infotracacademiconefile_A534116569
gale_incontextgauss_ISR_A534116569
pubmed_primary_23134679
crossref_citationtrail_10_1186_1471_2164_13_599
crossref_primary_10_1186_1471_2164_13_599
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-11-07
PublicationDateYYYYMMDD 2012-11-07
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-11-07
  day: 07
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2012
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References GE Schaller (4567_CR27) 2011; 21
C Lottaz (4567_CR74) 2003; 19
S Hunter (4567_CR21) 2008; 37
YB Kim (4567_CR58) 2009; 29
MK Mateyak (4567_CR51) 2010; 285
C Santos (4567_CR59) 2011; 19
H Shin (4567_CR32) 2009; 29
W Grunwald (4567_CR56) 2008; 148
C Iseli (4567_CR75) 1999; 138
LD Daurelio (4567_CR24) 2011; 168
X Tian (4567_CR10) 2011; 62
CL Ho (4567_CR48) 1999; 274
Z Shi (4567_CR23) 2010; 10
G Vandenborre (4567_CR44) 2011; 72
SD Lim (4567_CR67) 2010; 72
S Kopriva (4567_CR42) 2004; 55
DL Lildballe (4567_CR69) 2008; 384
M Hothorn (4567_CR53) 2004; 16
W Li (4567_CR54) 2012; 159
G Drechsel (4567_CR55) 2011; 62
S Liu (4567_CR49) 2007; 64
M Roriz (4567_CR2) 2011; 128
M Ashburner (4567_CR19) 2000; 25
T Tomaz (4567_CR34) 2010; 154
Z Wang (4567_CR8) 2010; 4
E Chancerel (4567_CR12) 2011; 12
WW Lorenz (4567_CR13) 2011; 12
L Huang (4567_CR1) 2010; 127
B Uma (4567_CR66) 2011; 168
M Gil (4567_CR64) 2012; 77
G Poschet (4567_CR41) 2010; 51
MM Mota (4567_CR3) 2008
L Ogé (4567_CR61) 2008; 20
FA Koutroumpa (4567_CR5) 2009; 18
JT Jones (4567_CR4) 2008; 9
T Yang (4567_CR40) 2009; 284
BC Bryksa (4567_CR43) 2011; 286
NM Cecchini (4567_CR50) 2011; 155
Y Ichihara (4567_CR6) 2000; 84
Y Takeuchi (4567_CR7) 2007; 9
B Chevreux (4567_CR73) 2004; 14
ST Villa (4567_CR62) 2006; 128
K Fukuda (4567_CR28) 1997; 2
N Fernández-Pozo (4567_CR11) 2011; 12
TL Parchman (4567_CR17) 2010; 11
NA Stover (4567_CR46) 2011; 6
B Ulker (4567_CR25) 2004; 7
S Pöggeler (4567_CR45) 2011; 12
F Hanawa (4567_CR65) 2001; 57
TN Zeczycki (4567_CR39) 2009; 48
M Galan (4567_CR18) 2010; 11
H Ruwe (4567_CR68) 2011; 168
Y Yamauchi (4567_CR33) 2011; 286
M Tadege (4567_CR38) 1998; 16
M Nose (4567_CR14) 2011; 41
AB Sabater-Jara (4567_CR52) 2011; 6
G Baermann (4567_CR70) 1917; 57
S Mkrtchian (4567_CR26) 1998; 431
S-M Kim (4567_CR30) 2008; 227
K Fukuda (4567_CR29) 2007; 27
J-C Kader (4567_CR37) 1997; 2
K Futai (4567_CR71) 1979; 51
T Hirao (4567_CR15) 2012; 12
CSS Santos (4567_CR16) 2012; 132
R Apweiler (4567_CR20) 2001; 29
F Meyer (4567_CR22) 2008; 9
SI Beale (4567_CR60) 1999; 60
B Çakir (4567_CR63) 2003; 15
G le Provost (4567_CR72) 2007; 40
T Kikuchi (4567_CR9) 2007; 155
SF Altschul (4567_CR76) 1990; 215
G Soto (4567_CR31) 2011; 62
CJ Nairn (4567_CR35) 2008; 28
K Herbers (4567_CR36) 1995; 29
Y Hirano (4567_CR47) 2005; 280
C Manzano (4567_CR57) 2008; 68
References_xml – volume: 4
  start-page: 437
  issue: 6
  year: 2010
  ident: 4567_CR8
  publication-title: Afr J Microbiol Res
– volume: 12
  start-page: 13
  year: 2012
  ident: 4567_CR15
  publication-title: BMC Plant Biol
  doi: 10.1186/1471-2229-12-13
– volume: 29
  start-page: 411
  issue: 3
  year: 2009
  ident: 4567_CR32
  publication-title: Tree Physiol
  doi: 10.1093/treephys/tpn034
– volume: 12
  start-page: 368
  year: 2011
  ident: 4567_CR12
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-12-368
– volume: 7
  start-page: 491
  issue: 5
  year: 2004
  ident: 4567_CR25
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2004.07.012
– volume: 51
  start-page: 23
  year: 1979
  ident: 4567_CR71
  publication-title: Bull Kyoto Uni For
– volume: 28
  start-page: 1099
  issue: 7
  year: 2008
  ident: 4567_CR35
  publication-title: Tree Physiol
  doi: 10.1093/treephys/28.7.1099
– volume: 11
  start-page: 180
  year: 2010
  ident: 4567_CR17
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-11-180
– volume: 84
  start-page: 675
  year: 2000
  ident: 4567_CR6
  publication-title: Plant Dis
  doi: 10.1094/PDIS.2000.84.6.675
– volume: 132
  start-page: 407
  year: 2012
  ident: 4567_CR16
  publication-title: Eur J Plant Pathol
  doi: 10.1007/s10658-011-9886-z
– volume: 51
  start-page: 1571
  issue: 9
  year: 2010
  ident: 4567_CR41
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcq100
– volume: 154
  start-page: 1143
  year: 2010
  ident: 4567_CR34
  publication-title: Plant Physiol
  doi: 10.1104/pp.110.161612
– volume: 29
  start-page: 44
  year: 2001
  ident: 4567_CR20
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/29.1.44
– volume: 37
  start-page: 211
  year: 2008
  ident: 4567_CR21
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn785
– volume: 20
  start-page: 3022
  issue: 11
  year: 2008
  ident: 4567_CR61
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.058479
– volume: 285
  start-page: 21209
  issue: 28
  year: 2010
  ident: 4567_CR51
  publication-title: J Biol Chem
  doi: 10.1074/jbc.R110.113795
– volume: 72
  start-page: 1538
  year: 2011
  ident: 4567_CR44
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2011.02.024
– volume: 2
  start-page: 171
  year: 1997
  ident: 4567_CR28
  publication-title: J For Res
  doi: 10.1007/BF02348216
– volume: 6
  start-page: e22269
  issue: 8
  year: 2011
  ident: 4567_CR46
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0022269
– volume: 29
  start-page: 737
  issue: 5
  year: 2009
  ident: 4567_CR58
  publication-title: Tree Physiol
  doi: 10.1093/treephys/tpp002
– volume: 227
  start-page: 287
  year: 2008
  ident: 4567_CR30
  publication-title: Planta
  doi: 10.1007/s00425-007-0616-x
– volume: 16
  start-page: 661
  issue: 6
  year: 1998
  ident: 4567_CR38
  publication-title: Plant J
  doi: 10.1046/j.1365-313x.1998.00329.x
– volume: 286
  start-page: 6999
  issue: 9
  year: 2011
  ident: 4567_CR33
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.202226
– volume: 25
  start-page: 25
  year: 2000
  ident: 4567_CR19
  publication-title: Nature Genet
  doi: 10.1038/75556
– volume: 168
  start-page: 382
  issue: 4
  year: 2011
  ident: 4567_CR24
  publication-title: J Plant Physiol
  doi: 10.1016/j.jplph.2010.07.014
– volume: 29
  start-page: 1027
  issue: 5
  year: 1995
  ident: 4567_CR36
  publication-title: Plant Mol Biol
  doi: 10.1007/BF00014975
– volume: 280
  start-page: 9653
  year: 2005
  ident: 4567_CR47
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M409823200
– volume: 16
  start-page: 3437
  issue: 12
  year: 2004
  ident: 4567_CR53
  publication-title: Plant Cell
  doi: 10.1105/tpc.104.025684
– volume: 19
  start-page: 99
  issue: (1
  year: 2011
  ident: 4567_CR59
  publication-title: Silva Lusitana
– volume: 9
  start-page: 357
  issue: 3
  year: 2008
  ident: 4567_CR4
  publication-title: Mol Plant Pathol
  doi: 10.1111/j.1364-3703.2007.00461.x
– volume: 15
  start-page: 2165
  issue: 9
  year: 2003
  ident: 4567_CR63
  publication-title: Plant Cell
  doi: 10.1105/tpc.013854
– volume: 2
  start-page: 66
  issue: 2
  year: 1997
  ident: 4567_CR37
  publication-title: Trends Plant Sci
  doi: 10.1016/S1360-1385(97)82565-4
– start-page: 33
  volume-title: Pine Wilt Disease
  year: 2008
  ident: 4567_CR3
  doi: 10.1007/978-4-431-75655-2_6
– volume: 6
  start-page: 440
  issue: 3
  year: 2011
  ident: 4567_CR52
  publication-title: Plant Signal Behav
  doi: 10.4161/psb.6.3.14451
– volume: 18
  start-page: 35
  year: 2009
  ident: 4567_CR5
  publication-title: Entomologia Hellenica
  doi: 10.12681/eh.11606
– volume: 11
  start-page: 296
  year: 2010
  ident: 4567_CR18
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-11-296
– volume: 62
  start-page: 775
  issue: 2
  year: 2011
  ident: 4567_CR55
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erq313
– volume: 48
  start-page: 4305
  issue: 20
  year: 2009
  ident: 4567_CR39
  publication-title: Biochemistry
  doi: 10.1021/bi9003759
– volume: 14
  start-page: 1147
  year: 2004
  ident: 4567_CR73
  publication-title: Genome Res
  doi: 10.1101/gr.1917404
– volume: 41
  start-page: 143
  year: 2011
  ident: 4567_CR14
  publication-title: For Path
  doi: 10.1111/j.1439-0329.2010.00646.x
– volume: 62
  start-page: 5699
  issue: 15
  year: 2011
  ident: 4567_CR31
  publication-title: J Exp Bot
  doi: 10.1093/jxb/err287
– volume: 138
  start-page: 48
  year: 1999
  ident: 4567_CR75
  publication-title: Proc Int Conf Intell Syst Mol Biol
– volume: 12
  start-page: 366
  year: 2011
  ident: 4567_CR11
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-12-366
– volume: 64
  start-page: 49
  year: 2007
  ident: 4567_CR49
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-007-9133-3
– volume: 72
  start-page: 369
  year: 2010
  ident: 4567_CR67
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-009-9576-9
– volume: 128
  start-page: 357
  year: 2011
  ident: 4567_CR2
  publication-title: Exp Parasitol
  doi: 10.1016/j.exppara.2011.04.008
– volume: 12
  start-page: 264
  year: 2011
  ident: 4567_CR13
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-12-264
– volume: 60
  start-page: 43
  year: 1999
  ident: 4567_CR60
  publication-title: Photosynth Res
  doi: 10.1023/A:1006297731456
– volume: 40
  start-page: 291
  year: 2007
  ident: 4567_CR72
  publication-title: Biol Res
  doi: 10.4067/S0716-97602007000400003
– volume: 19
  start-page: ii103
  issue: 2
  year: 2003
  ident: 4567_CR74
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg1067
– volume: 431
  start-page: 322
  issue: 3
  year: 1998
  ident: 4567_CR26
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(98)00786-8
– volume: 21
  start-page: 320
  issue: 9
  year: 2011
  ident: 4567_CR27
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2011.02.045
– volume: 159
  start-page: 239
  year: 2012
  ident: 4567_CR54
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.192617
– volume: 12
  start-page: 95
  issue: 2
  year: 2011
  ident: 4567_CR45
  publication-title: Curr Genomics
  doi: 10.2174/138920211795564368
– volume: 215
  start-page: 403
  year: 1990
  ident: 4567_CR76
  publication-title: J Mol Biol
  doi: 10.1016/S0022-2836(05)80360-2
– volume: 128
  start-page: 581
  issue: 4
  year: 2006
  ident: 4567_CR62
  publication-title: Physiol Plant
  doi: 10.1111/j.1399-3054.2006.00772.x
– volume: 57
  start-page: 131
  year: 1917
  ident: 4567_CR70
  publication-title: Geneesk, Tijdschr, Ned-Indie
– volume: 55
  start-page: 1775
  issue: 404
  year: 2004
  ident: 4567_CR42
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erh185
– volume: 155
  start-page: 1947
  issue: 4
  year: 2011
  ident: 4567_CR50
  publication-title: Plant Physiol
  doi: 10.1104/pp.110.167163
– volume: 148
  start-page: 358
  year: 2008
  ident: 4567_CR56
  publication-title: Plant Physiol
  doi: 10.1104/pp.108.119131
– volume: 168
  start-page: 2141
  issue: 18
  year: 2011
  ident: 4567_CR66
  publication-title: J Plant Physiol
  doi: 10.1016/j.jplph.2011.09.005
– volume: 155
  start-page: 9
  issue: 1
  year: 2007
  ident: 4567_CR9
  publication-title: Mol Biochem Parasitol
  doi: 10.1016/j.molbiopara.2007.05.002
– volume: 68
  start-page: 145
  year: 2008
  ident: 4567_CR57
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-008-9358-9
– volume: 286
  start-page: 28265
  issue: 32
  year: 2011
  ident: 4567_CR43
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.252619
– volume: 62
  start-page: 117
  year: 2011
  ident: 4567_CR10
  publication-title: Curr Microbiol
  doi: 10.1007/s00284-010-9681-7
– volume: 9
  start-page: 243
  issue: 2
  year: 2007
  ident: 4567_CR7
  publication-title: Nematology
  doi: 10.1163/156854107780739027
– volume: 9
  start-page: 386
  year: 2008
  ident: 4567_CR22
  publication-title: BMC Bioinforma
  doi: 10.1186/1471-2105-9-386
– volume: 10
  start-page: 248
  year: 2010
  ident: 4567_CR23
  publication-title: BMC Plant Biol
  doi: 10.1186/1471-2229-10-248
– volume: 57
  start-page: 223
  year: 2001
  ident: 4567_CR65
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(00)00514-8
– volume: 384
  start-page: 9
  year: 2008
  ident: 4567_CR69
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2008.09.014
– volume: 27
  start-page: 969
  issue: 7
  year: 2007
  ident: 4567_CR29
  publication-title: Tree Physiol
  doi: 10.1093/treephys/27.7.969
– volume: 168
  start-page: 1361
  issue: 12
  year: 2011
  ident: 4567_CR68
  publication-title: J Plant Physiol
  doi: 10.1016/j.jplph.2011.01.012
– volume: 284
  start-page: 21526
  issue: 32
  year: 2009
  ident: 4567_CR40
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.014761
– volume: 274
  start-page: 397
  year: 1999
  ident: 4567_CR48
  publication-title: J Biol Chem
  doi: 10.1074/jbc.274.1.397
– volume: 77
  start-page: 89
  year: 2012
  ident: 4567_CR64
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2011.12.011
– volume: 127
  start-page: 89
  year: 2010
  ident: 4567_CR1
  publication-title: Eur J Plant Pathol
  doi: 10.1007/s10658-009-9574-4
SSID ssj0017825
Score 2.281706
Snippet Pine wilt disease (PWD), caused by the pinewood nematode (PWN; Bursaphelenchus xylophilus), damages and kills pine trees and is causing serious economic damage...
Background Pine wilt disease (PWD), caused by the pinewood nematode (PWN; Bursaphelenchus xylophilus), damages and kills pine trees and is causing serious...
Doc number: 599 Abstract Background: Pine wilt disease (PWD), caused by the pinewood nematode (PWN; Bursaphelenchus xylophilus) , damages and kills pine trees...
Background: Pine wilt disease (PWD), caused by the pinewood nematode (PWN; Bursaphelenchus xylophilus), damages and kills pine trees and is causing serious...
BACKGROUND: Pine wilt disease (PWD), caused by the pinewood nematode (PWN; Bursaphelenchus xylophilus), damages and kills pine trees and is causing serious...
Abstract Background Pine wilt disease (PWD), caused by the pinewood nematode (PWN; Bursaphelenchus xylophilus), damages and kills pine trees and is causing...
SourceID doaj
pubmedcentral
biomedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 599
SubjectTerms Abundance
Amino acids
Analysis
Animals
Base Sequence
Bursaphelenchus xylophilus
Defense mechanisms
Disease Resistance - genetics
Economics
Gene expression
Gene Expression Profiling
Gene Library
Gene regulation
Genes
Genetic aspects
Genetic transcription
Genomes
Genomics
Health aspects
high-throughput screening
High-throughput screening (Biochemical assaying)
High-Throughput Screening Assays
Infestation
Lectins
Metabolism
Molecular Sequence Data
Nematoda
Nematode Infections - genetics
Nematode Infections - immunology
Nematodes
Nucleotide sequence
Oxidative stress
Pathogens
Physiological aspects
Picea
Pine trees
Pinus
Pinus - genetics
Pinus pinaster
Pinus pinea
Plant Diseases - immunology
Plant Diseases - parasitology
Polymerase chain reaction
Ricin
SNAP receptors
Species Specificity
Stems
Trees
Tylenchida
Water deficit
Wilt
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG5kQfAivp11lVYE8dBM-pF0AnvZFZdV0IO6sAeh6fRjZmHIDDsJ6L_fqjyGaXxdvAwhXU16qqrrkVR_Rchra6usqGxgvAyWqUpaZuGXKXBVVVA8c_2ri0-fi_ML9fEyv9xr9YU1YQM88MC4eV5qH_AAKcQhqoaLMnotfShUzIIYcD7B503J1Pj9APxe3p8r0pwJyAimD5RlMd_dY1yyHDFfk5Puq8RB9Tj-v1rrPXeVllLu-aaze-TuGFTSk-HP3Ce3QvOA3B7aTP58SL4PNcXgpCiEqBQSbAwaQdp0gZaOtmt62l1v7WaJPsgtuy39AXn8Znm1gkusjF9QhDWmY1OfTddSsDaQAcPII3Jx9v7bu3M2dlVgtdZlyzwkxNJbh8wonY9O6KiUz-pgg3KCS5vbIotZUQtItIWoeKxdzCrrvPNYjfqYHDTrJjwltIpOKmkhwrJR8Qh00pcOTFaubO14NiPHCWvNZkDQMIhpnY7A9jIoGYOSMVwakMyMzCdJGDcilmPjjJXpM5ey-M2Mt7sZ07P-THuKwk3W1N8A7TOj9pl_ad-MvELVMIik0WCpzsJ226358PWLOckhQEBsI3jSm5EormH9zo4nH4CJCL6VUB4llLDVXTo8aaAZTc3WcFFg7xSwszPycjeMM7F8rgnrDmk0CCpXQv-NpoTgUVYKaJ4MSr3jDSQBEjwqLEAn6p4wLx1prpY9WDk-FcLsw__B7WfkDsSroj8Kqo_IQXvdhecQE7b1i3773wCZ61w6
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgift_qKVEE8SFs06RfIMideJyCPqgH-yCENB-7B0u7breg_70zbbpeUO9lKZsJDZlk5jfp5DeEvNS6SvJKO8ZLp5mshGYafpkEV1U5yRMzHF18-pyfncuPi2wRDty6kFY52cTBUNvW4Bn5nKc5loiA5fR284Nh1Sj8uhpKaFwnN5C6DFO6isU-4OLg_bLp02SZzzkYYpZCfMC4YBmyvUZ33NeRaxoY_P-205ccVZxEeckrnd4htwOcpMej_u-Sa665R26OBSZ_3Sffx2xicE8UwCmF0BrhIuiZLtHG0V1LT_ptpzcr9D5m1Xf0J0Twm9XFGh4xJ35JkdCYhnI-m35Hwc5A7AstD8j56ftv785YqKfA6qIod8xCKCysNjgZpbHepIWX0ia1006alAud6TzxSV6nEGKnacV9bXxSaWONxTzUh-SgaRt3SGjljZBCA7bSXnIPcsKWBoxVJnVteDIjb6KpVZuRO0Mhm3XcAkpWqBmFmlFcKNDMjMwnTSgTuMqxZMZaDTFLmf-jx-t9j-ld_5c9QeVGYxr-aLdLFTasysrCOry4DPhX1vBQelsI63LpE5cmYkZe4NJQyKHRYJLOUvddpz58_aKOM4AGyGoEb3oVhHwL4zc63HmASUTarUjyKJKETW7i5mkFqmBkOvVnS8zI830z9sTEuca1PcoUoKhMpsVVMiXARlFJkHk0Lur93AD8F-BLYQBFtNyjyYtbmovVQFOObwWA_fjqoT8htwCDpsP1zuKIHOy2vXsKOG9XPxs2828331MD
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1da9RAcNGK4Iv43dMqqwjiQ2z2I9kEFGnFUoX6oB70QVg2m927wpGclwTaf-9Mkrt29RRfjnA7e7vM91zmg5CXxuRxmhsXscyZSObCRAY-IwmmKneSxbb_6-LkS3o8lZ9Pk9PL8ugRgc3W0A7nSU1XizfnPy_eg8C_6wU-S_cZKNiIg98fMREleX6d3AC7pFBMT-TlOwWwhUlfazRCr19abvmF36rfF4HR6nv7_6nBr5iwML3yir06ukNuj44mPRg44y655qp75OYwevLiPvkx5BmD4aLgtlIIutGRBA6gM9R-tK3pYbdqzHKOdsnOu4aeQ2y_nJ8t4BGz5WcUWx3TcdDPsmspaCCIimHlAZkeffz-4TgaJy1EhVJZG5UQJIvSWERGZktvufJSlnHhjJOWM2ESk8Y-TgsOwTfnOfOF9XFubGlLzFB9SHaqunK7hObeCikMeF3GS-YBTpSZBTWWSFNYFk_I2wC1ejl01dDY5zpcAZHTSBmNlNFMaKDMhOyvKaHt2MUch2ksdB_NZOmWHa83O9Zn_R32EIkb3Kn_ol7N9CjKOslU6bCkGTxjWcBD5kslSpdKHzseiwl5gayhsbtGhek7M9M1jf707as-SMBpwH5HcNKrEcjXcH9rxmoIQCI25Aog9wJIEH8bLq85UK-lRzOe4jwV0L0T8nyzjDsxpa5ydYcwCgiVSK7-BZOBQylyCTCPBqbe4AYCAwFWFi6gAnYPkBeuVGfzvoE5ngqu9-P_QdQTcgt8VN6Xf6o9stOuOvcU_MC2eNaL9y9K1lla
  priority: 102
  providerName: Scholars Portal
Title Searching for resistance genes to Bursaphelenchus xylophilus using high throughput screening
URI https://www.ncbi.nlm.nih.gov/pubmed/23134679
https://www.proquest.com/docview/1268168793
https://www.proquest.com/docview/1273435427
https://www.proquest.com/docview/1285093947
http://dx.doi.org/10.1186/1471-2164-13-599
https://pubmed.ncbi.nlm.nih.gov/PMC3542250
https://doaj.org/article/587de03933104b0398fd73de64f0e203
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBdry2AvY9_N1gVtDMYeTK0PWzbspRkt3aBldCuEMRCyLCWF4ITahva_353tZFXX7WUvxuROkdCd7n5nnU6EvDMmj9PcuIhlzkQyFyYy8IwkuKrcSRbb7tPFyWl6fC6_TJPp7zI5t3bwWZbuMzCfEQdUHzERJXm-RXa4BD-Ikfnkx2bHADxd0p0kGrjXW5J3_MOts-2LwCV1lfv_tM83HFSYPHnDGx09Ig8HGEkPerk_Jvdc9YTc7y-WvH5KfvZZxOCWKIBSCiE1wkSQL52hbaPNkk7ay9qs5uh17Lyt6RVE7qv5xQJeMRd-RrGQMR2u8Vm1DQX7AjEvUJ6R86PD75-Oo-EehahQKmuiEkJgURqLk5HZ0luuvJRlXDjjpOVMmMSksY_TgkNozXnOfGF9nBtb2hLzT5-T7WpZuV1Cc2-FFAYwlfGSeeATZWbBSCXSFJbFI_IxmFq96mtmaKxiHVJgQWmUjEbJaCY0SGZE9teS0HaoUY5XZSx0F6tk6R0tPmxarPv6O-8EhRuMqfsB1E0PC1UnmSodHlgG3CsLeMl8qUTpUuljx2MxIm9RNTTWzqgwOWdm2rrWn7-d6YMEIAFWM4Ke3g9Mfgnjt2Y46wCTiOW2As69gBMWtw3Jaw3Ug3GpNeMp3pYClnVE3mzI2BIT5iq3bJFHgaASydW_eDKAiyKXwPOiV-rN3ADsF-BDYQAqUPdg8kJKdTHvypNjrwCsX_6fKrwiDwCb8u7Yp9oj281l614D_muKMdlSUzUmO5PD069n4-4rCjxPZDbuTMIvePhaRg
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1rb9Mw0BqdEHxBvCkMMAiE-BA1sZ2XBEIrbFrZVqGxSfswyTiO006qktI0gv4pfiN3eZRZwL7tSxTlzrHlu9wjvgchr5SK3SBWxvEioxwRc-UouDoCVFVshOfq-tfF4TjYOxGfT_3TDfKry4XBsMpOJtaCOi00_iMfeCzAFhHATh_m3x3sGoWnq10LjYYt9s3qB7hs5fvRJ6Dva8Z2d44_7jltVwEnCcNo6aTgEPJUaQ8Lxes00yzMhEjdxCgjNPO48lXgZm6QMHA0GYu9LNGZGyud6hSjMeG918im4ODK9MjmcGf85Wh9bgH61u8OQ6Ng4IHodxh4JI7HHR_ry1pZ9TNLGdY9A_7WDBdUox22eUEP7t4mt1oDlm43HHeHbJj8LrnetLRc3SNnTfwyKEQK5jAFZx4NVOAsOkGpSpcFHVaLUs2nqO_0tCrpz9WsmE_PZ3CLUfgTiiWUadtAaF4tKUg28LYBcp-cXMlePyC9vMjNI0LjTHPBFVhzKhNeBng8jTSIR1-oRHtun7yztlbOm2odEutn2xBgK4mUkUgZ6XEJlOmTQUcJqdvq6NikYyZrLykK_jHi7XpEN9f_cYdIXGtN9YNiMZGtiJB-FKYGU6XB4hYJ3ERZGvLUBCJzDXN5n7xE1pBYtSPHsKCJqspSjr4eyW0fjBGsowQzvWmRsgLWr1WbZQGbiIW-LMwtCxPEirbBHQfKVqyV8s9H2Ccv1mAciaF6uSkqxAmBUL5g4WU4ERiqPBaA87Bh6vXegMPBQXvDAkKL3a3NsyH5-bQujI6zgkn_-PKlPyc39o4PD-TBaLz_hNwEC5jVyaXhFuktF5V5ClbmMnnWftqUfLtqafIbnNKTLg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfGEIiXiW86BhiEhHgITWInTiReVqDq-JjQYNI0IVmOP9qKLq2aRoL_nrskrWoYvPBSWb1zHfnOd79r7s6EPFcqD9Nc2SDKrAp4zlSg4DPg4Kpyy6NQN39dfDpOR6f8_VlytkNG61qY4kJjc9KLqa5ebRegzxqrDQP9vb8wrj3sWdqPwLgGMWD-IGJBkudXyFWRJAKP6MngfPM-Afxg0tQZddzrF5aX_MJvle8zz2E1ff3_tN5b7stPrdzyVcObZK8DmfSw1YpbZMeWt8m19trJn3fItzbHGJwWBchKIeBGEAnSp2O0fHQ1p4N6WanFBH2SntQV_QFx_WIyncEQM-XHFNsc0-6Sn0W9omB9ICIGyl1yOnz39c0o6G5ZCAohslVgIEBmRmncjEwbp2PhODdhYZXlOo6YSlQaujAtYgi84ziPXKFdmCtttMHs1Htkt5yX9gGhudOMMwWISzkeOeBjJtNgwhKuCh2FPfLa21q5aDtqSOxx7VNA2hIlI1EyMmISJNMj_bUkpO46mONFGjPZRDJZesmMl5sZ67X-zjtA4XrP1HwxX45ld4xlkgljsZwZUDEvYJA5I5ixKXehjUPWI89QNSR21igxdWes6qqSR19O5GECgAF7HcFKLzomN0eNVl0lBGwiNuPyOA88Tjj62ievNVB2pqeSUZziXSpgd3vk6YaMMzGdrrTzGnkECCrhsfgXTwZgkuUceO63Sr3ZGwgKGHhYeADhqbu3eT6lnE6a5uW4KsDu_f9ThSfk-ue3Q_nx6PjDQ3IDQGzc1IeKA7K7Wtb2EQDFVfG4sQG_AFcJZIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Searching+for+resistance+genes+to+Bursaphelenchus+xylophilus+using+high+throughput+screening&rft.jtitle=BMC+genomics&rft.au=Santos%2C+Carla+S&rft.au=Pinheiro%2C+Miguel&rft.au=Silva%2C+Ana+I&rft.au=Egas%2C+Concei%C3%A7%C3%83%C2%A3o&rft.date=2012-11-07&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=13&rft_id=info:doi/10.1186%2F1471-2164-13-599&rft.externalDBID=ISR&rft.externalDocID=A534116569
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon