Long-Range Hopping Conductivity in Proteins
Single molecule measurements show that many proteins, lacking any redox cofactors, nonetheless exhibit electrical conductance on the order of a nanosiemen, implying that electrons can transit an entire protein in less than a nanosecond when subject to a potential difference of less than 1V. In the c...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , |
Format | Paper |
Language | English |
Published |
Cold Spring Harbor Laboratory
28.10.2022
|
Edition | 1.1 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Single molecule measurements show that many proteins, lacking any redox cofactors, nonetheless exhibit electrical conductance on the order of a nanosiemen, implying that electrons can transit an entire protein in less than a nanosecond when subject to a potential difference of less than 1V. In the conventional fast transport scenario where the free energy barrier is zero, the hopping rate is determined by the reorganization energy of approximately 0.8 eV, which sets the time scale of a single hopping event to at least 1μs. Furthermore, the Fermi energies of metal electrodes used in experiments are far-removed from the equilibrium redox states of the aromatic residues of the protein, which should additionally slow down the electron transfer. Here, we combine all-atom molecular dynamics (MD) simulations of non-redox active proteins (consensus tetratricopeptide repeats) with an electron transfer theory to demonstrate a molecular mechanism that can account for the unexpectedly fast electron transfer. According to our MD simulations, the reorganization energy produced by the energy shift on charging (the Stokes shift) is close to the conventional value of 0.8 eV. However, the nonergodic sampling of molecular configurations by the protein results in reorganization energies, extracted directly from the distribution of the electrostatic energy fluctuations, that are only ~ 0.2 eV, which is small enough to enable long-range hopping. Using the MD values of the reorganization energies we calculate a current decay with distance that is in agreement with experiment.
Electron transfer is fundamental to biology, facilitating a range of metabolic processes and efficient energy conversion. Conventionally, electron transfer through proteins is thought to occur via a chain of metal or organic co-factors connecting one side of the protein to another. Recent experiments, however, show that proteins lacking any co-factors can nonetheless transport electrons with high efficiency if properly connected to metal electrodes. This study provides a theoretical model of such cofactor-less transfer, showing that transient occupation of non-equilibrium states of the protein’s aromatic residues reduces the barrier to electron hopping, facilitating long range and rapid transport. Our results widen the pool of proteins potentially involved in biological electron transport and provide theoretical underpinning to design of protein molecular electronics. |
---|---|
AbstractList | Single molecule measurements show that many proteins, lacking any redox cofactors, nonetheless exhibit electrical conductance on the order of a nanosiemen, implying that electrons can transit an entire protein in less than a nanosecond when subject to a potential difference of less than 1V. In the conventional fast transport scenario where the free energy barrier is zero, the hopping rate is determined by the reorganization energy of approximately 0.8 eV, which sets the time scale of a single hopping event to at least 1μs. Furthermore, the Fermi energies of metal electrodes used in experiments are far-removed from the equilibrium redox states of the aromatic residues of the protein, which should additionally slow down the electron transfer. Here, we combine all-atom molecular dynamics (MD) simulations of non-redox active proteins (consensus tetratricopeptide repeats) with an electron transfer theory to demonstrate a molecular mechanism that can account for the unexpectedly fast electron transfer. According to our MD simulations, the reorganization energy produced by the energy shift on charging (the Stokes shift) is close to the conventional value of 0.8 eV. However, the nonergodic sampling of molecular configurations by the protein results in reorganization energies, extracted directly from the distribution of the electrostatic energy fluctuations, that are only ~ 0.2 eV, which is small enough to enable long-range hopping. Using the MD values of the reorganization energies we calculate a current decay with distance that is in agreement with experiment.
Electron transfer is fundamental to biology, facilitating a range of metabolic processes and efficient energy conversion. Conventionally, electron transfer through proteins is thought to occur via a chain of metal or organic co-factors connecting one side of the protein to another. Recent experiments, however, show that proteins lacking any co-factors can nonetheless transport electrons with high efficiency if properly connected to metal electrodes. This study provides a theoretical model of such cofactor-less transfer, showing that transient occupation of non-equilibrium states of the protein’s aromatic residues reduces the barrier to electron hopping, facilitating long range and rapid transport. Our results widen the pool of proteins potentially involved in biological electron transport and provide theoretical underpinning to design of protein molecular electronics. |
Author | Lindsay, Stuart Aksimentiev, Aleksei Matyushov, Dmitry Krishnan, Siddharth |
Author_xml | – sequence: 1 givenname: Siddharth surname: Krishnan fullname: Krishnan, Siddharth organization: Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign – sequence: 2 givenname: Aleksei orcidid: 0000-0002-6042-8442 surname: Aksimentiev fullname: Aksimentiev, Aleksei email: dmatyus@asu.edu organization: Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign – sequence: 3 givenname: Stuart orcidid: 0000-0002-1802-2393 surname: Lindsay fullname: Lindsay, Stuart email: dmatyus@asu.edu organization: Biodesign Institute, Arizona State University – sequence: 4 givenname: Dmitry orcidid: 0000-0002-9352-764X surname: Matyushov fullname: Matyushov, Dmitry email: dmatyus@asu.edu organization: School of Molecular Sciences, Arizona State University |
BookMark | eNotj81KxDAURoMoOI7zAO66FKT15uZ_KUUdoaDI7EvSpCWiSWnr4Ly9I-Pq8G3Ox7ki5ymnQMgNhYpSoPcIiNVxoKoE5WDUGVmhNFhqBHFJNvP8AQBoJGWKr8hdk9NQvts0hGKbxzGmoahz8t_dEvdxORQxFW9TXkJM8zW56O3nHDb_XJPd0-Ou3pbN6_NL_dCUTklVsk4bYH1wWlA4Hiuujaeu4yJwlNoaR731yHonPfqeBWY4ei98EEIFbdia3J60LubpJ-7bcYpfdjq0f2kthRZVe0pjvzxNRFM |
ContentType | Paper |
Copyright | 2022, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2022, Posted by Cold Spring Harbor Laboratory |
DBID | FX. |
DOI | 10.1101/2022.10.27.514097 |
DatabaseName | bioRxiv |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2692-8205 |
Edition | 1.1 |
ExternalDocumentID | 2022.10.27.514097v1 |
GroupedDBID | 8FE 8FH AFKRA ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI FX. HCIFZ LK8 M7P NQS PIMPY PROAC RHI |
ID | FETCH-LOGICAL-b767-3c8903feb85106927489d1bc45e4268a9b1dad23fb6d2df3e3942dd5de557e893 |
IEDL.DBID | FX. |
IngestDate | Tue Jan 07 18:53:17 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | molecular electronics Electron transport molecular dynamics single molecule conductance reorganization energy break junctions |
Language | English |
License | This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b767-3c8903feb85106927489d1bc45e4268a9b1dad23fb6d2df3e3942dd5de557e893 |
Notes | Competing Interest Statement: S.L is a co-founder of a company using technology based on protein conductivity. |
ORCID | 0000-0002-6042-8442 0000-0002-1802-2393 0000-0002-9352-764X |
OpenAccessLink | https://www.biorxiv.org/content/10.1101/2022.10.27.514097 |
PageCount | 40 |
ParticipantIDs | biorxiv_primary_2022_10_27_514097 |
PublicationCentury | 2000 |
PublicationDate | 20221028 |
PublicationDateYYYYMMDD | 2022-10-28 |
PublicationDate_xml | – month: 10 year: 2022 text: 20221028 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | bioRxiv |
PublicationYear | 2022 |
Publisher | Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory |
References | Heitele (2022.10.27.514097v1.37) 1993; 32 Shih (2022.10.27.514097v1.4) 2008; 320 Martin, Dinpajooh, Matyushov (2022.10.27.514097v1.39) 2019; 123 Bader, Berne (2022.10.27.514097v1.59) 1996; 104 Popovic, Zmiric, Zaric, Knapp (2022.10.27.514097v1.30) 2002; 124 Matyushov (2022.10.27.514097v1.24) 2015; 27 Romero-Muñiz (2022.10.27.514097v1.29) 2021; 125 Jorgensen, Chandrasekhar, Madura, Impey, Klein (2022.10.27.514097v1.43) 1983; 79 Zusman (2022.10.27.514097v1.35) 1980; 49 Close (2022.10.27.514097v1.10) 2011; 115 Eshel, Peskin, Amdursky (2022.10.27.514097v1.15) 2020; 31 Bollinger (2022.10.27.514097v1.3) 2008; 320 Martin, Matyushov (2022.10.27.514097v1.25) 2015; 142 Hopfield (2022.10.27.514097v1.56) 1974; 71 Zhang, Song, Brown, Nemanich, Lindsay (2022.10.27.514097v1.16) 2020; 142 Beratan, Betts, Onuchic (2022.10.27.514097v1.6) 1991; 252 Marcus, Sutin (2022.10.27.514097v1.8) 1985; 811 Zhang (2022.10.27.514097v1.47) 2008; 9 Nosé, Klein (2022.10.27.514097v1.44) 1983; 50 J. (2022.10.27.514097v1.42) 2017; 14 Mayushov (2022.10.27.514097v1.57) 2013; 139 Zhang, Lindsay (2022.10.27.514097v1.26) 2019; 19 Derrida (2022.10.27.514097v1.40) 1983; 31 Kajander, Cortajarena, Mochrie, Regan (2022.10.27.514097v1.46) 2007; 63 Hopfield (2022.10.27.514097v1.38) 1974; 71 Matyushov (2022.10.27.514097v1.62) 2022; 157 Ing, El-Naggar, Hochbaum (2022.10.27.514097v1.11) 2018; 122 Balusek, Hwang, Lau, Lundquist, Hazel, Pavlova, Lynch, Reggio, Wang, Gumbart (2022.10.27.514097v1.58) 2019; 15 Stubbe, Nocera, Yee, Chang (2022.10.27.514097v1.2) 2003; 103 Huang, Rauscher, Nawrocki, Ran, Feig, de Groot, Grubmu ̈ller, MacKerell (2022.10.27.514097v1.54) 2017; 14 Jorgensen, Chandrasekhar, Madura (2022.10.27.514097v1.48) 1983; 79 Feller, Zhang, Pastor, Brooks (2022.10.27.514097v1.45) 1995; 103 Phillips, Braun, Wang, Gumbart, Tajkhorshid, Villa, Chipot, Skeel, Kale, Schulten (2022.10.27.514097v1.50) 2005; 26 Landau, Lifshits (2022.10.27.514097v1.21) 1980 Nicholls, Ferguson (2022.10.27.514097v1.1) 2013 Zhang (2022.10.27.514097v1.12) 2019; 116 Odella (2022.10.27.514097v1.18) 2018; 140 Balusek (2022.10.27.514097v1.33) 2019; 15 (2022.10.27.514097v1.66) 2021 Popovic, Zmiric, Zaric, Knapp (2022.10.27.514097v1.67) 2002; 124 Kubo (2022.10.27.514097v1.20) 1966; 29 Derrida (2022.10.27.514097v1.65) 1983; 31 Aksimentiev, Schulten (2022.10.27.514097v1.51) 2005; 88 (2022.10.27.514097v1.70) 2022 Blumberger (2022.10.27.514097v1.61) 2015; 115 Matyushov (2022.10.27.514097v1.22) 2013; 139 Ru, Zhang, Beratan (2022.10.27.514097v1.63) 2019; 123 Aksimentiev, Schulten (2022.10.27.514097v1.32) 2005; 88 Phillips (2022.10.27.514097v1.41) 2020; 153 (2022.10.27.514097v1.69) 2022 Gray, Winkler (2022.10.27.514097v1.5) 2015; 112 Dahl, Yi, Gu, Acharya, Shipps, Neu, O’Brien, Morzan, Chaudhuri, Guberman-Pfeffer, Vu, Yalcin, Batista, Malvankar (2022.10.27.514097v1.64); 8 Fereiro (2022.10.27.514097v1.27) 2018; 115 Frauenfelder (2022.10.27.514097v1.23) 2009; 106 Bernini (2022.10.27.514097v1.31) 2011; 13 Jorgensen, Chandrasekhar, Madura, Impey, Klein (2022.10.27.514097v1.49) 1983; 79 Dinpajooh, Newton, Matyushov (2022.10.27.514097v1.60) 2017; 146 Feller, Zhang, Pastor, Brooks (2022.10.27.514097v1.53) 1995; 103 Rips, Jortner (2022.10.27.514097v1.36) 1987; 87 Nosé, Klein (2022.10.27.514097v1.52) 1983; 50 Page, Moser, Chen, Dutton (2022.10.27.514097v1.7) 1999; 402 Kayser (2022.10.27.514097v1.28) 2020; 11 Harriman (2022.10.27.514097v1.17) 1987; 91 Matyushov (2022.10.27.514097v1.34) 2022 Winkler, Gray (2022.10.27.514097v1.9) 2014; 114 Gupta, Matyushov (2022.10.27.514097v1.55) 2004; 108 Shipps (2022.10.27.514097v1.14) 2021; 118 Warshel (2022.10.27.514097v1.19) 1982; 86 Bernini, Pogni, Ruiz-Duen ̃as, Mart ınez, Basosi, Sinicropi (2022.10.27.514097v1.68) 2011; 13 Zhang, Ryan, Wang, Song, Lindsay (2022.10.27.514097v1.13) 2022; 16 |
References_xml | – year: 2022 ident: 2022.10.27.514097v1.34 article-title: Conformational dynamics modulating electron transfe – year: 2013 ident: 2022.10.27.514097v1.1 publication-title: Bioenergetics 4 – volume: 14 start-page: 71 year: 2017 end-page: 73 ident: 2022.10.27.514097v1.54 publication-title: CHARMM36m: an improved force field for folded and intrinsically disordered proteins – volume: 140 start-page: 15450 year: 2018 end-page: 15460 ident: 2022.10.27.514097v1.18 article-title: Controlling Proton-Coupled Electron Transfer in Bioinspired Artificial Photosynthetic Relays publication-title: Journal of the American Chemical Society – volume: 139 start-page: 025102 year: 2013 ident: 2022.10.27.514097v1.22 article-title: Protein electron transfer: Dynamics and statistics publication-title: J Chem Phys – year: 2022 ident: 2022.10.27.514097v1.70 article-title: GitHub - Shankar1729/ChargeHoppingMC: Monte Carlo Model for Charge Hopping in Arbitrary Energy Landscapes publication-title: GitHub – volume: 811 start-page: 265 year: 1985 end-page: 322 ident: 2022.10.27.514097v1.8 article-title: Electron transfers in chemistry and biology publication-title: Biochem. Biophys. Acta – volume: 19 start-page: 4017 year: 2019 end-page: 4022 ident: 2022.10.27.514097v1.26 article-title: Electronic Decay Length in a Protein Molecule publication-title: Nano letters – volume: 79 start-page: 926 year: 1983 end-page: 935 ident: 2022.10.27.514097v1.43 article-title: Comparison of simple potential functions for simulating liquid water publication-title: The Journal of Chemical Physics – volume: 86 start-page: 2218 year: 1982 end-page: 2224 ident: 2022.10.27.514097v1.19 article-title: Dynamics of reactions in polar solvents. Semiclassical trajectory studies of electron-transfer and proton-transfer reactions publication-title: J. Phys. Chem. – volume: 124 start-page: 3775 year: 2002 end-page: 3782 ident: 2022.10.27.514097v1.30 article-title: Energetics of radical transfer in DNA photolyase publication-title: Journal of the American Chemical Society – volume: 142 start-page: 161101 year: 2015 ident: 2022.10.27.514097v1.25 article-title: Communication: Microsecond dynamics of the protein and water affect electron transfer in a bacterial bc(1) complex publication-title: J Chem Phys – volume: 124 start-page: 3775 year: 2002 end-page: 3782 ident: 2022.10.27.514097v1.67 publication-title: Energetics of radical transfer in DNA photolyase – year: 1980 ident: 2022.10.27.514097v1.21 publication-title: Statistical Physics – volume: 104 start-page: 1293 year: 1996 ident: 2022.10.27.514097v1.59 article-title: Solvation spectra and solvation energies in polar, polarizable media: Simulation tests of dielectric continuum publication-title: J. Chem. Phys. – volume: 71 start-page: 3640 issue: 9 year: 1974 end-page: 3644 ident: 2022.10.27.514097v1.56 article-title: Electron Transfer Between Biological Molecules by Thermally Activated Tunneling publication-title: Proceedings of the National Academy of Sciences – volume: 106 start-page: 5129 year: 2009 end-page: 5134 ident: 2022.10.27.514097v1.23 article-title: A unified model of protein dynamics publication-title: Proc Natl Acad Sci U S A – volume: 63 start-page: 800 year: 2007 end-page: 811 ident: 2022.10.27.514097v1.46 article-title: Structure and stability of designed TPR protein superhelices: unusual crystal packing and implications for natural TPR proteins publication-title: Acta Crystallogr D Biol Crystallogr – volume: 116 start-page: 5886 year: 2019 end-page: 5891 ident: 2022.10.27.514097v1.12 article-title: The Role of Contacts in Long-Range Protein Conductance publication-title: Proc Natl Acad Sci U S A – volume: 122 start-page: 10403 year: 2018 end-page: 10423 ident: 2022.10.27.514097v1.11 article-title: Going the Distance: Long-Range Conductivity in Protein and Peptide Bioelectronic Materials publication-title: J Phys Chem B – volume: 31 start-page: 433 year: 1983 end-page: 453 ident: 2022.10.27.514097v1.40 article-title: Velocity and diffusion constant of a one-dimenional hopping model publication-title: J. Stat.Phys. – volume: 50 start-page: 1055 year: 1983 end-page: 76 ident: 2022.10.27.514097v1.52 article-title: Constant Pressure Molecular Dynamics for Molecular Systems – volume: 88 start-page: 3745 year: 2005 end-page: 3761 ident: 2022.10.27.514097v1.32 article-title: Imaging alpha-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map publication-title: Biophysical journal – volume: 13 start-page: 5078 year: 2011 end-page: 5098 ident: 2022.10.27.514097v1.31 article-title: EPR parameters of amino acid radicals in P. eryngii versatile peroxidase and its W164Y variant computed at the QM/MM level publication-title: Phys Chem Chem Phys – volume: 15 start-page: 4673 year: 2019 end-page: 4686 ident: 2022.10.27.514097v1.58 article-title: Accelerating Membrane Simulations with Hydrogen Mass Repartitioning – volume: 27 start-page: 473001 year: 2015 ident: 2022.10.27.514097v1.24 article-title: Protein electron transfer: is biology (thermo)dynamic? publication-title: J Phys Condens Matter – volume: 115 start-page: 11191 year: 2015 ident: 2022.10.27.514097v1.61 article-title: Recent Advances in the Theory and Molecular Simulation of Biological Electron Transfer Reactions publication-title: Chem. Rev. – volume: 87 start-page: 2090 year: 1987 ident: 2022.10.27.514097v1.36 article-title: Dynamic solvent effects on outer-sphere electron transfer publication-title: J. Chem. Phys. – volume: 9 start-page: 40 year: 2008 ident: 2022.10.27.514097v1.47 article-title: I-TASSER server for protein 3D structure prediction publication-title: BMC Bioinformatics – volume: 31 start-page: 314002 year: 2020 ident: 2022.10.27.514097v1.15 article-title: Coherence-assisted electron diffusion across the multi-heme protein-based bacterial nanowire publication-title: Nanotechnology – volume: 320 start-page: 1760 year: 2008 end-page: 1762 ident: 2022.10.27.514097v1.4 article-title: Tryptophan-accelerated electron flow through proteins publication-title: Science (New York, N.Y.) – volume: 115 start-page: 2900 year: 2011 end-page: 2912 ident: 2022.10.27.514097v1.10 article-title: Calculated vertical ionization energies of the common alpha-amino acids in the gas phase and in solution publication-title: J Phys Chem A – volume: 31 start-page: 433 year: 1983 end-page: 453 ident: 2022.10.27.514097v1.65 article-title: Velocity and diffusion constant of a one-dimenional hopping model publication-title: J. Stat.Phys. – volume: 153 start-page: 044130 year: 2020 ident: 2022.10.27.514097v1.41 article-title: Scalable molecular dynamics on CPU and GPU architectures with NAMD publication-title: The Journal of Chemical Physics – volume: 103 start-page: 2167 year: 2003 end-page: 2201 ident: 2022.10.27.514097v1.2 article-title: Radical initiation in the class I ribonucleotide reductase: long-range proton-coupled electron transfer? publication-title: Chem Rev – volume: 49 start-page: 295 year: 1980 end-page: 304 ident: 2022.10.27.514097v1.35 article-title: Outer-sphere electron transfer in polar solvents publication-title: Chemical Physics – volume: 252 start-page: 1285 year: 1991 end-page: 1288 ident: 2022.10.27.514097v1.6 article-title: Protein electron transfer rates set by the bridging secondary and tertiary structure publication-title: Science (New York, N.Y.) – volume: 125 start-page: 1693 year: 2021 end-page: 1702 ident: 2022.10.27.514097v1.29 article-title: Can Electron Transport through a Blue-Copper Azurin Be Coherent? An Ab Initio Study publication-title: J. Phys. Chem. C – volume: 14 start-page: 71 year: 2017 end-page: 73 ident: 2022.10.27.514097v1.42 article-title: CHARMM36m: an improved force field for folded and intrinsically disordered proteins publication-title: Nature Methods – volume: 11 start-page: 144 year: 2020 end-page: 151 ident: 2022.10.27.514097v1.28 article-title: Solid-State Electron Transport via the Protein Azurin is Temperature-Independent Down to 4 K publication-title: The journal of physical chemistry letters – year: 2021 ident: 2022.10.27.514097v1.66 – volume: 26 start-page: 1781 year: 2005 end-page: 1802 ident: 2022.10.27.514097v1.50 article-title: Scalable molecular dynamics with NAMD – volume: 103 start-page: 4613 year: 1995 end-page: 4621 ident: 2022.10.27.514097v1.45 article-title: Constant pressure molecular dynamics simulation: The Langevin piston method publication-title: The Journal of Chemical Physics – volume: 13 start-page: 5078 year: 2011 end-page: 5098 ident: 2022.10.27.514097v1.68 article-title: EPR parameters of amino acid radicals in P. eryngii versatile peroxidase and its W164Y variant computed at the QM/MM level – volume: 91 start-page: 6102 year: 1987 end-page: 6104 ident: 2022.10.27.514097v1.17 article-title: Further comments on the redox potentials of tryptophan and tyrosine publication-title: Journal of Physical Chemistry – volume: 402 start-page: 47 year: 1999 end-page: 52 ident: 2022.10.27.514097v1.7 article-title: Natural engineering principles of electron tunnelling in biological oxidation-reduction publication-title: Nature – volume: 103 start-page: 4613 year: 1995 end-page: 4621 ident: 2022.10.27.514097v1.53 article-title: Constant Pressure Molecular Dynamics Simulation: The Langevin Piston Method – volume: 15 start-page: 4673 year: 2019 end-page: 4686 ident: 2022.10.27.514097v1.33 article-title: Accelerating Membrane Simulations with Hydrogen Mass Repartitioning publication-title: Journal of Chemical Theory and Computation – year: 2022 ident: 2022.10.27.514097v1.69 article-title: Print All Paths From a Given Source to a Destination publication-title: GeeksforGeeks – volume: 115 start-page: E4577 year: 2018 end-page: E4583 ident: 2022.10.27.514097v1.27 article-title: Tunneling explains efficient electron transport via protein junctions publication-title: Proc Natl Acad Sci U S A – volume: 8 start-page: eabm7193 issue: 19 ident: 2022.10.27.514097v1.64 article-title: A 300-fold conductivity increase in microbial cytochrome nanowires due to temperature-induced restructuring of hydrogen bonding networks publication-title: Science Advances – volume: 71 start-page: 3640 year: 1974 end-page: 3644 ident: 2022.10.27.514097v1.38 article-title: Electron Transfer Between Biological Molecules by Thermally Activated Tunneling publication-title: Proceedings of the National Academy of Sciences – volume: 112 start-page: 10920 year: 2015 end-page: 10925 ident: 2022.10.27.514097v1.5 article-title: Hole hopping through tyrosine/tryptophan chains protects proteins from oxidative damage publication-title: Proc Natl Acad Sci U S A – volume: 123 start-page: 10691 year: 2019 end-page: 10699 ident: 2022.10.27.514097v1.39 article-title: Polarizability of the Active Site in Enzymatic Catalysis: Cytochrome c publication-title: J Phys Chem B – volume: 108 start-page: 2087 year: 2004 ident: 2022.10.27.514097v1.55 article-title: Effects of Solvent and Solute Polarizability on the reorganization Energy of Electron Transfer publication-title: J. Phys. Chem. A. – volume: 146 start-page: 064504 year: 2017 ident: 2022.10.27.514097v1.60 article-title: Free energy functionals for polarization fluctuations: Pekar factor revisited publication-title: J. Chem. Phys. – volume: 79 start-page: 926 year: 1983 end-page: 935 ident: 2022.10.27.514097v1.48 article-title: Comparison of simple potential functions for simulating liquid water publication-title: J. Chem Physics – volume: 320 start-page: 1730 year: 2008 end-page: 1731 ident: 2022.10.27.514097v1.3 article-title: Biochemistry. Electron relay in proteins publication-title: Science (New York, N.Y.) – volume: 29 start-page: 255 year: 1966 end-page: 284 ident: 2022.10.27.514097v1.20 article-title: The fluctuation-dissipation theorem publication-title: Rep. Prog. Phys. – volume: 114 start-page: 3369 year: 2014 end-page: 3380 ident: 2022.10.27.514097v1.9 article-title: Electron flow through metalloproteins publication-title: Chem Rev – volume: 139 start-page: 025102 year: 2013 ident: 2022.10.27.514097v1.57 article-title: Protein electron transfer: Dynamics and statistics publication-title: J. Chem. Phys. – volume: 142 start-page: 6432 year: 2020 end-page: 6438 ident: 2022.10.27.514097v1.16 article-title: Electronic Conductance Resonance in Non-Redox-Active Proteins publication-title: Journal of the American Chemical Society – volume: 32 start-page: 359 year: 1993 end-page: 377 ident: 2022.10.27.514097v1.37 article-title: Dynamic Solvent Effects on Electron-Transfer Reactions publication-title: Angewandte Chemie International Edition in English – volume: 123 start-page: 5035 issue: 24 year: 2019 end-page: 5047 ident: 2022.10.27.514097v1.63 article-title: Assessing Possible Mechanisms of Micrometer-Scale Electron Transfer in Heme-Free Geobacter sulfurreducens Pili publication-title: The Journal of Physical Chemistry B – volume: 50 start-page: 1055 year: 1983 end-page: 1076 ident: 2022.10.27.514097v1.44 article-title: Constant pressure molecular dynamics for molecular systems publication-title: Molecular Physics – volume: 157 start-page: 095102 year: 2022 ident: 2022.10.27.514097v1.62 article-title: Conformational dynamics modulating electron transfer publication-title: J. Chem. Phys. – volume: 79 start-page: 926 year: 1983 end-page: 935 ident: 2022.10.27.514097v1.49 article-title: Comparison of Simple Potential Functions for Simulating Liquid Water – volume: 118 year: 2021 ident: 2022.10.27.514097v1.14 article-title: Intrinsic electronic conductivity of individual atomically resolved amyloid crystals reveals micrometer-long hole hopping via tyrosines publication-title: Proc Natl Acad Sci U S A – volume: 16 start-page: 1671 year: 2022 end-page: 1680 ident: 2022.10.27.514097v1.13 article-title: Electronic Transport in Molecular Wires of Precisely Controlled Length Built from Modular Proteins publication-title: ACS Nano – volume: 88 start-page: 3745 year: 2005 end-page: 3761 ident: 2022.10.27.514097v1.51 article-title: Imaging α-Hemolysin with Molecular Dynamics: Ionic Conductance, Osmotic Permeability and the Electrostatic Potential Map |
SSID | ssj0002961374 |
Score | 1.6718572 |
SecondaryResourceType | preprint |
Snippet | Single molecule measurements show that many proteins, lacking any redox cofactors, nonetheless exhibit electrical conductance on the order of a nanosiemen,... |
SourceID | biorxiv |
SourceType | Open Access Repository |
SubjectTerms | Biophysics |
Title | Long-Range Hopping Conductivity in Proteins |
URI | https://www.biorxiv.org/content/10.1101/2022.10.27.514097 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7aInjzic-ygjfZ0mTz2FwtLUW0lFKhtyXZJGUvu6Wtov_emd1FevDgNSSECZmZb5KPbwh5VNJKa3IXBwolCqchxBZCYCxySY1UUG7n-DTwNpWTd_6yFMu9Vl9Iq7RFtfkqPut_fCRsQ_RtnHtAsVZnfeQvq76otZoOSReuFEefHC_7v88rTEOeUrz9x_xzJSDedqe9jDI-Id2ZWfvNKTnw5Rk5alpCfp-Tp9eqXMVzpPxHkwrFE1bRsCpRlbVu8xAVZTRDbYWi3F6QxXi0GE7itqEB2A_xKMlTPUiCt4ByBlIzFH5x1OZceMiTqdGWOuNYEqx0zIXEJ5oz54TzQigPwOKSdMqq9Fckymmw1EvAY8gM1NSkOhiqPdepSqW31-ShtS1bN6oVGdqfAeRnKmvsv_nHnFtyjGMYrFl6Rzq7zYe_hyy8sz3SfR5NZ_Nefe4_LjGBew |
linkProvider | Cold Spring Harbor Laboratory Press |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66IXrzJ_62gjdpWdImac7DUXUbQybsVpomkV7SsU3R_9732iIePHhOQnghee97Lx_fI-ROCi10UZrQUUhREupcqMEFhrwUtBAS0u0SSwOTqchek6cFX3QFt3VHq9RVvfqsPpp_fCRsg_dtH_eAYq7OIuQvy4g3Wk0Rlqm3SR-FzvBWjxbRT42FKQhWMuk-M_9cDrC32-5XWBntk_6sWNrVAdmy_pDstH0hv47I_bj2b-EL8v6DrEYFhbdgWHuUZm16PQSVD2YosFD59TGZjx7mwyzsuhrAIYBTistUDWJnNUCdgVAM1V8M1WXCLQTLtFCamsKw2GlhmHGxjVXCjOHGci4toIsT0vO1t6ckKKnT1AoAZUgPVLRIlSuosolKZSqsPiO3nW35spWuyNH-HHA_k3lr__k_5tyQ3Ww-Gefjx-nzBdnDcfTeLL0kvc3q3V5BWN7o6-bsvwHZeoS4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8MwDI1gE4gbn-KbInFDrZY0SZvzoBowpgkNabcqaRLUSzuNgeDfY7cV2oED51SpbLX2s_PyTMhNIo00urChp1CicOp9aCAEhqKQVMsEyu0CWwPPEzl65Y9zMV-7C4O0SlPWy6_ysznHR8I2RN_25x5QrNVZhPzlJBKNVlOEbepoYf0m6cO3xXF8QzaPfvssTEHCSnh3oPnnFgB9u1eupZZsl_SneuGWe2TDVftkq50N-X1Absd19Ra-IPc_GNWoovAWDOsK5VmbeQ9BWQVTFFkoq_dDMsvuZ8NR2E02AEdAYIqLVA1i7wzAnYFUDBVgLDUFFw4SZqqVoVZbFnsjLbM-drHizFphnRCJA4RxRHpVXbljEhTUG-okADOkCCqqU-U1VY6rNEmlMyfkurMtX7TyFTnanwP2Z0ne2n_6j2euyPb0LsvHD5OnM7KDyxjAWXpOeqvlh7uAzLwyl43rfwD0vYXA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-Range+Hopping+Conductivity+in+Proteins&rft.jtitle=bioRxiv&rft.au=Krishnan%2C+Siddharth&rft.au=Aksimentiev%2C+Aleksei&rft.au=Lindsay%2C+Stuart&rft.au=Matyushov%2C+Dmitry&rft.date=2022-10-28&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2022.10.27.514097&rft.externalDocID=2022.10.27.514097v1 |