Long-Range Hopping Conductivity in Proteins

Single molecule measurements show that many proteins, lacking any redox cofactors, nonetheless exhibit electrical conductance on the order of a nanosiemen, implying that electrons can transit an entire protein in less than a nanosecond when subject to a potential difference of less than 1V. In the c...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Krishnan, Siddharth, Aksimentiev, Aleksei, Lindsay, Stuart, Matyushov, Dmitry
Format Paper
LanguageEnglish
Published Cold Spring Harbor Laboratory 28.10.2022
Edition1.1
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Single molecule measurements show that many proteins, lacking any redox cofactors, nonetheless exhibit electrical conductance on the order of a nanosiemen, implying that electrons can transit an entire protein in less than a nanosecond when subject to a potential difference of less than 1V. In the conventional fast transport scenario where the free energy barrier is zero, the hopping rate is determined by the reorganization energy of approximately 0.8 eV, which sets the time scale of a single hopping event to at least 1μs. Furthermore, the Fermi energies of metal electrodes used in experiments are far-removed from the equilibrium redox states of the aromatic residues of the protein, which should additionally slow down the electron transfer. Here, we combine all-atom molecular dynamics (MD) simulations of non-redox active proteins (consensus tetratricopeptide repeats) with an electron transfer theory to demonstrate a molecular mechanism that can account for the unexpectedly fast electron transfer. According to our MD simulations, the reorganization energy produced by the energy shift on charging (the Stokes shift) is close to the conventional value of 0.8 eV. However, the nonergodic sampling of molecular configurations by the protein results in reorganization energies, extracted directly from the distribution of the electrostatic energy fluctuations, that are only ~ 0.2 eV, which is small enough to enable long-range hopping. Using the MD values of the reorganization energies we calculate a current decay with distance that is in agreement with experiment. Electron transfer is fundamental to biology, facilitating a range of metabolic processes and efficient energy conversion. Conventionally, electron transfer through proteins is thought to occur via a chain of metal or organic co-factors connecting one side of the protein to another. Recent experiments, however, show that proteins lacking any co-factors can nonetheless transport electrons with high efficiency if properly connected to metal electrodes. This study provides a theoretical model of such cofactor-less transfer, showing that transient occupation of non-equilibrium states of the protein’s aromatic residues reduces the barrier to electron hopping, facilitating long range and rapid transport. Our results widen the pool of proteins potentially involved in biological electron transport and provide theoretical underpinning to design of protein molecular electronics.
AbstractList Single molecule measurements show that many proteins, lacking any redox cofactors, nonetheless exhibit electrical conductance on the order of a nanosiemen, implying that electrons can transit an entire protein in less than a nanosecond when subject to a potential difference of less than 1V. In the conventional fast transport scenario where the free energy barrier is zero, the hopping rate is determined by the reorganization energy of approximately 0.8 eV, which sets the time scale of a single hopping event to at least 1μs. Furthermore, the Fermi energies of metal electrodes used in experiments are far-removed from the equilibrium redox states of the aromatic residues of the protein, which should additionally slow down the electron transfer. Here, we combine all-atom molecular dynamics (MD) simulations of non-redox active proteins (consensus tetratricopeptide repeats) with an electron transfer theory to demonstrate a molecular mechanism that can account for the unexpectedly fast electron transfer. According to our MD simulations, the reorganization energy produced by the energy shift on charging (the Stokes shift) is close to the conventional value of 0.8 eV. However, the nonergodic sampling of molecular configurations by the protein results in reorganization energies, extracted directly from the distribution of the electrostatic energy fluctuations, that are only ~ 0.2 eV, which is small enough to enable long-range hopping. Using the MD values of the reorganization energies we calculate a current decay with distance that is in agreement with experiment. Electron transfer is fundamental to biology, facilitating a range of metabolic processes and efficient energy conversion. Conventionally, electron transfer through proteins is thought to occur via a chain of metal or organic co-factors connecting one side of the protein to another. Recent experiments, however, show that proteins lacking any co-factors can nonetheless transport electrons with high efficiency if properly connected to metal electrodes. This study provides a theoretical model of such cofactor-less transfer, showing that transient occupation of non-equilibrium states of the protein’s aromatic residues reduces the barrier to electron hopping, facilitating long range and rapid transport. Our results widen the pool of proteins potentially involved in biological electron transport and provide theoretical underpinning to design of protein molecular electronics.
Author Lindsay, Stuart
Aksimentiev, Aleksei
Matyushov, Dmitry
Krishnan, Siddharth
Author_xml – sequence: 1
  givenname: Siddharth
  surname: Krishnan
  fullname: Krishnan, Siddharth
  organization: Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
– sequence: 2
  givenname: Aleksei
  orcidid: 0000-0002-6042-8442
  surname: Aksimentiev
  fullname: Aksimentiev, Aleksei
  email: dmatyus@asu.edu
  organization: Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
– sequence: 3
  givenname: Stuart
  orcidid: 0000-0002-1802-2393
  surname: Lindsay
  fullname: Lindsay, Stuart
  email: dmatyus@asu.edu
  organization: Biodesign Institute, Arizona State University
– sequence: 4
  givenname: Dmitry
  orcidid: 0000-0002-9352-764X
  surname: Matyushov
  fullname: Matyushov, Dmitry
  email: dmatyus@asu.edu
  organization: School of Molecular Sciences, Arizona State University
BookMark eNotj81KxDAURoMoOI7zAO66FKT15uZ_KUUdoaDI7EvSpCWiSWnr4Ly9I-Pq8G3Ox7ki5ymnQMgNhYpSoPcIiNVxoKoE5WDUGVmhNFhqBHFJNvP8AQBoJGWKr8hdk9NQvts0hGKbxzGmoahz8t_dEvdxORQxFW9TXkJM8zW56O3nHDb_XJPd0-Ou3pbN6_NL_dCUTklVsk4bYH1wWlA4Hiuujaeu4yJwlNoaR731yHonPfqeBWY4ei98EEIFbdia3J60LubpJ-7bcYpfdjq0f2kthRZVe0pjvzxNRFM
ContentType Paper
Copyright 2022, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2022, Posted by Cold Spring Harbor Laboratory
DBID FX.
DOI 10.1101/2022.10.27.514097
DatabaseName bioRxiv
DatabaseTitleList
Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 2022.10.27.514097v1
GroupedDBID 8FE
8FH
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
FX.
HCIFZ
LK8
M7P
NQS
PIMPY
PROAC
RHI
ID FETCH-LOGICAL-b767-3c8903feb85106927489d1bc45e4268a9b1dad23fb6d2df3e3942dd5de557e893
IEDL.DBID FX.
IngestDate Tue Jan 07 18:53:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords molecular electronics
Electron transport
molecular dynamics
single molecule conductance
reorganization energy
break junctions
Language English
License This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b767-3c8903feb85106927489d1bc45e4268a9b1dad23fb6d2df3e3942dd5de557e893
Notes Competing Interest Statement: S.L is a co-founder of a company using technology based on protein conductivity.
ORCID 0000-0002-6042-8442
0000-0002-1802-2393
0000-0002-9352-764X
OpenAccessLink https://www.biorxiv.org/content/10.1101/2022.10.27.514097
PageCount 40
ParticipantIDs biorxiv_primary_2022_10_27_514097
PublicationCentury 2000
PublicationDate 20221028
PublicationDateYYYYMMDD 2022-10-28
PublicationDate_xml – month: 10
  year: 2022
  text: 20221028
  day: 28
PublicationDecade 2020
PublicationTitle bioRxiv
PublicationYear 2022
Publisher Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory
References Heitele (2022.10.27.514097v1.37) 1993; 32
Shih (2022.10.27.514097v1.4) 2008; 320
Martin, Dinpajooh, Matyushov (2022.10.27.514097v1.39) 2019; 123
Bader, Berne (2022.10.27.514097v1.59) 1996; 104
Popovic, Zmiric, Zaric, Knapp (2022.10.27.514097v1.30) 2002; 124
Matyushov (2022.10.27.514097v1.24) 2015; 27
Romero-Muñiz (2022.10.27.514097v1.29) 2021; 125
Jorgensen, Chandrasekhar, Madura, Impey, Klein (2022.10.27.514097v1.43) 1983; 79
Zusman (2022.10.27.514097v1.35) 1980; 49
Close (2022.10.27.514097v1.10) 2011; 115
Eshel, Peskin, Amdursky (2022.10.27.514097v1.15) 2020; 31
Bollinger (2022.10.27.514097v1.3) 2008; 320
Martin, Matyushov (2022.10.27.514097v1.25) 2015; 142
Hopfield (2022.10.27.514097v1.56) 1974; 71
Zhang, Song, Brown, Nemanich, Lindsay (2022.10.27.514097v1.16) 2020; 142
Beratan, Betts, Onuchic (2022.10.27.514097v1.6) 1991; 252
Marcus, Sutin (2022.10.27.514097v1.8) 1985; 811
Zhang (2022.10.27.514097v1.47) 2008; 9
Nosé, Klein (2022.10.27.514097v1.44) 1983; 50
J. (2022.10.27.514097v1.42) 2017; 14
Mayushov (2022.10.27.514097v1.57) 2013; 139
Zhang, Lindsay (2022.10.27.514097v1.26) 2019; 19
Derrida (2022.10.27.514097v1.40) 1983; 31
Kajander, Cortajarena, Mochrie, Regan (2022.10.27.514097v1.46) 2007; 63
Hopfield (2022.10.27.514097v1.38) 1974; 71
Matyushov (2022.10.27.514097v1.62) 2022; 157
Ing, El-Naggar, Hochbaum (2022.10.27.514097v1.11) 2018; 122
Balusek, Hwang, Lau, Lundquist, Hazel, Pavlova, Lynch, Reggio, Wang, Gumbart (2022.10.27.514097v1.58) 2019; 15
Stubbe, Nocera, Yee, Chang (2022.10.27.514097v1.2) 2003; 103
Huang, Rauscher, Nawrocki, Ran, Feig, de Groot, Grubmu ̈ller, MacKerell (2022.10.27.514097v1.54) 2017; 14
Jorgensen, Chandrasekhar, Madura (2022.10.27.514097v1.48) 1983; 79
Feller, Zhang, Pastor, Brooks (2022.10.27.514097v1.45) 1995; 103
Phillips, Braun, Wang, Gumbart, Tajkhorshid, Villa, Chipot, Skeel, Kale, Schulten (2022.10.27.514097v1.50) 2005; 26
Landau, Lifshits (2022.10.27.514097v1.21) 1980
Nicholls, Ferguson (2022.10.27.514097v1.1) 2013
Zhang (2022.10.27.514097v1.12) 2019; 116
Odella (2022.10.27.514097v1.18) 2018; 140
Balusek (2022.10.27.514097v1.33) 2019; 15
(2022.10.27.514097v1.66) 2021
Popovic, Zmiric, Zaric, Knapp (2022.10.27.514097v1.67) 2002; 124
Kubo (2022.10.27.514097v1.20) 1966; 29
Derrida (2022.10.27.514097v1.65) 1983; 31
Aksimentiev, Schulten (2022.10.27.514097v1.51) 2005; 88
(2022.10.27.514097v1.70) 2022
Blumberger (2022.10.27.514097v1.61) 2015; 115
Matyushov (2022.10.27.514097v1.22) 2013; 139
Ru, Zhang, Beratan (2022.10.27.514097v1.63) 2019; 123
Aksimentiev, Schulten (2022.10.27.514097v1.32) 2005; 88
Phillips (2022.10.27.514097v1.41) 2020; 153
(2022.10.27.514097v1.69) 2022
Gray, Winkler (2022.10.27.514097v1.5) 2015; 112
Dahl, Yi, Gu, Acharya, Shipps, Neu, O’Brien, Morzan, Chaudhuri, Guberman-Pfeffer, Vu, Yalcin, Batista, Malvankar (2022.10.27.514097v1.64); 8
Fereiro (2022.10.27.514097v1.27) 2018; 115
Frauenfelder (2022.10.27.514097v1.23) 2009; 106
Bernini (2022.10.27.514097v1.31) 2011; 13
Jorgensen, Chandrasekhar, Madura, Impey, Klein (2022.10.27.514097v1.49) 1983; 79
Dinpajooh, Newton, Matyushov (2022.10.27.514097v1.60) 2017; 146
Feller, Zhang, Pastor, Brooks (2022.10.27.514097v1.53) 1995; 103
Rips, Jortner (2022.10.27.514097v1.36) 1987; 87
Nosé, Klein (2022.10.27.514097v1.52) 1983; 50
Page, Moser, Chen, Dutton (2022.10.27.514097v1.7) 1999; 402
Kayser (2022.10.27.514097v1.28) 2020; 11
Harriman (2022.10.27.514097v1.17) 1987; 91
Matyushov (2022.10.27.514097v1.34) 2022
Winkler, Gray (2022.10.27.514097v1.9) 2014; 114
Gupta, Matyushov (2022.10.27.514097v1.55) 2004; 108
Shipps (2022.10.27.514097v1.14) 2021; 118
Warshel (2022.10.27.514097v1.19) 1982; 86
Bernini, Pogni, Ruiz-Duen ̃as, Mart ınez, Basosi, Sinicropi (2022.10.27.514097v1.68) 2011; 13
Zhang, Ryan, Wang, Song, Lindsay (2022.10.27.514097v1.13) 2022; 16
References_xml – year: 2022
  ident: 2022.10.27.514097v1.34
  article-title: Conformational dynamics modulating electron transfe
– year: 2013
  ident: 2022.10.27.514097v1.1
  publication-title: Bioenergetics 4
– volume: 14
  start-page: 71
  year: 2017
  end-page: 73
  ident: 2022.10.27.514097v1.54
  publication-title: CHARMM36m: an improved force field for folded and intrinsically disordered proteins
– volume: 140
  start-page: 15450
  year: 2018
  end-page: 15460
  ident: 2022.10.27.514097v1.18
  article-title: Controlling Proton-Coupled Electron Transfer in Bioinspired Artificial Photosynthetic Relays
  publication-title: Journal of the American Chemical Society
– volume: 139
  start-page: 025102
  year: 2013
  ident: 2022.10.27.514097v1.22
  article-title: Protein electron transfer: Dynamics and statistics
  publication-title: J Chem Phys
– year: 2022
  ident: 2022.10.27.514097v1.70
  article-title: GitHub - Shankar1729/ChargeHoppingMC: Monte Carlo Model for Charge Hopping in Arbitrary Energy Landscapes
  publication-title: GitHub
– volume: 811
  start-page: 265
  year: 1985
  end-page: 322
  ident: 2022.10.27.514097v1.8
  article-title: Electron transfers in chemistry and biology
  publication-title: Biochem. Biophys. Acta
– volume: 19
  start-page: 4017
  year: 2019
  end-page: 4022
  ident: 2022.10.27.514097v1.26
  article-title: Electronic Decay Length in a Protein Molecule
  publication-title: Nano letters
– volume: 79
  start-page: 926
  year: 1983
  end-page: 935
  ident: 2022.10.27.514097v1.43
  article-title: Comparison of simple potential functions for simulating liquid water
  publication-title: The Journal of Chemical Physics
– volume: 86
  start-page: 2218
  year: 1982
  end-page: 2224
  ident: 2022.10.27.514097v1.19
  article-title: Dynamics of reactions in polar solvents. Semiclassical trajectory studies of electron-transfer and proton-transfer reactions
  publication-title: J. Phys. Chem.
– volume: 124
  start-page: 3775
  year: 2002
  end-page: 3782
  ident: 2022.10.27.514097v1.30
  article-title: Energetics of radical transfer in DNA photolyase
  publication-title: Journal of the American Chemical Society
– volume: 142
  start-page: 161101
  year: 2015
  ident: 2022.10.27.514097v1.25
  article-title: Communication: Microsecond dynamics of the protein and water affect electron transfer in a bacterial bc(1) complex
  publication-title: J Chem Phys
– volume: 124
  start-page: 3775
  year: 2002
  end-page: 3782
  ident: 2022.10.27.514097v1.67
  publication-title: Energetics of radical transfer in DNA photolyase
– year: 1980
  ident: 2022.10.27.514097v1.21
  publication-title: Statistical Physics
– volume: 104
  start-page: 1293
  year: 1996
  ident: 2022.10.27.514097v1.59
  article-title: Solvation spectra and solvation energies in polar, polarizable media: Simulation tests of dielectric continuum
  publication-title: J. Chem. Phys.
– volume: 71
  start-page: 3640
  issue: 9
  year: 1974
  end-page: 3644
  ident: 2022.10.27.514097v1.56
  article-title: Electron Transfer Between Biological Molecules by Thermally Activated Tunneling
  publication-title: Proceedings of the National Academy of Sciences
– volume: 106
  start-page: 5129
  year: 2009
  end-page: 5134
  ident: 2022.10.27.514097v1.23
  article-title: A unified model of protein dynamics
  publication-title: Proc Natl Acad Sci U S A
– volume: 63
  start-page: 800
  year: 2007
  end-page: 811
  ident: 2022.10.27.514097v1.46
  article-title: Structure and stability of designed TPR protein superhelices: unusual crystal packing and implications for natural TPR proteins
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 116
  start-page: 5886
  year: 2019
  end-page: 5891
  ident: 2022.10.27.514097v1.12
  article-title: The Role of Contacts in Long-Range Protein Conductance
  publication-title: Proc Natl Acad Sci U S A
– volume: 122
  start-page: 10403
  year: 2018
  end-page: 10423
  ident: 2022.10.27.514097v1.11
  article-title: Going the Distance: Long-Range Conductivity in Protein and Peptide Bioelectronic Materials
  publication-title: J Phys Chem B
– volume: 31
  start-page: 433
  year: 1983
  end-page: 453
  ident: 2022.10.27.514097v1.40
  article-title: Velocity and diffusion constant of a one-dimenional hopping model
  publication-title: J. Stat.Phys.
– volume: 50
  start-page: 1055
  year: 1983
  end-page: 76
  ident: 2022.10.27.514097v1.52
  article-title: Constant Pressure Molecular Dynamics for Molecular Systems
– volume: 88
  start-page: 3745
  year: 2005
  end-page: 3761
  ident: 2022.10.27.514097v1.32
  article-title: Imaging alpha-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map
  publication-title: Biophysical journal
– volume: 13
  start-page: 5078
  year: 2011
  end-page: 5098
  ident: 2022.10.27.514097v1.31
  article-title: EPR parameters of amino acid radicals in P. eryngii versatile peroxidase and its W164Y variant computed at the QM/MM level
  publication-title: Phys Chem Chem Phys
– volume: 15
  start-page: 4673
  year: 2019
  end-page: 4686
  ident: 2022.10.27.514097v1.58
  article-title: Accelerating Membrane Simulations with Hydrogen Mass Repartitioning
– volume: 27
  start-page: 473001
  year: 2015
  ident: 2022.10.27.514097v1.24
  article-title: Protein electron transfer: is biology (thermo)dynamic?
  publication-title: J Phys Condens Matter
– volume: 115
  start-page: 11191
  year: 2015
  ident: 2022.10.27.514097v1.61
  article-title: Recent Advances in the Theory and Molecular Simulation of Biological Electron Transfer Reactions
  publication-title: Chem. Rev.
– volume: 87
  start-page: 2090
  year: 1987
  ident: 2022.10.27.514097v1.36
  article-title: Dynamic solvent effects on outer-sphere electron transfer
  publication-title: J. Chem. Phys.
– volume: 9
  start-page: 40
  year: 2008
  ident: 2022.10.27.514097v1.47
  article-title: I-TASSER server for protein 3D structure prediction
  publication-title: BMC Bioinformatics
– volume: 31
  start-page: 314002
  year: 2020
  ident: 2022.10.27.514097v1.15
  article-title: Coherence-assisted electron diffusion across the multi-heme protein-based bacterial nanowire
  publication-title: Nanotechnology
– volume: 320
  start-page: 1760
  year: 2008
  end-page: 1762
  ident: 2022.10.27.514097v1.4
  article-title: Tryptophan-accelerated electron flow through proteins
  publication-title: Science (New York, N.Y.)
– volume: 115
  start-page: 2900
  year: 2011
  end-page: 2912
  ident: 2022.10.27.514097v1.10
  article-title: Calculated vertical ionization energies of the common alpha-amino acids in the gas phase and in solution
  publication-title: J Phys Chem A
– volume: 31
  start-page: 433
  year: 1983
  end-page: 453
  ident: 2022.10.27.514097v1.65
  article-title: Velocity and diffusion constant of a one-dimenional hopping model
  publication-title: J. Stat.Phys.
– volume: 153
  start-page: 044130
  year: 2020
  ident: 2022.10.27.514097v1.41
  article-title: Scalable molecular dynamics on CPU and GPU architectures with NAMD
  publication-title: The Journal of Chemical Physics
– volume: 103
  start-page: 2167
  year: 2003
  end-page: 2201
  ident: 2022.10.27.514097v1.2
  article-title: Radical initiation in the class I ribonucleotide reductase: long-range proton-coupled electron transfer?
  publication-title: Chem Rev
– volume: 49
  start-page: 295
  year: 1980
  end-page: 304
  ident: 2022.10.27.514097v1.35
  article-title: Outer-sphere electron transfer in polar solvents
  publication-title: Chemical Physics
– volume: 252
  start-page: 1285
  year: 1991
  end-page: 1288
  ident: 2022.10.27.514097v1.6
  article-title: Protein electron transfer rates set by the bridging secondary and tertiary structure
  publication-title: Science (New York, N.Y.)
– volume: 125
  start-page: 1693
  year: 2021
  end-page: 1702
  ident: 2022.10.27.514097v1.29
  article-title: Can Electron Transport through a Blue-Copper Azurin Be Coherent? An Ab Initio Study
  publication-title: J. Phys. Chem. C
– volume: 14
  start-page: 71
  year: 2017
  end-page: 73
  ident: 2022.10.27.514097v1.42
  article-title: CHARMM36m: an improved force field for folded and intrinsically disordered proteins
  publication-title: Nature Methods
– volume: 11
  start-page: 144
  year: 2020
  end-page: 151
  ident: 2022.10.27.514097v1.28
  article-title: Solid-State Electron Transport via the Protein Azurin is Temperature-Independent Down to 4 K
  publication-title: The journal of physical chemistry letters
– year: 2021
  ident: 2022.10.27.514097v1.66
– volume: 26
  start-page: 1781
  year: 2005
  end-page: 1802
  ident: 2022.10.27.514097v1.50
  article-title: Scalable molecular dynamics with NAMD
– volume: 103
  start-page: 4613
  year: 1995
  end-page: 4621
  ident: 2022.10.27.514097v1.45
  article-title: Constant pressure molecular dynamics simulation: The Langevin piston method
  publication-title: The Journal of Chemical Physics
– volume: 13
  start-page: 5078
  year: 2011
  end-page: 5098
  ident: 2022.10.27.514097v1.68
  article-title: EPR parameters of amino acid radicals in P. eryngii versatile peroxidase and its W164Y variant computed at the QM/MM level
– volume: 91
  start-page: 6102
  year: 1987
  end-page: 6104
  ident: 2022.10.27.514097v1.17
  article-title: Further comments on the redox potentials of tryptophan and tyrosine
  publication-title: Journal of Physical Chemistry
– volume: 402
  start-page: 47
  year: 1999
  end-page: 52
  ident: 2022.10.27.514097v1.7
  article-title: Natural engineering principles of electron tunnelling in biological oxidation-reduction
  publication-title: Nature
– volume: 103
  start-page: 4613
  year: 1995
  end-page: 4621
  ident: 2022.10.27.514097v1.53
  article-title: Constant Pressure Molecular Dynamics Simulation: The Langevin Piston Method
– volume: 15
  start-page: 4673
  year: 2019
  end-page: 4686
  ident: 2022.10.27.514097v1.33
  article-title: Accelerating Membrane Simulations with Hydrogen Mass Repartitioning
  publication-title: Journal of Chemical Theory and Computation
– year: 2022
  ident: 2022.10.27.514097v1.69
  article-title: Print All Paths From a Given Source to a Destination
  publication-title: GeeksforGeeks
– volume: 115
  start-page: E4577
  year: 2018
  end-page: E4583
  ident: 2022.10.27.514097v1.27
  article-title: Tunneling explains efficient electron transport via protein junctions
  publication-title: Proc Natl Acad Sci U S A
– volume: 8
  start-page: eabm7193
  issue: 19
  ident: 2022.10.27.514097v1.64
  article-title: A 300-fold conductivity increase in microbial cytochrome nanowires due to temperature-induced restructuring of hydrogen bonding networks
  publication-title: Science Advances
– volume: 71
  start-page: 3640
  year: 1974
  end-page: 3644
  ident: 2022.10.27.514097v1.38
  article-title: Electron Transfer Between Biological Molecules by Thermally Activated Tunneling
  publication-title: Proceedings of the National Academy of Sciences
– volume: 112
  start-page: 10920
  year: 2015
  end-page: 10925
  ident: 2022.10.27.514097v1.5
  article-title: Hole hopping through tyrosine/tryptophan chains protects proteins from oxidative damage
  publication-title: Proc Natl Acad Sci U S A
– volume: 123
  start-page: 10691
  year: 2019
  end-page: 10699
  ident: 2022.10.27.514097v1.39
  article-title: Polarizability of the Active Site in Enzymatic Catalysis: Cytochrome c
  publication-title: J Phys Chem B
– volume: 108
  start-page: 2087
  year: 2004
  ident: 2022.10.27.514097v1.55
  article-title: Effects of Solvent and Solute Polarizability on the reorganization Energy of Electron Transfer
  publication-title: J. Phys. Chem. A.
– volume: 146
  start-page: 064504
  year: 2017
  ident: 2022.10.27.514097v1.60
  article-title: Free energy functionals for polarization fluctuations: Pekar factor revisited
  publication-title: J. Chem. Phys.
– volume: 79
  start-page: 926
  year: 1983
  end-page: 935
  ident: 2022.10.27.514097v1.48
  article-title: Comparison of simple potential functions for simulating liquid water
  publication-title: J. Chem Physics
– volume: 320
  start-page: 1730
  year: 2008
  end-page: 1731
  ident: 2022.10.27.514097v1.3
  article-title: Biochemistry. Electron relay in proteins
  publication-title: Science (New York, N.Y.)
– volume: 29
  start-page: 255
  year: 1966
  end-page: 284
  ident: 2022.10.27.514097v1.20
  article-title: The fluctuation-dissipation theorem
  publication-title: Rep. Prog. Phys.
– volume: 114
  start-page: 3369
  year: 2014
  end-page: 3380
  ident: 2022.10.27.514097v1.9
  article-title: Electron flow through metalloproteins
  publication-title: Chem Rev
– volume: 139
  start-page: 025102
  year: 2013
  ident: 2022.10.27.514097v1.57
  article-title: Protein electron transfer: Dynamics and statistics
  publication-title: J. Chem. Phys.
– volume: 142
  start-page: 6432
  year: 2020
  end-page: 6438
  ident: 2022.10.27.514097v1.16
  article-title: Electronic Conductance Resonance in Non-Redox-Active Proteins
  publication-title: Journal of the American Chemical Society
– volume: 32
  start-page: 359
  year: 1993
  end-page: 377
  ident: 2022.10.27.514097v1.37
  article-title: Dynamic Solvent Effects on Electron-Transfer Reactions
  publication-title: Angewandte Chemie International Edition in English
– volume: 123
  start-page: 5035
  issue: 24
  year: 2019
  end-page: 5047
  ident: 2022.10.27.514097v1.63
  article-title: Assessing Possible Mechanisms of Micrometer-Scale Electron Transfer in Heme-Free Geobacter sulfurreducens Pili
  publication-title: The Journal of Physical Chemistry B
– volume: 50
  start-page: 1055
  year: 1983
  end-page: 1076
  ident: 2022.10.27.514097v1.44
  article-title: Constant pressure molecular dynamics for molecular systems
  publication-title: Molecular Physics
– volume: 157
  start-page: 095102
  year: 2022
  ident: 2022.10.27.514097v1.62
  article-title: Conformational dynamics modulating electron transfer
  publication-title: J. Chem. Phys.
– volume: 79
  start-page: 926
  year: 1983
  end-page: 935
  ident: 2022.10.27.514097v1.49
  article-title: Comparison of Simple Potential Functions for Simulating Liquid Water
– volume: 118
  year: 2021
  ident: 2022.10.27.514097v1.14
  article-title: Intrinsic electronic conductivity of individual atomically resolved amyloid crystals reveals micrometer-long hole hopping via tyrosines
  publication-title: Proc Natl Acad Sci U S A
– volume: 16
  start-page: 1671
  year: 2022
  end-page: 1680
  ident: 2022.10.27.514097v1.13
  article-title: Electronic Transport in Molecular Wires of Precisely Controlled Length Built from Modular Proteins
  publication-title: ACS Nano
– volume: 88
  start-page: 3745
  year: 2005
  end-page: 3761
  ident: 2022.10.27.514097v1.51
  article-title: Imaging α-Hemolysin with Molecular Dynamics: Ionic Conductance, Osmotic Permeability and the Electrostatic Potential Map
SSID ssj0002961374
Score 1.6718572
SecondaryResourceType preprint
Snippet Single molecule measurements show that many proteins, lacking any redox cofactors, nonetheless exhibit electrical conductance on the order of a nanosiemen,...
SourceID biorxiv
SourceType Open Access Repository
SubjectTerms Biophysics
Title Long-Range Hopping Conductivity in Proteins
URI https://www.biorxiv.org/content/10.1101/2022.10.27.514097
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7aInjzic-ygjfZ0mTz2FwtLUW0lFKhtyXZJGUvu6Wtov_emd1FevDgNSSECZmZb5KPbwh5VNJKa3IXBwolCqchxBZCYCxySY1UUG7n-DTwNpWTd_6yFMu9Vl9Iq7RFtfkqPut_fCRsQ_RtnHtAsVZnfeQvq76otZoOSReuFEefHC_7v88rTEOeUrz9x_xzJSDedqe9jDI-Id2ZWfvNKTnw5Rk5alpCfp-Tp9eqXMVzpPxHkwrFE1bRsCpRlbVu8xAVZTRDbYWi3F6QxXi0GE7itqEB2A_xKMlTPUiCt4ByBlIzFH5x1OZceMiTqdGWOuNYEqx0zIXEJ5oz54TzQigPwOKSdMqq9Fckymmw1EvAY8gM1NSkOhiqPdepSqW31-ShtS1bN6oVGdqfAeRnKmvsv_nHnFtyjGMYrFl6Rzq7zYe_hyy8sz3SfR5NZ_Nefe4_LjGBew
linkProvider Cold Spring Harbor Laboratory Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66IXrzJ_62gjdpWdImac7DUXUbQybsVpomkV7SsU3R_9732iIePHhOQnghee97Lx_fI-ROCi10UZrQUUhREupcqMEFhrwUtBAS0u0SSwOTqchek6cFX3QFt3VHq9RVvfqsPpp_fCRsg_dtH_eAYq7OIuQvy4g3Wk0Rlqm3SR-FzvBWjxbRT42FKQhWMuk-M_9cDrC32-5XWBntk_6sWNrVAdmy_pDstH0hv47I_bj2b-EL8v6DrEYFhbdgWHuUZm16PQSVD2YosFD59TGZjx7mwyzsuhrAIYBTistUDWJnNUCdgVAM1V8M1WXCLQTLtFCamsKw2GlhmHGxjVXCjOHGci4toIsT0vO1t6ckKKnT1AoAZUgPVLRIlSuosolKZSqsPiO3nW35spWuyNH-HHA_k3lr__k_5tyQ3Ww-Gefjx-nzBdnDcfTeLL0kvc3q3V5BWN7o6-bsvwHZeoS4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8MwDI1gE4gbn-KbInFDrZY0SZvzoBowpgkNabcqaRLUSzuNgeDfY7cV2oED51SpbLX2s_PyTMhNIo00urChp1CicOp9aCAEhqKQVMsEyu0CWwPPEzl65Y9zMV-7C4O0SlPWy6_ysznHR8I2RN_25x5QrNVZhPzlJBKNVlOEbepoYf0m6cO3xXF8QzaPfvssTEHCSnh3oPnnFgB9u1eupZZsl_SneuGWe2TDVftkq50N-X1Absd19Ra-IPc_GNWoovAWDOsK5VmbeQ9BWQVTFFkoq_dDMsvuZ8NR2E02AEdAYIqLVA1i7wzAnYFUDBVgLDUFFw4SZqqVoVZbFnsjLbM-drHizFphnRCJA4RxRHpVXbljEhTUG-okADOkCCqqU-U1VY6rNEmlMyfkurMtX7TyFTnanwP2Z0ne2n_6j2euyPb0LsvHD5OnM7KDyxjAWXpOeqvlh7uAzLwyl43rfwD0vYXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-Range+Hopping+Conductivity+in+Proteins&rft.jtitle=bioRxiv&rft.au=Krishnan%2C+Siddharth&rft.au=Aksimentiev%2C+Aleksei&rft.au=Lindsay%2C+Stuart&rft.au=Matyushov%2C+Dmitry&rft.date=2022-10-28&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2022.10.27.514097&rft.externalDocID=2022.10.27.514097v1