SiamEEGNet: Siamese Neural Network-Based EEG Decoding for Drowsiness Detection

Recent advancements in deep-learning have significantly enhanced EEG-based drowsiness detection. However, most existing methods overlook the importance of relative changes in EEG signals compared to a baseline, a fundamental aspect in conventional EEG analysis including event-related potential and t...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Chang, Li-Jen, Chen, Hsi-An, Chang, Chin, Wei, Chun-Shu
Format Paper
LanguageEnglish
Published Cold Spring Harbor Laboratory 23.10.2023
Edition1.1
Subjects
Online AccessGet full text
ISSN2692-8205
DOI10.1101/2023.10.23.563513

Cover

Loading…
Abstract Recent advancements in deep-learning have significantly enhanced EEG-based drowsiness detection. However, most existing methods overlook the importance of relative changes in EEG signals compared to a baseline, a fundamental aspect in conventional EEG analysis including event-related potential and time-frequency spectrograms. We herein introduce SiamEEGNet, a Siamese neural network architecture designed to capture relative changes between EEG data from the baseline and a time window of interest. Our results demonstrate that SiamEEGNet is capable of robustly learning from high-variability data across multiple sessions/subjects and outperforms existing model architectures in cross-subject scenarios. Furthermore, the model’s interpretability associates with previous findings of drowsiness-related EEG correlates. The promising performance of SiamEEGNet highlights its potential for practical applications in EEG-based drowsiness detection. We have made the source codes available at http://github.com/CECNL/SiamEEGNet.
AbstractList Recent advancements in deep-learning have significantly enhanced EEG-based drowsiness detection. However, most existing methods overlook the importance of relative changes in EEG signals compared to a baseline, a fundamental aspect in conventional EEG analysis including event-related potential and time-frequency spectrograms. We herein introduce SiamEEGNet, a Siamese neural network architecture designed to capture relative changes between EEG data from the baseline and a time window of interest. Our results demonstrate that SiamEEGNet is capable of robustly learning from high-variability data across multiple sessions/subjects and outperforms existing model architectures in cross-subject scenarios. Furthermore, the model’s interpretability associates with previous findings of drowsiness-related EEG correlates. The promising performance of SiamEEGNet highlights its potential for practical applications in EEG-based drowsiness detection. We have made the source codes available at http://github.com/CECNL/SiamEEGNet.
Author Chang, Li-Jen
Chang, Chin
Wei, Chun-Shu
Chen, Hsi-An
Author_xml – sequence: 1
  givenname: Li-Jen
  surname: Chang
  fullname: Chang, Li-Jen
  organization: Department of Computer Science, National Yang Ming Chiao Tung University (NYCU)
– sequence: 2
  givenname: Hsi-An
  surname: Chen
  fullname: Chen, Hsi-An
  organization: Department of Computer Science, National Yang Ming Chiao Tung University (NYCU)
– sequence: 3
  givenname: Chin
  surname: Chang
  fullname: Chang, Chin
  organization: Department of Computer Science, National Yang Ming Chiao Tung University (NYCU)
– sequence: 4
  givenname: Chun-Shu
  surname: Wei
  fullname: Wei, Chun-Shu
  email: wei@nycu.edu.tw
  organization: Institute of Education, the Institute of Biomedical Engineering, and the Brain Science and Technology Center, NYCU
BookMark eNotj81OwzAQhC0EEqX0AbjlyCXF_7G5QRsKUhUO9B7ZyRoZ2hjZgdK3x1W5zLczWq12rtD5EAZA6IbgOSGY3FFM2TybrEIyQdgZmlCpaakoFpdoltIHxphqSVjFJ6h582ZX16sGxvviOEOCooHvaLYZ4z7Ez_LRJOiLvFQsoQu9H94LF2KxjGGf_AAp5XyEbvRhuEYXzmwTzP45RZunerN4Ltevq5fFw7q0lWQlVExRJ21-iVNuNddMcNcJU1FQ3DFFQKteCMl7i52hRmBFCRAutBWUaTZFt6ez1of463_ar-h3Jh7aY_uW4DbrqT37Azn1TvM
ContentType Paper
Copyright 2023, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2023, Posted by Cold Spring Harbor Laboratory
DBID FX.
DOI 10.1101/2023.10.23.563513
DatabaseName bioRxiv
DatabaseTitleList
Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 2023.10.23.563513v1
GroupedDBID 8FE
8FH
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
FX.
HCIFZ
LK8
M7P
NQS
PIMPY
PROAC
RHI
ID FETCH-LOGICAL-b763-e7382f6b820424b949354fc5a72e84f381e98d5564db0fa2a50821e1459b52393
IEDL.DBID FX.
IngestDate Tue Jan 07 18:49:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords Siamese network
EEG
Drowsiness detection
Language English
License This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b763-e7382f6b820424b949354fc5a72e84f381e98d5564db0fa2a50821e1459b52393
Notes Competing Interest Statement: The authors have declared no competing interest.
OpenAccessLink https://www.biorxiv.org/content/10.1101/2023.10.23.563513
PageCount 10
ParticipantIDs biorxiv_primary_2023_10_23_563513
PublicationCentury 2000
PublicationDate 20231023
PublicationDateYYYYMMDD 2023-10-23
PublicationDate_xml – month: 10
  year: 2023
  text: 20231023
  day: 23
PublicationDecade 2020
PublicationTitle bioRxiv
PublicationYear 2023
Publisher Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory
References Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (2023.10.23.563513v1.31) 2017; 30
Simonyan, Vedaldi, Zisserman (2023.10.23.563513v1.52) 2013
Liu, Lan, Cui, Sourina (2023.10.23.563513v1.29) 2020; 46
Ingolfsson, Hersche, Wang, Kobayashi, Cavigelli, Benini (2023.10.23.563513v1.47) 2020
Delvigne, Wannous, Vandeborre, Ris, Dutoit (2023.10.23.563513v1.17) 2022
Bromley, Guyon, LeCun, Säckinger, Shah (2023.10.23.563513v1.30) 1993; 6
Shahtalebi, Asif, Mohammadi (2023.10.23.563513v1.37) 2020
Moradi, Nazari, Rahmani (2023.10.23.563513v1.2) 2019; 65
Luck (2023.10.23.563513v1.21) 2014
Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann, Hutter, Burgard, Ball (2023.10.23.563513v1.10) 2017; 38
Jeong, Yu, Lee, Lee (2023.10.23.563513v1.15) 2019; 9
Wei, Wang, Lin, Jung (2023.10.23.563513v1.46) 2018; 26
Cui, Xu, Wu (2023.10.23.563513v1.28) 2019; 27
Klimesch (2023.10.23.563513v1.6) 1999; 29
Jap, Lal, Fischer, Bekiaris (2023.10.23.563513v1.54) 2009; 36
Delorme, Makeig (2023.10.23.563513v1.43) 2004; 134
Lin, Wu, Liang, Chao, Chen, Jung (2023.10.23.563513v1.45) 2005; 52
Garrett, Kovacevic, McIntosh, Grady (2023.10.23.563513v1.7) 2011; 31
Morioka, Kanemura, Hirayama, Shikauchi, Ogawa, Ikeda, Kawanabe, Ishii (2023.10.23.563513v1.9) 2015; 111
Cao, Chuang, King, Lin (2023.10.23.563513v1.40) 2019; 6
Gao, Li, Wang, Liang, Liu, Zhou, Wang, Zhang (2023.10.23.563513v1.16) 2023
Li, Lee, Chung (2023.10.23.563513v1.24) 2015; 15
Markovska-Simoska, Pop-Jordanova (2023.10.23.563513v1.26) 2017; 48
Chai, Tran, Naik, Nguyen, Ling, Craig, Nguyen (2023.10.23.563513v1.4) 2016
Altuwaijri, Muhammad, Altaheri, Alsulaiman (2023.10.23.563513v1.48) 2022; 12
Lawhern, Solon, Waytowich, Gordon, Hung, Lance (2023.10.23.563513v1.11) 2018; 15
Taigman, Yang, Ranzato, Wolf (2023.10.23.563513v1.34) 2014
Wang, Xu, Tian, Li, Jiao, Sun, Li (2023.10.23.563513v1.18) 2022; 24
Van der Maaten, Hinton (2023.10.23.563513v1.51) 2008; 9
Wang, Xu, Bezerianos, Chen, Zhang (2023.10.23.563513v1.20) 2020; 70
Zhang, Qiu, Zhang, Wang, Wang, He (2023.10.23.563513v1.39) 2022; 19
Wei, Koike-Akino, Wang (2023.10.23.563513v1.12) 2019
Bertinetto, Valmadre, Henriques, Vedaldi, Torr (2023.10.23.563513v1.35) 2016
Wei, Lin, Wang, Lin, Jung (2023.10.23.563513v1.22) 2018; 174
Springenberg, Dosovitskiy, Brox, Riedmiller (2023.10.23.563513v1.53) 2014
Rashid, Sulaiman, Majeed, Musa, Bari, Khatun (2023.10.23.563513v1.8) 2020
Golnar-Nik, Farashi, Safari (2023.10.23.563513v1.27) 2019; 207
Pal, Chuang, Ko, Chao, Jung, Liang, Lin (2023.10.23.563513v1.41) 2008
Saini, Saini (2023.10.23.563513v1.3) 2014; 5
Gao, Wang, Yang, Mu, Cai, Dang, Zuo (2023.10.23.563513v1.13) 2019; 30
Picot, Charbonnier, Caplier (2023.10.23.563513v1.23) 2008
Li, Xiang, Kesavadas (2023.10.23.563513v1.38) 2020; 28
Cui, Lan, Sourina (2023.10.23.563513v1.14) 2022
Lal, Craig (2023.10.23.563513v1.5) 2002; 39
Merkx, Frank (2023.10.23.563513v1.32) 2020
Zhang, Wang, Wu, Xu, Ping, Jiang (2023.10.23.563513v1.19) 2020; 91
Wang, Liu, Li, Xu, Bezerianos, Sun, Wan (2023.10.23.563513v1.33) 2020; 13
Ko, Yang, Sim (2023.10.23.563513v1.25) 2009; 7
Majumder, Guragain, Wang, Wilson (2023.10.23.563513v1.49) 2019
Jung, Makeig, Stensmo, Sejnowski (2023.10.23.563513v1.50) 1997; 44
Lal, Craig, Boord, Kirkup, Nguyen (2023.10.23.563513v1.44) 2003; 34
Maia, Grandner, Findley, Gurubhagavatula (2023.10.23.563513v1.1) 2013; 59
Mullen, Kothe, Chi, Ojeda, Kerth, Makeig, Cauwenberghs, Jung (2023.10.23.563513v1.42) 2013
Zhang, Ang, Zheng, Hui, Chen, Li, Tang, Chew, Lim, Guan (2023.10.23.563513v1.36) 2022; 30
References_xml – year: 2013
  ident: 2023.10.23.563513v1.52
  article-title: “Deep inside convolutional networks: Visualising image classification models and saliency maps
  publication-title: arXiv
– volume: 91
  start-page: 074713
  issue: 7
  year: 2020
  ident: 2023.10.23.563513v1.19
  article-title: “Partial directed coherence based graph convolutional neural networks for driving fatigue detection
  publication-title: Review of Scientific Instruments
– volume: 111
  start-page: 167
  year: 2015
  end-page: 178
  ident: 2023.10.23.563513v1.9
  article-title: “Learning a common dictionary for subject-transfer decoding with resting calibration
  publication-title: NeuroImage
– start-page: 328
  year: 2019
  end-page: 331
  ident: 2023.10.23.563513v1.12
  publication-title: in 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)
– year: 2023
  ident: 2023.10.23.563513v1.16
  article-title: “Csf-gtnet: A novel multi-dimensional feature fusion network based on convnext-gelu-bilstm for eeg-signals-enabled fatigue driving detection
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 9
  issue: 11
  year: 2008
  ident: 2023.10.23.563513v1.51
  article-title: “Visualizing data using t-sne
  publication-title: Journal of machine learning research
– start-page: 4654
  year: 2016
  end-page: 4657
  ident: 2023.10.23.563513v1.4
  publication-title: in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 29
  start-page: 169
  issue: 2-3
  year: 1999
  end-page: 195
  ident: 2023.10.23.563513v1.6
  article-title: “Eeg alpha and theta oscillations reflect cognitive and memory performance: a review and analysis
  publication-title: Brain research reviews
– volume: 30
  year: 2017
  ident: 2023.10.23.563513v1.31
  article-title: “Attention is all you need
  publication-title: Advances in neural information processing systems
– start-page: 3864
  year: 2008
  end-page: 3867
  ident: 2023.10.23.563513v1.23
  publication-title: in 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– volume: 27
  start-page: 2263
  issue: 11
  year: 2019
  end-page: 2273
  ident: 2023.10.23.563513v1.28
  article-title: “Eeg-based driver drowsiness estimation using feature weighted episodic training
  publication-title: IEEE transactions on neural systems and rehabilitation engineering
– start-page: 1076
  year: 2022
  end-page: 1082
  ident: 2023.10.23.563513v1.17
  article-title: Spatio-temporal analysis of transformer based architecture for attention estimation from eeg
  publication-title: in 2022 26th International Conference on Pattern Recognition (ICPR)
– volume: 34
  start-page: 321
  issue: 3
  year: 2003
  end-page: 328
  ident: 2023.10.23.563513v1.44
  article-title: “Development of an algorithm for an eeg-based driver fatigue countermeasure
  publication-title: Journal of safety Research
– volume: 134
  start-page: 9
  issue: 1
  year: 2004
  end-page: 21
  ident: 2023.10.23.563513v1.43
  article-title: “Eeglab: an open source toolbox for analysis of single-trial eeg dynamics including independent component analysis
  publication-title: Journal of neuroscience methods
– volume: 44
  start-page: 60
  issue: 1
  year: 1997
  end-page: 69
  ident: 2023.10.23.563513v1.50
  article-title: “Estimating alertness from the eeg power spectrum
  publication-title: IEEE transactions on biomedical engineering
– volume: 13
  start-page: 668
  issue: 3
  year: 2020
  end-page: 678
  ident: 2023.10.23.563513v1.33
  article-title: “Driving fatigue recognition with functional connectivity based on phase synchronization
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
– start-page: 1
  year: 2008
  end-page: 11
  ident: 2023.10.23.563513v1.41
  article-title: “Eeg-based subject-and session-independent drowsiness detection: an unsupervised approach
  publication-title: EURASIP Journal on Advances in Signal Processing
– volume: 31
  start-page: 4496
  issue: 12
  year: 2011
  end-page: 4503
  ident: 2023.10.23.563513v1.7
  article-title: “The importance of being variable
  publication-title: Journal of Neuroscience
– volume: 30
  start-page: 2755
  issue: 9
  year: 2019
  end-page: 2763
  ident: 2023.10.23.563513v1.13
  article-title: “Eeg-based spatio–temporal convolutional neural network for driver fatigue evaluation
  publication-title: IEEE transactions on neural networks and learning systems
– volume: 5
  start-page: 4245
  issue: 3
  year: 2014
  end-page: 4249
  ident: 2023.10.23.563513v1.3
  article-title: “Driver drowsiness detection system and techniques: a review
  publication-title: International Journal of Computer Science and Information Technologies
– start-page: 850
  year: 2016
  end-page: 865
  ident: 2023.10.23.563513v1.35
  publication-title: in European conference on computer vision
– year: 2014
  ident: 2023.10.23.563513v1.53
  article-title: “Striving for simplicity: The all convolutional net
  publication-title: arXiv
– year: 2020
  ident: 2023.10.23.563513v1.32
  article-title: “Human sentence processing: Recurrence or attention?
  publication-title: arXiv
– year: 2014
  ident: 2023.10.23.563513v1.21
  publication-title: An introduction to the event-related potential technique
– volume: 46
  start-page: 101157
  year: 2020
  ident: 2023.10.23.563513v1.29
  article-title: “Inter-subject transfer learning for eeg-based mental fatigue recognition
  publication-title: Advanced Engineering Informatics
– start-page: 442
  year: 2020
  end-page: 446
  ident: 2023.10.23.563513v1.37
  publication-title: in 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
– volume: 12
  start-page: 995
  issue: 4
  year: 2022
  ident: 2023.10.23.563513v1.48
  article-title: “A multi-branch convolutional neural network with squeeze-and-excitation attention blocks for eeg-based motor imagery signals classification
  publication-title: Diagnostics
– volume: 24
  start-page: 1715
  issue: 12
  year: 2022
  ident: 2023.10.23.563513v1.18
  article-title: “Driving fatigue detection with three non-hair-bearing eeg channels and modified transformer model
  publication-title: Entropy
– start-page: 2184
  year: 2013
  end-page: 2187
  ident: 2023.10.23.563513v1.42
  publication-title: in 2013 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC)
– start-page: 2958
  year: 2020
  end-page: 2965
  ident: 2023.10.23.563513v1.47
  publication-title: in 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
– volume: 207
  start-page: 90
  year: 2019
  end-page: 98
  ident: 2023.10.23.563513v1.27
  article-title: “The application of eeg power for the prediction and interpretation of consumer decision-making: A neuromarketing study
  publication-title: Physiology & behavior
– volume: 70
  start-page: 1
  year: 2020
  end-page: 11
  ident: 2023.10.23.563513v1.20
  article-title: “Linking attention-based multiscale cnn with dynamical gcn for driving fatigue detection
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 15
  start-page: 7169
  issue: 12
  year: 2015
  end-page: 7180
  ident: 2023.10.23.563513v1.24
  article-title: “Smartwatch-based wearable eeg system for driver drowsiness detection
  publication-title: IEEE Sensors Journal
– volume: 30
  start-page: 2824
  year: 2022
  end-page: 2833
  ident: 2023.10.23.563513v1.36
  article-title: “Learning eeg representations with weighted convolutional siamese network: A large multi-session post-stroke rehabilitation study
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 65
  start-page: 620
  year: 2019
  end-page: 629
  ident: 2023.10.23.563513v1.2
  article-title: “Sleepiness and the risk of road traffic accidents: A systematic review and meta-analysis of previous studies
  publication-title: Transportation research part F: traffic psychology and behaviour
– start-page: 1701
  year: 2014
  end-page: 1708
  ident: 2023.10.23.563513v1.34
  article-title: Deepface: Closing the gap to human-level performance in face verification
  publication-title: in Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 26
  start-page: 400
  issue: 2
  year: 2018
  end-page: 406
  ident: 2023.10.23.563513v1.46
  article-title: “Toward drowsiness detection using non-hair-bearing eeg-based brain-computer interfaces
  publication-title: IEEE transactions on neural systems and rehabilitation engineering
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  end-page: 8
  ident: 2023.10.23.563513v1.40
  article-title: “Multi-channel eeg recordings during a sustained-attention driving task
  publication-title: Scientific data
– volume: 15
  start-page: 056013
  issue: 5
  year: 2018
  ident: 2023.10.23.563513v1.11
  article-title: “Eegnet: a compact convolutional neural network for eeg-based brain–computer interfaces
  publication-title: Journal of neural engineering
– volume: 19
  start-page: 046027
  issue: 4
  year: 2022
  ident: 2023.10.23.563513v1.39
  article-title: “Bidirectional siamese correlation analysis method for enhancing the detection of ssveps
  publication-title: Journal of Neural Engineering
– start-page: 25
  year: 2020
  ident: 2023.10.23.563513v1.8
  article-title: “Current status, challenges, and possible solutions of eeg-based brain-computer interface: a comprehensive review
  publication-title: Frontiers in neurorobotics
– volume: 174
  start-page: 407
  year: 2018
  end-page: 419
  ident: 2023.10.23.563513v1.22
  article-title: “A subject-transfer framework for obviating inter-and intra-subject variability in eeg-based drowsiness detection
  publication-title: NeuroImage
– volume: 28
  start-page: 2681
  issue: 12
  year: 2020
  end-page: 2690
  ident: 2023.10.23.563513v1.38
  article-title: “Convolutional correlation analysis for enhancing the performance of ssvep-based brain-computer interface
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 6
  year: 1993
  ident: 2023.10.23.563513v1.30
  article-title: “Signature verification using a” siamese” time delay neural network
  publication-title: Advances in neural information processing systems
– volume: 39
  start-page: 313
  issue: 3
  year: 2002
  end-page: 321
  ident: 2023.10.23.563513v1.5
  article-title: “Driver fatigue: electroencephalography and psychological assessment
  publication-title: Psychophysiology
– volume: 7
  start-page: 865
  issue: 5
  year: 2009
  ident: 2023.10.23.563513v1.25
  article-title: “Emotion recognition using eeg signals with relative power values and bayesian network
  publication-title: International Journal of Control, Automation and Systems
– volume: 9
  start-page: 348
  issue: 12
  year: 2019
  ident: 2023.10.23.563513v1.15
  article-title: “Classification of drowsiness levels based on a deep spatio-temporal convolutional bidirectional lstm network using electroencephalography signals
  publication-title: Brain sciences
– volume: 36
  start-page: 2352
  issue: 2
  year: 2009
  end-page: 2359
  ident: 2023.10.23.563513v1.54
  article-title: “Using eeg spectral components to assess algorithms for detecting fatigue
  publication-title: Expert Systems with Applications
– volume: 38
  start-page: 5391
  issue: 11
  year: 2017
  end-page: 5420
  ident: 2023.10.23.563513v1.10
  article-title: “Deep learning with convolutional neural networks for eeg decoding and visualization
  publication-title: Human brain mapping
– year: 2022
  ident: 2023.10.23.563513v1.14
  article-title: “Eeg-based cross-subject driver drowsiness recognition with an interpretable convolutional neural network
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– start-page: 483
  year: 2019
  end-page: 490
  ident: 2023.10.23.563513v1.49
  publication-title: in 2019 IEEE International Conference on Electro Information Technology (EIT)
– volume: 59
  start-page: 618
  year: 2013
  end-page: 622
  ident: 2023.10.23.563513v1.1
  article-title: “Short and long sleep duration and risk of drowsy driving and the role of subjective sleep insufficiency
  publication-title: Accident Analysis & Prevention
– volume: 52
  start-page: 2726
  issue: 12
  year: 2005
  end-page: 2738
  ident: 2023.10.23.563513v1.45
  article-title: “Eeg-based drowsiness estimation for safety driving using independent component analysis
  publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers
– volume: 48
  start-page: 20
  issue: 1
  year: 2017
  end-page: 32
  ident: 2023.10.23.563513v1.26
  article-title: “Quantitative eeg in children and adults with attention deficit hyperactivity disorder: comparison of absolute and relative power spectra and theta/beta ratio
  publication-title: Clinical EEG and neuroscience
SSID ssj0002961374
Score 1.7050892
SecondaryResourceType preprint
Snippet Recent advancements in deep-learning have significantly enhanced EEG-based drowsiness detection. However, most existing methods overlook the importance of...
SourceID biorxiv
SourceType Open Access Repository
SubjectTerms Neuroscience
Title SiamEEGNet: Siamese Neural Network-Based EEG Decoding for Drowsiness Detection
URI https://www.biorxiv.org/content/10.1101/2023.10.23.563513
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA6yIfjmFa8jgq8ZbW5tfJzrHIJl6IS9jaZJYaDdqFX033tOW2QPPviShpBSkpB858v5eg4hNzyQufXSMmHQzch5zjLjHQtyAXgVCBco_MH5MdXTF_mwUIutVF8oq7SrdfW1-mz8-CjYhtO33dxBiFxdDBv98lABVmK-2j7GOEM112Qx_L1e4QZwKpKdH_PPN8Hi7b60hSiTfdKfZRtfHZAdXx6S3TYl5PcRSZ9X2VuS3Ke-vqVY9--eYgSN7BUejWSbjQB5HIVOdAzkEcGHgulJx8CoWxU7tNeNxKo8JvNJMr-bsi7nAbOw05mPRMwLbQGXJZfWSCOULHKVRdzHsgB49SZ2SmnpbFBkPAP7ioc-lMpYhdHMTkivXJf-lNAoULGOpOXaRbLQsAImtBEwLG1z52xxRq674S83bWCLJU7RElgBlO0Unf-jzwXZwzY8z7m4JL26-vBXANS1HZD-KElnT4NmaX4A14KMMw
linkProvider Cold Spring Harbor Laboratory Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT4MwFG50i9E3r_EuJr6WQG9QH3WbUzdi4kz2RigtyRJly4ZG_73nADE--OALJbSE0NJ-5zvn45SQKxaI3DhhKNcYZmQsp5l2lgY5B7wKuA0k_uA8TtTwRTxM5bR1uK1aWaWZzZefs486jo-CbVh9m8kdhMjVuV_rl30JWBlyH93U66SLic7wCx9M_R8fC9MAVpFog5l_3g5mb_u4X7Ay2Cbdp2zhljtkzZW7ZKPZF_JrjyTPs-yt379LXHXt4blbOQ_TaGSvUNS6bXoD8GM9aOT1gEEiAnlgf3o9oNWNlB2uV7XOqtwnk0F_cjuk7cYH1MB0py7iMSuUAXAWTBgtNJeiyGUWMReLAjDW6dhKqYQ1QZGxDIwsFrpQSG0kpjQ7IJ1yXrpD4kWBjFUkDFM2EoWCYdChiYBmKZNba4ojctm-frposluk2EUpUAM4Nl10_I82F2RzOBmP0tF98nhCtrAeF3jGT0mnWr67M0DuypzXw_MN4S2PZw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA66i-LNJ76t4LUlzaNtPOpuXV9lwRX2VpImhQXtLmsV_ffOtEU8ePCShiS0NCH55st8mRBywagojBPG5wrdjIwVvlbO-rTggFeUWyrxgPNjFo2exd1UTn-dhUFZpZnNl5-zj8aPj4JtWH3byU1D5Oo8aPTLgQSsDHmA29TBwparpI_BzpCApdPgZ5-FKQCsWHQOzT9fAaZv98lf0JJukv5YL9xyi6y4apustXdDfu2Q7GmmX4fDm8zVlx7m3ZvzMJSGfoFHo932rwCCrAeNvAGwSEQhD2xQbwDUupWzQ3ndaK2qXTJJh5Prkd9dfuAbmPK-i3nCysgAQAsmjBKKS1EWUsfMJaIEnHUqsVJGwhpaaqbB0GKhC4VURmJYsz3Sq-aV2ydeTGUSxcKwyMaijGAoVGhioFqRKaw15QE5734_X7QRLnLsohzoAaRtFx3-o80ZWR8P0vzhNrs_IhtYjWs848ekVy_f3QmAd21Om9H5BjA4kHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SiamEEGNet%3A+Siamese+Neural+Network-Based+EEG+Decoding+for+Drowsiness+Detection&rft.jtitle=bioRxiv&rft.au=Chang%2C+Li-Jen&rft.au=Chen%2C+Hsi-An&rft.au=Chang%2C+Chin&rft.au=Wei%2C+Chun-Shu&rft.date=2023-10-23&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2023.10.23.563513&rft.externalDocID=2023.10.23.563513v1