SiamEEGNet: Siamese Neural Network-Based EEG Decoding for Drowsiness Detection
Recent advancements in deep-learning have significantly enhanced EEG-based drowsiness detection. However, most existing methods overlook the importance of relative changes in EEG signals compared to a baseline, a fundamental aspect in conventional EEG analysis including event-related potential and t...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , |
Format | Paper |
Language | English |
Published |
Cold Spring Harbor Laboratory
23.10.2023
|
Edition | 1.1 |
Subjects | |
Online Access | Get full text |
ISSN | 2692-8205 |
DOI | 10.1101/2023.10.23.563513 |
Cover
Loading…
Abstract | Recent advancements in deep-learning have significantly enhanced EEG-based drowsiness detection. However, most existing methods overlook the importance of relative changes in EEG signals compared to a baseline, a fundamental aspect in conventional EEG analysis including event-related potential and time-frequency spectrograms. We herein introduce SiamEEGNet, a Siamese neural network architecture designed to capture relative changes between EEG data from the baseline and a time window of interest. Our results demonstrate that SiamEEGNet is capable of robustly learning from high-variability data across multiple sessions/subjects and outperforms existing model architectures in cross-subject scenarios. Furthermore, the model’s interpretability associates with previous findings of drowsiness-related EEG correlates. The promising performance of SiamEEGNet highlights its potential for practical applications in EEG-based drowsiness detection. We have made the source codes available at http://github.com/CECNL/SiamEEGNet. |
---|---|
AbstractList | Recent advancements in deep-learning have significantly enhanced EEG-based drowsiness detection. However, most existing methods overlook the importance of relative changes in EEG signals compared to a baseline, a fundamental aspect in conventional EEG analysis including event-related potential and time-frequency spectrograms. We herein introduce SiamEEGNet, a Siamese neural network architecture designed to capture relative changes between EEG data from the baseline and a time window of interest. Our results demonstrate that SiamEEGNet is capable of robustly learning from high-variability data across multiple sessions/subjects and outperforms existing model architectures in cross-subject scenarios. Furthermore, the model’s interpretability associates with previous findings of drowsiness-related EEG correlates. The promising performance of SiamEEGNet highlights its potential for practical applications in EEG-based drowsiness detection. We have made the source codes available at http://github.com/CECNL/SiamEEGNet. |
Author | Chang, Li-Jen Chang, Chin Wei, Chun-Shu Chen, Hsi-An |
Author_xml | – sequence: 1 givenname: Li-Jen surname: Chang fullname: Chang, Li-Jen organization: Department of Computer Science, National Yang Ming Chiao Tung University (NYCU) – sequence: 2 givenname: Hsi-An surname: Chen fullname: Chen, Hsi-An organization: Department of Computer Science, National Yang Ming Chiao Tung University (NYCU) – sequence: 3 givenname: Chin surname: Chang fullname: Chang, Chin organization: Department of Computer Science, National Yang Ming Chiao Tung University (NYCU) – sequence: 4 givenname: Chun-Shu surname: Wei fullname: Wei, Chun-Shu email: wei@nycu.edu.tw organization: Institute of Education, the Institute of Biomedical Engineering, and the Brain Science and Technology Center, NYCU |
BookMark | eNotj81OwzAQhC0EEqX0AbjlyCXF_7G5QRsKUhUO9B7ZyRoZ2hjZgdK3x1W5zLczWq12rtD5EAZA6IbgOSGY3FFM2TybrEIyQdgZmlCpaakoFpdoltIHxphqSVjFJ6h582ZX16sGxvviOEOCooHvaLYZ4z7Ez_LRJOiLvFQsoQu9H94LF2KxjGGf_AAp5XyEbvRhuEYXzmwTzP45RZunerN4Ltevq5fFw7q0lWQlVExRJ21-iVNuNddMcNcJU1FQ3DFFQKteCMl7i52hRmBFCRAutBWUaTZFt6ez1of463_ar-h3Jh7aY_uW4DbrqT37Azn1TvM |
ContentType | Paper |
Copyright | 2023, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2023, Posted by Cold Spring Harbor Laboratory |
DBID | FX. |
DOI | 10.1101/2023.10.23.563513 |
DatabaseName | bioRxiv |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2692-8205 |
Edition | 1.1 |
ExternalDocumentID | 2023.10.23.563513v1 |
GroupedDBID | 8FE 8FH AFKRA ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI FX. HCIFZ LK8 M7P NQS PIMPY PROAC RHI |
ID | FETCH-LOGICAL-b763-e7382f6b820424b949354fc5a72e84f381e98d5564db0fa2a50821e1459b52393 |
IEDL.DBID | FX. |
IngestDate | Tue Jan 07 18:49:10 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Siamese network EEG Drowsiness detection |
Language | English |
License | This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b763-e7382f6b820424b949354fc5a72e84f381e98d5564db0fa2a50821e1459b52393 |
Notes | Competing Interest Statement: The authors have declared no competing interest. |
OpenAccessLink | https://www.biorxiv.org/content/10.1101/2023.10.23.563513 |
PageCount | 10 |
ParticipantIDs | biorxiv_primary_2023_10_23_563513 |
PublicationCentury | 2000 |
PublicationDate | 20231023 |
PublicationDateYYYYMMDD | 2023-10-23 |
PublicationDate_xml | – month: 10 year: 2023 text: 20231023 day: 23 |
PublicationDecade | 2020 |
PublicationTitle | bioRxiv |
PublicationYear | 2023 |
Publisher | Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory |
References | Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (2023.10.23.563513v1.31) 2017; 30 Simonyan, Vedaldi, Zisserman (2023.10.23.563513v1.52) 2013 Liu, Lan, Cui, Sourina (2023.10.23.563513v1.29) 2020; 46 Ingolfsson, Hersche, Wang, Kobayashi, Cavigelli, Benini (2023.10.23.563513v1.47) 2020 Delvigne, Wannous, Vandeborre, Ris, Dutoit (2023.10.23.563513v1.17) 2022 Bromley, Guyon, LeCun, Säckinger, Shah (2023.10.23.563513v1.30) 1993; 6 Shahtalebi, Asif, Mohammadi (2023.10.23.563513v1.37) 2020 Moradi, Nazari, Rahmani (2023.10.23.563513v1.2) 2019; 65 Luck (2023.10.23.563513v1.21) 2014 Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann, Hutter, Burgard, Ball (2023.10.23.563513v1.10) 2017; 38 Jeong, Yu, Lee, Lee (2023.10.23.563513v1.15) 2019; 9 Wei, Wang, Lin, Jung (2023.10.23.563513v1.46) 2018; 26 Cui, Xu, Wu (2023.10.23.563513v1.28) 2019; 27 Klimesch (2023.10.23.563513v1.6) 1999; 29 Jap, Lal, Fischer, Bekiaris (2023.10.23.563513v1.54) 2009; 36 Delorme, Makeig (2023.10.23.563513v1.43) 2004; 134 Lin, Wu, Liang, Chao, Chen, Jung (2023.10.23.563513v1.45) 2005; 52 Garrett, Kovacevic, McIntosh, Grady (2023.10.23.563513v1.7) 2011; 31 Morioka, Kanemura, Hirayama, Shikauchi, Ogawa, Ikeda, Kawanabe, Ishii (2023.10.23.563513v1.9) 2015; 111 Cao, Chuang, King, Lin (2023.10.23.563513v1.40) 2019; 6 Gao, Li, Wang, Liang, Liu, Zhou, Wang, Zhang (2023.10.23.563513v1.16) 2023 Li, Lee, Chung (2023.10.23.563513v1.24) 2015; 15 Markovska-Simoska, Pop-Jordanova (2023.10.23.563513v1.26) 2017; 48 Chai, Tran, Naik, Nguyen, Ling, Craig, Nguyen (2023.10.23.563513v1.4) 2016 Altuwaijri, Muhammad, Altaheri, Alsulaiman (2023.10.23.563513v1.48) 2022; 12 Lawhern, Solon, Waytowich, Gordon, Hung, Lance (2023.10.23.563513v1.11) 2018; 15 Taigman, Yang, Ranzato, Wolf (2023.10.23.563513v1.34) 2014 Wang, Xu, Tian, Li, Jiao, Sun, Li (2023.10.23.563513v1.18) 2022; 24 Van der Maaten, Hinton (2023.10.23.563513v1.51) 2008; 9 Wang, Xu, Bezerianos, Chen, Zhang (2023.10.23.563513v1.20) 2020; 70 Zhang, Qiu, Zhang, Wang, Wang, He (2023.10.23.563513v1.39) 2022; 19 Wei, Koike-Akino, Wang (2023.10.23.563513v1.12) 2019 Bertinetto, Valmadre, Henriques, Vedaldi, Torr (2023.10.23.563513v1.35) 2016 Wei, Lin, Wang, Lin, Jung (2023.10.23.563513v1.22) 2018; 174 Springenberg, Dosovitskiy, Brox, Riedmiller (2023.10.23.563513v1.53) 2014 Rashid, Sulaiman, Majeed, Musa, Bari, Khatun (2023.10.23.563513v1.8) 2020 Golnar-Nik, Farashi, Safari (2023.10.23.563513v1.27) 2019; 207 Pal, Chuang, Ko, Chao, Jung, Liang, Lin (2023.10.23.563513v1.41) 2008 Saini, Saini (2023.10.23.563513v1.3) 2014; 5 Gao, Wang, Yang, Mu, Cai, Dang, Zuo (2023.10.23.563513v1.13) 2019; 30 Picot, Charbonnier, Caplier (2023.10.23.563513v1.23) 2008 Li, Xiang, Kesavadas (2023.10.23.563513v1.38) 2020; 28 Cui, Lan, Sourina (2023.10.23.563513v1.14) 2022 Lal, Craig (2023.10.23.563513v1.5) 2002; 39 Merkx, Frank (2023.10.23.563513v1.32) 2020 Zhang, Wang, Wu, Xu, Ping, Jiang (2023.10.23.563513v1.19) 2020; 91 Wang, Liu, Li, Xu, Bezerianos, Sun, Wan (2023.10.23.563513v1.33) 2020; 13 Ko, Yang, Sim (2023.10.23.563513v1.25) 2009; 7 Majumder, Guragain, Wang, Wilson (2023.10.23.563513v1.49) 2019 Jung, Makeig, Stensmo, Sejnowski (2023.10.23.563513v1.50) 1997; 44 Lal, Craig, Boord, Kirkup, Nguyen (2023.10.23.563513v1.44) 2003; 34 Maia, Grandner, Findley, Gurubhagavatula (2023.10.23.563513v1.1) 2013; 59 Mullen, Kothe, Chi, Ojeda, Kerth, Makeig, Cauwenberghs, Jung (2023.10.23.563513v1.42) 2013 Zhang, Ang, Zheng, Hui, Chen, Li, Tang, Chew, Lim, Guan (2023.10.23.563513v1.36) 2022; 30 |
References_xml | – year: 2013 ident: 2023.10.23.563513v1.52 article-title: “Deep inside convolutional networks: Visualising image classification models and saliency maps publication-title: arXiv – volume: 91 start-page: 074713 issue: 7 year: 2020 ident: 2023.10.23.563513v1.19 article-title: “Partial directed coherence based graph convolutional neural networks for driving fatigue detection publication-title: Review of Scientific Instruments – volume: 111 start-page: 167 year: 2015 end-page: 178 ident: 2023.10.23.563513v1.9 article-title: “Learning a common dictionary for subject-transfer decoding with resting calibration publication-title: NeuroImage – start-page: 328 year: 2019 end-page: 331 ident: 2023.10.23.563513v1.12 publication-title: in 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER) – year: 2023 ident: 2023.10.23.563513v1.16 article-title: “Csf-gtnet: A novel multi-dimensional feature fusion network based on convnext-gelu-bilstm for eeg-signals-enabled fatigue driving detection publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 9 issue: 11 year: 2008 ident: 2023.10.23.563513v1.51 article-title: “Visualizing data using t-sne publication-title: Journal of machine learning research – start-page: 4654 year: 2016 end-page: 4657 ident: 2023.10.23.563513v1.4 publication-title: in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) – volume: 29 start-page: 169 issue: 2-3 year: 1999 end-page: 195 ident: 2023.10.23.563513v1.6 article-title: “Eeg alpha and theta oscillations reflect cognitive and memory performance: a review and analysis publication-title: Brain research reviews – volume: 30 year: 2017 ident: 2023.10.23.563513v1.31 article-title: “Attention is all you need publication-title: Advances in neural information processing systems – start-page: 3864 year: 2008 end-page: 3867 ident: 2023.10.23.563513v1.23 publication-title: in 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society – volume: 27 start-page: 2263 issue: 11 year: 2019 end-page: 2273 ident: 2023.10.23.563513v1.28 article-title: “Eeg-based driver drowsiness estimation using feature weighted episodic training publication-title: IEEE transactions on neural systems and rehabilitation engineering – start-page: 1076 year: 2022 end-page: 1082 ident: 2023.10.23.563513v1.17 article-title: Spatio-temporal analysis of transformer based architecture for attention estimation from eeg publication-title: in 2022 26th International Conference on Pattern Recognition (ICPR) – volume: 34 start-page: 321 issue: 3 year: 2003 end-page: 328 ident: 2023.10.23.563513v1.44 article-title: “Development of an algorithm for an eeg-based driver fatigue countermeasure publication-title: Journal of safety Research – volume: 134 start-page: 9 issue: 1 year: 2004 end-page: 21 ident: 2023.10.23.563513v1.43 article-title: “Eeglab: an open source toolbox for analysis of single-trial eeg dynamics including independent component analysis publication-title: Journal of neuroscience methods – volume: 44 start-page: 60 issue: 1 year: 1997 end-page: 69 ident: 2023.10.23.563513v1.50 article-title: “Estimating alertness from the eeg power spectrum publication-title: IEEE transactions on biomedical engineering – volume: 13 start-page: 668 issue: 3 year: 2020 end-page: 678 ident: 2023.10.23.563513v1.33 article-title: “Driving fatigue recognition with functional connectivity based on phase synchronization publication-title: IEEE Transactions on Cognitive and Developmental Systems – start-page: 1 year: 2008 end-page: 11 ident: 2023.10.23.563513v1.41 article-title: “Eeg-based subject-and session-independent drowsiness detection: an unsupervised approach publication-title: EURASIP Journal on Advances in Signal Processing – volume: 31 start-page: 4496 issue: 12 year: 2011 end-page: 4503 ident: 2023.10.23.563513v1.7 article-title: “The importance of being variable publication-title: Journal of Neuroscience – volume: 30 start-page: 2755 issue: 9 year: 2019 end-page: 2763 ident: 2023.10.23.563513v1.13 article-title: “Eeg-based spatio–temporal convolutional neural network for driver fatigue evaluation publication-title: IEEE transactions on neural networks and learning systems – volume: 5 start-page: 4245 issue: 3 year: 2014 end-page: 4249 ident: 2023.10.23.563513v1.3 article-title: “Driver drowsiness detection system and techniques: a review publication-title: International Journal of Computer Science and Information Technologies – start-page: 850 year: 2016 end-page: 865 ident: 2023.10.23.563513v1.35 publication-title: in European conference on computer vision – year: 2014 ident: 2023.10.23.563513v1.53 article-title: “Striving for simplicity: The all convolutional net publication-title: arXiv – year: 2020 ident: 2023.10.23.563513v1.32 article-title: “Human sentence processing: Recurrence or attention? publication-title: arXiv – year: 2014 ident: 2023.10.23.563513v1.21 publication-title: An introduction to the event-related potential technique – volume: 46 start-page: 101157 year: 2020 ident: 2023.10.23.563513v1.29 article-title: “Inter-subject transfer learning for eeg-based mental fatigue recognition publication-title: Advanced Engineering Informatics – start-page: 442 year: 2020 end-page: 446 ident: 2023.10.23.563513v1.37 publication-title: in 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) – volume: 12 start-page: 995 issue: 4 year: 2022 ident: 2023.10.23.563513v1.48 article-title: “A multi-branch convolutional neural network with squeeze-and-excitation attention blocks for eeg-based motor imagery signals classification publication-title: Diagnostics – volume: 24 start-page: 1715 issue: 12 year: 2022 ident: 2023.10.23.563513v1.18 article-title: “Driving fatigue detection with three non-hair-bearing eeg channels and modified transformer model publication-title: Entropy – start-page: 2184 year: 2013 end-page: 2187 ident: 2023.10.23.563513v1.42 publication-title: in 2013 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC) – start-page: 2958 year: 2020 end-page: 2965 ident: 2023.10.23.563513v1.47 publication-title: in 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC) – volume: 207 start-page: 90 year: 2019 end-page: 98 ident: 2023.10.23.563513v1.27 article-title: “The application of eeg power for the prediction and interpretation of consumer decision-making: A neuromarketing study publication-title: Physiology & behavior – volume: 70 start-page: 1 year: 2020 end-page: 11 ident: 2023.10.23.563513v1.20 article-title: “Linking attention-based multiscale cnn with dynamical gcn for driving fatigue detection publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 15 start-page: 7169 issue: 12 year: 2015 end-page: 7180 ident: 2023.10.23.563513v1.24 article-title: “Smartwatch-based wearable eeg system for driver drowsiness detection publication-title: IEEE Sensors Journal – volume: 30 start-page: 2824 year: 2022 end-page: 2833 ident: 2023.10.23.563513v1.36 article-title: “Learning eeg representations with weighted convolutional siamese network: A large multi-session post-stroke rehabilitation study publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 65 start-page: 620 year: 2019 end-page: 629 ident: 2023.10.23.563513v1.2 article-title: “Sleepiness and the risk of road traffic accidents: A systematic review and meta-analysis of previous studies publication-title: Transportation research part F: traffic psychology and behaviour – start-page: 1701 year: 2014 end-page: 1708 ident: 2023.10.23.563513v1.34 article-title: Deepface: Closing the gap to human-level performance in face verification publication-title: in Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 26 start-page: 400 issue: 2 year: 2018 end-page: 406 ident: 2023.10.23.563513v1.46 article-title: “Toward drowsiness detection using non-hair-bearing eeg-based brain-computer interfaces publication-title: IEEE transactions on neural systems and rehabilitation engineering – volume: 6 start-page: 1 issue: 1 year: 2019 end-page: 8 ident: 2023.10.23.563513v1.40 article-title: “Multi-channel eeg recordings during a sustained-attention driving task publication-title: Scientific data – volume: 15 start-page: 056013 issue: 5 year: 2018 ident: 2023.10.23.563513v1.11 article-title: “Eegnet: a compact convolutional neural network for eeg-based brain–computer interfaces publication-title: Journal of neural engineering – volume: 19 start-page: 046027 issue: 4 year: 2022 ident: 2023.10.23.563513v1.39 article-title: “Bidirectional siamese correlation analysis method for enhancing the detection of ssveps publication-title: Journal of Neural Engineering – start-page: 25 year: 2020 ident: 2023.10.23.563513v1.8 article-title: “Current status, challenges, and possible solutions of eeg-based brain-computer interface: a comprehensive review publication-title: Frontiers in neurorobotics – volume: 174 start-page: 407 year: 2018 end-page: 419 ident: 2023.10.23.563513v1.22 article-title: “A subject-transfer framework for obviating inter-and intra-subject variability in eeg-based drowsiness detection publication-title: NeuroImage – volume: 28 start-page: 2681 issue: 12 year: 2020 end-page: 2690 ident: 2023.10.23.563513v1.38 article-title: “Convolutional correlation analysis for enhancing the performance of ssvep-based brain-computer interface publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 6 year: 1993 ident: 2023.10.23.563513v1.30 article-title: “Signature verification using a” siamese” time delay neural network publication-title: Advances in neural information processing systems – volume: 39 start-page: 313 issue: 3 year: 2002 end-page: 321 ident: 2023.10.23.563513v1.5 article-title: “Driver fatigue: electroencephalography and psychological assessment publication-title: Psychophysiology – volume: 7 start-page: 865 issue: 5 year: 2009 ident: 2023.10.23.563513v1.25 article-title: “Emotion recognition using eeg signals with relative power values and bayesian network publication-title: International Journal of Control, Automation and Systems – volume: 9 start-page: 348 issue: 12 year: 2019 ident: 2023.10.23.563513v1.15 article-title: “Classification of drowsiness levels based on a deep spatio-temporal convolutional bidirectional lstm network using electroencephalography signals publication-title: Brain sciences – volume: 36 start-page: 2352 issue: 2 year: 2009 end-page: 2359 ident: 2023.10.23.563513v1.54 article-title: “Using eeg spectral components to assess algorithms for detecting fatigue publication-title: Expert Systems with Applications – volume: 38 start-page: 5391 issue: 11 year: 2017 end-page: 5420 ident: 2023.10.23.563513v1.10 article-title: “Deep learning with convolutional neural networks for eeg decoding and visualization publication-title: Human brain mapping – year: 2022 ident: 2023.10.23.563513v1.14 article-title: “Eeg-based cross-subject driver drowsiness recognition with an interpretable convolutional neural network publication-title: IEEE Transactions on Neural Networks and Learning Systems – start-page: 483 year: 2019 end-page: 490 ident: 2023.10.23.563513v1.49 publication-title: in 2019 IEEE International Conference on Electro Information Technology (EIT) – volume: 59 start-page: 618 year: 2013 end-page: 622 ident: 2023.10.23.563513v1.1 article-title: “Short and long sleep duration and risk of drowsy driving and the role of subjective sleep insufficiency publication-title: Accident Analysis & Prevention – volume: 52 start-page: 2726 issue: 12 year: 2005 end-page: 2738 ident: 2023.10.23.563513v1.45 article-title: “Eeg-based drowsiness estimation for safety driving using independent component analysis publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers – volume: 48 start-page: 20 issue: 1 year: 2017 end-page: 32 ident: 2023.10.23.563513v1.26 article-title: “Quantitative eeg in children and adults with attention deficit hyperactivity disorder: comparison of absolute and relative power spectra and theta/beta ratio publication-title: Clinical EEG and neuroscience |
SSID | ssj0002961374 |
Score | 1.7050892 |
SecondaryResourceType | preprint |
Snippet | Recent advancements in deep-learning have significantly enhanced EEG-based drowsiness detection. However, most existing methods overlook the importance of... |
SourceID | biorxiv |
SourceType | Open Access Repository |
SubjectTerms | Neuroscience |
Title | SiamEEGNet: Siamese Neural Network-Based EEG Decoding for Drowsiness Detection |
URI | https://www.biorxiv.org/content/10.1101/2023.10.23.563513 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA6yIfjmFa8jgq8ZbW5tfJzrHIJl6IS9jaZJYaDdqFX033tOW2QPPviShpBSkpB858v5eg4hNzyQufXSMmHQzch5zjLjHQtyAXgVCBco_MH5MdXTF_mwUIutVF8oq7SrdfW1-mz8-CjYhtO33dxBiFxdDBv98lABVmK-2j7GOEM112Qx_L1e4QZwKpKdH_PPN8Hi7b60hSiTfdKfZRtfHZAdXx6S3TYl5PcRSZ9X2VuS3Ke-vqVY9--eYgSN7BUejWSbjQB5HIVOdAzkEcGHgulJx8CoWxU7tNeNxKo8JvNJMr-bsi7nAbOw05mPRMwLbQGXJZfWSCOULHKVRdzHsgB49SZ2SmnpbFBkPAP7ioc-lMpYhdHMTkivXJf-lNAoULGOpOXaRbLQsAImtBEwLG1z52xxRq674S83bWCLJU7RElgBlO0Unf-jzwXZwzY8z7m4JL26-vBXANS1HZD-KElnT4NmaX4A14KMMw |
linkProvider | Cold Spring Harbor Laboratory Press |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT4MwFG50i9E3r_EuJr6WQG9QH3WbUzdi4kz2RigtyRJly4ZG_73nADE--OALJbSE0NJ-5zvn45SQKxaI3DhhKNcYZmQsp5l2lgY5B7wKuA0k_uA8TtTwRTxM5bR1uK1aWaWZzZefs486jo-CbVh9m8kdhMjVuV_rl30JWBlyH93U66SLic7wCx9M_R8fC9MAVpFog5l_3g5mb_u4X7Ay2Cbdp2zhljtkzZW7ZKPZF_JrjyTPs-yt379LXHXt4blbOQ_TaGSvUNS6bXoD8GM9aOT1gEEiAnlgf3o9oNWNlB2uV7XOqtwnk0F_cjuk7cYH1MB0py7iMSuUAXAWTBgtNJeiyGUWMReLAjDW6dhKqYQ1QZGxDIwsFrpQSG0kpjQ7IJ1yXrpD4kWBjFUkDFM2EoWCYdChiYBmKZNba4ojctm-frposluk2EUpUAM4Nl10_I82F2RzOBmP0tF98nhCtrAeF3jGT0mnWr67M0DuypzXw_MN4S2PZw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA66i-LNJ76t4LUlzaNtPOpuXV9lwRX2VpImhQXtLmsV_ffOtEU8ePCShiS0NCH55st8mRBywagojBPG5wrdjIwVvlbO-rTggFeUWyrxgPNjFo2exd1UTn-dhUFZpZnNl5-zj8aPj4JtWH3byU1D5Oo8aPTLgQSsDHmA29TBwparpI_BzpCApdPgZ5-FKQCsWHQOzT9fAaZv98lf0JJukv5YL9xyi6y4apustXdDfu2Q7GmmX4fDm8zVlx7m3ZvzMJSGfoFHo932rwCCrAeNvAGwSEQhD2xQbwDUupWzQ3ndaK2qXTJJh5Prkd9dfuAbmPK-i3nCysgAQAsmjBKKS1EWUsfMJaIEnHUqsVJGwhpaaqbB0GKhC4VURmJYsz3Sq-aV2ydeTGUSxcKwyMaijGAoVGhioFqRKaw15QE5734_X7QRLnLsohzoAaRtFx3-o80ZWR8P0vzhNrs_IhtYjWs848ekVy_f3QmAd21Om9H5BjA4kHg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SiamEEGNet%3A+Siamese+Neural+Network-Based+EEG+Decoding+for+Drowsiness+Detection&rft.jtitle=bioRxiv&rft.au=Chang%2C+Li-Jen&rft.au=Chen%2C+Hsi-An&rft.au=Chang%2C+Chin&rft.au=Wei%2C+Chun-Shu&rft.date=2023-10-23&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2023.10.23.563513&rft.externalDocID=2023.10.23.563513v1 |