The Connexin 43 Carboxyl Terminal Mimetic Peptide αCT1 Prompts Differentiation of a Collagen Scar Matrix Resembling Unwounded Skin
Phase II clinical trials have reported that acute treatment of surgical skin wounds with the therapeutic peptide αCT1 improves cutaneous scar appearance by 47% 9-months post-surgery – though mode-of-action remains unknown. Scar matrix structure in biopsies 2 to 6 weeks post-wounding treated topicall...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , , , , , , , |
Format | Paper |
Language | English |
Published |
Cold Spring Harbor Laboratory
07.07.2020
|
Edition | 1.1 |
Subjects | |
Online Access | Get full text |
ISSN | 2692-8205 |
DOI | 10.1101/2020.07.07.191742 |
Cover
Abstract | Phase II clinical trials have reported that acute treatment of surgical skin wounds with the therapeutic peptide αCT1 improves cutaneous scar appearance by 47% 9-months post-surgery – though mode-of-action remains unknown. Scar matrix structure in biopsies 2 to 6 weeks post-wounding treated topically with αCT1 or control treatments from human subjects, Sprague-Dawley rats, and IAF hairless guinea pigs were compared. The sole effect on scar structure in humans was that αCT1-treated scars had less alignment of collagen fibers relative to control wounds, a state that resembles unwounded skin. This more random alignment was recapitulated in both animal models, together with transient increases in collagen density, although the guinea pig was found to more closely replicate the pattern of response to αCT1 in human scars, compared to rat. Fibroblasts treated with αCT1 in vitro showed decreased directionality and an agent-based computational model parameterized with fibroblast motility data predicted collagen alignments in simulated scars consistent with that observed experimentally in human and the animal models. In conclusion, αCT1 prompts decreased directionality of fibroblast movement and the generation of a 3D collagen matrix post-wounding that is similar to unwounded skin – changes that correlate with long-term improvement in scar appearance. |
---|---|
AbstractList | Phase II clinical trials have reported that acute treatment of surgical skin wounds with the therapeutic peptide αCT1 improves cutaneous scar appearance by 47% 9-months post-surgery – though mode-of-action remains unknown. Scar matrix structure in biopsies 2 to 6 weeks post-wounding treated topically with αCT1 or control treatments from human subjects, Sprague-Dawley rats, and IAF hairless guinea pigs were compared. The sole effect on scar structure in humans was that αCT1-treated scars had less alignment of collagen fibers relative to control wounds, a state that resembles unwounded skin. This more random alignment was recapitulated in both animal models, together with transient increases in collagen density, although the guinea pig was found to more closely replicate the pattern of response to αCT1 in human scars, compared to rat. Fibroblasts treated with αCT1 in vitro showed decreased directionality and an agent-based computational model parameterized with fibroblast motility data predicted collagen alignments in simulated scars consistent with that observed experimentally in human and the animal models. In conclusion, αCT1 prompts decreased directionality of fibroblast movement and the generation of a 3D collagen matrix post-wounding that is similar to unwounded skin – changes that correlate with long-term improvement in scar appearance. |
Author | Gourdie, Robert G. Montgomery, Jade Grek, Christina L. Bustos, Francis Ghatnekar, Gautam S. Richardson, William J. Rhett, J. Matthew Degen, Katherine Marsh, Spencer Holmes, Jeffrey W. Jourdan, L. Jane |
Author_xml | – sequence: 1 givenname: Jade surname: Montgomery fullname: Montgomery, Jade organization: Department of Biomedical Engineering and Mechanics, Virginia Tech – sequence: 2 givenname: William J. orcidid: 0000-0001-8678-9716 surname: Richardson fullname: Richardson, William J. organization: Department of Bioengineering, Clemson University – sequence: 3 givenname: J. Matthew orcidid: 0000-0003-2608-3767 surname: Rhett fullname: Rhett, J. Matthew organization: Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina – sequence: 4 givenname: Francis surname: Bustos fullname: Bustos, Francis organization: Virginia Tech Carilion School of America Medicine – sequence: 5 givenname: Katherine surname: Degen fullname: Degen, Katherine organization: Department of Biomedical Engineering and Mechanics, Virginia Tech – sequence: 6 givenname: Gautam S. orcidid: 0000-0003-2578-9039 surname: Ghatnekar fullname: Ghatnekar, Gautam S. organization: FirstString Research, Inc – sequence: 7 givenname: Christina L. surname: Grek fullname: Grek, Christina L. organization: FirstString Research, Inc – sequence: 8 givenname: Spencer surname: Marsh fullname: Marsh, Spencer organization: Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Heart and Reparative Medicine Research – sequence: 9 givenname: L. Jane surname: Jourdan fullname: Jourdan, L. Jane organization: Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Heart and Reparative Medicine Research – sequence: 10 givenname: Jeffrey W. surname: Holmes fullname: Holmes, Jeffrey W. organization: Department of Biomedical Engineering, University of Virginia – sequence: 11 givenname: Robert G. orcidid: 0000-0001-6021-0796 surname: Gourdie fullname: Gourdie, Robert G. email: gourdier@vtc.vt.edu organization: Virginia Tech Carilion School of America Medicine |
BookMark | eNotkMtKw0AYRgdRsNY-gLt_6SZ1bskkS4lXaLHYuC4zyZ86msyUSdR07RP5Ij6TLRUOfLsD3zkjx847JOSC0SljlF1xyumUqj0sY0ryIzLiScajlNP4lEy67o1SyrOECSVH5Lt4Rci9czhYB1JAroPxw7aBAkNrnW5gblvsbQkL3PS2Qvj9yQsGi-DbTd_Bja1rDOh6q3vrHfga9E7YNHqNDpalDjDXfbADPGOHrWmsW8OL-_IfrsIKlu_WnZOTWjcdTv53TIq72yJ_iGZP94_59SwyKuGREBndHYoTmfJSMiW4SoQScWUSnqWxqDkqjloqKrSQJdW0NjI2mlFVcZUaMSaXB62xPgz2c7UJttVhu9onW1G155BM_AFIN2LY |
ContentType | Paper |
Copyright | 2020, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2020, Posted by Cold Spring Harbor Laboratory |
DBID | FX. |
DOI | 10.1101/2020.07.07.191742 |
DatabaseName | bioRxiv |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2692-8205 |
Edition | 1.1 |
ExternalDocumentID | 2020.07.07.191742v1 |
GroupedDBID | 8FE 8FH AFKRA ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI FX. HCIFZ LK8 M7P NQS PIMPY PROAC RHI |
ID | FETCH-LOGICAL-b762-339091756482c41732763735db629853f2e72ea4703a34c0a0fb45ba107d278b3 |
IEDL.DBID | FX. |
IngestDate | Tue Jan 07 19:00:22 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Skin Peptide therapeutic Scar mitigation Cx43 Clinical Trial Computational model |
Language | English |
License | This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b762-339091756482c41732763735db629853f2e72ea4703a34c0a0fb45ba107d278b3 |
Notes | Competing Interest Statement: GSG is CEO and President of FirstString Research Inc. CLG is Senior Director of Research and Development at FirstString Research Inc. RGG is a non-remunerated member of the Scientific Advisory Board of FirstString Research, which licensed α carboxyl terminus 1 peptide. GSG, RGG, LJJ, and CLG have ownership interests in FirstString Research Inc. The remaining authors have no disclosures to report. |
ORCID | 0000-0001-8678-9716 0000-0003-2608-3767 0000-0001-6021-0796 0000-0003-2578-9039 |
OpenAccessLink | https://www.biorxiv.org/content/10.1101/2020.07.07.191742 |
PageCount | 35 |
ParticipantIDs | biorxiv_primary_2020_07_07_191742 |
PublicationCentury | 2000 |
PublicationDate | 20200707 |
PublicationDateYYYYMMDD | 2020-07-07 |
PublicationDate_xml | – month: 7 year: 2020 text: 20200707 day: 7 |
PublicationDecade | 2020 |
PublicationTitle | bioRxiv |
PublicationYear | 2020 |
Publisher | Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory |
References | Dallon, Sherratt, Maini (2020.07.07.191742v1.44) 1999; 199 Francis, Xu, Park, Wei, Chang, Chatterjee, Lo (2020.07.07.191742v1.65) 2011; 6 Lee Peng, Kerolus (2020.07.07.191742v1.1) 2019; 27 Marquez-Rosado, Singh, Rincon-Arano, Solan, Lampe (2020.07.07.191742v1.12) 2012; 125 Friedland, Lee, Boettiger (2020.07.07.191742v1.62) 2009; 323 Sutcliffe, Chin, Thrasivoulou, Serena, O’Neil, Hu, White, Madden, Richards, Phillips, Becker (2020.07.07.191742v1.19) 2015; 173 Cobb, Moore, Godfrey, Gordonov, Heilman, Sizemore (2020.07.07.191742v1.71) 2001; 1 Richardson, Holmes (2020.07.07.191742v1.41) 2016; 110 Laird, Lampe (2020.07.07.191742v1.16) 2018 Barker, Engler (2020.07.07.191742v1.53) 2017; 60-61 Kandyba, Hodgins, Martin (2020.07.07.191742v1.21) 2007 Ek-Vitorin, King, Heyman, Lampe, Burt (2020.07.07.191742v1.27) 2006; 98 Plotnikov, Waterman (2020.07.07.191742v1.60) 2013; 25 Richards, Dunn, Carter, Usui, Olerud, Lampe (2020.07.07.191742v1.13) 2004; 167 Berens (2020.07.07.191742v1.33) 2009; 31 Ehrlich, Krummel (2020.07.07.191742v1.46) 1996; 4 Ongstad, O’Quinn, Ghatnekar, Yost, Gourdie (2020.07.07.191742v1.30) 2013; 2 Plotnikov, Pasapera, Sabass, Waterman (2020.07.07.191742v1.61) 2012; 151 Verhaegen, Schouten, Tigchelaar-Gutter, van Marle, van Noorden, Middelkoop, van Zuijlen (2020.07.07.191742v1.50) 2012; 20 Kanapathy, Simpson, Madden, Thrasivoulou, Mosahebi, Becker, Richards (2020.07.07.191742v1.18) 2018; 105 Laufer, Ashkenazi, Katz, Wolman (2020.07.07.191742v1.43) 1974; 55 Richardson, Kegerreis, Thomopoulos, Holmes (2020.07.07.191742v1.38) 2018; 17 Xue, Jackson (2020.07.07.191742v1.36) 2015; 4 Chen, Mayo, Gourdie, Johnstone, Isakson, Bearden (2020.07.07.191742v1.64) 2015; 309 Montgomery (2020.07.07.191742v1.78) 2019 Lim, Weintraub, Kaplan, Januszyk, Cowley, McLaughlin, Beasley, Gurtner, Longaker (2020.07.07.191742v1.3) 2014; 133 Morel, Christoffersen, Axelsen, Montecucco, Rochemont, Frias, Mach, James, Naus, Chanson, Lampe, Nielsen, Nielsen, Kwak (2020.07.07.191742v1.28) 2016; 109 Montgomery, Ghatnekar, Grek, Moyer, Gourdie (2020.07.07.191742v1.15) 2018; 19 Namazi, Fallahzadeh, Schwartz (2020.07.07.191742v1.55) 2011; 50 Verhaegen, Marle, Kuehne, Schouten, Gaffney, Maini, Middelkoop, Zuijlen (2020.07.07.191742v1.45) 2012; 245 Fomovsky, Holmes (2020.07.07.191742v1.32) 2010; 298 Rose, Weiser, Hider, Wilson, Gruen, Bickler (2020.07.07.191742v1.2) 2015; 3 Solan, Marquez-Rosado, Sorgen, Thornton, Gafken, Lampe (2020.07.07.191742v1.26) 2007; 179 Hunter, Barker, Zhu, Gourdie (2020.07.07.191742v1.22) 2005; 16 Melles, Binder, Beekhuis, Wijdh, Moore, Anderson, SundarRaj (2020.07.07.191742v1.49) 1995; 79 Ghatnekar, Grek, Armstrong, Desai, Gourdie (2020.07.07.191742v1.69) 2015; 135 Churko, Kelly, Macdonald, Lee, Sampson, Bai, Laird (2020.07.07.191742v1.11) 2012; 21 Rhett, Jourdan, Gourdie (2020.07.07.191742v1.23) 2011 2020.07.07.191742v1.76 Fang, Chen, Zhang, Huang, Wang, Xu, Wu, Zhang, Tan (2020.07.07.191742v1.7) 2017; 23 Leung, Crombleholme, Keswani (2020.07.07.191742v1.57) 2012; 24 Linares, Larson (2020.07.07.191742v1.42) 1974; 62 (2020.07.07.191742v1.77) 2005 Gurtner, Dauskardt, Wong, Bhatt, Wu, Vial, Padois, Korman, Longaker (2020.07.07.191742v1.48) 2011; 254 Karppinen, Heljasvaara, Gullberg, Tasanen, Pihlajaniemi (2020.07.07.191742v1.40) 2019; 8 Rouillard, Holmes (2020.07.07.191742v1.37) 2012; 590 (2020.07.07.191742v1.34) 2014 Goliger, Paul (2020.07.07.191742v1.17) 1995; 6 Qiu, Coutinho, Frank, Franke, Law, Martin, Green, Becker (2020.07.07.191742v1.14) 2003; 13 Hayes, Afshari, Millecchia, Willard, Povoski, Meade (2020.07.07.191742v1.72) 2000; 56 Chittoria, Padi (2020.07.07.191742v1.4) 2013; 6 Bush, McGrouther, Young, Herndon, Longaker, Mustoe, Ferguson (2020.07.07.191742v1.5) 2011; 19 Wen, Blume, Sumpio (2020.07.07.191742v1.59) 2009; 6 Zgheib, Xu, Liechty (2020.07.07.191742v1.56) 2014; 3 Rhett, Ghatnekar, Palatinus, O’Quinn, Yost, Gourdie (2020.07.07.191742v1.8) 2008; 26 Grek, Prasad, Viswanathan, Armstrong, Gourdie, Ghatnekar (2020.07.07.191742v1.68) 2015; 23 Waldo, Lo, Kirby (2020.07.07.191742v1.67) 1999; 208 Cogliati, Vinken, Silva, Araujo, Aloia, Chaible, Mori, Dagli (2020.07.07.191742v1.20) 2015; 79 Elias, Turmaine, Parnavelas, Kriegstein (2020.07.07.191742v1.66) 2010; 30 Ghatnekar, O’Quinn, Jourdan, Gurjarpadhye, Draughn, Gourdie (2020.07.07.191742v1.29) 2009; 4 McDougall, Dallon, Sherratt, Maini (2020.07.07.191742v1.39) 2006; 364 Tziotzios, Profyris, Sterling (2020.07.07.191742v1.6) 2012; 66 O’Quinn, Palatinus, Harris, Hewett, Gourdie (2020.07.07.191742v1.51) 2011 Tarzemany, Jiang, Larjava, Hakkinen (2020.07.07.191742v1.10) 2015; 10 Thevenin, Margraf, Fisher, Kells-Andrews, Falk (2020.07.07.191742v1.25) 2017; 28 Brant, Lopez, Baker, Barbazuk, Maden (2020.07.07.191742v1.58) 2015; 10 Jiang, Hoagland, Palatinus, He, Iyyathurai, Jourdan, Bultynck, Wang, Zhang, Schey, Poelzing, McGowan, Gourdie (2020.07.07.191742v1.24) 2019; 8 Corr, Gallant-Behm, Shrive, Hart (2020.07.07.191742v1.47) 2009; 17 Gardner (2020.07.07.191742v1.52) 2002; 359 Rid, Schiefermeier, Grigoriev, Small, Kaverina (2020.07.07.191742v1.63) 2005; 61 Lu, Kamel-El Sayed, Wang, Tiede-Lewis, Grillo, Veno, Dusevich, Phillips, Bonewald, Dallas (2020.07.07.191742v1.74) 2018; 33 Bolognia, Murray, Pawelek (2020.07.07.191742v1.35) 1990; 3 Grek, Montgomery, Sharma, Ravi, Rajkumar, Moyer, Gourdie, Ghatnekar (2020.07.07.191742v1.31) 2017; 137 Horio, Miyauchi, Asada (2020.07.07.191742v1.73) 1991; 8 Clark, Lanigan, DellaPelle, Manseau, Dvorak, Colvin (2020.07.07.191742v1.54) 1982; 79 (2020.07.07.191742v1.70) 2016 Ferguson, Duncan, Bond, Bush, Durani, So, Taylor, Chantrey, Mason, James, Laverty, Occleston, Sattar, Ludlow, O’Kane (2020.07.07.191742v1.75) 2009; 373 Lorraine, Wright, Martin (2020.07.07.191742v1.9) 2015; 43 |
References_xml | – volume: 28 start-page: 3595 year: 2017 end-page: 3608 ident: 2020.07.07.191742v1.25 article-title: Phosphorylation regulates connexin43/ZO-1 binding and release, an important step in gap junction turnover publication-title: Mol Biol Cell – volume: 4 start-page: 119 year: 2015 end-page: 136 ident: 2020.07.07.191742v1.36 article-title: Extracellular Matrix Reorganization During Wound Healing and Its Impact on Abnormal Scarring publication-title: Adv Wound Care (New Rochelle) – volume: 17 start-page: 250 year: 2009 end-page: 9 ident: 2020.07.07.191742v1.47 article-title: Biomechanical behavior of scar tissue and uninjured skin in a porcine model publication-title: Wound Repair Regen – volume: 135 start-page: 289 year: 2015 end-page: 98 ident: 2020.07.07.191742v1.69 article-title: The effect of a connexin43-based Peptide on the healing of chronic venous leg ulcers: a multicenter, randomized trial publication-title: J Invest Dermatol – volume: 43 start-page: 482 year: 2015 end-page: 8 ident: 2020.07.07.191742v1.9 article-title: Connexin43 plays diverse roles in co-ordinating cell migration and wound closure events publication-title: Biochem Soc Trans – volume: 1 start-page: 349 year: 2001 end-page: 53 ident: 2020.07.07.191742v1.71 article-title: The use of hairless (IAF/HA-HO) guinea pigs for the determination of delayed-type hypersensitivity to tuberculin publication-title: Int Immunopharmacol – volume: 30 start-page: 7072 year: 2010 end-page: 7 ident: 2020.07.07.191742v1.66 article-title: Connexin 43 mediates the tangential to radial migratory switch in ventrally derived cortical interneurons publication-title: J Neurosci – volume: 20 start-page: 658 year: 2012 end-page: 66 ident: 2020.07.07.191742v1.50 article-title: Adaptation of the dermal collagen structure of human skin and scar tissue in response to stretch: an experimental study publication-title: Wound Repair Regen – volume: 10 start-page: e0142931 year: 2015 ident: 2020.07.07.191742v1.58 article-title: A Comparative Analysis of Gene Expression Profiles during Skin Regeneration in Mus and Acomys publication-title: PLoS One – volume: 208 start-page: 307 year: 1999 end-page: 23 ident: 2020.07.07.191742v1.67 article-title: Connexin 43 expression reflects neural crest patterns during cardiovascular development publication-title: Dev Biol – volume: 6 start-page: e26379 year: 2011 ident: 2020.07.07.191742v1.65 article-title: Connexin43 modulates cell polarity and directional cell migration by regulating microtubule dynamics publication-title: PLoS One – volume: 4 start-page: 203 year: 1996 end-page: 10 ident: 2020.07.07.191742v1.46 article-title: Regulation of wound healing from a connective tissue perspective publication-title: Wound Repair Regen – volume: 3 start-page: 150 year: 1990 end-page: 6 ident: 2020.07.07.191742v1.35 article-title: Hairless pigmented guinea pigs: a new model for the study of mammalian pigmentation publication-title: Pigment Cell Res – volume: 109 start-page: 385 year: 2016 end-page: 96 ident: 2020.07.07.191742v1.28 article-title: Sphingosine- 1-phosphate reduces ischaemia-reperfusion injury by phosphorylating the gap junction protein Connexin43 publication-title: Cardiovasc Res – volume: 8 year: 2019 ident: 2020.07.07.191742v1.40 article-title: Toward understanding scarless skin wound healing and pathological scarring publication-title: F1000Res – volume: 23 start-page: 203 year: 2015 end-page: 12 ident: 2020.07.07.191742v1.68 article-title: Topical administration of a connexin43-based peptide augments healing of chronic neuropathic diabetic foot ulcers: A multicenter, randomized trial publication-title: Wound Repair Regen – volume: 24 start-page: 371 year: 2012 end-page: 8 ident: 2020.07.07.191742v1.57 article-title: Fetal wound healing: implications for minimal scar formation publication-title: Curr Opin Pediatr – volume: 19 start-page: s32 issue: Suppl 1 year: 2011 end-page: 7 ident: 2020.07.07.191742v1.5 article-title: Recommendations on clinical proof of efficacy for potential scar prevention and reduction therapies publication-title: Wound Repair Regen – volume: 19 year: 2018 ident: 2020.07.07.191742v1.15 article-title: Connexin 43-Based Therapeutics for Dermal Wound Healing publication-title: Int J Mol Sci – volume: 151 start-page: 1513 year: 2012 end-page: 27 ident: 2020.07.07.191742v1.61 article-title: Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration publication-title: Cell – volume: 3 start-page: S13 issue: Suppl 2 year: 2015 end-page: 20 ident: 2020.07.07.191742v1.2 article-title: Estimated need for surgery worldwide based on prevalence of diseases: a modelling strategy for the WHO Global Health Estimate publication-title: Lancet Glob Health – volume: 364 start-page: 1385 year: 2006 end-page: 405 ident: 2020.07.07.191742v1.39 article-title: Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications publication-title: Philos Trans A Math Phys Eng Sci – volume: 105 start-page: 59 year: 2018 end-page: 67 ident: 2020.07.07.191742v1.18 article-title: Upregulation of epidermal gap junctional proteins in patients with venous disease publication-title: Br J Surg – volume: 16 start-page: 5686 year: 2005 end-page: 98 ident: 2020.07.07.191742v1.22 article-title: Zonula occludens-1 alters connexin43 gap junction size and organization by influencing channel accretion publication-title: Mol Biol Cell – volume: 25 start-page: 619 year: 2013 end-page: 26 ident: 2020.07.07.191742v1.60 article-title: Guiding cell migration by tugging publication-title: Curr Opin Cell Biol – volume: 79 start-page: 264 year: 1982 end-page: 9 ident: 2020.07.07.191742v1.54 article-title: Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reepithelialization publication-title: J Invest Dermatol – volume: 66 start-page: 13 year: 2012 end-page: 24 ident: 2020.07.07.191742v1.6 article-title: Cutaneous scarring: Pathophysiology, molecular mechanisms, and scar reduction therapeutics Part II. Strategies to reduce scar formation after dermatologic procedures publication-title: J Am Acad Dermatol – year: 2019 ident: 2020.07.07.191742v1.78 article-title: Building a Better Scar: Reengineering Extracellular Matrix Structure in Dermal Scars publication-title: Virginia Tech PhD dissertation – volume: 56 start-page: 262 year: 2000 end-page: 70 ident: 2020.07.07.191742v1.72 article-title: Evaluation of percutaneous penetration of natural rubber latex proteins publication-title: Toxicol Sci – volume: 359 year: 2002 ident: 2020.07.07.191742v1.52 publication-title: D.E.F. Pathology for Surgeons in Training Third Edition: An A-Z Revision Text – volume: 179 start-page: 1301 year: 2007 end-page: 9 ident: 2020.07.07.191742v1.26 article-title: Phosphorylation at S365 is a gatekeeper event that changes the structure of Cx43 and prevents downregulation by PKC publication-title: J Cell Biol – volume: 62 start-page: 514 year: 1974 end-page: 6 ident: 2020.07.07.191742v1.42 article-title: Early differential diagnosis between hypertrophic and nonhypertrophic healing publication-title: J Invest Dermatol – volume: 17 start-page: 1569 year: 2018 end-page: 1580 ident: 2020.07.07.191742v1.38 article-title: Potential strain-dependent mechanisms defining matrix alignment in healing tendons publication-title: Biomech Model Mechanobiol – volume: 110 start-page: 2266 year: 2016 end-page: 77 ident: 2020.07.07.191742v1.41 article-title: Emergence of Collagen Orientation Heterogeneity in Healing Infarcts and an Agent-Based Model publication-title: Biophys J – volume: 245 start-page: 82 year: 2012 end-page: 9 ident: 2020.07.07.191742v1.45 article-title: Collagen bundle morphometry in skin and scar tissue: a novel distance mapping method provides superior measurements compared to Fourier analysis publication-title: J Microsc – year: 2014 ident: 2020.07.07.191742v1.34 publication-title: Version 2014a – volume: 50 start-page: 85 year: 2011 end-page: 93 ident: 2020.07.07.191742v1.55 article-title: Strategies for prevention of scars: what can we learn from fetal skin? publication-title: Int J Dermatol – volume: 8 start-page: e012385 year: 2019 ident: 2020.07.07.191742v1.24 article-title: Interaction of alpha Carboxyl Terminus 1 Peptide With the Connexin 43 Carboxyl Terminus Preserves Left Ventricular Function After Ischemia-Reperfusion Injury publication-title: J Am Heart Assoc – volume: 6 start-page: 12 year: 2013 end-page: 6 ident: 2020.07.07.191742v1.4 article-title: A prospective, randomized, placebo controlled, double blind study of silicone gel in prevention of hypertrophic scar at donor site of skin grafting publication-title: J Cutan Aesthet Surg – volume: 27 start-page: 513 year: 2019 end-page: 517 ident: 2020.07.07.191742v1.1 article-title: Management of Surgical Scars publication-title: Facial Plast Surg Clin North Am – volume: 13 start-page: 1697 year: 2003 end-page: 703 ident: 2020.07.07.191742v1.14 article-title: Targeting connexin43 expression accelerates the rate of wound repair publication-title: Curr Biol – volume: 4 start-page: 205 year: 2009 end-page: 23 ident: 2020.07.07.191742v1.29 article-title: Connexin43 carboxyl-terminal peptides reduce scar progenitor and promote regenerative healing following skin wounding publication-title: Regen Med – volume: 6 start-page: 149 year: 2009 end-page: 58 ident: 2020.07.07.191742v1.59 article-title: Role of integrins and focal adhesion kinase in the orientation of dermal fibroblasts exposed to cyclic strain publication-title: Int Wound J – volume: 167 start-page: 555 year: 2004 end-page: 62 ident: 2020.07.07.191742v1.13 article-title: Protein kinase C spatially and temporally regulates gap junctional communication during human wound repair via phosphorylation of connexin43 on serine368 publication-title: J Cell Biol – volume: 2 start-page: 55 year: 2013 end-page: 62 ident: 2020.07.07.191742v1.30 article-title: A Connexin43 Mimetic Peptide Promotes Regenerative Healing and Improves Mechanical Properties in Skin and Heart publication-title: Adv Wound Care (New Rochelle) – volume: 199 start-page: 449 year: 1999 end-page: 71 ident: 2020.07.07.191742v1.44 article-title: Mathematical modelling of extracellular matrix dynamics using discrete cells: fiber orientation and tissue regeneration publication-title: J Theor Biol – volume: 31 year: 2009 ident: 2020.07.07.191742v1.33 article-title: CircStat: A Matlab Toolbox for Circular Statistics, Journal of Statistical Software publication-title: Journal of Statistical Software – volume: 590 start-page: 4585 year: 2012 end-page: 602 ident: 2020.07.07.191742v1.37 article-title: Mechanical regulation of fibroblast migration and collagen remodelling in healing myocardial infarcts publication-title: J Physiol – volume: 323 start-page: 642 year: 2009 end-page: 4 ident: 2020.07.07.191742v1.62 article-title: Mechanically activated integrin switch controls alpha5beta1 function publication-title: Science – volume: 33 start-page: 1166 year: 2018 end-page: 1182 ident: 2020.07.07.191742v1.74 article-title: Live Imaging of Type I Collagen Assembly Dynamics in Osteoblasts Stably Expressing GFP and mCherry-Tagged Collagen Constructs publication-title: J Bone Miner Res – volume: 21 start-page: 612 year: 2012 end-page: 8 ident: 2020.07.07.191742v1.11 article-title: The G60S Cx43 mutant enhances keratinocyte proliferation and differentiation publication-title: Exp Dermatol – volume: 125 start-page: 695 year: 2012 end-page: 702 ident: 2020.07.07.191742v1.12 article-title: CASK (LIN2) interacts with Cx43 in wounded skin and their coexpression affects cell migration publication-title: J Cell Sci – volume: 3 start-page: 344 year: 2014 end-page: 355 ident: 2020.07.07.191742v1.56 article-title: Targeting Inflammatory Cytokines and Extracellular Matrix Composition to Promote Wound Regeneration publication-title: Adv Wound Care (New Rochelle) – volume: 8 start-page: 69 year: 1991 end-page: 72 ident: 2020.07.07.191742v1.73 article-title: The hairless guinea pig as an experimental animal for photodermatology publication-title: Photodermatol Photoimmunol Photomed – year: 2011 ident: 2020.07.07.191742v1.51 article-title: A Peptide Mimetic of the Connexin43 Carboxyl Terminus Reduces Gap Junction Remodeling and Induced Arrhythmia Following Ventricular Injury publication-title: Circ Res – volume: 173 start-page: 1205 year: 2015 end-page: 15 ident: 2020.07.07.191742v1.19 article-title: Abnormal connexin expression in human chronic wounds publication-title: Br J Dermatol – year: 2016 ident: 2020.07.07.191742v1.70 article-title: A Study of Granexin (αCT1) Gel in the Treatment of Diabetic Foot Ulcer – volume: 298 start-page: H221 year: 2010 end-page: 8 ident: 2020.07.07.191742v1.32 article-title: Evolution of scar structure, mechanics, and ventricular function after myocardial infarction in the rat publication-title: Am J Physiol Heart Circ Physiol – volume: 254 start-page: 217 year: 2011 end-page: 25 ident: 2020.07.07.191742v1.48 article-title: Improving cutaneous scar formation by controlling the mechanical environment: large animal and phase I studies publication-title: Ann Surg – year: 2005 ident: 2020.07.07.191742v1.77 – year: 2011 ident: 2020.07.07.191742v1.23 article-title: Connexin43 Connexon to Gap Junction Transition Is Regulated by Zonula Occludens-1 publication-title: Mol Biol Cell – volume: 23 start-page: 2268 year: 2017 end-page: 2275 ident: 2020.07.07.191742v1.7 article-title: The Effectiveness of Topical Anti-scarring Agents and a Novel Combined Process on Cutaneous Scar Management publication-title: Curr Pharm Des – volume: 55 start-page: 233 year: 1974 end-page: 6 ident: 2020.07.07.191742v1.43 article-title: Orientation of collagen in wound healing publication-title: Br J Exp Pathol – volume: 309 start-page: C600 year: 2015 end-page: 7 ident: 2020.07.07.191742v1.64 article-title: The connexin 43/ZO-1 complex regulates cerebral endothelial F-actin architecture and migration publication-title: Am J Physiol Cell Physiol – volume: 26 start-page: 173 year: 2008 end-page: 80 ident: 2020.07.07.191742v1.8 article-title: Novel therapies for scar reduction and regenerative healing of skin wounds publication-title: Trends Biotechnol – volume: 79 start-page: 50 year: 2015 end-page: 56 ident: 2020.07.07.191742v1.20 article-title: Connexin 43 deficiency accelerates skin wound healing and extracellular matrix remodeling in mice publication-title: J Dermatol Sci – volume: 373 start-page: 1264 year: 2009 end-page: 74 ident: 2020.07.07.191742v1.75 article-title: Prophylactic administration of avotermin for improvement of skin scarring: three double-blind, placebo-controlled, phase I/II studies publication-title: Lancet – volume: 133 start-page: 398 year: 2014 end-page: 405 ident: 2020.07.07.191742v1.3 article-title: The embrace device significantly decreases scarring following scar revision surgery in a randomized controlled trial publication-title: Plast Reconstr Surg – volume: 79 start-page: 760 year: 1995 end-page: 5 ident: 2020.07.07.191742v1.49 article-title: Scar tissue orientation in unsutured and sutured corneal wound healing publication-title: Br J Ophthalmol – volume: 61 start-page: 161 year: 2005 end-page: 71 ident: 2020.07.07.191742v1.63 article-title: The last but not the least: the origin and significance of trailing adhesions in fibroblastic cells publication-title: Cell Motil Cytoskeleton – volume: 10 start-page: e0115524 year: 2015 ident: 2020.07.07.191742v1.10 article-title: Expression and function of connexin 43 in human gingival wound healing and fibroblasts publication-title: PLoS One – volume: 6 start-page: 1491 year: 1995 end-page: 501 ident: 2020.07.07.191742v1.17 article-title: Wounding alters epidermal connexin expression and gap junction- mediated intercellular communication publication-title: Mol Biol Cell – volume: 60-61 start-page: 1 year: 2017 end-page: 4 ident: 2020.07.07.191742v1.53 article-title: The provisional matrix: setting the stage for tissue repair outcomes publication-title: Matrix Biol – ident: 2020.07.07.191742v1.76 article-title: National Institutes of Health: Office of Intramural Research, Office of Animal Care and Use – volume: 98 start-page: 1498 year: 2006 end-page: 505 ident: 2020.07.07.191742v1.27 article-title: Selectivity of connexin 43 channels is regulated through protein kinase C-dependent phosphorylation publication-title: Circ Res – year: 2007 ident: 2020.07.07.191742v1.21 article-title: A Murine Living Skin Equivalent Amenable to Live-Cell Imaging: Analysis of the Roles of Connexins in the Epidermis publication-title: J Invest Dermatol – year: 2018 ident: 2020.07.07.191742v1.16 article-title: Therapeutic strategies targeting connexins publication-title: Nat Rev Drug Discov – volume: 137 start-page: 620 year: 2017 end-page: 630 ident: 2020.07.07.191742v1.31 article-title: A Multicenter Randomized Controlled Trial Evaluating a Cx43-Mimetic Peptide in Cutaneous Scarring publication-title: J Invest Dermatol |
SSID | ssj0002961374 |
Score | 1.5972732 |
SecondaryResourceType | preprint |
Snippet | Phase II clinical trials have reported that acute treatment of surgical skin wounds with the therapeutic peptide αCT1 improves cutaneous scar appearance by 47%... |
SourceID | biorxiv |
SourceType | Open Access Repository |
SubjectTerms | Cell Biology |
Title | The Connexin 43 Carboxyl Terminal Mimetic Peptide αCT1 Prompts Differentiation of a Collagen Scar Matrix Resembling Unwounded Skin |
URI | https://www.biorxiv.org/content/10.1101/2020.07.07.191742 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na8MwDDWjZbDbPtln0WDXFMdx4-S6rqUMWspoobdixw4U2rRk2dae94v2R_abJiVh9LDDIKcQE5AtPct61mPsQcU89f2Qe2lipSeVDj0Tp7FntJS4RCIdC7rvPByFg6l8nnVme1JfRKs0i3W-XbyXdXwibGP0rZyb-5Sr87LbpmpTpiEx-jZxSQlSbejP2r_HKyJGnFKyrmP-ORJ3vPWf9hClf8yaY71x-Qk7cNkpO6wkIXdn7BPnDUr2yXaRgQygq3Oz3u6WMKloK0sYLlZ08xDGREixDr6_uhMfxjl6dvEKT7XiSVHZHNYpaKDjAQwcGVC9BYbUln8LRLpbGbqODtPsg-SVnAUS4zpnk35v0h14tVCCZzCWeUEQI-qrTigjkUhfBQKDhgo61oQiRjhOhVPCaYnOrQOZcM1TIztGY-ZnhYpMcMEa2Tpzlwwii_sVp2OrELuTyCH8W-50yFPpJ9yKK3Zf22y-qbphzMmuc67oqex6_Y9vbtgRvSt5r-qWNYr8zd0huhemxZqPvdH4pVXO5w86H6Ak |
linkProvider | Cold Spring Harbor Laboratory Press |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60RfTmE9-O4DVls9lmk3O1VG1LDxF6K7vZDRQ0LWnV9uwv8o_4m5xJgnjwIOSWLIHZnfnm8e0MYzcq5pnvh9zLUis9qXTomTiLPaOlxCMS6VjQfefBMOw9yYdxe1wn3BY1rdJMZ8Vq-lbW8Ymwjda3Um7uU6zOy26bqkWRhhQtSlNvsiaeK58oXd1x6yfHImIEKyXrYuafy9HtrX_3C1a6u6w50nNX7LENl--zrWou5PqAfeDmQUlBWU1zkAF0dGFmq_UzJBV35RkG0xe6fggjYqVYB1-fncSHUYHqvVzAbT32ZFkJHmYZaKAcAVqPHKjoAgPqzb8CYt69GLqTDk_5O81YchZoItchS7p3Safn1dMSPIMGzQuCGKFftUMZiVT6KhBoOVTQtiYUMWJyJpwSTkvUcB3IlGueGdk2GsM_K1RkgiPWyGe5O2YQWXRanI6tQgBPI4c-gOVOhzyTfsqtOGHXtcwm86olxoTkOuGKnkqup__45opt95JBf9K_Hz6esR16XxJh1TlrLItXd4FwvzSX5Z5-AwjYo2E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8JAEF5apaW3Pum7U-g1stms2eSslb4UDwreZDe7AUGjpLbVc39R_0h_U2eSUDz0UMgtYQOz855vZhi7UzFPfT_kXppY6UmlQ8_EaewZLSWySKRjQf3O3V74MJRPo-ZooxeGYJVmMs9Xk_eijk-AbdS-pXBzn2J1XkzbVA2KNKRoUJq6sbDpNqsjb_nE2Z1R4zfPImI0WEpWBc0_j0DXt_rlhmnp7LN6Xy9cfsC2XHbIdsrdkOsj9okXCAUMZTXJQAbQ0rmZr9ZTGJT4lSl0JzNqQYQ-IVOsg--v1sCHfo4ivnyFdrX6ZFkSH-YpaKA8AWqQDKjwAl2az78CQt_NDPWlwzD7oD1LzgJt5Tpmg879oPXgVRsTPINKzQuCGM2_aoYyEon0VSBQe6igaU0oYrTLqXBKOC1RynUgE655amTTaAwBrVCRCU5YLZtn7pRBZNFxcTq2Co14Ejn0Ayx3OuSp9BNuxRm7rWg2XpRjMcZE1zFX9JR0Pf_HNzdst9_ujF8ee88XbI9eF1hYdclqy_zNXaHFX5rr4kp_AI_kpHI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Connexin+43+Carboxyl+Terminal+Mimetic+Peptide+%CE%B1CT1+Prompts+Differentiation+of+a+Collagen+Scar+Matrix+Resembling+Unwounded+Skin&rft.jtitle=bioRxiv&rft.au=Montgomery%2C+Jade&rft.au=Richardson%2C+William+J.&rft.au=Rhett%2C+J.+Matthew&rft.au=Bustos%2C+Francis&rft.date=2020-07-07&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2020.07.07.191742&rft.externalDocID=2020.07.07.191742v1 |