Polygenic hazard score models for the prediction of Alzheimer’s free survival using the lasso for Cox’s proportional hazards model

The prediction of the susceptibility of an individual to a certain disease is an important and timely research area. An established technique is to estimate the risk of an individual with the help of an integrated risk model, that is a polygenic risk score with added epidemiological covariates. Howe...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Hahn, Georg, Prokopenko, Dmitry, Hecker, Julian, Lutz, Sharon M., Mullin, Kristina, Tanzi, Rudolph E., DeSantis, Stacia, Lange, Christoph
Format Paper
LanguageEnglish
Published Cold Spring Harbor Laboratory 22.04.2024
Edition1.1
Subjects
Online AccessGet full text
ISSN2692-8205
DOI10.1101/2024.04.18.590111

Cover

Abstract The prediction of the susceptibility of an individual to a certain disease is an important and timely research area. An established technique is to estimate the risk of an individual with the help of an integrated risk model, that is a polygenic risk score with added epidemiological covariates. However, integrated risk models do not capture any time dependence, and may provide a point estimate of the relative risk with respect to a reference population. The aim of this work is twofold. First, we explore and advocate the idea of predicting the time dependent hazard and survival (defined as disease free time) of an individual for the onset of a disease. This provides a practitioner with a much more differentiated view of the absolute survival as a function of time. Second, to compute the time dependent risk of an individual, we use published methodology to fit a Cox’s proportional hazard model to data from a genetic SNP study of time to Alzheimer’s disease (AD) onset, using the lasso to incorporate further epidemiological variables such as sex, APOE (apolipoprotein E, a genetic risk factor for AD) status, ten leading principal components, and selected genomic loci. We apply the lasso for Cox’s proportional hazards to a dataset of 6792 AD patients (composed of 4102 cases and 2690 controls) and 87 covariates. We demonstrate that fitting a lasso model for Cox’s proportional hazards allows one to obtain more accurate survival curves than with state-of-the-art (likelihood-based) methods. Moreover, the methodology allows one to obtain personalized survival curves for a patient, thus giving a much more differentiated view of the expected progression of a disease than the view offered by integrated risk models. The runtime to compute personalized survival curves is under a minute for the entire dataset of AD patients, thus enabling it to handle datasets with 60, 000 to 100, 000 subjects in less than one hour.
AbstractList The prediction of the susceptibility of an individual to a certain disease is an important and timely research area. An established technique is to estimate the risk of an individual with the help of an integrated risk model, that is a polygenic risk score with added epidemiological covariates. However, integrated risk models do not capture any time dependence, and may provide a point estimate of the relative risk with respect to a reference population. The aim of this work is twofold. First, we explore and advocate the idea of predicting the time dependent hazard and survival (defined as disease free time) of an individual for the onset of a disease. This provides a practitioner with a much more differentiated view of the absolute survival as a function of time. Second, to compute the time dependent risk of an individual, we use published methodology to fit a Cox’s proportional hazard model to data from a genetic SNP study of time to Alzheimer’s disease (AD) onset, using the lasso to incorporate further epidemiological variables such as sex, APOE (apolipoprotein E, a genetic risk factor for AD) status, ten leading principal components, and selected genomic loci. We apply the lasso for Cox’s proportional hazards to a dataset of 6792 AD patients (composed of 4102 cases and 2690 controls) and 87 covariates. We demonstrate that fitting a lasso model for Cox’s proportional hazards allows one to obtain more accurate survival curves than with state-of-the-art (likelihood-based) methods. Moreover, the methodology allows one to obtain personalized survival curves for a patient, thus giving a much more differentiated view of the expected progression of a disease than the view offered by integrated risk models. The runtime to compute personalized survival curves is under a minute for the entire dataset of AD patients, thus enabling it to handle datasets with 60, 000 to 100, 000 subjects in less than one hour.
Author DeSantis, Stacia
Tanzi, Rudolph E.
Prokopenko, Dmitry
Lange, Christoph
Hahn, Georg
Lutz, Sharon M.
Mullin, Kristina
Hecker, Julian
Author_xml – sequence: 1
  givenname: Georg
  orcidid: 0000-0001-6008-2720
  surname: Hahn
  fullname: Hahn, Georg
  email: ghahn@hsph.harvard.edu
  organization: Harvard T.H. Chan School of Public Health
– sequence: 2
  givenname: Dmitry
  surname: Prokopenko
  fullname: Prokopenko, Dmitry
  organization: Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital
– sequence: 3
  givenname: Julian
  surname: Hecker
  fullname: Hecker, Julian
  organization: Channing Divsion of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School
– sequence: 4
  givenname: Sharon M.
  surname: Lutz
  fullname: Lutz, Sharon M.
  organization: Harvard T.H. Chan School of Public Health
– sequence: 5
  givenname: Kristina
  surname: Mullin
  fullname: Mullin, Kristina
  organization: Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital
– sequence: 7
  givenname: Rudolph E.
  surname: Tanzi
  fullname: Tanzi, Rudolph E.
  organization: Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital
– sequence: 8
  givenname: Stacia
  surname: DeSantis
  fullname: DeSantis, Stacia
  organization: The University of Texas Health Science Center
– sequence: 9
  givenname: Christoph
  surname: Lange
  fullname: Lange, Christoph
  organization: Harvard T.H. Chan School of Public Health
BookMark eNotkLFOwzAURS0EEqX0A9g8siT4JW4cj1UFFKkSDN0jx35ujdI4stuq7cTEP_B7fAltw3SXc8-V7h25bn2LhDwASwEYPGUs4ynjKZTpWDIAuCKDrJBZUmZsfEtGMX4yxjJZQC74gHx_-OawxNZpulJHFQyN2geka2-widT6QDcrpF1A4_TG-ZZ6SyfNcYVujeH36-fEBEQat2Hndqqh2-ja5aXTqBj9xTD1-wvZBd_5cLacwH4u9kv35MaqJuLoP4dk8fK8mM6S-fvr23QyT2pRQIKMA5hcWaGYlkpYkeeSW8sYltLwugBRCw1YF6ilsMqUKFFpWxglBKDKh-Sx19bOh73bVV1waxUO1fm1ivEKyqp_Lf8DIwRqAg
ContentType Paper
Copyright 2024, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2024, Posted by Cold Spring Harbor Laboratory
DBID FX.
DOI 10.1101/2024.04.18.590111
DatabaseName bioRxiv
DatabaseTitleList
Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 2024.04.18.590111v1
GroupedDBID 8FE
8FH
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
FX.
HCIFZ
LK8
M7P
NQS
PIMPY
PROAC
RHI
ID FETCH-LOGICAL-b761-e0411d3af7a0c9a7f73394ff00e89d4b617b7c1eb6ec97fad8e9eacf6da771ea3
IEDL.DBID FX.
IngestDate Tue Jan 07 18:59:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords Penalized regression
Cox proportional hazard
Alzheimer
Survival
Lasso
Language English
License The copyright holder for this pre-print is the author. All rights reserved. The material may not be redistributed, re-used or adapted without the author's permission.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b761-e0411d3af7a0c9a7f73394ff00e89d4b617b7c1eb6ec97fad8e9eacf6da771ea3
Notes Competing Interest Statement: The authors have declared no competing interest.
ORCID 0000-0001-6008-2720
OpenAccessLink https://www.biorxiv.org/content/10.1101/2024.04.18.590111
PageCount 22
ParticipantIDs biorxiv_primary_2024_04_18_590111
PublicationCentury 2000
PublicationDate 20240422
PublicationDateYYYYMMDD 2024-04-22
PublicationDate_xml – month: 4
  year: 2024
  text: 20240422
  day: 22
PublicationDecade 2020
PublicationTitle bioRxiv
PublicationYear 2024
Publisher Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory
References Desikan, Fan, Wang, Schork, Cabral, Cupples, Thompson, Besser, Kukull, Holland, Chen, Brewer, Karow, Kauppi, Witoelar, Karch, Bonham, Yokoyama, Rosen, Miller, Dillon, Wilson, Hess, Pericak-Vance, Haines, Farrer, Mayeux, Hardy, Goate, Hyman, Schellenberg, McEvoy, Andreassen, Dale (2024.04.18.590111v1.6) 2017; 14
Huang, Darbar (2024.04.18.590111v1.13) 2017; 33
Goldfarb (2024.04.18.590111v1.11) 1970; 24
Ozenne, Sørensen, Scheike, Torp-Pedersen, Gerds (2024.04.18.590111v1.25) 2017; 9
Shanno (2024.04.18.590111v1.30) 1970; 24
Fraser, Shavlik (2024.04.18.590111v1.9) 1999; 18
Mak, Porsch, Choi, Zhou, Sham (2024.04.18.590111v1.22) 2017; 41
Cox (2024.04.18.590111v1.5) 1975; 62
Hastie, Tibshirani, Friedman (2024.04.18.590111v1.12) 2016
Lambert, Abraham, Inouye (2024.04.18.590111v1.20) 2019; 28
Zou (2024.04.18.590111v1.39) 2006; 101
Gerds, Ohlendorff, Blanche, Mortensen, Wright, Tollenaar, Muschelli, Mogensen, Ozenne (2024.04.18.590111v1.10) 2022
Leonenko, Sims, Shoai, Frizzati, Bossù, Spalletta, Fox, Williams, consortium, Hardy, Escott-Price (2024.04.18.590111v1.21) 2019; 6
Putter, Fiocco, Geskus (2024.04.18.590111v1.29) 2007; 26
Prokopenko, Hecker, Silverman, Pagano, Nöthen, Dina, Lange, Fier (2024.04.18.590111v1.27) 2016; 32
Beecham, Bis, Martin, Choi, DeStefano, van Duijn, Fornage, Gabriel, Koboldt, Larson, Naj, Psaty, Salerno, Bush, Foroud, Wijsman, Farrer, Goate, Haines, Pericak-Vance, Boerwinkle, Mayeux, Seshadri, Schellenberg (2024.04.18.590111v1.1) 2017; 3
Broyden (2024.04.18.590111v1.3) 1970; 6
Kalbfleisch, Prentice (2024.04.18.590111v1.16) 2002
Prentice, Kalbfleisch (2024.04.18.590111v1.26) 1979; 35
Inouye, Abraham, Nelson, Wood, Sweeting, Dudbridge, Lai, Kaptoge, Brozynska, Wang, Ye, Webb, Rutter, Tzoulaki, Patel, Loos, Keavney, Hemingway, Thompson, Watkins, Deloukas, Di Angelantonio, Butterworth, Danesh, Samani (2024.04.18.590111v1.14) 2018; 72
Zhang, Lu (2024.04.18.590111v1.38) 2007; 94
Knowles, Ashley (2024.04.18.590111v1.19) 2018; 15
Tibshirani (2024.04.18.590111v1.35) 1997; 16
Yang, Luo, DeSantis (2024.04.18.590111v1.37) 2019; 28
Kirkpatrick, Gelatt Jr, Vecchi (2024.04.18.590111v1.18) 1983; 220
Motazedi, Cheng, Thomassen, Frei, Rongve, Athanasiu, Bahrami, Shadrin, Ulstein, Stordal, Brækhus, Saltvedt, Sando, O’Connell, Hindley, van der Meer, Bergh, Nordestgaard, Tybjærg-Hansen, Brthen, Pihlstrm, Djurovic, Frikke-Schmidt, Fladby, Aarsland, Selbæk, Seibert, Dale, Fan, Andreassen (2024.04.18.590111v1.24) 2022; 88
(2024.04.18.590111v1.32) 2009; 460
Tan, Fan, Mormino, Sugrue, Broce, Hess, Dillon, Bonham, Yokoyama, Karch, Brewer, Rabinovici, Miller, Schellenberg, Kauppi, Feldman, Holland, McEvoy, Hyman, Bennett, Andreassen, Dale, Desikan (2024.04.18.590111v1.31) 2018; 135
Fletcher (2024.04.18.590111v1.8) 1970; 13
Khera, Chaffin, Aragam, Haas, Roselli, Choi, Natarajan, Lander, Lubitz, Ellinor, Kathiresan (2024.04.18.590111v1.17) 2018; 50
Duncan, Shen, Gelaye, Meijsen, adn M. Feldman, Peterson, Domingue (2024.04.18.590111v1.7) 2019; 10
Tibshirani (2024.04.18.590111v1.34) 1996; 58
Bellenguez, Kσçσkali, Jansen (2024.04.18.590111v1.2) 2022; 54
Cox (2024.04.18.590111v1.4) 1972; 34
Therneau, Lumley, Elizabeth, Cynthia (2024.04.18.590111v1.33) 2022; 3
Jia, Baig, Mirza, GholamHosseini (2024.04.18.590111v1.15) 2019; 2019
Wand, Lambert, Tamburro, Iacocca, O’Sullivan, Sillari, Kullo, Rowley, Dron, Brockman, Venner, McCarthy, Antoniou, Easton, Hegele, Khera, Chatterjee, Kooperberg, Edwards, Vlessis, Kinnear, Danesh, Parkinson, Ramos, Roberts, Ormond, Khoury, Janssens, Goddard, Kraft, MacArthur, Inouye, Wojcik (2024.04.18.590111v1.36) 2021; 591
Putter, de Wreede, Fiocco, Geskus, Bonneville, Manevski (2024.04.18.590111v1.28) 2021
Mak, Porsch, Choi, Zhou, Sham (2024.04.18.590111v1.23) 2020
References_xml – volume: 9
  start-page: 440
  issue: 2
  year: 2017
  end-page: 460
  ident: 2024.04.18.590111v1.25
  article-title: riskRegression: Predicting the Risk of an Event using Cox Regression Models
  publication-title: The R Journal
– volume: 54
  start-page: 412
  year: 2022
  end-page: 436
  ident: 2024.04.18.590111v1.2
  article-title: New insights into the genetic etiology of Alzheimer’s disease and related dementias
  publication-title: Nat Genet
– volume: 220
  start-page: 671
  issue: 4598
  year: 1983
  end-page: 680
  ident: 2024.04.18.590111v1.18
  article-title: Optimization by Simulated Annealing
  publication-title: Science
– volume: 28
  start-page: 2524
  issue: 8
  year: 2019
  end-page: 2537
  ident: 2024.04.18.590111v1.37
  article-title: Bayesian quantile regression joint models: inference and dynamic predictions
  publication-title: Stat Methods Med Res
– volume: 26
  start-page: 2389
  issue: 11
  year: 2007
  end-page: 2430
  ident: 2024.04.18.590111v1.29
  article-title: Tutorial in biostatistics: competing risks and multi-state models
  publication-title: Stat Med
– volume: 16
  start-page: 385
  issue: 4
  year: 1997
  end-page: 95
  ident: 2024.04.18.590111v1.35
  article-title: The lasso method for variable selection in the Cox model
  publication-title: Stat Med
– volume: 94
  start-page: 691
  issue: 3
  year: 2007
  end-page: 703
  ident: 2024.04.18.590111v1.38
  article-title: Adaptive Lasso for Cox’s proportional hazards model
  publication-title: Biometrika
– volume: 15
  start-page: e1002546
  year: 2018
  ident: 2024.04.18.590111v1.19
  article-title: Cardiovascular disease: the rise of the genetic risk score
  publication-title: PLoS Med
– year: 2021
  ident: 2024.04.18.590111v1.28
  article-title: mstate: Data Preparation, Estimation and Prediction in Multi-State Models
  publication-title: R-package version 0.3.2
– volume: 34
  start-page: 187
  issue: 2
  year: 1972
  end-page: 220
  ident: 2024.04.18.590111v1.4
  article-title: Regression models and life-tables (with discussion)
  publication-title: J. R. Statist. Soc. B
– volume: 6
  start-page: 76
  year: 1970
  end-page: 90
  ident: 2024.04.18.590111v1.3
  article-title: The convergence of a class of double-rank minimization algorithms
  publication-title: Journal of the Institute of Mathematics and Its Applications
– volume: 18
  start-page: 397
  issue: 4
  year: 1999
  end-page: 410
  ident: 2024.04.18.590111v1.9
  article-title: The estimation of lifetime risk and average age at onset of a disease using a multivariate exponential hazard rate model
  publication-title: Stat Med
– year: 2016
  ident: 2024.04.18.590111v1.12
  article-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
  publication-title: Springer Series in Statistics
– volume: 2019
  issue: 8392348
  year: 2019
  ident: 2024.04.18.590111v1.15
  article-title: A Cox-Based Risk Prediction Model for Early Detection of Cardiovascular Disease: Identification of Key Risk Factors for the Development of a 10-Year CVD Risk Prediction
  publication-title: Adv Prev Med
– volume: 32
  start-page: 1366
  issue: 9
  year: 2016
  end-page: 1372
  ident: 2024.04.18.590111v1.27
  article-title: Utilizing the Jaccard index to reveal population stratification in sequencing data: A simulation study and an application to the 1000 Genomes Project
  publication-title: Bioinformatics
– volume: 10
  issue: 3328
  year: 2019
  ident: 2024.04.18.590111v1.7
  article-title: Analysis of polygenic risk score usage and performance in diverse human populations
  publication-title: Nature Communications
– volume: 88
  start-page: 1533
  issue: 4
  year: 2022
  end-page: 1544
  ident: 2024.04.18.590111v1.24
  article-title: Using Polygenic Hazard Scores to Predict Age at Onset of Alzheimer’s Disease in Nordic Populations
  publication-title: J Alzheimers Dis
– volume: 460
  start-page: 748
  year: 2009
  end-page: 752
  ident: 2024.04.18.590111v1.32
  article-title: Common polygenic variation contributes to risk of schizophrenia and bipolar disorder
  publication-title: Nature
– year: 2022
  ident: 2024.04.18.590111v1.10
  article-title: riskRegression: Risk Regression Models and Prediction Scores for Survival Analysis with Competing Risks
  publication-title: R-package version
– year: 2002
  ident: 2024.04.18.590111v1.16
  publication-title: The Statistical Analysis of Failure Time Data
– volume: 6
  start-page: 456
  issue: 3
  year: 2019
  end-page: 465
  ident: 2024.04.18.590111v1.21
  article-title: Polygenic risk and hazard scores for Alzheimer’s disease prediction
  publication-title: Ann Clin Transl Neurol
– volume: 41
  start-page: 469
  issue: 6
  year: 2017
  end-page: 480
  ident: 2024.04.18.590111v1.22
  article-title: Polygenic scores via penalized regression on summary statistics
  publication-title: Genet Epidemiol
– volume: 135
  start-page: 85
  issue: 1
  year: 2018
  end-page: 93
  ident: 2024.04.18.590111v1.31
  article-title: Polygenic hazard score: an enrichment marker for Alzheimer’s associated amyloid and tau deposition
  publication-title: Acta Neuropathol
– volume: 28
  start-page: R133
  issue: R2
  year: 2019
  end-page: R142
  ident: 2024.04.18.590111v1.20
  article-title: Towards clinical utility of polygenic risk scores
  publication-title: Human Molecular Genetics
– volume: 24
  start-page: 647
  issue: 111
  year: 1970
  end-page: 656
  ident: 2024.04.18.590111v1.30
  article-title: Conditioning of quasi-Newton methods for function minimization
  publication-title: Mathematics of Computation
– volume: 33
  start-page: 422
  issue: 4
  year: 2017
  end-page: 424
  ident: 2024.04.18.590111v1.13
  article-title: Genetic Risk Scores for Atrial Fibrillation: Do they Improve Risk Estimation?
  publication-title: Can J Cardiol
– volume: 72
  start-page: 1883
  issue: 16
  year: 2018
  end-page: 1893
  ident: 2024.04.18.590111v1.14
  article-title: Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults: Implications for Primary Prevention
  publication-title: J Am Coll Cardiol
– volume: 35
  start-page: 25
  issue: 1
  year: 1979
  end-page: 39
  ident: 2024.04.18.590111v1.26
  article-title: Hazard rate models with covariates
  publication-title: Biometrics
– volume: 50
  start-page: 1219
  year: 2018
  end-page: 1224
  ident: 2024.04.18.590111v1.17
  article-title: Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations
  publication-title: Nature Genetics
– volume: 101
  start-page: 1418
  issue: 476
  year: 2006
  end-page: 1429
  ident: 2024.04.18.590111v1.39
  article-title: The Adaptive Lasso and Its Oracle Properties
  publication-title: J Am Stat Assoc
– volume: 62
  start-page: 269
  issue: 2
  year: 1975
  end-page: 76
  ident: 2024.04.18.590111v1.5
  article-title: Partial likelihood
  publication-title: Biometrika
– volume: 14
  start-page: e1002258
  issue: 3
  year: 2017
  ident: 2024.04.18.590111v1.6
  article-title: Genetic assessment of age-associated Alzheimer disease risk: Development and validation of a polygenic hazard score
  publication-title: PLoS Med
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  end-page: 288
  ident: 2024.04.18.590111v1.34
  article-title: Regression Shrinkage and Selection Via the Lasso
  publication-title: J Roy Stat Soc B Met
– volume: 591
  start-page: 211
  year: 2021
  end-page: 219
  ident: 2024.04.18.590111v1.36
  article-title: Improving reporting standards for polygenic scores in risk prediction studies
  publication-title: Nature
– volume: 3
  start-page: e194
  issue: 5
  year: 2017
  ident: 2024.04.18.590111v1.1
  article-title: The Alzheimer’s Disease Sequencing Project: Study design and sample selection
  publication-title: Neurol Genet
– year: 2020
  ident: 2024.04.18.590111v1.23
  publication-title: Lassosum: a method for computing LASSO/Elastic Net estimates of a linear regression problem given summary statistics from GWAS and Genome-wide meta-analyses
– volume: 3
  start-page: 4
  year: 2022
  end-page: 0
  ident: 2024.04.18.590111v1.33
  article-title: survival: Survival Analysis
  publication-title: R-package version
– volume: 13
  start-page: 317
  issue: 3
  year: 1970
  end-page: 322
  ident: 2024.04.18.590111v1.8
  article-title: A New Approach to Variable Metric Algorithms
  publication-title: Computer Journal
– volume: 24
  start-page: 23
  issue: 109
  year: 1970
  end-page: 26
  ident: 2024.04.18.590111v1.11
  article-title: A Family of Variable Metric Updates Derived by Variational Means
  publication-title: Mathematics of Computation
SSID ssj0002961374
Score 1.7224704
SecondaryResourceType preprint
Snippet The prediction of the susceptibility of an individual to a certain disease is an important and timely research area. An established technique is to estimate...
SourceID biorxiv
SourceType Open Access Repository
SubjectTerms Bioinformatics
Title Polygenic hazard score models for the prediction of Alzheimer’s free survival using the lasso for Cox’s proportional hazards model
URI https://www.biorxiv.org/content/10.1101/2024.04.18.590111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NSgMxEA5iEbz5i78lgteVzW66SY5aWopgKaLQ25JkJ1rQbtmqtD158h18PZ_ESXYRDx68hkkGZpKZSWYyHyHnTAmlO66IOjLrRNxaG0n0ixEYA1Jw50z4FHYzzAb3_HrcGf-C-vJllWZSVovJW8jj-4JttL714Y6Zv6tz35uUyYvwaxIvPi3cUolHbeiPL36eVxKFfkrwJo_550yMeBtOvzxKf4u0RnoG1TZZg-kO2aghIZe75GNUPi1RqRNLH_UK1UfnvtEkDYg1c4ohJsWQjc4qn2DxQqWlo5dPq0eYPEP19f6JNBUAnb-iDcBdRH1h-0OY4-PkMqzQLReBcuYhEqr6NbBhN6857ZG7fu-uO4garITIiIxFEHPGilQ7oWOrtHAiTRVKOo5BqoIbjFOMsAxMBlYJpwsJCk2uywotBAOd7pP1aTmFA0KtUAkIY8Exy4VIFbMyk7G1EJRqDslZI7Z8VjfEyL1o85jnTOa1aI_-QXNMNv2Yz8wkyQlZf6le4RQd_Itpk9ZVbzi6bQeVfgOyaqhi
linkProvider Cold Spring Harbor Laboratory Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gCMGNp3gTJK6dmjZrkiOamMZjE4ch7VYlqQOTYK3agdhOnPgP_D1-CUlaIQ4cOMepJTu1v9iOjdA5EUzIjsmCDk86AdVaB9z6xQCUAs6oMco_ChsMk_49vR53xk3ArWrKKtUkL98mrz6P7wq2rfWtf-6QuLs6db1JCW_7V5Ok7cLUy2jFniviSrp64_ZPjCUS1lkx2iQz_9xuYW_D7pdb6W2glTtZQLmJlmC6hVbruZDzbfRxlz_NrWYnGj_KhdUhrly3SezH1lTY4kxscRsuSpdlcZLFucEXT4tHmDxD-fX-aWlKAFy9WENgjxJ21e0Pfo8Dy7n_Qjd_85SFm5NQ1iHBhl1Vc9pBo97lqNsPmoEJgWIJCSCkhGSxNEyGWkhmWBwLK-4wBC4yqixYUUwTUAlowYzMOAhrd02SScYIyHgXtab5FPYQ1kxEwJQGQzRlLBZE84SHWoPXrNpHZ43Y0qLuipE60aYhTQlPa9Ee_IPmFK31R4Pb9PZqeHOI1t26S9VE0RFqzcoXOLYef6ZOvFq_AapNq58
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR27TsMw0IJWIDae4o2RWBPFiRvbIypUvNUBpG6R7ZyhUmmiFFDbiYl_4Pf4EmwnQgwMzLn4pLvz3fmeCJ0QwYTsmDzo8LQTUK11wK1dDEAp4Iwao3xT2O1devFArwadwa9eGFdWqYZFNR2--Ty-K9i22re-3BFxb3XqZpMSHvquSRK6MHVY5mYRta1sESfZvUH4E2eJhTVYjDYJzT-PsK5vg_KXaemtonZfllCtoQUYr6OlejfkbAN99IvRzHJ3qPGTnFs-4ombOIn96poJtr4mtr4bLiuXaXHUxYXBp6P5Ewyfofp6_7QwFQCevFplYMUJuwr3R_-Pc5gLf0K3mHrI0u1KqOqwYINuUmPaRPe98_vuRdAsTQgUS0kAESUkT6RhMtJCMsOSRFiSRxFwkVNlHRbFNAGVghbMyJyDsLrXpLlkjIBMtlBrXIxhG2HNRAxMaTBEU8YSQTRPeaQ1eO6qHXTckC0r68kYmSNtFtGM8Kwm7e4_YI7Qcv-sl91c3l3voRX32WVr4ngftV6qVziwRv9FHXqufgMvS6yw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polygenic+hazard+score+models+for+the+prediction+of+Alzheimer%E2%80%99s+free+survival+using+the+lasso+for+Cox%E2%80%99s+proportional+hazards+model&rft.jtitle=bioRxiv&rft.au=Hahn%2C+Georg&rft.au=Prokopenko%2C+Dmitry&rft.au=Hecker%2C+Julian&rft.au=Lutz%2C+Sharon+M.&rft.date=2024-04-22&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2024.04.18.590111&rft.externalDocID=2024.04.18.590111v1