Polygenic hazard score models for the prediction of Alzheimer’s free survival using the lasso for Cox’s proportional hazards model
The prediction of the susceptibility of an individual to a certain disease is an important and timely research area. An established technique is to estimate the risk of an individual with the help of an integrated risk model, that is a polygenic risk score with added epidemiological covariates. Howe...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , , , , |
Format | Paper |
Language | English |
Published |
Cold Spring Harbor Laboratory
22.04.2024
|
Edition | 1.1 |
Subjects | |
Online Access | Get full text |
ISSN | 2692-8205 |
DOI | 10.1101/2024.04.18.590111 |
Cover
Abstract | The prediction of the susceptibility of an individual to a certain disease is an important and timely research area. An established technique is to estimate the risk of an individual with the help of an integrated risk model, that is a polygenic risk score with added epidemiological covariates. However, integrated risk models do not capture any time dependence, and may provide a point estimate of the relative risk with respect to a reference population. The aim of this work is twofold. First, we explore and advocate the idea of predicting the time dependent hazard and survival (defined as disease free time) of an individual for the onset of a disease. This provides a practitioner with a much more differentiated view of the absolute survival as a function of time. Second, to compute the time dependent risk of an individual, we use published methodology to fit a Cox’s proportional hazard model to data from a genetic SNP study of time to Alzheimer’s disease (AD) onset, using the lasso to incorporate further epidemiological variables such as sex, APOE (apolipoprotein E, a genetic risk factor for AD) status, ten leading principal components, and selected genomic loci. We apply the lasso for Cox’s proportional hazards to a dataset of 6792 AD patients (composed of 4102 cases and 2690 controls) and 87 covariates. We demonstrate that fitting a lasso model for Cox’s proportional hazards allows one to obtain more accurate survival curves than with state-of-the-art (likelihood-based) methods. Moreover, the methodology allows one to obtain personalized survival curves for a patient, thus giving a much more differentiated view of the expected progression of a disease than the view offered by integrated risk models. The runtime to compute personalized survival curves is under a minute for the entire dataset of AD patients, thus enabling it to handle datasets with 60, 000 to 100, 000 subjects in less than one hour. |
---|---|
AbstractList | The prediction of the susceptibility of an individual to a certain disease is an important and timely research area. An established technique is to estimate the risk of an individual with the help of an integrated risk model, that is a polygenic risk score with added epidemiological covariates. However, integrated risk models do not capture any time dependence, and may provide a point estimate of the relative risk with respect to a reference population. The aim of this work is twofold. First, we explore and advocate the idea of predicting the time dependent hazard and survival (defined as disease free time) of an individual for the onset of a disease. This provides a practitioner with a much more differentiated view of the absolute survival as a function of time. Second, to compute the time dependent risk of an individual, we use published methodology to fit a Cox’s proportional hazard model to data from a genetic SNP study of time to Alzheimer’s disease (AD) onset, using the lasso to incorporate further epidemiological variables such as sex, APOE (apolipoprotein E, a genetic risk factor for AD) status, ten leading principal components, and selected genomic loci. We apply the lasso for Cox’s proportional hazards to a dataset of 6792 AD patients (composed of 4102 cases and 2690 controls) and 87 covariates. We demonstrate that fitting a lasso model for Cox’s proportional hazards allows one to obtain more accurate survival curves than with state-of-the-art (likelihood-based) methods. Moreover, the methodology allows one to obtain personalized survival curves for a patient, thus giving a much more differentiated view of the expected progression of a disease than the view offered by integrated risk models. The runtime to compute personalized survival curves is under a minute for the entire dataset of AD patients, thus enabling it to handle datasets with 60, 000 to 100, 000 subjects in less than one hour. |
Author | DeSantis, Stacia Tanzi, Rudolph E. Prokopenko, Dmitry Lange, Christoph Hahn, Georg Lutz, Sharon M. Mullin, Kristina Hecker, Julian |
Author_xml | – sequence: 1 givenname: Georg orcidid: 0000-0001-6008-2720 surname: Hahn fullname: Hahn, Georg email: ghahn@hsph.harvard.edu organization: Harvard T.H. Chan School of Public Health – sequence: 2 givenname: Dmitry surname: Prokopenko fullname: Prokopenko, Dmitry organization: Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital – sequence: 3 givenname: Julian surname: Hecker fullname: Hecker, Julian organization: Channing Divsion of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School – sequence: 4 givenname: Sharon M. surname: Lutz fullname: Lutz, Sharon M. organization: Harvard T.H. Chan School of Public Health – sequence: 5 givenname: Kristina surname: Mullin fullname: Mullin, Kristina organization: Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital – sequence: 7 givenname: Rudolph E. surname: Tanzi fullname: Tanzi, Rudolph E. organization: Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital – sequence: 8 givenname: Stacia surname: DeSantis fullname: DeSantis, Stacia organization: The University of Texas Health Science Center – sequence: 9 givenname: Christoph surname: Lange fullname: Lange, Christoph organization: Harvard T.H. Chan School of Public Health |
BookMark | eNotkLFOwzAURS0EEqX0A9g8siT4JW4cj1UFFKkSDN0jx35ujdI4stuq7cTEP_B7fAltw3SXc8-V7h25bn2LhDwASwEYPGUs4ynjKZTpWDIAuCKDrJBZUmZsfEtGMX4yxjJZQC74gHx_-OawxNZpulJHFQyN2geka2-widT6QDcrpF1A4_TG-ZZ6SyfNcYVujeH36-fEBEQat2Hndqqh2-ja5aXTqBj9xTD1-wvZBd_5cLacwH4u9kv35MaqJuLoP4dk8fK8mM6S-fvr23QyT2pRQIKMA5hcWaGYlkpYkeeSW8sYltLwugBRCw1YF6ilsMqUKFFpWxglBKDKh-Sx19bOh73bVV1waxUO1fm1ivEKyqp_Lf8DIwRqAg |
ContentType | Paper |
Copyright | 2024, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2024, Posted by Cold Spring Harbor Laboratory |
DBID | FX. |
DOI | 10.1101/2024.04.18.590111 |
DatabaseName | bioRxiv |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2692-8205 |
Edition | 1.1 |
ExternalDocumentID | 2024.04.18.590111v1 |
GroupedDBID | 8FE 8FH AFKRA ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI FX. HCIFZ LK8 M7P NQS PIMPY PROAC RHI |
ID | FETCH-LOGICAL-b761-e0411d3af7a0c9a7f73394ff00e89d4b617b7c1eb6ec97fad8e9eacf6da771ea3 |
IEDL.DBID | FX. |
IngestDate | Tue Jan 07 18:59:32 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Penalized regression Cox proportional hazard Alzheimer Survival Lasso |
Language | English |
License | The copyright holder for this pre-print is the author. All rights reserved. The material may not be redistributed, re-used or adapted without the author's permission. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b761-e0411d3af7a0c9a7f73394ff00e89d4b617b7c1eb6ec97fad8e9eacf6da771ea3 |
Notes | Competing Interest Statement: The authors have declared no competing interest. |
ORCID | 0000-0001-6008-2720 |
OpenAccessLink | https://www.biorxiv.org/content/10.1101/2024.04.18.590111 |
PageCount | 22 |
ParticipantIDs | biorxiv_primary_2024_04_18_590111 |
PublicationCentury | 2000 |
PublicationDate | 20240422 |
PublicationDateYYYYMMDD | 2024-04-22 |
PublicationDate_xml | – month: 4 year: 2024 text: 20240422 day: 22 |
PublicationDecade | 2020 |
PublicationTitle | bioRxiv |
PublicationYear | 2024 |
Publisher | Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory |
References | Desikan, Fan, Wang, Schork, Cabral, Cupples, Thompson, Besser, Kukull, Holland, Chen, Brewer, Karow, Kauppi, Witoelar, Karch, Bonham, Yokoyama, Rosen, Miller, Dillon, Wilson, Hess, Pericak-Vance, Haines, Farrer, Mayeux, Hardy, Goate, Hyman, Schellenberg, McEvoy, Andreassen, Dale (2024.04.18.590111v1.6) 2017; 14 Huang, Darbar (2024.04.18.590111v1.13) 2017; 33 Goldfarb (2024.04.18.590111v1.11) 1970; 24 Ozenne, Sørensen, Scheike, Torp-Pedersen, Gerds (2024.04.18.590111v1.25) 2017; 9 Shanno (2024.04.18.590111v1.30) 1970; 24 Fraser, Shavlik (2024.04.18.590111v1.9) 1999; 18 Mak, Porsch, Choi, Zhou, Sham (2024.04.18.590111v1.22) 2017; 41 Cox (2024.04.18.590111v1.5) 1975; 62 Hastie, Tibshirani, Friedman (2024.04.18.590111v1.12) 2016 Lambert, Abraham, Inouye (2024.04.18.590111v1.20) 2019; 28 Zou (2024.04.18.590111v1.39) 2006; 101 Gerds, Ohlendorff, Blanche, Mortensen, Wright, Tollenaar, Muschelli, Mogensen, Ozenne (2024.04.18.590111v1.10) 2022 Leonenko, Sims, Shoai, Frizzati, Bossù, Spalletta, Fox, Williams, consortium, Hardy, Escott-Price (2024.04.18.590111v1.21) 2019; 6 Putter, Fiocco, Geskus (2024.04.18.590111v1.29) 2007; 26 Prokopenko, Hecker, Silverman, Pagano, Nöthen, Dina, Lange, Fier (2024.04.18.590111v1.27) 2016; 32 Beecham, Bis, Martin, Choi, DeStefano, van Duijn, Fornage, Gabriel, Koboldt, Larson, Naj, Psaty, Salerno, Bush, Foroud, Wijsman, Farrer, Goate, Haines, Pericak-Vance, Boerwinkle, Mayeux, Seshadri, Schellenberg (2024.04.18.590111v1.1) 2017; 3 Broyden (2024.04.18.590111v1.3) 1970; 6 Kalbfleisch, Prentice (2024.04.18.590111v1.16) 2002 Prentice, Kalbfleisch (2024.04.18.590111v1.26) 1979; 35 Inouye, Abraham, Nelson, Wood, Sweeting, Dudbridge, Lai, Kaptoge, Brozynska, Wang, Ye, Webb, Rutter, Tzoulaki, Patel, Loos, Keavney, Hemingway, Thompson, Watkins, Deloukas, Di Angelantonio, Butterworth, Danesh, Samani (2024.04.18.590111v1.14) 2018; 72 Zhang, Lu (2024.04.18.590111v1.38) 2007; 94 Knowles, Ashley (2024.04.18.590111v1.19) 2018; 15 Tibshirani (2024.04.18.590111v1.35) 1997; 16 Yang, Luo, DeSantis (2024.04.18.590111v1.37) 2019; 28 Kirkpatrick, Gelatt Jr, Vecchi (2024.04.18.590111v1.18) 1983; 220 Motazedi, Cheng, Thomassen, Frei, Rongve, Athanasiu, Bahrami, Shadrin, Ulstein, Stordal, Brækhus, Saltvedt, Sando, O’Connell, Hindley, van der Meer, Bergh, Nordestgaard, Tybjærg-Hansen, Brthen, Pihlstrm, Djurovic, Frikke-Schmidt, Fladby, Aarsland, Selbæk, Seibert, Dale, Fan, Andreassen (2024.04.18.590111v1.24) 2022; 88 (2024.04.18.590111v1.32) 2009; 460 Tan, Fan, Mormino, Sugrue, Broce, Hess, Dillon, Bonham, Yokoyama, Karch, Brewer, Rabinovici, Miller, Schellenberg, Kauppi, Feldman, Holland, McEvoy, Hyman, Bennett, Andreassen, Dale, Desikan (2024.04.18.590111v1.31) 2018; 135 Fletcher (2024.04.18.590111v1.8) 1970; 13 Khera, Chaffin, Aragam, Haas, Roselli, Choi, Natarajan, Lander, Lubitz, Ellinor, Kathiresan (2024.04.18.590111v1.17) 2018; 50 Duncan, Shen, Gelaye, Meijsen, adn M. Feldman, Peterson, Domingue (2024.04.18.590111v1.7) 2019; 10 Tibshirani (2024.04.18.590111v1.34) 1996; 58 Bellenguez, Kσçσkali, Jansen (2024.04.18.590111v1.2) 2022; 54 Cox (2024.04.18.590111v1.4) 1972; 34 Therneau, Lumley, Elizabeth, Cynthia (2024.04.18.590111v1.33) 2022; 3 Jia, Baig, Mirza, GholamHosseini (2024.04.18.590111v1.15) 2019; 2019 Wand, Lambert, Tamburro, Iacocca, O’Sullivan, Sillari, Kullo, Rowley, Dron, Brockman, Venner, McCarthy, Antoniou, Easton, Hegele, Khera, Chatterjee, Kooperberg, Edwards, Vlessis, Kinnear, Danesh, Parkinson, Ramos, Roberts, Ormond, Khoury, Janssens, Goddard, Kraft, MacArthur, Inouye, Wojcik (2024.04.18.590111v1.36) 2021; 591 Putter, de Wreede, Fiocco, Geskus, Bonneville, Manevski (2024.04.18.590111v1.28) 2021 Mak, Porsch, Choi, Zhou, Sham (2024.04.18.590111v1.23) 2020 |
References_xml | – volume: 9 start-page: 440 issue: 2 year: 2017 end-page: 460 ident: 2024.04.18.590111v1.25 article-title: riskRegression: Predicting the Risk of an Event using Cox Regression Models publication-title: The R Journal – volume: 54 start-page: 412 year: 2022 end-page: 436 ident: 2024.04.18.590111v1.2 article-title: New insights into the genetic etiology of Alzheimer’s disease and related dementias publication-title: Nat Genet – volume: 220 start-page: 671 issue: 4598 year: 1983 end-page: 680 ident: 2024.04.18.590111v1.18 article-title: Optimization by Simulated Annealing publication-title: Science – volume: 28 start-page: 2524 issue: 8 year: 2019 end-page: 2537 ident: 2024.04.18.590111v1.37 article-title: Bayesian quantile regression joint models: inference and dynamic predictions publication-title: Stat Methods Med Res – volume: 26 start-page: 2389 issue: 11 year: 2007 end-page: 2430 ident: 2024.04.18.590111v1.29 article-title: Tutorial in biostatistics: competing risks and multi-state models publication-title: Stat Med – volume: 16 start-page: 385 issue: 4 year: 1997 end-page: 95 ident: 2024.04.18.590111v1.35 article-title: The lasso method for variable selection in the Cox model publication-title: Stat Med – volume: 94 start-page: 691 issue: 3 year: 2007 end-page: 703 ident: 2024.04.18.590111v1.38 article-title: Adaptive Lasso for Cox’s proportional hazards model publication-title: Biometrika – volume: 15 start-page: e1002546 year: 2018 ident: 2024.04.18.590111v1.19 article-title: Cardiovascular disease: the rise of the genetic risk score publication-title: PLoS Med – year: 2021 ident: 2024.04.18.590111v1.28 article-title: mstate: Data Preparation, Estimation and Prediction in Multi-State Models publication-title: R-package version 0.3.2 – volume: 34 start-page: 187 issue: 2 year: 1972 end-page: 220 ident: 2024.04.18.590111v1.4 article-title: Regression models and life-tables (with discussion) publication-title: J. R. Statist. Soc. B – volume: 6 start-page: 76 year: 1970 end-page: 90 ident: 2024.04.18.590111v1.3 article-title: The convergence of a class of double-rank minimization algorithms publication-title: Journal of the Institute of Mathematics and Its Applications – volume: 18 start-page: 397 issue: 4 year: 1999 end-page: 410 ident: 2024.04.18.590111v1.9 article-title: The estimation of lifetime risk and average age at onset of a disease using a multivariate exponential hazard rate model publication-title: Stat Med – year: 2016 ident: 2024.04.18.590111v1.12 article-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction publication-title: Springer Series in Statistics – volume: 2019 issue: 8392348 year: 2019 ident: 2024.04.18.590111v1.15 article-title: A Cox-Based Risk Prediction Model for Early Detection of Cardiovascular Disease: Identification of Key Risk Factors for the Development of a 10-Year CVD Risk Prediction publication-title: Adv Prev Med – volume: 32 start-page: 1366 issue: 9 year: 2016 end-page: 1372 ident: 2024.04.18.590111v1.27 article-title: Utilizing the Jaccard index to reveal population stratification in sequencing data: A simulation study and an application to the 1000 Genomes Project publication-title: Bioinformatics – volume: 10 issue: 3328 year: 2019 ident: 2024.04.18.590111v1.7 article-title: Analysis of polygenic risk score usage and performance in diverse human populations publication-title: Nature Communications – volume: 88 start-page: 1533 issue: 4 year: 2022 end-page: 1544 ident: 2024.04.18.590111v1.24 article-title: Using Polygenic Hazard Scores to Predict Age at Onset of Alzheimer’s Disease in Nordic Populations publication-title: J Alzheimers Dis – volume: 460 start-page: 748 year: 2009 end-page: 752 ident: 2024.04.18.590111v1.32 article-title: Common polygenic variation contributes to risk of schizophrenia and bipolar disorder publication-title: Nature – year: 2022 ident: 2024.04.18.590111v1.10 article-title: riskRegression: Risk Regression Models and Prediction Scores for Survival Analysis with Competing Risks publication-title: R-package version – year: 2002 ident: 2024.04.18.590111v1.16 publication-title: The Statistical Analysis of Failure Time Data – volume: 6 start-page: 456 issue: 3 year: 2019 end-page: 465 ident: 2024.04.18.590111v1.21 article-title: Polygenic risk and hazard scores for Alzheimer’s disease prediction publication-title: Ann Clin Transl Neurol – volume: 41 start-page: 469 issue: 6 year: 2017 end-page: 480 ident: 2024.04.18.590111v1.22 article-title: Polygenic scores via penalized regression on summary statistics publication-title: Genet Epidemiol – volume: 135 start-page: 85 issue: 1 year: 2018 end-page: 93 ident: 2024.04.18.590111v1.31 article-title: Polygenic hazard score: an enrichment marker for Alzheimer’s associated amyloid and tau deposition publication-title: Acta Neuropathol – volume: 28 start-page: R133 issue: R2 year: 2019 end-page: R142 ident: 2024.04.18.590111v1.20 article-title: Towards clinical utility of polygenic risk scores publication-title: Human Molecular Genetics – volume: 24 start-page: 647 issue: 111 year: 1970 end-page: 656 ident: 2024.04.18.590111v1.30 article-title: Conditioning of quasi-Newton methods for function minimization publication-title: Mathematics of Computation – volume: 33 start-page: 422 issue: 4 year: 2017 end-page: 424 ident: 2024.04.18.590111v1.13 article-title: Genetic Risk Scores for Atrial Fibrillation: Do they Improve Risk Estimation? publication-title: Can J Cardiol – volume: 72 start-page: 1883 issue: 16 year: 2018 end-page: 1893 ident: 2024.04.18.590111v1.14 article-title: Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults: Implications for Primary Prevention publication-title: J Am Coll Cardiol – volume: 35 start-page: 25 issue: 1 year: 1979 end-page: 39 ident: 2024.04.18.590111v1.26 article-title: Hazard rate models with covariates publication-title: Biometrics – volume: 50 start-page: 1219 year: 2018 end-page: 1224 ident: 2024.04.18.590111v1.17 article-title: Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations publication-title: Nature Genetics – volume: 101 start-page: 1418 issue: 476 year: 2006 end-page: 1429 ident: 2024.04.18.590111v1.39 article-title: The Adaptive Lasso and Its Oracle Properties publication-title: J Am Stat Assoc – volume: 62 start-page: 269 issue: 2 year: 1975 end-page: 76 ident: 2024.04.18.590111v1.5 article-title: Partial likelihood publication-title: Biometrika – volume: 14 start-page: e1002258 issue: 3 year: 2017 ident: 2024.04.18.590111v1.6 article-title: Genetic assessment of age-associated Alzheimer disease risk: Development and validation of a polygenic hazard score publication-title: PLoS Med – volume: 58 start-page: 267 issue: 1 year: 1996 end-page: 288 ident: 2024.04.18.590111v1.34 article-title: Regression Shrinkage and Selection Via the Lasso publication-title: J Roy Stat Soc B Met – volume: 591 start-page: 211 year: 2021 end-page: 219 ident: 2024.04.18.590111v1.36 article-title: Improving reporting standards for polygenic scores in risk prediction studies publication-title: Nature – volume: 3 start-page: e194 issue: 5 year: 2017 ident: 2024.04.18.590111v1.1 article-title: The Alzheimer’s Disease Sequencing Project: Study design and sample selection publication-title: Neurol Genet – year: 2020 ident: 2024.04.18.590111v1.23 publication-title: Lassosum: a method for computing LASSO/Elastic Net estimates of a linear regression problem given summary statistics from GWAS and Genome-wide meta-analyses – volume: 3 start-page: 4 year: 2022 end-page: 0 ident: 2024.04.18.590111v1.33 article-title: survival: Survival Analysis publication-title: R-package version – volume: 13 start-page: 317 issue: 3 year: 1970 end-page: 322 ident: 2024.04.18.590111v1.8 article-title: A New Approach to Variable Metric Algorithms publication-title: Computer Journal – volume: 24 start-page: 23 issue: 109 year: 1970 end-page: 26 ident: 2024.04.18.590111v1.11 article-title: A Family of Variable Metric Updates Derived by Variational Means publication-title: Mathematics of Computation |
SSID | ssj0002961374 |
Score | 1.7224704 |
SecondaryResourceType | preprint |
Snippet | The prediction of the susceptibility of an individual to a certain disease is an important and timely research area. An established technique is to estimate... |
SourceID | biorxiv |
SourceType | Open Access Repository |
SubjectTerms | Bioinformatics |
Title | Polygenic hazard score models for the prediction of Alzheimer’s free survival using the lasso for Cox’s proportional hazards model |
URI | https://www.biorxiv.org/content/10.1101/2024.04.18.590111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NSgMxEA5iEbz5i78lgteVzW66SY5aWopgKaLQ25JkJ1rQbtmqtD158h18PZ_ESXYRDx68hkkGZpKZSWYyHyHnTAmlO66IOjLrRNxaG0n0ixEYA1Jw50z4FHYzzAb3_HrcGf-C-vJllWZSVovJW8jj-4JttL714Y6Zv6tz35uUyYvwaxIvPi3cUolHbeiPL36eVxKFfkrwJo_550yMeBtOvzxKf4u0RnoG1TZZg-kO2aghIZe75GNUPi1RqRNLH_UK1UfnvtEkDYg1c4ohJsWQjc4qn2DxQqWlo5dPq0eYPEP19f6JNBUAnb-iDcBdRH1h-0OY4-PkMqzQLReBcuYhEqr6NbBhN6857ZG7fu-uO4garITIiIxFEHPGilQ7oWOrtHAiTRVKOo5BqoIbjFOMsAxMBlYJpwsJCk2uywotBAOd7pP1aTmFA0KtUAkIY8Exy4VIFbMyk7G1EJRqDslZI7Z8VjfEyL1o85jnTOa1aI_-QXNMNv2Yz8wkyQlZf6le4RQd_Itpk9ZVbzi6bQeVfgOyaqhi |
linkProvider | Cold Spring Harbor Laboratory Press |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gCMGNp3gTJK6dmjZrkiOamMZjE4ch7VYlqQOTYK3agdhOnPgP_D1-CUlaIQ4cOMepJTu1v9iOjdA5EUzIjsmCDk86AdVaB9z6xQCUAs6oMco_ChsMk_49vR53xk3ArWrKKtUkL98mrz6P7wq2rfWtf-6QuLs6db1JCW_7V5Ok7cLUy2jFniviSrp64_ZPjCUS1lkx2iQz_9xuYW_D7pdb6W2glTtZQLmJlmC6hVbruZDzbfRxlz_NrWYnGj_KhdUhrly3SezH1lTY4kxscRsuSpdlcZLFucEXT4tHmDxD-fX-aWlKAFy9WENgjxJ21e0Pfo8Dy7n_Qjd_85SFm5NQ1iHBhl1Vc9pBo97lqNsPmoEJgWIJCSCkhGSxNEyGWkhmWBwLK-4wBC4yqixYUUwTUAlowYzMOAhrd02SScYIyHgXtab5FPYQ1kxEwJQGQzRlLBZE84SHWoPXrNpHZ43Y0qLuipE60aYhTQlPa9Ee_IPmFK31R4Pb9PZqeHOI1t26S9VE0RFqzcoXOLYef6ZOvFq_AapNq58 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR27TsMw0IJWIDae4o2RWBPFiRvbIypUvNUBpG6R7ZyhUmmiFFDbiYl_4Pf4EmwnQgwMzLn4pLvz3fmeCJ0QwYTsmDzo8LQTUK11wK1dDEAp4Iwao3xT2O1devFArwadwa9eGFdWqYZFNR2--Ty-K9i22re-3BFxb3XqZpMSHvquSRK6MHVY5mYRta1sESfZvUH4E2eJhTVYjDYJzT-PsK5vg_KXaemtonZfllCtoQUYr6OlejfkbAN99IvRzHJ3qPGTnFs-4ombOIn96poJtr4mtr4bLiuXaXHUxYXBp6P5Ewyfofp6_7QwFQCevFplYMUJuwr3R_-Pc5gLf0K3mHrI0u1KqOqwYINuUmPaRPe98_vuRdAsTQgUS0kAESUkT6RhMtJCMsOSRFiSRxFwkVNlHRbFNAGVghbMyJyDsLrXpLlkjIBMtlBrXIxhG2HNRAxMaTBEU8YSQTRPeaQ1eO6qHXTckC0r68kYmSNtFtGM8Kwm7e4_YI7Qcv-sl91c3l3voRX32WVr4ngftV6qVziwRv9FHXqufgMvS6yw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polygenic+hazard+score+models+for+the+prediction+of+Alzheimer%E2%80%99s+free+survival+using+the+lasso+for+Cox%E2%80%99s+proportional+hazards+model&rft.jtitle=bioRxiv&rft.au=Hahn%2C+Georg&rft.au=Prokopenko%2C+Dmitry&rft.au=Hecker%2C+Julian&rft.au=Lutz%2C+Sharon+M.&rft.date=2024-04-22&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2024.04.18.590111&rft.externalDocID=2024.04.18.590111v1 |