A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods
Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life...
Saved in:
Published in | BMC biology Vol. 10; no. 1; p. 60 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
10.07.2012
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life. Scaling relationships between skeletal measurements and body mass in birds and mammals are commonly used to predict body mass in extinct members of these crown clades, but the applicability of these models for predicting mass in more distantly related stem taxa, such as non-avian dinosaurs and non-mammalian synapsids, has been criticized on biomechanical grounds. Here we test the major criticisms of scaling methods for estimating body mass using an extensive dataset of mammalian and non-avian reptilian species derived from individual skeletons with live weights.
Significant differences in the limb scaling of mammals and reptiles are noted in comparisons of limb proportions and limb length to body mass. Remarkably, however, the relationship between proximal (stylopodial) limb bone circumference and body mass is highly conserved in extant terrestrial mammals and reptiles, in spite of their disparate limb postures, gaits, and phylogenetic histories. As a result, we are able to conclusively reject the main criticisms of scaling methods that question the applicability of a universal scaling equation for estimating body mass in distantly related taxa.
The conserved nature of the relationship between stylopodial circumference and body mass suggests that the minimum diaphyseal circumference of the major weight-bearing bones is only weakly influenced by the varied forces exerted on the limbs (that is, compression or torsion) and most strongly related to the mass of the animal. Our results, therefore, provide a much-needed, robust, phylogenetically corrected framework for accurate and consistent estimation of body mass in extinct terrestrial quadrupeds, which is important for a wide range of paleobiological studies (including growth rates, metabolism, and energetics) and meta-analyses of body size evolution. |
---|---|
AbstractList | Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life. Scaling relationships between skeletal measurements and body mass in birds and mammals are commonly used to predict body mass in extinct members of these crown clades, but the applicability of these models for predicting mass in more distantly related stem taxa, such as non-avian dinosaurs and non-mammalian synapsids, has been criticized on biomechanical grounds. Here we test the major criticisms of scaling methods for estimating body mass using an extensive dataset of mammalian and non-avian reptilian species derived from individual skeletons with live weights.
Significant differences in the limb scaling of mammals and reptiles are noted in comparisons of limb proportions and limb length to body mass. Remarkably, however, the relationship between proximal (stylopodial) limb bone circumference and body mass is highly conserved in extant terrestrial mammals and reptiles, in spite of their disparate limb postures, gaits, and phylogenetic histories. As a result, we are able to conclusively reject the main criticisms of scaling methods that question the applicability of a universal scaling equation for estimating body mass in distantly related taxa.
The conserved nature of the relationship between stylopodial circumference and body mass suggests that the minimum diaphyseal circumference of the major weight-bearing bones is only weakly influenced by the varied forces exerted on the limbs (that is, compression or torsion) and most strongly related to the mass of the animal. Our results, therefore, provide a much-needed, robust, phylogenetically corrected framework for accurate and consistent estimation of body mass in extinct terrestrial quadrupeds, which is important for a wide range of paleobiological studies (including growth rates, metabolism, and energetics) and meta-analyses of body size evolution. Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life. Scaling relationships between skeletal measurements and body mass in birds and mammals are commonly used to predict body mass in extinct members of these crown clades, but the applicability of these models for predicting mass in more distantly related stem taxa, such as non-avian dinosaurs and non-mammalian synapsids, has been criticized on biomechanical grounds. Here we test the major criticisms of scaling methods for estimating body mass using an extensive dataset of mammalian and non-avian reptilian species derived from individual skeletons with live weights. Significant differences in the limb scaling of mammals and reptiles are noted in comparisons of limb proportions and limb length to body mass. Remarkably, however, the relationship between proximal (stylopodial) limb bone circumference and body mass is highly conserved in extant terrestrial mammals and reptiles, in spite of their disparate limb postures, gaits, and phylogenetic histories. As a result, we are able to conclusively reject the main criticisms of scaling methods that question the applicability of a universal scaling equation for estimating body mass in distantly related taxa. The conserved nature of the relationship between stylopodial circumference and body mass suggests that the minimum diaphyseal circumference of the major weight-bearing bones is only weakly influenced by the varied forces exerted on the limbs (that is, compression or torsion) and most strongly related to the mass of the animal. Our results, therefore, provide a much-needed, robust, phylogenetically corrected framework for accurate and consistent estimation of body mass in extinct terrestrial quadrupeds, which is important for a wide range of paleobiological studies (including growth rates, metabolism, and energetics) and meta-analyses of body size evolution. Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life. Scaling relationships between skeletal measurements and body mass in birds and mammals are commonly used to predict body mass in extinct members of these crown clades, but the applicability of these models for predicting mass in more distantly related stem taxa, such as non-avian dinosaurs and non-mammalian synapsids, has been criticized on biomechanical grounds. Here we test the major criticisms of scaling methods for estimating body mass using an extensive dataset of mammalian and non-avian reptilian species derived from individual skeletons with live weights.BACKGROUNDBody size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life. Scaling relationships between skeletal measurements and body mass in birds and mammals are commonly used to predict body mass in extinct members of these crown clades, but the applicability of these models for predicting mass in more distantly related stem taxa, such as non-avian dinosaurs and non-mammalian synapsids, has been criticized on biomechanical grounds. Here we test the major criticisms of scaling methods for estimating body mass using an extensive dataset of mammalian and non-avian reptilian species derived from individual skeletons with live weights.Significant differences in the limb scaling of mammals and reptiles are noted in comparisons of limb proportions and limb length to body mass. Remarkably, however, the relationship between proximal (stylopodial) limb bone circumference and body mass is highly conserved in extant terrestrial mammals and reptiles, in spite of their disparate limb postures, gaits, and phylogenetic histories. As a result, we are able to conclusively reject the main criticisms of scaling methods that question the applicability of a universal scaling equation for estimating body mass in distantly related taxa.RESULTSSignificant differences in the limb scaling of mammals and reptiles are noted in comparisons of limb proportions and limb length to body mass. Remarkably, however, the relationship between proximal (stylopodial) limb bone circumference and body mass is highly conserved in extant terrestrial mammals and reptiles, in spite of their disparate limb postures, gaits, and phylogenetic histories. As a result, we are able to conclusively reject the main criticisms of scaling methods that question the applicability of a universal scaling equation for estimating body mass in distantly related taxa.The conserved nature of the relationship between stylopodial circumference and body mass suggests that the minimum diaphyseal circumference of the major weight-bearing bones is only weakly influenced by the varied forces exerted on the limbs (that is, compression or torsion) and most strongly related to the mass of the animal. Our results, therefore, provide a much-needed, robust, phylogenetically corrected framework for accurate and consistent estimation of body mass in extinct terrestrial quadrupeds, which is important for a wide range of paleobiological studies (including growth rates, metabolism, and energetics) and meta-analyses of body size evolution.CONCLUSIONSThe conserved nature of the relationship between stylopodial circumference and body mass suggests that the minimum diaphyseal circumference of the major weight-bearing bones is only weakly influenced by the varied forces exerted on the limbs (that is, compression or torsion) and most strongly related to the mass of the animal. Our results, therefore, provide a much-needed, robust, phylogenetically corrected framework for accurate and consistent estimation of body mass in extinct terrestrial quadrupeds, which is important for a wide range of paleobiological studies (including growth rates, metabolism, and energetics) and meta-analyses of body size evolution. Background Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life. Scaling relationships between skeletal measurements and body mass in birds and mammals are commonly used to predict body mass in extinct members of these crown clades, but the applicability of these models for predicting mass in more distantly related stem taxa, such as non-avian dinosaurs and non-mammalian synapsids, has been criticized on biomechanical grounds. Here we test the major criticisms of scaling methods for estimating body mass using an extensive dataset of mammalian and non-avian reptilian species derived from individual skeletons with live weights. Results Significant differences in the limb scaling of mammals and reptiles are noted in comparisons of limb proportions and limb length to body mass. Remarkably, however, the relationship between proximal (stylopodial) limb bone circumference and body mass is highly conserved in extant terrestrial mammals and reptiles, in spite of their disparate limb postures, gaits, and phylogenetic histories. As a result, we are able to conclusively reject the main criticisms of scaling methods that question the applicability of a universal scaling equation for estimating body mass in distantly related taxa. Conclusions The conserved nature of the relationship between stylopodial circumference and body mass suggests that the minimum diaphyseal circumference of the major weight-bearing bones is only weakly influenced by the varied forces exerted on the limbs (that is, compression or torsion) and most strongly related to the mass of the animal. Our results, therefore, provide a much-needed, robust, phylogenetically corrected framework for accurate and consistent estimation of body mass in extinct terrestrial quadrupeds, which is important for a wide range of paleobiological studies (including growth rates, metabolism, and energetics) and meta-analyses of body size evolution. Background Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life. Scaling relationships between skeletal measurements and body mass in birds and mammals are commonly used to predict body mass in extinct members of these crown clades, but the applicability of these models for predicting mass in more distantly related stem taxa, such as non-avian dinosaurs and non-mammalian synapsids, has been criticized on biomechanical grounds. Here we test the major criticisms of scaling methods for estimating body mass using an extensive dataset of mammalian and non-avian reptilian species derived from individual skeletons with live weights. Results Significant differences in the limb scaling of mammals and reptiles are noted in comparisons of limb proportions and limb length to body mass. Remarkably, however, the relationship between proximal (stylopodial) limb bone circumference and body mass is highly conserved in extant terrestrial mammals and reptiles, in spite of their disparate limb postures, gaits, and phylogenetic histories. As a result, we are able to conclusively reject the main criticisms of scaling methods that question the applicability of a universal scaling equation for estimating body mass in distantly related taxa. Conclusions The conserved nature of the relationship between stylopodial circumference and body mass suggests that the minimum diaphyseal circumference of the major weight-bearing bones is only weakly influenced by the varied forces exerted on the limbs (that is, compression or torsion) and most strongly related to the mass of the animal. Our results, therefore, provide a much-needed, robust, phylogenetically corrected framework for accurate and consistent estimation of body mass in extinct terrestrial quadrupeds, which is important for a wide range of paleobiological studies (including growth rates, metabolism, and energetics) and meta-analyses of body size evolution. Abstract Background Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life. Scaling relationships between skeletal measurements and body mass in birds and mammals are commonly used to predict body mass in extinct members of these crown clades, but the applicability of these models for predicting mass in more distantly related stem taxa, such as non-avian dinosaurs and non-mammalian synapsids, has been criticized on biomechanical grounds. Here we test the major criticisms of scaling methods for estimating body mass using an extensive dataset of mammalian and non-avian reptilian species derived from individual skeletons with live weights. Results Significant differences in the limb scaling of mammals and reptiles are noted in comparisons of limb proportions and limb length to body mass. Remarkably, however, the relationship between proximal (stylopodial) limb bone circumference and body mass is highly conserved in extant terrestrial mammals and reptiles, in spite of their disparate limb postures, gaits, and phylogenetic histories. As a result, we are able to conclusively reject the main criticisms of scaling methods that question the applicability of a universal scaling equation for estimating body mass in distantly related taxa. Conclusions The conserved nature of the relationship between stylopodial circumference and body mass suggests that the minimum diaphyseal circumference of the major weight-bearing bones is only weakly influenced by the varied forces exerted on the limbs (that is, compression or torsion) and most strongly related to the mass of the animal. Our results, therefore, provide a much-needed, robust, phylogenetically corrected framework for accurate and consistent estimation of body mass in extinct terrestrial quadrupeds, which is important for a wide range of paleobiological studies (including growth rates, metabolism, and energetics) and meta-analyses of body size evolution. |
ArticleNumber | 60 |
Audience | Academic |
Author | Campione, Nicolás E Evans, David C |
AuthorAffiliation | 1 Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2 2 Department of Palaeobiology, Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario, Canada M5S 2C6 |
AuthorAffiliation_xml | – name: 2 Department of Palaeobiology, Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario, Canada M5S 2C6 – name: 1 Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2 |
Author_xml | – sequence: 1 givenname: Nicolás E surname: Campione fullname: Campione, Nicolás E – sequence: 2 givenname: David C surname: Evans fullname: Evans, David C |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22781121$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-217208$$DView record from Swedish Publication Index |
BookMark | eNqNk8tr3DAQxk1JaR7tubdi6KWFbiLJlmVfAtv0tRAI9JGr0GO8UbAlR7KT7H9feZ2EuCRQdLCY-X0f45nRfrJjnYUkeYvRIcZlcYRZjhcMIbbAaFGgF8neQ2Tn0X032Q_hEiFCGcteJbuEsBJjgveSzTIdrLkGH0STBiUaY9eph0b0xtlwYbpUQn8DYFPp9CZtRQipsDrtvLs1bdQ0ppUxZyHVpgUbRllqbHo1CO2HDnRkevAeQu_N9t570TkdXicva9EEeHP3PUj-fPv6--TH4vTs--pkebqQjBb9IpeYCYZRhXNFK5nXWQ0YS0pKWRRYalqVuCS5rJVitaSM0DLPNKE6Q5IVMs8OktXkq5245J2PVfsNd8LwbcD5NRe-N6oBzjDRWouCFghyqOpSZWWumMJa1owBi16fJq9wA90gZ25fzPly6zYMnGBGUBnx4wmPbAtagY3_3sxU84w1F3ztrnmWo6zKq2jweTKQxj1jMM8o1_Jx6nycOseIFyiafLirwrurIc6BtyYoaBphwQ0hUnEbMkrZWPD7CV2L2A5jaxdd1YjzJc1yXLCMFJE6fIKKR0NrVFyF2sT4TPBxJohMD7f9Wgwh8NWvn__Pnp3P2XeP-_vQl_v1jgCdAOVdCB5qrky_Xe1YsWnGBo3P6ImWHf2ju7d-TvEXWEoeHg |
CitedBy_id | crossref_primary_10_1002_jmor_21636 crossref_primary_10_1016_j_cub_2023_03_080 crossref_primary_10_1098_rsos_180152 crossref_primary_10_7717_peerj_11557 crossref_primary_10_1093_iob_obae034 crossref_primary_10_1111_pala_12629 crossref_primary_10_1371_journal_pone_0051925 crossref_primary_10_7717_peerj_18067 crossref_primary_10_1098_rsbl_2014_0984 crossref_primary_10_1038_srep19165 crossref_primary_10_1093_iob_obae038 crossref_primary_10_1017_aaq_2018_81 crossref_primary_10_1080_02724634_2017_1398168 crossref_primary_10_1017_pab_2017_9 crossref_primary_10_1017_pab_2024_25 crossref_primary_10_1111_2041_210X_12226 crossref_primary_10_1007_s00114_014_1238_3 crossref_primary_10_1111_joa_12477 crossref_primary_10_1038_s41598_019_51709_5 crossref_primary_10_1002_spp2_1597 crossref_primary_10_1111_pala_12614 crossref_primary_10_1126_science_aay2268 crossref_primary_10_1016_j_cretres_2015_02_010 crossref_primary_10_1038_s41586_019_1137_z crossref_primary_10_7717_peerj_17765 crossref_primary_10_1126_science_aal4853 crossref_primary_10_3390_ani12162038 crossref_primary_10_1080_08912963_2019_1640219 crossref_primary_10_1126_science_aau9345 crossref_primary_10_1002_ar_25024 crossref_primary_10_1016_j_cub_2020_06_105 crossref_primary_10_1002_ar_25021 crossref_primary_10_7717_peerj_1432 crossref_primary_10_1071_AM24050 crossref_primary_10_4236_jmp_2023_147060 crossref_primary_10_1002_wdev_384 crossref_primary_10_1080_14772019_2024_2441516 crossref_primary_10_1242_jeb_242990 crossref_primary_10_1038_srep19828 crossref_primary_10_7717_peerj_3976 crossref_primary_10_7717_peerj_1555 crossref_primary_10_1038_nature14905 crossref_primary_10_1002_jmor_20329 crossref_primary_10_1016_j_ecolmodel_2021_109706 crossref_primary_10_1002_cne_25224 crossref_primary_10_1371_journal_pone_0221824 crossref_primary_10_7554_eLife_55212 crossref_primary_10_1016_j_cub_2018_07_063 crossref_primary_10_1016_j_jsames_2022_103900 crossref_primary_10_1111_joa_13350 crossref_primary_10_1002_ece3_4651 crossref_primary_10_1111_joa_13598 crossref_primary_10_1111_let_12319 crossref_primary_10_1002_ar_25377 crossref_primary_10_1098_rspb_2020_2258 crossref_primary_10_1111_evo_12363 crossref_primary_10_3390_jmmp8050216 crossref_primary_10_1007_s41513_021_00172_1 crossref_primary_10_1098_rsos_210915 crossref_primary_10_1098_rsos_231495 crossref_primary_10_1007_s00114_012_1007_0 crossref_primary_10_1002_jqs_3549 crossref_primary_10_1038_srep06196 crossref_primary_10_7717_peerj_7647 crossref_primary_10_1111_joa_12378 crossref_primary_10_1080_02724634_2017_1361432 crossref_primary_10_1073_pnas_1519387112 crossref_primary_10_1038_s41598_025_92727_w crossref_primary_10_1002_jqs_3560 crossref_primary_10_1038_s41598_019_57144_w crossref_primary_10_1016_j_cub_2018_07_057 crossref_primary_10_1080_08912963_2023_2286272 crossref_primary_10_1080_08912963_2023_2175211 crossref_primary_10_1002_ar_22658 crossref_primary_10_1002_jmor_21403 crossref_primary_10_1017_pab_2023_26 crossref_primary_10_1007_s10914_017_9381_1 crossref_primary_10_1098_rsos_201089 crossref_primary_10_1002_ar_25244 crossref_primary_10_1007_s00435_021_00516_6 crossref_primary_10_1371_journal_pone_0094518 crossref_primary_10_1016_j_cretres_2021_104754 crossref_primary_10_1007_s10914_023_09652_w crossref_primary_10_1371_journal_pbio_2000473 crossref_primary_10_1016_j_cretres_2022_105342 crossref_primary_10_1016_j_cub_2022_08_031 crossref_primary_10_1017_pab_2020_2 crossref_primary_10_1111_evo_13900 crossref_primary_10_2992_007_087_0301 crossref_primary_10_1016_j_crpv_2018_02_002 crossref_primary_10_1007_s12549_014_0174_8 crossref_primary_10_1146_annurev_earth_060313_054858 crossref_primary_10_7717_peerj_15957 crossref_primary_10_1038_s41598_018_35347_x crossref_primary_10_1073_pnas_2108471119 crossref_primary_10_1080_08912963_2021_2010191 crossref_primary_10_1002_ar_23977 crossref_primary_10_1016_j_bone_2013_08_010 crossref_primary_10_1017_pab_2023_14 crossref_primary_10_1098_rsos_170431 crossref_primary_10_1038_s41598_021_01120_w crossref_primary_10_1126_sciadv_adr2722 crossref_primary_10_1017_pab_2016_35 crossref_primary_10_1139_facets_2016_0046 crossref_primary_10_1038_s41559_021_01651_5 crossref_primary_10_1017_pab_2016_32 crossref_primary_10_1080_02724634_2019_1623226 crossref_primary_10_1126_science_aaf1509 crossref_primary_10_3390_ani13233695 crossref_primary_10_1371_journal_pone_0078899 crossref_primary_10_1371_journal_pone_0080974 crossref_primary_10_1016_j_crpv_2019_09_005 crossref_primary_10_1080_08912963_2022_2095908 crossref_primary_10_1016_j_jhevol_2017_01_001 crossref_primary_10_1371_journal_pone_0215655 crossref_primary_10_1080_02724634_2017_1343250 crossref_primary_10_1098_rsbl_2015_0940 crossref_primary_10_1098_rsos_210923 crossref_primary_10_1007_s10914_022_09617_5 crossref_primary_10_1016_j_crpv_2015_02_009 crossref_primary_10_7717_peerj_3496 crossref_primary_10_1016_j_cretres_2019_03_008 crossref_primary_10_1017_pab_2016_47 crossref_primary_10_1016_j_cretres_2022_105361 crossref_primary_10_1093_zoolinnean_zlad006 crossref_primary_10_1080_02724634_2021_1914642 crossref_primary_10_1126_science_1260879 crossref_primary_10_1016_j_cub_2023_05_073 crossref_primary_10_1016_j_jafrearsci_2016_08_004 crossref_primary_10_1080_02724634_2015_1048348 crossref_primary_10_7717_peerj_15378 crossref_primary_10_1002_ar_23950 crossref_primary_10_1126_science_1260880 crossref_primary_10_1080_08912963_2020_1841184 crossref_primary_10_1111_brv_12666 crossref_primary_10_1371_journal_pone_0081917 crossref_primary_10_1371_journal_pone_0200132 crossref_primary_10_1093_zoolinnean_zlz055 crossref_primary_10_3389_fevo_2021_692035 crossref_primary_10_7717_peerj_9349 crossref_primary_10_1111_pala_12599 crossref_primary_10_1242_jeb_203554 crossref_primary_10_1371_journal_pone_0185378 crossref_primary_10_1002_ajhb_23252 crossref_primary_10_1371_journal_pone_0145716 crossref_primary_10_1007_s10914_024_09722_7 crossref_primary_10_1016_j_jhevol_2019_04_003 crossref_primary_10_1111_evo_12693 crossref_primary_10_1016_j_cretres_2022_105389 crossref_primary_10_1002_ar_24234 crossref_primary_10_1139_cjes_2020_0176 crossref_primary_10_7717_peerj_11317 crossref_primary_10_1098_rspb_2020_1537 crossref_primary_10_1098_rsos_211237 crossref_primary_10_1126_science_abl5584 crossref_primary_10_1111_jzo_12771 crossref_primary_10_1016_j_crpv_2015_03_002 crossref_primary_10_1126_sciadv_adi0505 crossref_primary_10_1002_ece3_70504 crossref_primary_10_1080_02724634_2021_1878203 crossref_primary_10_1098_rsif_2021_0324 crossref_primary_10_1002_ar_25319 crossref_primary_10_1016_j_cretres_2016_02_001 crossref_primary_10_1186_s12915_021_01016_1 crossref_primary_10_2139_ssrn_4103305 crossref_primary_10_1080_02724634_2013_826668 crossref_primary_10_1017_pab_2021_35 crossref_primary_10_18435_vamp29375 crossref_primary_10_3389_fevo_2021_751238 crossref_primary_10_7717_peerj_10855 crossref_primary_10_1038_s41598_019_48607_1 crossref_primary_10_1098_rspb_2017_1219 crossref_primary_10_1017_pab_2015_24 crossref_primary_10_1371_journal_pone_0078573 crossref_primary_10_1071_ZO13086 crossref_primary_10_7717_peerj_10854 crossref_primary_10_1111_joa_14130 crossref_primary_10_1093_zoolinnean_zlaa163 crossref_primary_10_1038_s41586_020_2234_8 crossref_primary_10_1098_rsbl_2024_0441 crossref_primary_10_1016_j_cretres_2018_06_015 crossref_primary_10_1111_jeb_12983 crossref_primary_10_54393_mjz_v5i01_93 crossref_primary_10_1002_jmor_20382 crossref_primary_10_5710_AMGH_27_06_2018_3189 crossref_primary_10_1080_08912963_2024_2379030 crossref_primary_10_1371_journal_pone_0189883 crossref_primary_10_1098_rspb_2022_2435 crossref_primary_10_1111_evo_14017 crossref_primary_10_3390_quat7010010 crossref_primary_10_5710_AMGH_16_09_2021_3441 crossref_primary_10_1371_journal_pbio_1001853 crossref_primary_10_1371_journal_pbio_1001854 crossref_primary_10_1111_joa_14166 crossref_primary_10_1111_pala_12329 crossref_primary_10_7717_peerj_10721 crossref_primary_10_1002_jmor_21499 crossref_primary_10_1371_journal_pone_0082000 crossref_primary_10_1080_02724634_2020_1793158 crossref_primary_10_1002_ar_22701 crossref_primary_10_1093_zoolinnean_zlx108 crossref_primary_10_1017_pab_2020_47 crossref_primary_10_1017_pab_2020_46 crossref_primary_10_1371_journal_pone_0141794 crossref_primary_10_1016_j_jsames_2022_103994 crossref_primary_10_1038_s41598_023_37545_8 crossref_primary_10_1111_pala_12692 crossref_primary_10_1016_j_jsames_2023_104363 crossref_primary_10_1017_scs_2017_12 crossref_primary_10_1111_pala_12451 crossref_primary_10_1002_jmor_20712 crossref_primary_10_1017_pab_2015_19 crossref_primary_10_1111_joa_13503 crossref_primary_10_1080_08912963_2024_2380358 crossref_primary_10_1371_journal_pone_0077109 crossref_primary_10_1093_biolinnean_blaa005 crossref_primary_10_1093_zoolinnean_zlac003 crossref_primary_10_1002_ar_23903 crossref_primary_10_18261_let_56_2_5 crossref_primary_10_1080_08912963_2019_1617289 crossref_primary_10_1002_ar_25528 crossref_primary_10_1016_j_archoralbio_2013_02_009 crossref_primary_10_1017_pab_2024_6 crossref_primary_10_7717_peerj_857 crossref_primary_10_1111_brv_12638 crossref_primary_10_1080_02724634_2024_2326644 crossref_primary_10_1371_journal_pone_0297894 crossref_primary_10_7717_peerj_1135 crossref_primary_10_1080_02724634_2019_1732996 crossref_primary_10_1371_journal_pone_0113559 crossref_primary_10_1038_s41598_024_53447_9 crossref_primary_10_1111_pala_12546 crossref_primary_10_1007_s10914_018_09457_2 crossref_primary_10_7717_peerj_8556 crossref_primary_10_1016_j_quaint_2021_07_021 crossref_primary_10_1017_pab_2020_23 crossref_primary_10_2992_007_085_0403 crossref_primary_10_1098_rsos_150302 crossref_primary_10_1038_s41598_020_66425_8 crossref_primary_10_1126_science_ade1833 crossref_primary_10_1016_j_quaint_2023_05_019 crossref_primary_10_1371_journal_pone_0091691 crossref_primary_10_1007_s10914_023_09669_1 crossref_primary_10_1038_s41586_024_07733_1 crossref_primary_10_1016_j_cub_2021_06_013 crossref_primary_10_1080_02724634_2018_1524383 crossref_primary_10_1111_joa_12557 crossref_primary_10_1111_joa_13646 crossref_primary_10_7717_peerj_1228 crossref_primary_10_1002_spp2_1430 crossref_primary_10_1093_iob_obad010 crossref_primary_10_1002_oa_2773 crossref_primary_10_1242_jeb_217463 crossref_primary_10_1139_cjes_2014_0060 crossref_primary_10_1111_cla_12607 crossref_primary_10_1111_zoj_12215 crossref_primary_10_1093_iob_obad017 crossref_primary_10_1186_s12862_014_0258_0 crossref_primary_10_1139_cjes_2019_0089 crossref_primary_10_1144_SP379_19 crossref_primary_10_1080_08912963_2022_2050719 crossref_primary_10_1111_joa_14184 crossref_primary_10_7554_eLife_66036 crossref_primary_10_1111_bij_12660 crossref_primary_10_1371_journal_pone_0311187 crossref_primary_10_1186_s12862_016_0782_1 crossref_primary_10_1007_s10914_024_09739_y crossref_primary_10_1080_08912963_2019_1631819 crossref_primary_10_1111_pala_12526 crossref_primary_10_1093_sysbio_syac020 crossref_primary_10_1080_08912963_2024_2385615 crossref_primary_10_1098_rsos_221565 crossref_primary_10_1371_journal_pone_0211423 crossref_primary_10_1139_facets_2017_0063 crossref_primary_10_1098_rsbl_2015_0215 crossref_primary_10_1242_dev_201045 crossref_primary_10_1017_jpa_2017_62 crossref_primary_10_1186_s12915_021_01224_9 crossref_primary_10_1038_s42003_020_01338_w crossref_primary_10_1002_jmor_21340 crossref_primary_10_1242_jeb_245310 crossref_primary_10_1111_pala_12650 crossref_primary_10_1002_wdev_391 crossref_primary_10_1007_s10914_022_09640_6 crossref_primary_10_1093_zoolinnean_zlae065 crossref_primary_10_1002_jmor_70010 crossref_primary_10_1007_s10914_024_09741_4 crossref_primary_10_1038_s41559_023_02091_z crossref_primary_10_1002_jmor_21445 crossref_primary_10_1002_ar_24638 crossref_primary_10_1017_jpa_2019_13 crossref_primary_10_3390_fishes8060300 crossref_primary_10_1016_j_jsames_2022_104014 crossref_primary_10_1002_spp2_1529 crossref_primary_10_1002_ajpa_24748 crossref_primary_10_1371_journal_pone_0224734 |
Cites_doi | 10.1126/science.1061967 10.1242/jeb.018986 10.1111/j.1095-8312.2005.00485.x 10.1017/CBO9780511608551 10.1038/nature07671 10.1016/j.gene.2008.05.014 10.1126/science.1144066 10.1016/S0022-5193(84)80031-4 10.1073/pnas.251548698 10.1080/10635150500541698 10.1016/0022-5193(83)90206-0 10.1080/02724631003758334 10.1111/j.1469-7998.2009.00594.x 10.1080/10635150490503053 10.1080/02724634.1995.10011575 10.1671/0272-4634(2006)26[907:BGCOMS]2.0.CO;2 10.1093/sysbio/syr122 10.1080/10635150490522340 10.1139/e06-031 10.1671/039.029.0420 10.1002/jmor.10384 10.1086/286013 10.1242/jeb.059345 10.1038/290699a0 10.1111/j.2041-210X.2011.00153.x 10.1016/j.crvi.2005.10.001 10.1098/rspb.2008.1735 10.1666/07074.1 10.1086/282627 10.1086/physzool.58.2.30158569 10.1002/jmor.10659 10.1111/j.1502-3931.1996.tb01842.x 10.1002/(SICI)1097-4687(199902)239:2<167::AID-JMOR5>3.0.CO;2-8 10.1152/physrev.1947.27.4.511 10.1152/ajpregu.2000.279.1.R1 10.1080/02724634.1999.10011180 10.2307/1941052 10.1666/0094-8373(2003)029<0243:VPASAT>2.0.CO;2 10.1152/ajpregu.1984.246.2.R152 10.1644/08-MAMM-A-347R1.1 10.1890/08-1494.1 10.1371/journal.pone.0026037 10.1111/j.1469-7998.1999.tb00190.x 10.1126/science.1163245 10.1242/jeb.204.6.1099 10.1080/10635150490445706 10.1111/j.1420-9101.2007.01483.x 10.1146/annurev.es.08.110177.002241 10.1126/science.179.4079.1201 10.1111/j.1420-9101.2008.01594.x 10.1086/427734 10.1093/bioinformatics/btg412 10.1111/j.1600-0587.2010.06315.x 10.1017/S1464793106007007 10.1242/jeb.105.1.147 10.1111/j.2517-6161.1995.tb02031.x 10.1111/j.1095-8312.2007.00883.x 10.1038/35086558 10.1152/jappl.1975.39.4.619 10.1111/j.1096-3642.2011.00734.x 10.1666/0094-8373(2001)027<0014:EOHPIN>2.0.CO;2 10.1371/journal.pbio.0040248 10.1016/j.crpv.2005.09.002 10.1016/j.ympev.2007.06.018 10.1017/S0094837300020108 10.1371/journal.pone.0004532 10.1002/jmor.1052040205 10.1038/417070a 10.1038/nature05634 10.1111/j.1096-3642.1993.tb02560.x 10.1006/clad.2001.0169 10.1111/j.1469-7998.1979.tb03964.x 10.1016/j.mambio.2011.07.004 10.1086/285558 10.1093/sysbio/syp005 10.1016/j.tree.2005.08.012 10.1186/1471-2148-10-141 10.1016/j.ympev.2008.08.004 10.1002/mmng.200700011 10.1111/j.1469-7998.1985.tb04915.x 10.1086/284325 10.2307/3545889 10.1002/ar.20963 10.1671/0272-4634(2007)27[108:MTIBTY]2.0.CO;2 10.1111/j.1469-185X.2011.00190.x 10.1111/j.1469-7998.1971.tb02189.x 10.1126/science.2740914 10.1017/S0952836901000541 10.1016/j.jtbi.2007.01.023 10.1242/jeb.01588 10.1111/j.1469-7998.1999.tb00996.x 10.1371/journal.pone.0005361 10.1111/j.1420-9101.2004.00870.x 10.1671/0272-4634(2001)021[0051:ANMTCA]2.0.CO;2 10.1006/jhev.2002.0573 10.1016/j.plrev.2006.07.002 10.1080/08912960412331284313 10.1038/238081a0 10.1093/sysbio/41.1.18 10.1007/s00114-007-0234-2 10.1002/jmor.1051920204 10.1016/j.gene.2008.06.011 10.1666/0094-8373(2008)034[0264:MGRFSD]2.0.CO;2 10.1111/j.1469-7998.2000.tb00793.x 10.1111/j.1469-7998.2009.00665.x 10.1017/S009483730001099X 10.1038/385247a0 10.1242/jeb.202.9.1023 10.1016/j.ympev.2006.03.003 10.1666/07078.1 10.1098/rspb.2009.0245 10.2307/1564733 10.1080/02724634.1999.10011145 10.1666/0094-8373(2001)027<0735:EBMFST>2.0.CO;2 10.1086/283026 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2012 BioMed Central Ltd. Copyright ©2012 Campione and Evans; licensee BioMed Central Ltd. 2012 Campione and Evans; licensee BioMed Central Ltd. |
Copyright_xml | – notice: COPYRIGHT 2012 BioMed Central Ltd. – notice: Copyright ©2012 Campione and Evans; licensee BioMed Central Ltd. 2012 Campione and Evans; licensee BioMed Central Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 7X8 5PM ACNBI ADTPV AOWAS D8T DF2 ZZAVC DOA |
DOI | 10.1186/1741-7007-10-60 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) SWEPUB Uppsala universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Uppsala universitet SwePub Articles full text DOAJ: Directory of Open Access Journal (DOAJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1741-7007 |
EndPage | 60 |
ExternalDocumentID | oai_doaj_org_article_712ddda6560e4e9f8c384c7c1dbf77e7 oai_DiVA_org_uu_217208 PMC3403949 oai_biomedcentral_com_1741_7007_10_60 A534167326 22781121 10_1186_1741_7007_10_60 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Canada |
GeographicLocations_xml | – name: Canada |
GroupedDBID | --- 0R~ 23N 2VQ 2WC 4.4 53G 5GY 5VS 6J9 7X7 88E 8FE 8FH 8FI 8FJ 8G5 AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GUQSH GX1 HCIFZ HMCUK HYE IAO IGS IHR INH INR IOV ISE ISR ITC KQ8 LK8 M1P M2O M48 M7P M~E O5R O5S OK1 OVT P2P PADUT PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP WOQ WOW XSB CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB PMFND 7X8 -A0 3V. ABVAZ ACRMQ ADINQ AFGXO AFNRJ C24 5PM 123 ACNBI ADTPV AOWAS C1A D8T DF2 H13 IPNFZ RIG ZZAVC PUEGO |
ID | FETCH-LOGICAL-b756t-4b17a710914c59b4f3fe11b528b661bd5981824bfcc7fb5725843d25d30b76b43 |
IEDL.DBID | RBZ |
ISSN | 1741-7007 |
IngestDate | Wed Aug 27 01:18:34 EDT 2025 Thu Aug 21 06:55:50 EDT 2025 Thu Aug 21 18:06:41 EDT 2025 Wed May 22 07:15:34 EDT 2024 Tue Aug 05 09:46:26 EDT 2025 Tue Jun 17 22:04:47 EDT 2025 Tue Jun 10 21:03:11 EDT 2025 Fri Jun 27 05:57:34 EDT 2025 Fri Jun 27 05:35:14 EDT 2025 Mon Jul 21 06:06:48 EDT 2025 Thu Apr 24 22:57:29 EDT 2025 Tue Jul 01 02:58:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b756t-4b17a710914c59b4f3fe11b528b661bd5981824bfcc7fb5725843d25d30b76b43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1186/1741-7007-10-60 |
PMID | 22781121 |
PQID | 1027835578 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_712ddda6560e4e9f8c384c7c1dbf77e7 swepub_primary_oai_DiVA_org_uu_217208 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3403949 biomedcentral_primary_oai_biomedcentral_com_1741_7007_10_60 proquest_miscellaneous_1027835578 gale_infotracmisc_A534167326 gale_infotracacademiconefile_A534167326 gale_incontextgauss_ISR_A534167326 gale_incontextgauss_IOV_A534167326 pubmed_primary_22781121 crossref_citationtrail_10_1186_1741_7007_10_60 crossref_primary_10_1186_1741_7007_10_60 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-07-10 |
PublicationDateYYYYMMDD | 2012-07-10 |
PublicationDate_xml | – month: 07 year: 2012 text: 2012-07-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | BMC biology |
PublicationTitleAlternate | BMC Biol |
PublicationYear | 2012 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | JF Gillooly (575_CR36) 2006; 4 JO Farlow (575_CR39) 1976; 57 FA Jenkins (575_CR114) 1971; 165 J Peczkis (575_CR40) 1994; 14 MT Butcher (575_CR90) 2008; 211 KJ Gaston (575_CR11) 1996; 1996 JF Gillooly (575_CR5) 2002; 417 CM Janis (575_CR28) 1992; 28 MJ Wedel (575_CR59) 2003; 29 TN Engstrom (575_CR129) 2004; 53 RJ Smith (575_CR103) 1984; 246 M Le (575_CR130) 2006; 40 DJ Varricchio (575_CR27) 2008; 322 H-C Gunga (575_CR53) 2007; 94 RJ Smith (575_CR142) 2002; 43 R Redelstorff (575_CR145) 2009; 29 E Paradis (575_CR140) 2004; 20 KT Bates (575_CR52) 2009; 4 RW Blob (575_CR89) 2001; 204 RM Alexander (575_CR72) 1989 AR Woodward (575_CR111) 1995; 29 TJ Garland (575_CR139) 1992; 41 E Naro-Maciel (575_CR132) 2008; 49 CR McClain (575_CR7) 2009; 276 P Christiansen (575_CR93) 1999; 239 TA McMahon (575_CR100) 1975; 109 MT Carrano (575_CR70) 2001; 254 RW Blob (575_CR84) 2000; 250 MT Carrano (575_CR14) 2005 H Mallison (575_CR68) 2011 AC Economos (575_CR94) 1983; 103 GM Erickson (575_CR30) 2005; 20 OR Bininda-Emonds (575_CR123) 2007; 446 GJM Garcia (575_CR87) 2006; 3 I Capellini (575_CR12) 2007; 92 JH Zar (575_CR115) 1968; 18 RT Bakker (575_CR35) 1972; 239 EH Colbert (575_CR46) 1962; 2076 KE Jones (575_CR112) 2009; 90 DWE Hone (575_CR17) 2008; 21 GC Cawley (575_CR104) 2009; 280 JH Brown (575_CR6) 1993; 142 JA Finarelli (575_CR22) 2008; 34 DI Warton (575_CR116) 2006; 81 JF Gillooly (575_CR3) 2001; 293 J Bou (575_CR102) 1987; 192 CT Rubin (575_CR86) 1982; 101 P Christiansen (575_CR85) 1999; 247 T McMahon (575_CR95) 1973; 179 MT Carrano (575_CR15) 2006 RBJ Benson (575_CR58) 2011; 87 P Christiansen (575_CR47) 2004; 16 JR Hutchinson (575_CR61) 2011; 6 B Hohn (575_CR66) 2011 DM Henderson (575_CR51) 1999; 25 TF Hansen (575_CR141) 2012; 61 A Casinos (575_CR74) 1996; 29 DM Henderson (575_CR63) 2004; 271 RM Andrews (575_CR113) 1982 TI Grand (575_CR57) 1990 DJ Varricchio (575_CR29) 1997; 385 S Finnegan (575_CR105) 2008; 34 JA Hopson (575_CR23) 1977; 8 GC Packard (575_CR82) 2009; 279 N Vidal (575_CR126) 2005; 328 GA Hazlehurst (575_CR60) 1992; 18 DM Henderson (575_CR64) 2010; 30 GM Erickson (575_CR31) 2001; 412 P Christiansen (575_CR32) 1999; 19 G Paul (575_CR71) 1997 RM Andrews (575_CR110) 1985; 58 WAI Calder (575_CR8) 1984 DI Warton (575_CR118) 2011; 3 WP Maddison (575_CR122) 2006 P Christiansen (575_CR109) 2005; 266 J Roos (575_CR137) 2007; 45 DM Henderson (575_CR65) 2006; 26 MT Young (575_CR99) 2011; 163 RH Peters (575_CR4) 1983 JJ Wiens (575_CR135) 2006; 60 RR Sokal (575_CR81) 1969 MT Carrano (575_CR83) 1999; 247 S De Esteban-Trivigno (575_CR43) 2008; 269 RM Alexander (575_CR77) 1979; 189 AA Farke (575_CR101) 2009; 292 JA Hopson (575_CR24) 1979 Y Okajima (575_CR131) 2010; 10 SAM Amer (575_CR134) 2005; 85 V Millien (575_CR42) 2010; 91 JR Hutchinson (575_CR106) 2006; 5 AH Turner (575_CR19) 2007; 317 Y Benjamini (575_CR119) 1995; 57 M Laurin (575_CR20) 2004; 53 RW Blob (575_CR79) 1999; 202 PA Marquet (575_CR97) 2005; 208 RW Blob (575_CR107) 2001; 27 TJ Near (575_CR138) 2005; 165 EA Albert (575_CR133) 2009; 441 TA McMahon (575_CR96) 1975; 39 S De Esteban-Trivigno (575_CR144) 2011; 76 M Fortelius (575_CR69) 1993; 108 EP Martins (575_CR143) 1997; 149 RJ Butler (575_CR13) 2008; 21 MT Carrano (575_CR33) 1998; 24 PD Gingerich (575_CR44) 1990; 28 R Franz (575_CR38) 2009; 276 AG Boyer (575_CR98) 2010; 33 TM Townsend (575_CR125) 2004; 53 J Damuth (575_CR9) 1981; 290 M Kleiber (575_CR2) 1947; 27 H Mallison (575_CR67) 2011 HJ Jerison (575_CR26) 1973 GP Burness (575_CR10) 2001; 98 AA Biewener (575_CR92) 1983; 105 H-C Gunga (575_CR50) 1999; 2 JA Finarelli (575_CR21) 2006; 55 J Felsenstein (575_CR121) 1985; 125 R Motani (575_CR55) 2001; 27 H-C Gunga (575_CR56) 2002; 3 TM Lehman (575_CR76) 2008; 34 G Hurlburt (575_CR48) 1999; 19 (575_CR41) 1990 KE Campbell (575_CR45) 1992; 36 D Curran-Everett (575_CR120) 2000; 279 AM Hemmingsen (575_CR1) 1960; 9 HJ Jerison (575_CR25) 1969; 103 F Therrien (575_CR18) 2007; 27 R-Development-Core-Team (575_CR117) 2010 H-C Gunga (575_CR54) 2008; 11 CT Rubin (575_CR80) 1984; 107 JC Ast (575_CR127) 2001; 17 J Fröbisch (575_CR108) 2006; 43 PQ Spinks (575_CR124) 2009; 58 H Pontzer (575_CR34) 2009; 4 ES Gaffney (575_CR128) 1988 JR Hutchinson (575_CR75) 2007; 246 JEA Bertram (575_CR78) 1990; 204 AA Biewener (575_CR91) 1989; 245 CJ Clemente (575_CR88) 2011; 214 F Seebacher (575_CR49) 2001; 21 Y Okajima (575_CR136) 2009; 441 JJ Head (575_CR37) 2009; 457 DWE Hone (575_CR16) 2005; 18 JF Anderson (575_CR73) 1985; 207 KT Bates (575_CR62) 2009; 12 |
References_xml | – volume: 293 start-page: 2248 year: 2001 ident: 575_CR3 publication-title: Science doi: 10.1126/science.1061967 – volume: 211 start-page: 2397 year: 2008 ident: 575_CR90 publication-title: J Exp Biol doi: 10.1242/jeb.018986 – volume: 85 start-page: 247 year: 2005 ident: 575_CR134 publication-title: Biol J Linnean Soc doi: 10.1111/j.1095-8312.2005.00485.x – volume-title: The Ecological Implications of Body Size year: 1983 ident: 575_CR4 doi: 10.1017/CBO9780511608551 – volume: 457 start-page: 715 year: 2009 ident: 575_CR37 publication-title: Nature doi: 10.1038/nature07671 – volume: 441 start-page: 12 year: 2009 ident: 575_CR133 publication-title: Gene doi: 10.1016/j.gene.2008.05.014 – volume: 317 start-page: 1378 year: 2007 ident: 575_CR19 publication-title: Science doi: 10.1126/science.1144066 – volume: 107 start-page: 321 year: 1984 ident: 575_CR80 publication-title: J Theoret Biol doi: 10.1016/S0022-5193(84)80031-4 – volume: 98 start-page: 14518 year: 2001 ident: 575_CR10 publication-title: Proc Natl Acad Science USA doi: 10.1073/pnas.251548698 – start-page: 229 volume-title: The Sauropods: Evolution and Paleobiology year: 2005 ident: 575_CR14 – volume: 55 start-page: 301 year: 2006 ident: 575_CR21 publication-title: Syst Biol doi: 10.1080/10635150500541698 – volume: 103 start-page: 167 year: 1983 ident: 575_CR94 publication-title: J Theoret Biol doi: 10.1016/0022-5193(83)90206-0 – volume: 30 start-page: 768 year: 2010 ident: 575_CR64 publication-title: J Vertebrate Paleontol doi: 10.1080/02724631003758334 – volume: 279 start-page: 102 year: 2009 ident: 575_CR82 publication-title: J Zool doi: 10.1111/j.1469-7998.2009.00594.x – volume: 53 start-page: 693 year: 2004 ident: 575_CR129 publication-title: Syst Biol doi: 10.1080/10635150490503053 – volume: 14 start-page: 520 year: 1994 ident: 575_CR40 publication-title: J Vertebrate Paleontol doi: 10.1080/02724634.1995.10011575 – volume: 26 start-page: 907 year: 2006 ident: 575_CR65 publication-title: J Vertebrate Paleontol doi: 10.1671/0272-4634(2006)26[907:BGCOMS]2.0.CO;2 – volume: 61 start-page: 413 issue: 3 year: 2012 ident: 575_CR141 publication-title: Syst Biol doi: 10.1093/sysbio/syr122 – volume: 53 start-page: 735 year: 2004 ident: 575_CR125 publication-title: Syst Biol doi: 10.1080/10635150490522340 – volume: 43 start-page: 1297 year: 2006 ident: 575_CR108 publication-title: Can J Earth Sci doi: 10.1139/e06-031 – volume: 29 start-page: 1087 year: 2009 ident: 575_CR145 publication-title: J Vertebrate Paleontol doi: 10.1671/039.029.0420 – volume-title: Dynamics of Dinosaurs and Other Extinct Giants year: 1989 ident: 575_CR72 – volume-title: Body Size in Mammalian Paleobiology: Estimation and Biological Implications year: 1990 ident: 575_CR41 – volume: 266 start-page: 369 year: 2005 ident: 575_CR109 publication-title: J Morphol doi: 10.1002/jmor.10384 – volume: 60 start-page: 123 year: 2006 ident: 575_CR135 publication-title: Evolution – volume: 12 start-page: 33 year: 2009 ident: 575_CR62 publication-title: Palaeontologia Electronica – volume: 149 start-page: 647 year: 1997 ident: 575_CR143 publication-title: Am Naturalist doi: 10.1086/286013 – start-page: 39 volume-title: Biology of the Replilia, Neurology A year: 1979 ident: 575_CR24 – start-page: 157 volume-title: The Phylogeny and Classification of Tetrapods year: 1988 ident: 575_CR128 – volume-title: Evolution of the Brain and Intelligence year: 1973 ident: 575_CR26 – volume: 214 start-page: 3013 year: 2011 ident: 575_CR88 publication-title: J Exp Biol doi: 10.1242/jeb.059345 – volume: 290 start-page: 699 year: 1981 ident: 575_CR9 publication-title: Nature doi: 10.1038/290699a0 – volume: 3 start-page: 257 year: 2011 ident: 575_CR118 publication-title: Methods Ecol Evol doi: 10.1111/j.2041-210X.2011.00153.x – volume: 328 start-page: 1000 year: 2005 ident: 575_CR126 publication-title: C R Biol doi: 10.1016/j.crvi.2005.10.001 – volume: 276 start-page: 1731 year: 2009 ident: 575_CR38 publication-title: Proc R Soc Lond B Biol Sci doi: 10.1098/rspb.2008.1735 – volume: 34 start-page: 342 year: 2008 ident: 575_CR105 publication-title: Paleobiology doi: 10.1666/07074.1 – volume: 2 start-page: 91 year: 1999 ident: 575_CR50 publication-title: Mitteilungen aus dem Museum für Naturkunde der Humboldt-Universität Berlin, Geowissenschaftliche Reihe – volume: 103 start-page: 575 year: 1969 ident: 575_CR25 publication-title: Am Nat doi: 10.1086/282627 – volume: 58 start-page: 214 year: 1985 ident: 575_CR110 publication-title: Physiol Zool doi: 10.1086/physzool.58.2.30158569 – start-page: 273 volume-title: Biology of the Reptilia: Physiology D year: 1982 ident: 575_CR113 – volume: 269 start-page: 1276 year: 2008 ident: 575_CR43 publication-title: J Morphol doi: 10.1002/jmor.10659 – volume: 29 start-page: 87 year: 1996 ident: 575_CR74 publication-title: Lethaia doi: 10.1111/j.1502-3931.1996.tb01842.x – volume: 239 start-page: 167 year: 1999 ident: 575_CR93 publication-title: J Morphol doi: 10.1002/(SICI)1097-4687(199902)239:2<167::AID-JMOR5>3.0.CO;2-8 – volume: 27 start-page: 511 issue: 4 year: 1947 ident: 575_CR2 publication-title: Physiol Rev doi: 10.1152/physrev.1947.27.4.511 – volume: 279 start-page: R1 year: 2000 ident: 575_CR120 publication-title: Am J Physiol Regul Integr Comp Physiol doi: 10.1152/ajpregu.2000.279.1.R1 – volume: 19 start-page: 666 year: 1999 ident: 575_CR32 publication-title: J Vertebrate Paleontol doi: 10.1080/02724634.1999.10011180 – volume: 57 start-page: 841 year: 1976 ident: 575_CR39 publication-title: Ecology doi: 10.2307/1941052 – volume: 29 start-page: 243 year: 2003 ident: 575_CR59 publication-title: Paleobiology doi: 10.1666/0094-8373(2003)029<0243:VPASAT>2.0.CO;2 – volume-title: Biometry: The Principles and Practice of Statistics in Biological Science year: 1969 ident: 575_CR81 – start-page: 225 volume-title: Amniote Paleobiology: Perspectives on the Evolution of Mammals, Birds, and Reptiles year: 2006 ident: 575_CR15 – volume: 246 start-page: R152 year: 1984 ident: 575_CR103 publication-title: Am J Physiol Regul Integr Comp Physiol doi: 10.1152/ajpregu.1984.246.2.R152 – volume: 91 start-page: 11 year: 2010 ident: 575_CR42 publication-title: J Mammal doi: 10.1644/08-MAMM-A-347R1.1 – volume: 90 start-page: 2648 year: 2009 ident: 575_CR112 publication-title: Ecology doi: 10.1890/08-1494.1 – volume-title: R: a language and environment for statistical computing year: 2010 ident: 575_CR117 – volume: 6 start-page: e26037 year: 2011 ident: 575_CR61 publication-title: PLoS One doi: 10.1371/journal.pone.0026037 – volume-title: Mesquite: A modular system for evolutionary analysis. Version 2.6 (build 486): mesquiteproject.org year: 2006 ident: 575_CR122 – volume: 247 start-page: 29 year: 1999 ident: 575_CR83 publication-title: J Zool doi: 10.1111/j.1469-7998.1999.tb00190.x – volume: 322 start-page: 1826 year: 2008 ident: 575_CR27 publication-title: Science doi: 10.1126/science.1163245 – start-page: 182 volume-title: Biology of the Sauropod Dinosaurs: Understanding the Life of Giants year: 2011 ident: 575_CR66 – volume: 204 start-page: 1099 year: 2001 ident: 575_CR89 publication-title: J Exp Biol doi: 10.1242/jeb.204.6.1099 – volume: 53 start-page: 594 year: 2004 ident: 575_CR20 publication-title: Syst Biol doi: 10.1080/10635150490445706 – volume: 21 start-page: 618 year: 2008 ident: 575_CR17 publication-title: J Evol Biol doi: 10.1111/j.1420-9101.2007.01483.x – volume: 8 start-page: 429 year: 1977 ident: 575_CR23 publication-title: Annu Rev Ecol Systematics doi: 10.1146/annurev.es.08.110177.002241 – volume: 101 start-page: 187 year: 1982 ident: 575_CR86 publication-title: J Evol Biol – volume: 179 start-page: 1201 year: 1973 ident: 575_CR95 publication-title: Science doi: 10.1126/science.179.4079.1201 – volume: 28 start-page: 201 year: 1992 ident: 575_CR28 publication-title: Ann Zool Fennici – volume: 21 start-page: 1673 year: 2008 ident: 575_CR13 publication-title: J Evol Biol doi: 10.1111/j.1420-9101.2008.01594.x – volume: 165 start-page: 137 year: 2005 ident: 575_CR138 publication-title: Am Naturalist doi: 10.1086/427734 – volume: 20 start-page: 289 year: 2004 ident: 575_CR140 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg412 – volume: 33 start-page: 369 year: 2010 ident: 575_CR98 publication-title: Ecography doi: 10.1111/j.1600-0587.2010.06315.x – volume: 81 start-page: 259 year: 2006 ident: 575_CR116 publication-title: Biol Rev doi: 10.1017/S1464793106007007 – volume: 105 start-page: 147 year: 1983 ident: 575_CR92 publication-title: J Exp Biol doi: 10.1242/jeb.105.1.147 – volume: 2076 start-page: 1 year: 1962 ident: 575_CR46 publication-title: American Museum Novitates – volume: 57 start-page: 289 year: 1995 ident: 575_CR119 publication-title: J R Stat Soc Series B Stat Methodol doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 92 start-page: 431 year: 2007 ident: 575_CR12 publication-title: Biol J Linnean Soc doi: 10.1111/j.1095-8312.2007.00883.x – volume: 412 start-page: 429 year: 2001 ident: 575_CR31 publication-title: Nature doi: 10.1038/35086558 – volume: 39 start-page: 619 year: 1975 ident: 575_CR96 publication-title: J Appl Physiol doi: 10.1152/jappl.1975.39.4.619 – volume: 25 start-page: 88 year: 1999 ident: 575_CR51 publication-title: Paleobiology – volume: 28 start-page: 79 year: 1990 ident: 575_CR44 publication-title: Contributions from the Museum of Paleontology, University of Michigan – start-page: 219 volume-title: Biology of the Sauropod Dinosaurs: Understanding the Life of Giants year: 2011 ident: 575_CR67 – volume: 163 start-page: 1199 year: 2011 ident: 575_CR99 publication-title: Zool J Linnean Soc doi: 10.1111/j.1096-3642.2011.00734.x – volume: 27 start-page: 14 year: 2001 ident: 575_CR107 publication-title: Paleobiology doi: 10.1666/0094-8373(2001)027<0014:EOHPIN>2.0.CO;2 – volume: 4 start-page: e248 year: 2006 ident: 575_CR36 publication-title: PLoS Biology doi: 10.1371/journal.pbio.0040248 – volume: 5 start-page: 519 year: 2006 ident: 575_CR106 publication-title: C R Palevol doi: 10.1016/j.crpv.2005.09.002 – volume: 45 start-page: 663 year: 2007 ident: 575_CR137 publication-title: Mol Phylogenet Evol doi: 10.1016/j.ympev.2007.06.018 – volume: 24 start-page: 450 year: 1998 ident: 575_CR33 publication-title: Paleobiology doi: 10.1017/S0094837300020108 – volume-title: Size, Function, and Life History year: 1984 ident: 575_CR8 – volume: 4 start-page: e4532 year: 2009 ident: 575_CR52 publication-title: PLoS One doi: 10.1371/journal.pone.0004532 – volume: 204 start-page: 157 year: 1990 ident: 575_CR78 publication-title: J Morphol doi: 10.1002/jmor.1052040205 – volume: 417 start-page: 70 year: 2002 ident: 575_CR5 publication-title: Nature doi: 10.1038/417070a – volume: 446 start-page: 507 year: 2007 ident: 575_CR123 publication-title: Nature doi: 10.1038/nature05634 – volume: 108 start-page: 85 year: 1993 ident: 575_CR69 publication-title: Zool J Linnean Soc doi: 10.1111/j.1096-3642.1993.tb02560.x – volume: 17 start-page: 211 year: 2001 ident: 575_CR127 publication-title: Cladistics doi: 10.1006/clad.2001.0169 – start-page: 39 volume-title: Dinofest International year: 1997 ident: 575_CR71 – volume: 189 start-page: 305 year: 1979 ident: 575_CR77 publication-title: J Zool doi: 10.1111/j.1469-7998.1979.tb03964.x – volume: 76 start-page: 755 year: 2011 ident: 575_CR144 publication-title: Mammalian Biol doi: 10.1016/j.mambio.2011.07.004 – volume: 142 start-page: 573 year: 1993 ident: 575_CR6 publication-title: Am Nat doi: 10.1086/285558 – volume: 58 start-page: 1 year: 2009 ident: 575_CR124 publication-title: Syst Biol doi: 10.1093/sysbio/syp005 – volume: 20 start-page: 677 year: 2005 ident: 575_CR30 publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2005.08.012 – volume: 10 start-page: 141 year: 2010 ident: 575_CR131 publication-title: BMC Evol Biol doi: 10.1186/1471-2148-10-141 – start-page: 237 volume-title: Biology of the Sauropod Dinosaurs: Understanding the Life of Giants year: 2011 ident: 575_CR68 – volume: 49 start-page: 659 year: 2008 ident: 575_CR132 publication-title: Mol Phylogenet Evol doi: 10.1016/j.ympev.2008.08.004 – volume: 11 start-page: 33 year: 2008 ident: 575_CR54 publication-title: Fossil Record doi: 10.1002/mmng.200700011 – volume: 207 start-page: 53 year: 1985 ident: 575_CR73 publication-title: J Zool Soc Lond A doi: 10.1111/j.1469-7998.1985.tb04915.x – volume: 125 start-page: 1 year: 1985 ident: 575_CR121 publication-title: Am Naturalist doi: 10.1086/284325 – volume: 1996 start-page: 479 year: 1996 ident: 575_CR11 publication-title: Oikos doi: 10.2307/3545889 – volume: 292 start-page: 1406 year: 2009 ident: 575_CR101 publication-title: Anat Rec doi: 10.1002/ar.20963 – volume: 27 start-page: 108 year: 2007 ident: 575_CR18 publication-title: J Vertebrate Paleontol doi: 10.1671/0272-4634(2007)27[108:MTIBTY]2.0.CO;2 – volume: 87 start-page: 168 year: 2011 ident: 575_CR58 publication-title: Biol Rev doi: 10.1111/j.1469-185X.2011.00190.x – volume: 165 start-page: 303 year: 1971 ident: 575_CR114 publication-title: J Zool doi: 10.1111/j.1469-7998.1971.tb02189.x – volume: 245 start-page: 45 year: 1989 ident: 575_CR91 publication-title: Science doi: 10.1126/science.2740914 – volume: 254 start-page: 41 year: 2001 ident: 575_CR70 publication-title: J Zool doi: 10.1017/S0952836901000541 – volume: 246 start-page: 660 year: 2007 ident: 575_CR75 publication-title: J Theoret Biol doi: 10.1016/j.jtbi.2007.01.023 – volume: 208 start-page: 1749 year: 2005 ident: 575_CR97 publication-title: J Exp Biol doi: 10.1242/jeb.01588 – volume: 247 start-page: 333 year: 1999 ident: 575_CR85 publication-title: J Zool doi: 10.1111/j.1469-7998.1999.tb00996.x – volume: 4 start-page: 1 year: 2009 ident: 575_CR34 publication-title: PLoS One doi: 10.1371/journal.pone.0005361 – volume: 18 start-page: 587 year: 2005 ident: 575_CR16 publication-title: J Evol Biol doi: 10.1111/j.1420-9101.2004.00870.x – volume: 21 start-page: 51 year: 2001 ident: 575_CR49 publication-title: J Vertebrate Paleontol doi: 10.1671/0272-4634(2001)021[0051:ANMTCA]2.0.CO;2 – volume: 43 start-page: 271 year: 2002 ident: 575_CR142 publication-title: J Human Evol doi: 10.1006/jhev.2002.0573 – volume: 3 start-page: 188 year: 2006 ident: 575_CR87 publication-title: Phys Life Rev doi: 10.1016/j.plrev.2006.07.002 – volume: 16 start-page: 85 year: 2004 ident: 575_CR47 publication-title: Hist Biol doi: 10.1080/08912960412331284313 – volume: 239 start-page: 81 year: 1972 ident: 575_CR35 publication-title: Nature doi: 10.1038/238081a0 – volume: 41 start-page: 18 year: 1992 ident: 575_CR139 publication-title: Syst Biol doi: 10.1093/sysbio/41.1.18 – volume: 3 start-page: 156 year: 2002 ident: 575_CR56 publication-title: Adaptation Biol Med – volume: 36 start-page: 395 year: 1992 ident: 575_CR45 publication-title: Natural History Museum of Los Angeles County Science Series – volume: 94 start-page: 623 year: 2007 ident: 575_CR53 publication-title: Naturwissenschaften doi: 10.1007/s00114-007-0234-2 – volume: 192 start-page: 113 year: 1987 ident: 575_CR102 publication-title: J Morphol doi: 10.1002/jmor.1051920204 – volume: 441 start-page: 28 year: 2009 ident: 575_CR136 publication-title: Gene doi: 10.1016/j.gene.2008.06.011 – volume: 18 start-page: 118 year: 1968 ident: 575_CR115 publication-title: BioScience – volume: 34 start-page: 264 year: 2008 ident: 575_CR76 publication-title: Paleobiology doi: 10.1666/0094-8373(2008)034[0264:MGRFSD]2.0.CO;2 – volume: 250 start-page: 507 year: 2000 ident: 575_CR84 publication-title: J Zool doi: 10.1111/j.1469-7998.2000.tb00793.x – volume: 280 start-page: 355 year: 2009 ident: 575_CR104 publication-title: J Zool doi: 10.1111/j.1469-7998.2009.00665.x – volume: 18 start-page: 447 year: 1992 ident: 575_CR60 publication-title: Paleobiology doi: 10.1017/S009483730001099X – volume: 271 start-page: S180 year: 2004 ident: 575_CR63 publication-title: Biol Lett – volume: 385 start-page: 247 year: 1997 ident: 575_CR29 publication-title: Nature doi: 10.1038/385247a0 – volume: 202 start-page: 1023 year: 1999 ident: 575_CR79 publication-title: J Exp Biol doi: 10.1242/jeb.202.9.1023 – start-page: 39 volume-title: Body Size in Mammalian Paleobiology: Estimation and Biological Implications year: 1990 ident: 575_CR57 – volume: 40 start-page: 517 year: 2006 ident: 575_CR130 publication-title: Mol Phylogenet Evol doi: 10.1016/j.ympev.2006.03.003 – volume: 34 start-page: 553 year: 2008 ident: 575_CR22 publication-title: Paleobiology doi: 10.1666/07078.1 – volume: 9 start-page: 6 year: 1960 ident: 575_CR1 publication-title: Steno Memorial Hospital and Nordinsk Insulin Laboratosium – volume: 276 start-page: 2209 year: 2009 ident: 575_CR7 publication-title: Proc R Soc Lond B Biol Sci doi: 10.1098/rspb.2009.0245 – volume: 29 start-page: 507 year: 1995 ident: 575_CR111 publication-title: J Herpetol doi: 10.2307/1564733 – volume: 19 start-page: 338 year: 1999 ident: 575_CR48 publication-title: J Vertebrate Paleontol doi: 10.1080/02724634.1999.10011145 – volume: 27 start-page: 735 year: 2001 ident: 575_CR55 publication-title: Paleobiology doi: 10.1666/0094-8373(2001)027<0735:EBMFST>2.0.CO;2 – volume: 109 start-page: 547 year: 1975 ident: 575_CR100 publication-title: Am Naturalist doi: 10.1086/283026 |
SSID | ssj0025773 |
Score | 2.4988046 |
Snippet | Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for... Background Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential... BACKGROUND: Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential... Background Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential... Abstract Background Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are... |
SourceID | doaj swepub pubmedcentral biomedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 60 |
SubjectTerms | Analysis Animals Biologi med inriktning mot evolutionär organismbiologi Biology with specialization in Evolutionary Organismal Biology Birds Body Size Bone and Bones - anatomy & histology Bones Extremities - anatomy & histology Gait - physiology Least-Squares Analysis Mammals - anatomy & histology Paleontology Phylogeny Physiological aspects Posture - physiology Reptiles - anatomy & histology Vertebrates |
SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journal (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBFhkEgktonNhxIk7LoypIgAS06s2KH6GRdrPbzeaw_54ZJ1nVVBUXblE8VmzPeB67M98Q8hJUXJEj8qNlTsc80xXcOatjbZlOXc5ZyrDA-eu3_PiEfzkTZ5dafWFO2AAPPBzcoWSptbZCjBjHXVkXJiu4kYZZXUvpfB052LwpmBpDLSH9f8vgbrNYghkcQX1YkR_u3qEGQmTKoNB9HtgnD-N_VVlfslZ_Z1IGeKPeRh3dIbdH55LOhk3dJTdce4_cHNpNbu-T7Yz2Qx4GEHXAHDBbdD1lw503KzpmbVG9tFu6AL-aVq2lmOrSLGDOvFloGGsdtdgUAH9o62jT0ou-sut-5SzQAJ-w3QfKNTzDcldL2z0gJ0effn04jsfWC7GWIt_EXDNZYZom40aUmtdZ7RjTIi00GHRtRQmGPuW6NkbWWsgU_JjMpsJmiZa55tlDstfCch4TWqS2xqjLwSxeywocHlQz2pRY9ppVEXkXMECtBpgNhcDX4QjcQYXsU8g-BeFLnkTk7cQuZUZUc2yuMVc-uinyqxPe7CZMX7qW9D3yP1iQfwHyqUb5VP-Sz4i8QOlRiLXRYjLP76rvOvX5-6maCXAhcgkO9HVEP38ERK9HonoJWzTVWEABx4wYXgHlfkAJGsMEw88nSVY4hGl2rVv2HWwbG68I0OIReTRI9m73WDMNzjmLiAxkPjiecKRtzj1gecaTrORlRF4NtyOY8rE5nfkT7XuF3dKS4sn_OPen5Bb4tj6zmiX7ZG-z7t0B-I8b_cyrij86zm16 priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbQJiReEOOaMZBBIHjJiBMnToQQKpdpIA0koNPerPiSLVKbdEkj0X_POUla8C5vvFX1cWv73JPj7xDyAkxcmiDyo2FW-TxSOeicUb4yTIU24SxkeMH56FtyOOVfT-KTv-2AxgNsr0ztsJ_UtJnt_z5fvQeFf9crfJq8gaCa-QKfuYFNSSB_3wa3JLCdwRHfvFIA0exfN2-IR5yfK37gwt33meOyemT_y_b7Hwd2sbjSgSDt3dbBHXJ7jDfpZBCQHXLDVnfJzaED5eoeWU1oN5RmAFEL_AJPRpt1gdxZuaBjIRdVtVnROYTaNK8MxeqXcg5zZuVcwVhlqcE-AfjsraVlRc-73DTdwhqgAdZhBxAUdfgMy13Upr1Ppgeff3089MduDL4ScbL0uWIix8pNxnWcKV5EhWVMxWGqwMcrE2fg-0OuCq1FoWIRQmgTmTA2UaBEonj0gGxVsJxHhKahKTARszCLFyKHGAgtj9IZ3oSNco-8dRggFwPyhkQsbHcE1FIi-ySyT0JGkwQe2V-zS-oR6Bz7bcxkn_CkyeUJrzcT1v90LekH5L-zoP6LujmVo65LwUJjTI6wRpbbrEh1lHItNDOqEMIKjzxH6ZEIv1Fhfc9p3rWt_PL9WE5iiCoSATH1dUQ_fzhEr0aiooYt6ny8UwHHjLBeDuWeQwlGRDvDz9aSLHEIK-8qW3ctbBt7scRg2D3ycJDsze7xGjXE68wjwpF553jckao86zHMIx5EGc888nLQDmfKp_J40p9o10lsoBaku__j3B-TWxDu9sXWLNgjW8ums08gpFyqp72p-ANEYnPJ priority: 102 providerName: Scholars Portal |
Title | A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22781121 https://www.proquest.com/docview/1027835578 http://dx.doi.org/10.1186/1741-7007-10-60 https://pubmed.ncbi.nlm.nih.gov/PMC3403949 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-217208 https://doaj.org/article/712ddda6560e4e9f8c384c7c1dbf77e7 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgExIviG_CRmUQCF7C4sSJE_HUwqaBtIEGmyperPgjLFKbdk3z0P-euyQtuGNPvFRVfW5s3_k-nPPvCHkNKi5NEPnRMKt8Hqkc9pxRvjJMhTbhLGR4wfnkNDk-51_G8fgPWPTWG3yWJgfgMjNf4IkaaIwEovPdkEM8h4H56OcmtopF-zJ5Q9yj-PzjD7Zutk8cg9Ti9l_Xzn-Zp-3USQdgtDVKR_fJvd6bpMOO_Q_ILVs9JHe6-pKrR2Q1pE2XeAFENXAD7BRdrNPfLss57dO0qJqZFZ2CI03zylDMbSmn0GdSThW0VZYarAKAJ2s1LSt61eRm0cytARpgDNb3QEGG7zDc-czUj8n50eGPj8d-X2vBVyJOlj5XTOSYl8m4jjPFi6iwjKk4TBVYcGXiDCx7yFWhtShULEJwXCITxiYKlEgUj56QnQqG84zQNDQFhlkWevFC5ODhoF5ROsN7rlHukQ8OA-S8w9WQiHTttsCmk8g-ieyTEK8kgUfer9kldQ9jjtU0JrINZ9Lkeod3mw7rJ91IOkL-OwNqfwB5lP1OloKFxpgcQYsst1mR6ijlWmhmVCGEFR55hdIjEVyjwuydX3lT1_Lz1ws5jMFnSAR4zDcRfT9ziN72RMUMpqjz_sYELDOCdjmU-w4lqAjtNL9cS7LEJsyrq-ysqWHaWGklBrXtkaedZG9mj5ekwRtnHhGOzDvL47ZU5WWLUB7xIMp45pE33e5wunwqL4btijaNxPJoQfr8vyRij9wFL7bNoWbBPtlZLhr7AjzFpRqQ22IsBmR3dHj67WzQnrfA5wlPB632-A0RbGj7 |
linkProvider | BioMedCentral |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BpDCF4QdwIDDGKCl444ceJEiIeOMbXsggTbNO3FxLGzRWrT0jRC_TD-j3NyqeaNPaG9VfVxe-xzT86FkLeg4qIQOz9qZlSP-yoBmdOqpzRTngk58xgWOO_th4ND_vU4OF4hf7paGDVO2-5DG-frz0e10u5yxRpRj8IP4E6znsCnbaBNQrfNrdwxi98QuZWfhltA5nXP2_5y8HnQa4cL9JQIwnmPKyYSTERkPA1ixTM_M4ypwIsUmCylgxhMmcdVlqYiU4HwwFL72gu07yoRKu7D794gN0UQiLpsbPNkGecFon6xvUSu7Sj0D4QvVNmPLONYzxC4bCnOmcqLaZxWs9PaQG7fI3dbz5b2m9u7T1ZM8YDcamZdLh6SRZ9WTRIIAJXAGWAz6axLxTvLp7RNGaNqohd0DE49TQpNMc8mH8OeUT5WsFYYqnEiAT7lK2le0F9VomfV1GiAASbBWSMoVPAZ0J1OdPmIHF4LaR6T1QLQeUpo5OkMQz4Du3gmEvC2UMepNMaaWz9xyEeLAHLa9PiQ2HXbXgEGlEg-ieSTEDuFrkM2OnLJtG2pjpM9RrIOraLw8ob3yw3dP10Juon0txCqv5jMTmUrCFIwT2udYAMlw02cRakf8VSkTKtMCCMc8ga5R2KjjwIziU6Tqizl8NuR7Afgv4QCvPergH58t4DetUDZBI6YJm31BlwzNhCzINcsSFBXqbX8uuNkiUuY41eYSVXCsXHqC8hT5JAnDWcvT48F2xAZMIcIi-et67FXivys7pbuc9ePeeyQ9UY6rC1b-VG_vtGqkjiqzY2e_RdHvCK3Bwd7u3J3uL_znNwB77rO7WbuGlmdzyrzAjzYuXpZ6wtKfl63gvoL8vWrzw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Nb9Mw1BpDIC6IbwIDDGKCS7Y4ceJEiENHqTYGA8E2TVxMHDtbRJuWphHqH-P38V6SVvPGTmi3qO-5dfy-3fdByEtQcXGEnR81M8rlgUpB5rRylWbKNxFnPsMC50970fYB_3AUHq2QP4taGDXKuu5DG6frz4eN0oaH7OfmROetrMfRJvjTzBV43QbqJPK65MpdM_8NoVv1dqcPdF73_cH7_XfbbjddwFUijGYuV0ykmInIeBYmiudBbhhToR8rsFlKhwnYMp-rPMtErkLhg6kOtB_qwFMiUjyA771CrooQQHhLsPV9GeiFovlne7m5rqXQPzZ8psx-aFnHZojAeVNxylaezeO0up02FnJwi9zsXFvaa3nxNlkx5R1yrR12Ob9L5j1at1kggFQBa4DRpNNFLt5JMaFdzhhVYz2nI_DqaVpqiok2xQjWDIuRAlhpqMaRBHjNV9GipL_qVE_ridGAA1yCw0ZQquAZtjsZ6-oeObgU0twnqyVs5yGhsa9zjPkMrOK5SMHdQiWnsgSLboPUIW8sAshJ2-RDYtttGwIcKJF8EsknIXiKPIdsLMgls66nOo72GMomtoqj8wteLxcsfulC1C2kv7Wh5oPx9Fh2akUK5mutU-ygZLhJ8jgLYp6JjGmVC2GEQ14g90js9FFiKtFxWleV3Pl8KHshODCRAPf9IqRvXy2kVx1SPkY5TLvyDThm7CBmYa5ZmKCvMgv8fMHJEkGY5FeacV3Ba-PYF5Cn2CEPWs5evj1WbENowBwiLJ63jseGlMVJ0y494F6Q8MQh6610WEv6xWGvOdG6ljirzYsf_RdHPCPXv_QH8uPO3u5jcgO86ya3m3lrZHU2rc0T8GBn6mmjLij5cdn66S8fgqua |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+universal+scaling+relationship+between+body+mass+and+proximal+limb+bone+dimensions+in+quadrupedal+terrestrial+tetrapods&rft.jtitle=BMC+biology&rft.au=Campione+Nicol%C3%A1s+E&rft.au=Evans+David+C&rft.date=2012-07-10&rft.pub=BMC&rft.issn=1741-7007&rft.eissn=1741-7007&rft.volume=10&rft.issue=1&rft.spage=60&rft_id=info:doi/10.1186%2F1741-7007-10-60&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_712ddda6560e4e9f8c384c7c1dbf77e7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-7007&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-7007&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-7007&client=summon |