A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods

Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life...

Full description

Saved in:
Bibliographic Details
Published inBMC biology Vol. 10; no. 1; p. 60
Main Authors Campione, Nicolás E, Evans, David C
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 10.07.2012
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life. Scaling relationships between skeletal measurements and body mass in birds and mammals are commonly used to predict body mass in extinct members of these crown clades, but the applicability of these models for predicting mass in more distantly related stem taxa, such as non-avian dinosaurs and non-mammalian synapsids, has been criticized on biomechanical grounds. Here we test the major criticisms of scaling methods for estimating body mass using an extensive dataset of mammalian and non-avian reptilian species derived from individual skeletons with live weights. Significant differences in the limb scaling of mammals and reptiles are noted in comparisons of limb proportions and limb length to body mass. Remarkably, however, the relationship between proximal (stylopodial) limb bone circumference and body mass is highly conserved in extant terrestrial mammals and reptiles, in spite of their disparate limb postures, gaits, and phylogenetic histories. As a result, we are able to conclusively reject the main criticisms of scaling methods that question the applicability of a universal scaling equation for estimating body mass in distantly related taxa. The conserved nature of the relationship between stylopodial circumference and body mass suggests that the minimum diaphyseal circumference of the major weight-bearing bones is only weakly influenced by the varied forces exerted on the limbs (that is, compression or torsion) and most strongly related to the mass of the animal. Our results, therefore, provide a much-needed, robust, phylogenetically corrected framework for accurate and consistent estimation of body mass in extinct terrestrial quadrupeds, which is important for a wide range of paleobiological studies (including growth rates, metabolism, and energetics) and meta-analyses of body size evolution.
AbstractList Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life. Scaling relationships between skeletal measurements and body mass in birds and mammals are commonly used to predict body mass in extinct members of these crown clades, but the applicability of these models for predicting mass in more distantly related stem taxa, such as non-avian dinosaurs and non-mammalian synapsids, has been criticized on biomechanical grounds. Here we test the major criticisms of scaling methods for estimating body mass using an extensive dataset of mammalian and non-avian reptilian species derived from individual skeletons with live weights. Significant differences in the limb scaling of mammals and reptiles are noted in comparisons of limb proportions and limb length to body mass. Remarkably, however, the relationship between proximal (stylopodial) limb bone circumference and body mass is highly conserved in extant terrestrial mammals and reptiles, in spite of their disparate limb postures, gaits, and phylogenetic histories. As a result, we are able to conclusively reject the main criticisms of scaling methods that question the applicability of a universal scaling equation for estimating body mass in distantly related taxa. The conserved nature of the relationship between stylopodial circumference and body mass suggests that the minimum diaphyseal circumference of the major weight-bearing bones is only weakly influenced by the varied forces exerted on the limbs (that is, compression or torsion) and most strongly related to the mass of the animal. Our results, therefore, provide a much-needed, robust, phylogenetically corrected framework for accurate and consistent estimation of body mass in extinct terrestrial quadrupeds, which is important for a wide range of paleobiological studies (including growth rates, metabolism, and energetics) and meta-analyses of body size evolution.
Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life. Scaling relationships between skeletal measurements and body mass in birds and mammals are commonly used to predict body mass in extinct members of these crown clades, but the applicability of these models for predicting mass in more distantly related stem taxa, such as non-avian dinosaurs and non-mammalian synapsids, has been criticized on biomechanical grounds. Here we test the major criticisms of scaling methods for estimating body mass using an extensive dataset of mammalian and non-avian reptilian species derived from individual skeletons with live weights. Significant differences in the limb scaling of mammals and reptiles are noted in comparisons of limb proportions and limb length to body mass. Remarkably, however, the relationship between proximal (stylopodial) limb bone circumference and body mass is highly conserved in extant terrestrial mammals and reptiles, in spite of their disparate limb postures, gaits, and phylogenetic histories. As a result, we are able to conclusively reject the main criticisms of scaling methods that question the applicability of a universal scaling equation for estimating body mass in distantly related taxa. The conserved nature of the relationship between stylopodial circumference and body mass suggests that the minimum diaphyseal circumference of the major weight-bearing bones is only weakly influenced by the varied forces exerted on the limbs (that is, compression or torsion) and most strongly related to the mass of the animal. Our results, therefore, provide a much-needed, robust, phylogenetically corrected framework for accurate and consistent estimation of body mass in extinct terrestrial quadrupeds, which is important for a wide range of paleobiological studies (including growth rates, metabolism, and energetics) and meta-analyses of body size evolution.
Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life. Scaling relationships between skeletal measurements and body mass in birds and mammals are commonly used to predict body mass in extinct members of these crown clades, but the applicability of these models for predicting mass in more distantly related stem taxa, such as non-avian dinosaurs and non-mammalian synapsids, has been criticized on biomechanical grounds. Here we test the major criticisms of scaling methods for estimating body mass using an extensive dataset of mammalian and non-avian reptilian species derived from individual skeletons with live weights.BACKGROUNDBody size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life. Scaling relationships between skeletal measurements and body mass in birds and mammals are commonly used to predict body mass in extinct members of these crown clades, but the applicability of these models for predicting mass in more distantly related stem taxa, such as non-avian dinosaurs and non-mammalian synapsids, has been criticized on biomechanical grounds. Here we test the major criticisms of scaling methods for estimating body mass using an extensive dataset of mammalian and non-avian reptilian species derived from individual skeletons with live weights.Significant differences in the limb scaling of mammals and reptiles are noted in comparisons of limb proportions and limb length to body mass. Remarkably, however, the relationship between proximal (stylopodial) limb bone circumference and body mass is highly conserved in extant terrestrial mammals and reptiles, in spite of their disparate limb postures, gaits, and phylogenetic histories. As a result, we are able to conclusively reject the main criticisms of scaling methods that question the applicability of a universal scaling equation for estimating body mass in distantly related taxa.RESULTSSignificant differences in the limb scaling of mammals and reptiles are noted in comparisons of limb proportions and limb length to body mass. Remarkably, however, the relationship between proximal (stylopodial) limb bone circumference and body mass is highly conserved in extant terrestrial mammals and reptiles, in spite of their disparate limb postures, gaits, and phylogenetic histories. As a result, we are able to conclusively reject the main criticisms of scaling methods that question the applicability of a universal scaling equation for estimating body mass in distantly related taxa.The conserved nature of the relationship between stylopodial circumference and body mass suggests that the minimum diaphyseal circumference of the major weight-bearing bones is only weakly influenced by the varied forces exerted on the limbs (that is, compression or torsion) and most strongly related to the mass of the animal. Our results, therefore, provide a much-needed, robust, phylogenetically corrected framework for accurate and consistent estimation of body mass in extinct terrestrial quadrupeds, which is important for a wide range of paleobiological studies (including growth rates, metabolism, and energetics) and meta-analyses of body size evolution.CONCLUSIONSThe conserved nature of the relationship between stylopodial circumference and body mass suggests that the minimum diaphyseal circumference of the major weight-bearing bones is only weakly influenced by the varied forces exerted on the limbs (that is, compression or torsion) and most strongly related to the mass of the animal. Our results, therefore, provide a much-needed, robust, phylogenetically corrected framework for accurate and consistent estimation of body mass in extinct terrestrial quadrupeds, which is important for a wide range of paleobiological studies (including growth rates, metabolism, and energetics) and meta-analyses of body size evolution.
Background Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life. Scaling relationships between skeletal measurements and body mass in birds and mammals are commonly used to predict body mass in extinct members of these crown clades, but the applicability of these models for predicting mass in more distantly related stem taxa, such as non-avian dinosaurs and non-mammalian synapsids, has been criticized on biomechanical grounds. Here we test the major criticisms of scaling methods for estimating body mass using an extensive dataset of mammalian and non-avian reptilian species derived from individual skeletons with live weights. Results Significant differences in the limb scaling of mammals and reptiles are noted in comparisons of limb proportions and limb length to body mass. Remarkably, however, the relationship between proximal (stylopodial) limb bone circumference and body mass is highly conserved in extant terrestrial mammals and reptiles, in spite of their disparate limb postures, gaits, and phylogenetic histories. As a result, we are able to conclusively reject the main criticisms of scaling methods that question the applicability of a universal scaling equation for estimating body mass in distantly related taxa. Conclusions The conserved nature of the relationship between stylopodial circumference and body mass suggests that the minimum diaphyseal circumference of the major weight-bearing bones is only weakly influenced by the varied forces exerted on the limbs (that is, compression or torsion) and most strongly related to the mass of the animal. Our results, therefore, provide a much-needed, robust, phylogenetically corrected framework for accurate and consistent estimation of body mass in extinct terrestrial quadrupeds, which is important for a wide range of paleobiological studies (including growth rates, metabolism, and energetics) and meta-analyses of body size evolution.
Background Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life. Scaling relationships between skeletal measurements and body mass in birds and mammals are commonly used to predict body mass in extinct members of these crown clades, but the applicability of these models for predicting mass in more distantly related stem taxa, such as non-avian dinosaurs and non-mammalian synapsids, has been criticized on biomechanical grounds. Here we test the major criticisms of scaling methods for estimating body mass using an extensive dataset of mammalian and non-avian reptilian species derived from individual skeletons with live weights. Results Significant differences in the limb scaling of mammals and reptiles are noted in comparisons of limb proportions and limb length to body mass. Remarkably, however, the relationship between proximal (stylopodial) limb bone circumference and body mass is highly conserved in extant terrestrial mammals and reptiles, in spite of their disparate limb postures, gaits, and phylogenetic histories. As a result, we are able to conclusively reject the main criticisms of scaling methods that question the applicability of a universal scaling equation for estimating body mass in distantly related taxa. Conclusions The conserved nature of the relationship between stylopodial circumference and body mass suggests that the minimum diaphyseal circumference of the major weight-bearing bones is only weakly influenced by the varied forces exerted on the limbs (that is, compression or torsion) and most strongly related to the mass of the animal. Our results, therefore, provide a much-needed, robust, phylogenetically corrected framework for accurate and consistent estimation of body mass in extinct terrestrial quadrupeds, which is important for a wide range of paleobiological studies (including growth rates, metabolism, and energetics) and meta-analyses of body size evolution.
Abstract Background Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life. Scaling relationships between skeletal measurements and body mass in birds and mammals are commonly used to predict body mass in extinct members of these crown clades, but the applicability of these models for predicting mass in more distantly related stem taxa, such as non-avian dinosaurs and non-mammalian synapsids, has been criticized on biomechanical grounds. Here we test the major criticisms of scaling methods for estimating body mass using an extensive dataset of mammalian and non-avian reptilian species derived from individual skeletons with live weights. Results Significant differences in the limb scaling of mammals and reptiles are noted in comparisons of limb proportions and limb length to body mass. Remarkably, however, the relationship between proximal (stylopodial) limb bone circumference and body mass is highly conserved in extant terrestrial mammals and reptiles, in spite of their disparate limb postures, gaits, and phylogenetic histories. As a result, we are able to conclusively reject the main criticisms of scaling methods that question the applicability of a universal scaling equation for estimating body mass in distantly related taxa. Conclusions The conserved nature of the relationship between stylopodial circumference and body mass suggests that the minimum diaphyseal circumference of the major weight-bearing bones is only weakly influenced by the varied forces exerted on the limbs (that is, compression or torsion) and most strongly related to the mass of the animal. Our results, therefore, provide a much-needed, robust, phylogenetically corrected framework for accurate and consistent estimation of body mass in extinct terrestrial quadrupeds, which is important for a wide range of paleobiological studies (including growth rates, metabolism, and energetics) and meta-analyses of body size evolution.
ArticleNumber 60
Audience Academic
Author Campione, Nicolás E
Evans, David C
AuthorAffiliation 1 Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
2 Department of Palaeobiology, Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario, Canada M5S 2C6
AuthorAffiliation_xml – name: 2 Department of Palaeobiology, Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario, Canada M5S 2C6
– name: 1 Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
Author_xml – sequence: 1
  givenname: Nicolás E
  surname: Campione
  fullname: Campione, Nicolás E
– sequence: 2
  givenname: David C
  surname: Evans
  fullname: Evans, David C
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22781121$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-217208$$DView record from Swedish Publication Index
BookMark eNqNk8tr3DAQxk1JaR7tubdi6KWFbiLJlmVfAtv0tRAI9JGr0GO8UbAlR7KT7H9feZ2EuCRQdLCY-X0f45nRfrJjnYUkeYvRIcZlcYRZjhcMIbbAaFGgF8neQ2Tn0X032Q_hEiFCGcteJbuEsBJjgveSzTIdrLkGH0STBiUaY9eph0b0xtlwYbpUQn8DYFPp9CZtRQipsDrtvLs1bdQ0ppUxZyHVpgUbRllqbHo1CO2HDnRkevAeQu_N9t570TkdXicva9EEeHP3PUj-fPv6--TH4vTs--pkebqQjBb9IpeYCYZRhXNFK5nXWQ0YS0pKWRRYalqVuCS5rJVitaSM0DLPNKE6Q5IVMs8OktXkq5245J2PVfsNd8LwbcD5NRe-N6oBzjDRWouCFghyqOpSZWWumMJa1owBi16fJq9wA90gZ25fzPly6zYMnGBGUBnx4wmPbAtagY3_3sxU84w1F3ztrnmWo6zKq2jweTKQxj1jMM8o1_Jx6nycOseIFyiafLirwrurIc6BtyYoaBphwQ0hUnEbMkrZWPD7CV2L2A5jaxdd1YjzJc1yXLCMFJE6fIKKR0NrVFyF2sT4TPBxJohMD7f9Wgwh8NWvn__Pnp3P2XeP-_vQl_v1jgCdAOVdCB5qrky_Xe1YsWnGBo3P6ImWHf2ju7d-TvEXWEoeHg
CitedBy_id crossref_primary_10_1002_jmor_21636
crossref_primary_10_1016_j_cub_2023_03_080
crossref_primary_10_1098_rsos_180152
crossref_primary_10_7717_peerj_11557
crossref_primary_10_1093_iob_obae034
crossref_primary_10_1111_pala_12629
crossref_primary_10_1371_journal_pone_0051925
crossref_primary_10_7717_peerj_18067
crossref_primary_10_1098_rsbl_2014_0984
crossref_primary_10_1038_srep19165
crossref_primary_10_1093_iob_obae038
crossref_primary_10_1017_aaq_2018_81
crossref_primary_10_1080_02724634_2017_1398168
crossref_primary_10_1017_pab_2017_9
crossref_primary_10_1017_pab_2024_25
crossref_primary_10_1111_2041_210X_12226
crossref_primary_10_1007_s00114_014_1238_3
crossref_primary_10_1111_joa_12477
crossref_primary_10_1038_s41598_019_51709_5
crossref_primary_10_1002_spp2_1597
crossref_primary_10_1111_pala_12614
crossref_primary_10_1126_science_aay2268
crossref_primary_10_1016_j_cretres_2015_02_010
crossref_primary_10_1038_s41586_019_1137_z
crossref_primary_10_7717_peerj_17765
crossref_primary_10_1126_science_aal4853
crossref_primary_10_3390_ani12162038
crossref_primary_10_1080_08912963_2019_1640219
crossref_primary_10_1126_science_aau9345
crossref_primary_10_1002_ar_25024
crossref_primary_10_1016_j_cub_2020_06_105
crossref_primary_10_1002_ar_25021
crossref_primary_10_7717_peerj_1432
crossref_primary_10_1071_AM24050
crossref_primary_10_4236_jmp_2023_147060
crossref_primary_10_1002_wdev_384
crossref_primary_10_1080_14772019_2024_2441516
crossref_primary_10_1242_jeb_242990
crossref_primary_10_1038_srep19828
crossref_primary_10_7717_peerj_3976
crossref_primary_10_7717_peerj_1555
crossref_primary_10_1038_nature14905
crossref_primary_10_1002_jmor_20329
crossref_primary_10_1016_j_ecolmodel_2021_109706
crossref_primary_10_1002_cne_25224
crossref_primary_10_1371_journal_pone_0221824
crossref_primary_10_7554_eLife_55212
crossref_primary_10_1016_j_cub_2018_07_063
crossref_primary_10_1016_j_jsames_2022_103900
crossref_primary_10_1111_joa_13350
crossref_primary_10_1002_ece3_4651
crossref_primary_10_1111_joa_13598
crossref_primary_10_1111_let_12319
crossref_primary_10_1002_ar_25377
crossref_primary_10_1098_rspb_2020_2258
crossref_primary_10_1111_evo_12363
crossref_primary_10_3390_jmmp8050216
crossref_primary_10_1007_s41513_021_00172_1
crossref_primary_10_1098_rsos_210915
crossref_primary_10_1098_rsos_231495
crossref_primary_10_1007_s00114_012_1007_0
crossref_primary_10_1002_jqs_3549
crossref_primary_10_1038_srep06196
crossref_primary_10_7717_peerj_7647
crossref_primary_10_1111_joa_12378
crossref_primary_10_1080_02724634_2017_1361432
crossref_primary_10_1073_pnas_1519387112
crossref_primary_10_1038_s41598_025_92727_w
crossref_primary_10_1002_jqs_3560
crossref_primary_10_1038_s41598_019_57144_w
crossref_primary_10_1016_j_cub_2018_07_057
crossref_primary_10_1080_08912963_2023_2286272
crossref_primary_10_1080_08912963_2023_2175211
crossref_primary_10_1002_ar_22658
crossref_primary_10_1002_jmor_21403
crossref_primary_10_1017_pab_2023_26
crossref_primary_10_1007_s10914_017_9381_1
crossref_primary_10_1098_rsos_201089
crossref_primary_10_1002_ar_25244
crossref_primary_10_1007_s00435_021_00516_6
crossref_primary_10_1371_journal_pone_0094518
crossref_primary_10_1016_j_cretres_2021_104754
crossref_primary_10_1007_s10914_023_09652_w
crossref_primary_10_1371_journal_pbio_2000473
crossref_primary_10_1016_j_cretres_2022_105342
crossref_primary_10_1016_j_cub_2022_08_031
crossref_primary_10_1017_pab_2020_2
crossref_primary_10_1111_evo_13900
crossref_primary_10_2992_007_087_0301
crossref_primary_10_1016_j_crpv_2018_02_002
crossref_primary_10_1007_s12549_014_0174_8
crossref_primary_10_1146_annurev_earth_060313_054858
crossref_primary_10_7717_peerj_15957
crossref_primary_10_1038_s41598_018_35347_x
crossref_primary_10_1073_pnas_2108471119
crossref_primary_10_1080_08912963_2021_2010191
crossref_primary_10_1002_ar_23977
crossref_primary_10_1016_j_bone_2013_08_010
crossref_primary_10_1017_pab_2023_14
crossref_primary_10_1098_rsos_170431
crossref_primary_10_1038_s41598_021_01120_w
crossref_primary_10_1126_sciadv_adr2722
crossref_primary_10_1017_pab_2016_35
crossref_primary_10_1139_facets_2016_0046
crossref_primary_10_1038_s41559_021_01651_5
crossref_primary_10_1017_pab_2016_32
crossref_primary_10_1080_02724634_2019_1623226
crossref_primary_10_1126_science_aaf1509
crossref_primary_10_3390_ani13233695
crossref_primary_10_1371_journal_pone_0078899
crossref_primary_10_1371_journal_pone_0080974
crossref_primary_10_1016_j_crpv_2019_09_005
crossref_primary_10_1080_08912963_2022_2095908
crossref_primary_10_1016_j_jhevol_2017_01_001
crossref_primary_10_1371_journal_pone_0215655
crossref_primary_10_1080_02724634_2017_1343250
crossref_primary_10_1098_rsbl_2015_0940
crossref_primary_10_1098_rsos_210923
crossref_primary_10_1007_s10914_022_09617_5
crossref_primary_10_1016_j_crpv_2015_02_009
crossref_primary_10_7717_peerj_3496
crossref_primary_10_1016_j_cretres_2019_03_008
crossref_primary_10_1017_pab_2016_47
crossref_primary_10_1016_j_cretres_2022_105361
crossref_primary_10_1093_zoolinnean_zlad006
crossref_primary_10_1080_02724634_2021_1914642
crossref_primary_10_1126_science_1260879
crossref_primary_10_1016_j_cub_2023_05_073
crossref_primary_10_1016_j_jafrearsci_2016_08_004
crossref_primary_10_1080_02724634_2015_1048348
crossref_primary_10_7717_peerj_15378
crossref_primary_10_1002_ar_23950
crossref_primary_10_1126_science_1260880
crossref_primary_10_1080_08912963_2020_1841184
crossref_primary_10_1111_brv_12666
crossref_primary_10_1371_journal_pone_0081917
crossref_primary_10_1371_journal_pone_0200132
crossref_primary_10_1093_zoolinnean_zlz055
crossref_primary_10_3389_fevo_2021_692035
crossref_primary_10_7717_peerj_9349
crossref_primary_10_1111_pala_12599
crossref_primary_10_1242_jeb_203554
crossref_primary_10_1371_journal_pone_0185378
crossref_primary_10_1002_ajhb_23252
crossref_primary_10_1371_journal_pone_0145716
crossref_primary_10_1007_s10914_024_09722_7
crossref_primary_10_1016_j_jhevol_2019_04_003
crossref_primary_10_1111_evo_12693
crossref_primary_10_1016_j_cretres_2022_105389
crossref_primary_10_1002_ar_24234
crossref_primary_10_1139_cjes_2020_0176
crossref_primary_10_7717_peerj_11317
crossref_primary_10_1098_rspb_2020_1537
crossref_primary_10_1098_rsos_211237
crossref_primary_10_1126_science_abl5584
crossref_primary_10_1111_jzo_12771
crossref_primary_10_1016_j_crpv_2015_03_002
crossref_primary_10_1126_sciadv_adi0505
crossref_primary_10_1002_ece3_70504
crossref_primary_10_1080_02724634_2021_1878203
crossref_primary_10_1098_rsif_2021_0324
crossref_primary_10_1002_ar_25319
crossref_primary_10_1016_j_cretres_2016_02_001
crossref_primary_10_1186_s12915_021_01016_1
crossref_primary_10_2139_ssrn_4103305
crossref_primary_10_1080_02724634_2013_826668
crossref_primary_10_1017_pab_2021_35
crossref_primary_10_18435_vamp29375
crossref_primary_10_3389_fevo_2021_751238
crossref_primary_10_7717_peerj_10855
crossref_primary_10_1038_s41598_019_48607_1
crossref_primary_10_1098_rspb_2017_1219
crossref_primary_10_1017_pab_2015_24
crossref_primary_10_1371_journal_pone_0078573
crossref_primary_10_1071_ZO13086
crossref_primary_10_7717_peerj_10854
crossref_primary_10_1111_joa_14130
crossref_primary_10_1093_zoolinnean_zlaa163
crossref_primary_10_1038_s41586_020_2234_8
crossref_primary_10_1098_rsbl_2024_0441
crossref_primary_10_1016_j_cretres_2018_06_015
crossref_primary_10_1111_jeb_12983
crossref_primary_10_54393_mjz_v5i01_93
crossref_primary_10_1002_jmor_20382
crossref_primary_10_5710_AMGH_27_06_2018_3189
crossref_primary_10_1080_08912963_2024_2379030
crossref_primary_10_1371_journal_pone_0189883
crossref_primary_10_1098_rspb_2022_2435
crossref_primary_10_1111_evo_14017
crossref_primary_10_3390_quat7010010
crossref_primary_10_5710_AMGH_16_09_2021_3441
crossref_primary_10_1371_journal_pbio_1001853
crossref_primary_10_1371_journal_pbio_1001854
crossref_primary_10_1111_joa_14166
crossref_primary_10_1111_pala_12329
crossref_primary_10_7717_peerj_10721
crossref_primary_10_1002_jmor_21499
crossref_primary_10_1371_journal_pone_0082000
crossref_primary_10_1080_02724634_2020_1793158
crossref_primary_10_1002_ar_22701
crossref_primary_10_1093_zoolinnean_zlx108
crossref_primary_10_1017_pab_2020_47
crossref_primary_10_1017_pab_2020_46
crossref_primary_10_1371_journal_pone_0141794
crossref_primary_10_1016_j_jsames_2022_103994
crossref_primary_10_1038_s41598_023_37545_8
crossref_primary_10_1111_pala_12692
crossref_primary_10_1016_j_jsames_2023_104363
crossref_primary_10_1017_scs_2017_12
crossref_primary_10_1111_pala_12451
crossref_primary_10_1002_jmor_20712
crossref_primary_10_1017_pab_2015_19
crossref_primary_10_1111_joa_13503
crossref_primary_10_1080_08912963_2024_2380358
crossref_primary_10_1371_journal_pone_0077109
crossref_primary_10_1093_biolinnean_blaa005
crossref_primary_10_1093_zoolinnean_zlac003
crossref_primary_10_1002_ar_23903
crossref_primary_10_18261_let_56_2_5
crossref_primary_10_1080_08912963_2019_1617289
crossref_primary_10_1002_ar_25528
crossref_primary_10_1016_j_archoralbio_2013_02_009
crossref_primary_10_1017_pab_2024_6
crossref_primary_10_7717_peerj_857
crossref_primary_10_1111_brv_12638
crossref_primary_10_1080_02724634_2024_2326644
crossref_primary_10_1371_journal_pone_0297894
crossref_primary_10_7717_peerj_1135
crossref_primary_10_1080_02724634_2019_1732996
crossref_primary_10_1371_journal_pone_0113559
crossref_primary_10_1038_s41598_024_53447_9
crossref_primary_10_1111_pala_12546
crossref_primary_10_1007_s10914_018_09457_2
crossref_primary_10_7717_peerj_8556
crossref_primary_10_1016_j_quaint_2021_07_021
crossref_primary_10_1017_pab_2020_23
crossref_primary_10_2992_007_085_0403
crossref_primary_10_1098_rsos_150302
crossref_primary_10_1038_s41598_020_66425_8
crossref_primary_10_1126_science_ade1833
crossref_primary_10_1016_j_quaint_2023_05_019
crossref_primary_10_1371_journal_pone_0091691
crossref_primary_10_1007_s10914_023_09669_1
crossref_primary_10_1038_s41586_024_07733_1
crossref_primary_10_1016_j_cub_2021_06_013
crossref_primary_10_1080_02724634_2018_1524383
crossref_primary_10_1111_joa_12557
crossref_primary_10_1111_joa_13646
crossref_primary_10_7717_peerj_1228
crossref_primary_10_1002_spp2_1430
crossref_primary_10_1093_iob_obad010
crossref_primary_10_1002_oa_2773
crossref_primary_10_1242_jeb_217463
crossref_primary_10_1139_cjes_2014_0060
crossref_primary_10_1111_cla_12607
crossref_primary_10_1111_zoj_12215
crossref_primary_10_1093_iob_obad017
crossref_primary_10_1186_s12862_014_0258_0
crossref_primary_10_1139_cjes_2019_0089
crossref_primary_10_1144_SP379_19
crossref_primary_10_1080_08912963_2022_2050719
crossref_primary_10_1111_joa_14184
crossref_primary_10_7554_eLife_66036
crossref_primary_10_1111_bij_12660
crossref_primary_10_1371_journal_pone_0311187
crossref_primary_10_1186_s12862_016_0782_1
crossref_primary_10_1007_s10914_024_09739_y
crossref_primary_10_1080_08912963_2019_1631819
crossref_primary_10_1111_pala_12526
crossref_primary_10_1093_sysbio_syac020
crossref_primary_10_1080_08912963_2024_2385615
crossref_primary_10_1098_rsos_221565
crossref_primary_10_1371_journal_pone_0211423
crossref_primary_10_1139_facets_2017_0063
crossref_primary_10_1098_rsbl_2015_0215
crossref_primary_10_1242_dev_201045
crossref_primary_10_1017_jpa_2017_62
crossref_primary_10_1186_s12915_021_01224_9
crossref_primary_10_1038_s42003_020_01338_w
crossref_primary_10_1002_jmor_21340
crossref_primary_10_1242_jeb_245310
crossref_primary_10_1111_pala_12650
crossref_primary_10_1002_wdev_391
crossref_primary_10_1007_s10914_022_09640_6
crossref_primary_10_1093_zoolinnean_zlae065
crossref_primary_10_1002_jmor_70010
crossref_primary_10_1007_s10914_024_09741_4
crossref_primary_10_1038_s41559_023_02091_z
crossref_primary_10_1002_jmor_21445
crossref_primary_10_1002_ar_24638
crossref_primary_10_1017_jpa_2019_13
crossref_primary_10_3390_fishes8060300
crossref_primary_10_1016_j_jsames_2022_104014
crossref_primary_10_1002_spp2_1529
crossref_primary_10_1002_ajpa_24748
crossref_primary_10_1371_journal_pone_0224734
Cites_doi 10.1126/science.1061967
10.1242/jeb.018986
10.1111/j.1095-8312.2005.00485.x
10.1017/CBO9780511608551
10.1038/nature07671
10.1016/j.gene.2008.05.014
10.1126/science.1144066
10.1016/S0022-5193(84)80031-4
10.1073/pnas.251548698
10.1080/10635150500541698
10.1016/0022-5193(83)90206-0
10.1080/02724631003758334
10.1111/j.1469-7998.2009.00594.x
10.1080/10635150490503053
10.1080/02724634.1995.10011575
10.1671/0272-4634(2006)26[907:BGCOMS]2.0.CO;2
10.1093/sysbio/syr122
10.1080/10635150490522340
10.1139/e06-031
10.1671/039.029.0420
10.1002/jmor.10384
10.1086/286013
10.1242/jeb.059345
10.1038/290699a0
10.1111/j.2041-210X.2011.00153.x
10.1016/j.crvi.2005.10.001
10.1098/rspb.2008.1735
10.1666/07074.1
10.1086/282627
10.1086/physzool.58.2.30158569
10.1002/jmor.10659
10.1111/j.1502-3931.1996.tb01842.x
10.1002/(SICI)1097-4687(199902)239:2<167::AID-JMOR5>3.0.CO;2-8
10.1152/physrev.1947.27.4.511
10.1152/ajpregu.2000.279.1.R1
10.1080/02724634.1999.10011180
10.2307/1941052
10.1666/0094-8373(2003)029<0243:VPASAT>2.0.CO;2
10.1152/ajpregu.1984.246.2.R152
10.1644/08-MAMM-A-347R1.1
10.1890/08-1494.1
10.1371/journal.pone.0026037
10.1111/j.1469-7998.1999.tb00190.x
10.1126/science.1163245
10.1242/jeb.204.6.1099
10.1080/10635150490445706
10.1111/j.1420-9101.2007.01483.x
10.1146/annurev.es.08.110177.002241
10.1126/science.179.4079.1201
10.1111/j.1420-9101.2008.01594.x
10.1086/427734
10.1093/bioinformatics/btg412
10.1111/j.1600-0587.2010.06315.x
10.1017/S1464793106007007
10.1242/jeb.105.1.147
10.1111/j.2517-6161.1995.tb02031.x
10.1111/j.1095-8312.2007.00883.x
10.1038/35086558
10.1152/jappl.1975.39.4.619
10.1111/j.1096-3642.2011.00734.x
10.1666/0094-8373(2001)027<0014:EOHPIN>2.0.CO;2
10.1371/journal.pbio.0040248
10.1016/j.crpv.2005.09.002
10.1016/j.ympev.2007.06.018
10.1017/S0094837300020108
10.1371/journal.pone.0004532
10.1002/jmor.1052040205
10.1038/417070a
10.1038/nature05634
10.1111/j.1096-3642.1993.tb02560.x
10.1006/clad.2001.0169
10.1111/j.1469-7998.1979.tb03964.x
10.1016/j.mambio.2011.07.004
10.1086/285558
10.1093/sysbio/syp005
10.1016/j.tree.2005.08.012
10.1186/1471-2148-10-141
10.1016/j.ympev.2008.08.004
10.1002/mmng.200700011
10.1111/j.1469-7998.1985.tb04915.x
10.1086/284325
10.2307/3545889
10.1002/ar.20963
10.1671/0272-4634(2007)27[108:MTIBTY]2.0.CO;2
10.1111/j.1469-185X.2011.00190.x
10.1111/j.1469-7998.1971.tb02189.x
10.1126/science.2740914
10.1017/S0952836901000541
10.1016/j.jtbi.2007.01.023
10.1242/jeb.01588
10.1111/j.1469-7998.1999.tb00996.x
10.1371/journal.pone.0005361
10.1111/j.1420-9101.2004.00870.x
10.1671/0272-4634(2001)021[0051:ANMTCA]2.0.CO;2
10.1006/jhev.2002.0573
10.1016/j.plrev.2006.07.002
10.1080/08912960412331284313
10.1038/238081a0
10.1093/sysbio/41.1.18
10.1007/s00114-007-0234-2
10.1002/jmor.1051920204
10.1016/j.gene.2008.06.011
10.1666/0094-8373(2008)034[0264:MGRFSD]2.0.CO;2
10.1111/j.1469-7998.2000.tb00793.x
10.1111/j.1469-7998.2009.00665.x
10.1017/S009483730001099X
10.1038/385247a0
10.1242/jeb.202.9.1023
10.1016/j.ympev.2006.03.003
10.1666/07078.1
10.1098/rspb.2009.0245
10.2307/1564733
10.1080/02724634.1999.10011145
10.1666/0094-8373(2001)027<0735:EBMFST>2.0.CO;2
10.1086/283026
ContentType Journal Article
Copyright COPYRIGHT 2012 BioMed Central Ltd.
Copyright ©2012 Campione and Evans; licensee BioMed Central Ltd. 2012 Campione and Evans; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2012 BioMed Central Ltd.
– notice: Copyright ©2012 Campione and Evans; licensee BioMed Central Ltd. 2012 Campione and Evans; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
7X8
5PM
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
DOA
DOI 10.1186/1741-7007-10-60
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
SWEPUB Uppsala universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Uppsala universitet
SwePub Articles full text
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic





Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1741-7007
EndPage 60
ExternalDocumentID oai_doaj_org_article_712ddda6560e4e9f8c384c7c1dbf77e7
oai_DiVA_org_uu_217208
PMC3403949
oai_biomedcentral_com_1741_7007_10_60
A534167326
22781121
10_1186_1741_7007_10_60
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Canada
GeographicLocations_xml – name: Canada
GroupedDBID ---
0R~
23N
2VQ
2WC
4.4
53G
5GY
5VS
6J9
7X7
88E
8FE
8FH
8FI
8FJ
8G5
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
IOV
ISE
ISR
ITC
KQ8
LK8
M1P
M2O
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PADUT
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
7X8
-A0
3V.
ABVAZ
ACRMQ
ADINQ
AFGXO
AFNRJ
C24
5PM
123
ACNBI
ADTPV
AOWAS
C1A
D8T
DF2
H13
IPNFZ
RIG
ZZAVC
PUEGO
ID FETCH-LOGICAL-b756t-4b17a710914c59b4f3fe11b528b661bd5981824bfcc7fb5725843d25d30b76b43
IEDL.DBID RBZ
ISSN 1741-7007
IngestDate Wed Aug 27 01:18:34 EDT 2025
Thu Aug 21 06:55:50 EDT 2025
Thu Aug 21 18:06:41 EDT 2025
Wed May 22 07:15:34 EDT 2024
Tue Aug 05 09:46:26 EDT 2025
Tue Jun 17 22:04:47 EDT 2025
Tue Jun 10 21:03:11 EDT 2025
Fri Jun 27 05:57:34 EDT 2025
Fri Jun 27 05:35:14 EDT 2025
Mon Jul 21 06:06:48 EDT 2025
Thu Apr 24 22:57:29 EDT 2025
Tue Jul 01 02:58:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by/2.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b756t-4b17a710914c59b4f3fe11b528b661bd5981824bfcc7fb5725843d25d30b76b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1186/1741-7007-10-60
PMID 22781121
PQID 1027835578
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_712ddda6560e4e9f8c384c7c1dbf77e7
swepub_primary_oai_DiVA_org_uu_217208
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3403949
biomedcentral_primary_oai_biomedcentral_com_1741_7007_10_60
proquest_miscellaneous_1027835578
gale_infotracmisc_A534167326
gale_infotracacademiconefile_A534167326
gale_incontextgauss_ISR_A534167326
gale_incontextgauss_IOV_A534167326
pubmed_primary_22781121
crossref_citationtrail_10_1186_1741_7007_10_60
crossref_primary_10_1186_1741_7007_10_60
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-07-10
PublicationDateYYYYMMDD 2012-07-10
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-07-10
  day: 10
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle BMC biology
PublicationTitleAlternate BMC Biol
PublicationYear 2012
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References JF Gillooly (575_CR36) 2006; 4
JO Farlow (575_CR39) 1976; 57
FA Jenkins (575_CR114) 1971; 165
J Peczkis (575_CR40) 1994; 14
MT Butcher (575_CR90) 2008; 211
KJ Gaston (575_CR11) 1996; 1996
JF Gillooly (575_CR5) 2002; 417
CM Janis (575_CR28) 1992; 28
MJ Wedel (575_CR59) 2003; 29
TN Engstrom (575_CR129) 2004; 53
RJ Smith (575_CR103) 1984; 246
M Le (575_CR130) 2006; 40
DJ Varricchio (575_CR27) 2008; 322
H-C Gunga (575_CR53) 2007; 94
RJ Smith (575_CR142) 2002; 43
R Redelstorff (575_CR145) 2009; 29
E Paradis (575_CR140) 2004; 20
KT Bates (575_CR52) 2009; 4
RW Blob (575_CR89) 2001; 204
RM Alexander (575_CR72) 1989
AR Woodward (575_CR111) 1995; 29
TJ Garland (575_CR139) 1992; 41
E Naro-Maciel (575_CR132) 2008; 49
CR McClain (575_CR7) 2009; 276
P Christiansen (575_CR93) 1999; 239
TA McMahon (575_CR100) 1975; 109
MT Carrano (575_CR70) 2001; 254
RW Blob (575_CR84) 2000; 250
MT Carrano (575_CR14) 2005
H Mallison (575_CR68) 2011
AC Economos (575_CR94) 1983; 103
GM Erickson (575_CR30) 2005; 20
OR Bininda-Emonds (575_CR123) 2007; 446
GJM Garcia (575_CR87) 2006; 3
I Capellini (575_CR12) 2007; 92
JH Zar (575_CR115) 1968; 18
RT Bakker (575_CR35) 1972; 239
EH Colbert (575_CR46) 1962; 2076
KE Jones (575_CR112) 2009; 90
DWE Hone (575_CR17) 2008; 21
GC Cawley (575_CR104) 2009; 280
JH Brown (575_CR6) 1993; 142
JA Finarelli (575_CR22) 2008; 34
DI Warton (575_CR116) 2006; 81
JF Gillooly (575_CR3) 2001; 293
J Bou (575_CR102) 1987; 192
CT Rubin (575_CR86) 1982; 101
P Christiansen (575_CR85) 1999; 247
T McMahon (575_CR95) 1973; 179
MT Carrano (575_CR15) 2006
RBJ Benson (575_CR58) 2011; 87
P Christiansen (575_CR47) 2004; 16
JR Hutchinson (575_CR61) 2011; 6
B Hohn (575_CR66) 2011
DM Henderson (575_CR51) 1999; 25
TF Hansen (575_CR141) 2012; 61
A Casinos (575_CR74) 1996; 29
DM Henderson (575_CR63) 2004; 271
RM Andrews (575_CR113) 1982
TI Grand (575_CR57) 1990
DJ Varricchio (575_CR29) 1997; 385
S Finnegan (575_CR105) 2008; 34
JA Hopson (575_CR23) 1977; 8
GC Packard (575_CR82) 2009; 279
N Vidal (575_CR126) 2005; 328
GA Hazlehurst (575_CR60) 1992; 18
DM Henderson (575_CR64) 2010; 30
GM Erickson (575_CR31) 2001; 412
P Christiansen (575_CR32) 1999; 19
G Paul (575_CR71) 1997
RM Andrews (575_CR110) 1985; 58
WAI Calder (575_CR8) 1984
DI Warton (575_CR118) 2011; 3
WP Maddison (575_CR122) 2006
P Christiansen (575_CR109) 2005; 266
J Roos (575_CR137) 2007; 45
DM Henderson (575_CR65) 2006; 26
MT Young (575_CR99) 2011; 163
RH Peters (575_CR4) 1983
JJ Wiens (575_CR135) 2006; 60
RR Sokal (575_CR81) 1969
MT Carrano (575_CR83) 1999; 247
S De Esteban-Trivigno (575_CR43) 2008; 269
RM Alexander (575_CR77) 1979; 189
AA Farke (575_CR101) 2009; 292
JA Hopson (575_CR24) 1979
Y Okajima (575_CR131) 2010; 10
SAM Amer (575_CR134) 2005; 85
V Millien (575_CR42) 2010; 91
JR Hutchinson (575_CR106) 2006; 5
AH Turner (575_CR19) 2007; 317
Y Benjamini (575_CR119) 1995; 57
M Laurin (575_CR20) 2004; 53
RW Blob (575_CR79) 1999; 202
PA Marquet (575_CR97) 2005; 208
RW Blob (575_CR107) 2001; 27
TJ Near (575_CR138) 2005; 165
EA Albert (575_CR133) 2009; 441
TA McMahon (575_CR96) 1975; 39
S De Esteban-Trivigno (575_CR144) 2011; 76
M Fortelius (575_CR69) 1993; 108
EP Martins (575_CR143) 1997; 149
RJ Butler (575_CR13) 2008; 21
MT Carrano (575_CR33) 1998; 24
PD Gingerich (575_CR44) 1990; 28
R Franz (575_CR38) 2009; 276
AG Boyer (575_CR98) 2010; 33
TM Townsend (575_CR125) 2004; 53
J Damuth (575_CR9) 1981; 290
M Kleiber (575_CR2) 1947; 27
H Mallison (575_CR67) 2011
HJ Jerison (575_CR26) 1973
GP Burness (575_CR10) 2001; 98
AA Biewener (575_CR92) 1983; 105
H-C Gunga (575_CR50) 1999; 2
JA Finarelli (575_CR21) 2006; 55
J Felsenstein (575_CR121) 1985; 125
R Motani (575_CR55) 2001; 27
H-C Gunga (575_CR56) 2002; 3
TM Lehman (575_CR76) 2008; 34
G Hurlburt (575_CR48) 1999; 19
(575_CR41) 1990
KE Campbell (575_CR45) 1992; 36
D Curran-Everett (575_CR120) 2000; 279
AM Hemmingsen (575_CR1) 1960; 9
HJ Jerison (575_CR25) 1969; 103
F Therrien (575_CR18) 2007; 27
R-Development-Core-Team (575_CR117) 2010
H-C Gunga (575_CR54) 2008; 11
CT Rubin (575_CR80) 1984; 107
JC Ast (575_CR127) 2001; 17
J Fröbisch (575_CR108) 2006; 43
PQ Spinks (575_CR124) 2009; 58
H Pontzer (575_CR34) 2009; 4
ES Gaffney (575_CR128) 1988
JR Hutchinson (575_CR75) 2007; 246
JEA Bertram (575_CR78) 1990; 204
AA Biewener (575_CR91) 1989; 245
CJ Clemente (575_CR88) 2011; 214
F Seebacher (575_CR49) 2001; 21
Y Okajima (575_CR136) 2009; 441
JJ Head (575_CR37) 2009; 457
DWE Hone (575_CR16) 2005; 18
JF Anderson (575_CR73) 1985; 207
KT Bates (575_CR62) 2009; 12
References_xml – volume: 293
  start-page: 2248
  year: 2001
  ident: 575_CR3
  publication-title: Science
  doi: 10.1126/science.1061967
– volume: 211
  start-page: 2397
  year: 2008
  ident: 575_CR90
  publication-title: J Exp Biol
  doi: 10.1242/jeb.018986
– volume: 85
  start-page: 247
  year: 2005
  ident: 575_CR134
  publication-title: Biol J Linnean Soc
  doi: 10.1111/j.1095-8312.2005.00485.x
– volume-title: The Ecological Implications of Body Size
  year: 1983
  ident: 575_CR4
  doi: 10.1017/CBO9780511608551
– volume: 457
  start-page: 715
  year: 2009
  ident: 575_CR37
  publication-title: Nature
  doi: 10.1038/nature07671
– volume: 441
  start-page: 12
  year: 2009
  ident: 575_CR133
  publication-title: Gene
  doi: 10.1016/j.gene.2008.05.014
– volume: 317
  start-page: 1378
  year: 2007
  ident: 575_CR19
  publication-title: Science
  doi: 10.1126/science.1144066
– volume: 107
  start-page: 321
  year: 1984
  ident: 575_CR80
  publication-title: J Theoret Biol
  doi: 10.1016/S0022-5193(84)80031-4
– volume: 98
  start-page: 14518
  year: 2001
  ident: 575_CR10
  publication-title: Proc Natl Acad Science USA
  doi: 10.1073/pnas.251548698
– start-page: 229
  volume-title: The Sauropods: Evolution and Paleobiology
  year: 2005
  ident: 575_CR14
– volume: 55
  start-page: 301
  year: 2006
  ident: 575_CR21
  publication-title: Syst Biol
  doi: 10.1080/10635150500541698
– volume: 103
  start-page: 167
  year: 1983
  ident: 575_CR94
  publication-title: J Theoret Biol
  doi: 10.1016/0022-5193(83)90206-0
– volume: 30
  start-page: 768
  year: 2010
  ident: 575_CR64
  publication-title: J Vertebrate Paleontol
  doi: 10.1080/02724631003758334
– volume: 279
  start-page: 102
  year: 2009
  ident: 575_CR82
  publication-title: J Zool
  doi: 10.1111/j.1469-7998.2009.00594.x
– volume: 53
  start-page: 693
  year: 2004
  ident: 575_CR129
  publication-title: Syst Biol
  doi: 10.1080/10635150490503053
– volume: 14
  start-page: 520
  year: 1994
  ident: 575_CR40
  publication-title: J Vertebrate Paleontol
  doi: 10.1080/02724634.1995.10011575
– volume: 26
  start-page: 907
  year: 2006
  ident: 575_CR65
  publication-title: J Vertebrate Paleontol
  doi: 10.1671/0272-4634(2006)26[907:BGCOMS]2.0.CO;2
– volume: 61
  start-page: 413
  issue: 3
  year: 2012
  ident: 575_CR141
  publication-title: Syst Biol
  doi: 10.1093/sysbio/syr122
– volume: 53
  start-page: 735
  year: 2004
  ident: 575_CR125
  publication-title: Syst Biol
  doi: 10.1080/10635150490522340
– volume: 43
  start-page: 1297
  year: 2006
  ident: 575_CR108
  publication-title: Can J Earth Sci
  doi: 10.1139/e06-031
– volume: 29
  start-page: 1087
  year: 2009
  ident: 575_CR145
  publication-title: J Vertebrate Paleontol
  doi: 10.1671/039.029.0420
– volume-title: Dynamics of Dinosaurs and Other Extinct Giants
  year: 1989
  ident: 575_CR72
– volume-title: Body Size in Mammalian Paleobiology: Estimation and Biological Implications
  year: 1990
  ident: 575_CR41
– volume: 266
  start-page: 369
  year: 2005
  ident: 575_CR109
  publication-title: J Morphol
  doi: 10.1002/jmor.10384
– volume: 60
  start-page: 123
  year: 2006
  ident: 575_CR135
  publication-title: Evolution
– volume: 12
  start-page: 33
  year: 2009
  ident: 575_CR62
  publication-title: Palaeontologia Electronica
– volume: 149
  start-page: 647
  year: 1997
  ident: 575_CR143
  publication-title: Am Naturalist
  doi: 10.1086/286013
– start-page: 39
  volume-title: Biology of the Replilia, Neurology A
  year: 1979
  ident: 575_CR24
– start-page: 157
  volume-title: The Phylogeny and Classification of Tetrapods
  year: 1988
  ident: 575_CR128
– volume-title: Evolution of the Brain and Intelligence
  year: 1973
  ident: 575_CR26
– volume: 214
  start-page: 3013
  year: 2011
  ident: 575_CR88
  publication-title: J Exp Biol
  doi: 10.1242/jeb.059345
– volume: 290
  start-page: 699
  year: 1981
  ident: 575_CR9
  publication-title: Nature
  doi: 10.1038/290699a0
– volume: 3
  start-page: 257
  year: 2011
  ident: 575_CR118
  publication-title: Methods Ecol Evol
  doi: 10.1111/j.2041-210X.2011.00153.x
– volume: 328
  start-page: 1000
  year: 2005
  ident: 575_CR126
  publication-title: C R Biol
  doi: 10.1016/j.crvi.2005.10.001
– volume: 276
  start-page: 1731
  year: 2009
  ident: 575_CR38
  publication-title: Proc R Soc Lond B Biol Sci
  doi: 10.1098/rspb.2008.1735
– volume: 34
  start-page: 342
  year: 2008
  ident: 575_CR105
  publication-title: Paleobiology
  doi: 10.1666/07074.1
– volume: 2
  start-page: 91
  year: 1999
  ident: 575_CR50
  publication-title: Mitteilungen aus dem Museum für Naturkunde der Humboldt-Universität Berlin, Geowissenschaftliche Reihe
– volume: 103
  start-page: 575
  year: 1969
  ident: 575_CR25
  publication-title: Am Nat
  doi: 10.1086/282627
– volume: 58
  start-page: 214
  year: 1985
  ident: 575_CR110
  publication-title: Physiol Zool
  doi: 10.1086/physzool.58.2.30158569
– start-page: 273
  volume-title: Biology of the Reptilia: Physiology D
  year: 1982
  ident: 575_CR113
– volume: 269
  start-page: 1276
  year: 2008
  ident: 575_CR43
  publication-title: J Morphol
  doi: 10.1002/jmor.10659
– volume: 29
  start-page: 87
  year: 1996
  ident: 575_CR74
  publication-title: Lethaia
  doi: 10.1111/j.1502-3931.1996.tb01842.x
– volume: 239
  start-page: 167
  year: 1999
  ident: 575_CR93
  publication-title: J Morphol
  doi: 10.1002/(SICI)1097-4687(199902)239:2<167::AID-JMOR5>3.0.CO;2-8
– volume: 27
  start-page: 511
  issue: 4
  year: 1947
  ident: 575_CR2
  publication-title: Physiol Rev
  doi: 10.1152/physrev.1947.27.4.511
– volume: 279
  start-page: R1
  year: 2000
  ident: 575_CR120
  publication-title: Am J Physiol Regul Integr Comp Physiol
  doi: 10.1152/ajpregu.2000.279.1.R1
– volume: 19
  start-page: 666
  year: 1999
  ident: 575_CR32
  publication-title: J Vertebrate Paleontol
  doi: 10.1080/02724634.1999.10011180
– volume: 57
  start-page: 841
  year: 1976
  ident: 575_CR39
  publication-title: Ecology
  doi: 10.2307/1941052
– volume: 29
  start-page: 243
  year: 2003
  ident: 575_CR59
  publication-title: Paleobiology
  doi: 10.1666/0094-8373(2003)029<0243:VPASAT>2.0.CO;2
– volume-title: Biometry: The Principles and Practice of Statistics in Biological Science
  year: 1969
  ident: 575_CR81
– start-page: 225
  volume-title: Amniote Paleobiology: Perspectives on the Evolution of Mammals, Birds, and Reptiles
  year: 2006
  ident: 575_CR15
– volume: 246
  start-page: R152
  year: 1984
  ident: 575_CR103
  publication-title: Am J Physiol Regul Integr Comp Physiol
  doi: 10.1152/ajpregu.1984.246.2.R152
– volume: 91
  start-page: 11
  year: 2010
  ident: 575_CR42
  publication-title: J Mammal
  doi: 10.1644/08-MAMM-A-347R1.1
– volume: 90
  start-page: 2648
  year: 2009
  ident: 575_CR112
  publication-title: Ecology
  doi: 10.1890/08-1494.1
– volume-title: R: a language and environment for statistical computing
  year: 2010
  ident: 575_CR117
– volume: 6
  start-page: e26037
  year: 2011
  ident: 575_CR61
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0026037
– volume-title: Mesquite: A modular system for evolutionary analysis. Version 2.6 (build 486): mesquiteproject.org
  year: 2006
  ident: 575_CR122
– volume: 247
  start-page: 29
  year: 1999
  ident: 575_CR83
  publication-title: J Zool
  doi: 10.1111/j.1469-7998.1999.tb00190.x
– volume: 322
  start-page: 1826
  year: 2008
  ident: 575_CR27
  publication-title: Science
  doi: 10.1126/science.1163245
– start-page: 182
  volume-title: Biology of the Sauropod Dinosaurs: Understanding the Life of Giants
  year: 2011
  ident: 575_CR66
– volume: 204
  start-page: 1099
  year: 2001
  ident: 575_CR89
  publication-title: J Exp Biol
  doi: 10.1242/jeb.204.6.1099
– volume: 53
  start-page: 594
  year: 2004
  ident: 575_CR20
  publication-title: Syst Biol
  doi: 10.1080/10635150490445706
– volume: 21
  start-page: 618
  year: 2008
  ident: 575_CR17
  publication-title: J Evol Biol
  doi: 10.1111/j.1420-9101.2007.01483.x
– volume: 8
  start-page: 429
  year: 1977
  ident: 575_CR23
  publication-title: Annu Rev Ecol Systematics
  doi: 10.1146/annurev.es.08.110177.002241
– volume: 101
  start-page: 187
  year: 1982
  ident: 575_CR86
  publication-title: J Evol Biol
– volume: 179
  start-page: 1201
  year: 1973
  ident: 575_CR95
  publication-title: Science
  doi: 10.1126/science.179.4079.1201
– volume: 28
  start-page: 201
  year: 1992
  ident: 575_CR28
  publication-title: Ann Zool Fennici
– volume: 21
  start-page: 1673
  year: 2008
  ident: 575_CR13
  publication-title: J Evol Biol
  doi: 10.1111/j.1420-9101.2008.01594.x
– volume: 165
  start-page: 137
  year: 2005
  ident: 575_CR138
  publication-title: Am Naturalist
  doi: 10.1086/427734
– volume: 20
  start-page: 289
  year: 2004
  ident: 575_CR140
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg412
– volume: 33
  start-page: 369
  year: 2010
  ident: 575_CR98
  publication-title: Ecography
  doi: 10.1111/j.1600-0587.2010.06315.x
– volume: 81
  start-page: 259
  year: 2006
  ident: 575_CR116
  publication-title: Biol Rev
  doi: 10.1017/S1464793106007007
– volume: 105
  start-page: 147
  year: 1983
  ident: 575_CR92
  publication-title: J Exp Biol
  doi: 10.1242/jeb.105.1.147
– volume: 2076
  start-page: 1
  year: 1962
  ident: 575_CR46
  publication-title: American Museum Novitates
– volume: 57
  start-page: 289
  year: 1995
  ident: 575_CR119
  publication-title: J R Stat Soc Series B Stat Methodol
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 92
  start-page: 431
  year: 2007
  ident: 575_CR12
  publication-title: Biol J Linnean Soc
  doi: 10.1111/j.1095-8312.2007.00883.x
– volume: 412
  start-page: 429
  year: 2001
  ident: 575_CR31
  publication-title: Nature
  doi: 10.1038/35086558
– volume: 39
  start-page: 619
  year: 1975
  ident: 575_CR96
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1975.39.4.619
– volume: 25
  start-page: 88
  year: 1999
  ident: 575_CR51
  publication-title: Paleobiology
– volume: 28
  start-page: 79
  year: 1990
  ident: 575_CR44
  publication-title: Contributions from the Museum of Paleontology, University of Michigan
– start-page: 219
  volume-title: Biology of the Sauropod Dinosaurs: Understanding the Life of Giants
  year: 2011
  ident: 575_CR67
– volume: 163
  start-page: 1199
  year: 2011
  ident: 575_CR99
  publication-title: Zool J Linnean Soc
  doi: 10.1111/j.1096-3642.2011.00734.x
– volume: 27
  start-page: 14
  year: 2001
  ident: 575_CR107
  publication-title: Paleobiology
  doi: 10.1666/0094-8373(2001)027<0014:EOHPIN>2.0.CO;2
– volume: 4
  start-page: e248
  year: 2006
  ident: 575_CR36
  publication-title: PLoS Biology
  doi: 10.1371/journal.pbio.0040248
– volume: 5
  start-page: 519
  year: 2006
  ident: 575_CR106
  publication-title: C R Palevol
  doi: 10.1016/j.crpv.2005.09.002
– volume: 45
  start-page: 663
  year: 2007
  ident: 575_CR137
  publication-title: Mol Phylogenet Evol
  doi: 10.1016/j.ympev.2007.06.018
– volume: 24
  start-page: 450
  year: 1998
  ident: 575_CR33
  publication-title: Paleobiology
  doi: 10.1017/S0094837300020108
– volume-title: Size, Function, and Life History
  year: 1984
  ident: 575_CR8
– volume: 4
  start-page: e4532
  year: 2009
  ident: 575_CR52
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0004532
– volume: 204
  start-page: 157
  year: 1990
  ident: 575_CR78
  publication-title: J Morphol
  doi: 10.1002/jmor.1052040205
– volume: 417
  start-page: 70
  year: 2002
  ident: 575_CR5
  publication-title: Nature
  doi: 10.1038/417070a
– volume: 446
  start-page: 507
  year: 2007
  ident: 575_CR123
  publication-title: Nature
  doi: 10.1038/nature05634
– volume: 108
  start-page: 85
  year: 1993
  ident: 575_CR69
  publication-title: Zool J Linnean Soc
  doi: 10.1111/j.1096-3642.1993.tb02560.x
– volume: 17
  start-page: 211
  year: 2001
  ident: 575_CR127
  publication-title: Cladistics
  doi: 10.1006/clad.2001.0169
– start-page: 39
  volume-title: Dinofest International
  year: 1997
  ident: 575_CR71
– volume: 189
  start-page: 305
  year: 1979
  ident: 575_CR77
  publication-title: J Zool
  doi: 10.1111/j.1469-7998.1979.tb03964.x
– volume: 76
  start-page: 755
  year: 2011
  ident: 575_CR144
  publication-title: Mammalian Biol
  doi: 10.1016/j.mambio.2011.07.004
– volume: 142
  start-page: 573
  year: 1993
  ident: 575_CR6
  publication-title: Am Nat
  doi: 10.1086/285558
– volume: 58
  start-page: 1
  year: 2009
  ident: 575_CR124
  publication-title: Syst Biol
  doi: 10.1093/sysbio/syp005
– volume: 20
  start-page: 677
  year: 2005
  ident: 575_CR30
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2005.08.012
– volume: 10
  start-page: 141
  year: 2010
  ident: 575_CR131
  publication-title: BMC Evol Biol
  doi: 10.1186/1471-2148-10-141
– start-page: 237
  volume-title: Biology of the Sauropod Dinosaurs: Understanding the Life of Giants
  year: 2011
  ident: 575_CR68
– volume: 49
  start-page: 659
  year: 2008
  ident: 575_CR132
  publication-title: Mol Phylogenet Evol
  doi: 10.1016/j.ympev.2008.08.004
– volume: 11
  start-page: 33
  year: 2008
  ident: 575_CR54
  publication-title: Fossil Record
  doi: 10.1002/mmng.200700011
– volume: 207
  start-page: 53
  year: 1985
  ident: 575_CR73
  publication-title: J Zool Soc Lond A
  doi: 10.1111/j.1469-7998.1985.tb04915.x
– volume: 125
  start-page: 1
  year: 1985
  ident: 575_CR121
  publication-title: Am Naturalist
  doi: 10.1086/284325
– volume: 1996
  start-page: 479
  year: 1996
  ident: 575_CR11
  publication-title: Oikos
  doi: 10.2307/3545889
– volume: 292
  start-page: 1406
  year: 2009
  ident: 575_CR101
  publication-title: Anat Rec
  doi: 10.1002/ar.20963
– volume: 27
  start-page: 108
  year: 2007
  ident: 575_CR18
  publication-title: J Vertebrate Paleontol
  doi: 10.1671/0272-4634(2007)27[108:MTIBTY]2.0.CO;2
– volume: 87
  start-page: 168
  year: 2011
  ident: 575_CR58
  publication-title: Biol Rev
  doi: 10.1111/j.1469-185X.2011.00190.x
– volume: 165
  start-page: 303
  year: 1971
  ident: 575_CR114
  publication-title: J Zool
  doi: 10.1111/j.1469-7998.1971.tb02189.x
– volume: 245
  start-page: 45
  year: 1989
  ident: 575_CR91
  publication-title: Science
  doi: 10.1126/science.2740914
– volume: 254
  start-page: 41
  year: 2001
  ident: 575_CR70
  publication-title: J Zool
  doi: 10.1017/S0952836901000541
– volume: 246
  start-page: 660
  year: 2007
  ident: 575_CR75
  publication-title: J Theoret Biol
  doi: 10.1016/j.jtbi.2007.01.023
– volume: 208
  start-page: 1749
  year: 2005
  ident: 575_CR97
  publication-title: J Exp Biol
  doi: 10.1242/jeb.01588
– volume: 247
  start-page: 333
  year: 1999
  ident: 575_CR85
  publication-title: J Zool
  doi: 10.1111/j.1469-7998.1999.tb00996.x
– volume: 4
  start-page: 1
  year: 2009
  ident: 575_CR34
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0005361
– volume: 18
  start-page: 587
  year: 2005
  ident: 575_CR16
  publication-title: J Evol Biol
  doi: 10.1111/j.1420-9101.2004.00870.x
– volume: 21
  start-page: 51
  year: 2001
  ident: 575_CR49
  publication-title: J Vertebrate Paleontol
  doi: 10.1671/0272-4634(2001)021[0051:ANMTCA]2.0.CO;2
– volume: 43
  start-page: 271
  year: 2002
  ident: 575_CR142
  publication-title: J Human Evol
  doi: 10.1006/jhev.2002.0573
– volume: 3
  start-page: 188
  year: 2006
  ident: 575_CR87
  publication-title: Phys Life Rev
  doi: 10.1016/j.plrev.2006.07.002
– volume: 16
  start-page: 85
  year: 2004
  ident: 575_CR47
  publication-title: Hist Biol
  doi: 10.1080/08912960412331284313
– volume: 239
  start-page: 81
  year: 1972
  ident: 575_CR35
  publication-title: Nature
  doi: 10.1038/238081a0
– volume: 41
  start-page: 18
  year: 1992
  ident: 575_CR139
  publication-title: Syst Biol
  doi: 10.1093/sysbio/41.1.18
– volume: 3
  start-page: 156
  year: 2002
  ident: 575_CR56
  publication-title: Adaptation Biol Med
– volume: 36
  start-page: 395
  year: 1992
  ident: 575_CR45
  publication-title: Natural History Museum of Los Angeles County Science Series
– volume: 94
  start-page: 623
  year: 2007
  ident: 575_CR53
  publication-title: Naturwissenschaften
  doi: 10.1007/s00114-007-0234-2
– volume: 192
  start-page: 113
  year: 1987
  ident: 575_CR102
  publication-title: J Morphol
  doi: 10.1002/jmor.1051920204
– volume: 441
  start-page: 28
  year: 2009
  ident: 575_CR136
  publication-title: Gene
  doi: 10.1016/j.gene.2008.06.011
– volume: 18
  start-page: 118
  year: 1968
  ident: 575_CR115
  publication-title: BioScience
– volume: 34
  start-page: 264
  year: 2008
  ident: 575_CR76
  publication-title: Paleobiology
  doi: 10.1666/0094-8373(2008)034[0264:MGRFSD]2.0.CO;2
– volume: 250
  start-page: 507
  year: 2000
  ident: 575_CR84
  publication-title: J Zool
  doi: 10.1111/j.1469-7998.2000.tb00793.x
– volume: 280
  start-page: 355
  year: 2009
  ident: 575_CR104
  publication-title: J Zool
  doi: 10.1111/j.1469-7998.2009.00665.x
– volume: 18
  start-page: 447
  year: 1992
  ident: 575_CR60
  publication-title: Paleobiology
  doi: 10.1017/S009483730001099X
– volume: 271
  start-page: S180
  year: 2004
  ident: 575_CR63
  publication-title: Biol Lett
– volume: 385
  start-page: 247
  year: 1997
  ident: 575_CR29
  publication-title: Nature
  doi: 10.1038/385247a0
– volume: 202
  start-page: 1023
  year: 1999
  ident: 575_CR79
  publication-title: J Exp Biol
  doi: 10.1242/jeb.202.9.1023
– start-page: 39
  volume-title: Body Size in Mammalian Paleobiology: Estimation and Biological Implications
  year: 1990
  ident: 575_CR57
– volume: 40
  start-page: 517
  year: 2006
  ident: 575_CR130
  publication-title: Mol Phylogenet Evol
  doi: 10.1016/j.ympev.2006.03.003
– volume: 34
  start-page: 553
  year: 2008
  ident: 575_CR22
  publication-title: Paleobiology
  doi: 10.1666/07078.1
– volume: 9
  start-page: 6
  year: 1960
  ident: 575_CR1
  publication-title: Steno Memorial Hospital and Nordinsk Insulin Laboratosium
– volume: 276
  start-page: 2209
  year: 2009
  ident: 575_CR7
  publication-title: Proc R Soc Lond B Biol Sci
  doi: 10.1098/rspb.2009.0245
– volume: 29
  start-page: 507
  year: 1995
  ident: 575_CR111
  publication-title: J Herpetol
  doi: 10.2307/1564733
– volume: 19
  start-page: 338
  year: 1999
  ident: 575_CR48
  publication-title: J Vertebrate Paleontol
  doi: 10.1080/02724634.1999.10011145
– volume: 27
  start-page: 735
  year: 2001
  ident: 575_CR55
  publication-title: Paleobiology
  doi: 10.1666/0094-8373(2001)027<0735:EBMFST>2.0.CO;2
– volume: 109
  start-page: 547
  year: 1975
  ident: 575_CR100
  publication-title: Am Naturalist
  doi: 10.1086/283026
SSID ssj0025773
Score 2.4988046
Snippet Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for...
Background Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential...
BACKGROUND: Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential...
Background Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential...
Abstract Background Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are...
SourceID doaj
swepub
pubmedcentral
biomedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 60
SubjectTerms Analysis
Animals
Biologi med inriktning mot evolutionär organismbiologi
Biology with specialization in Evolutionary Organismal Biology
Birds
Body Size
Bone and Bones - anatomy & histology
Bones
Extremities - anatomy & histology
Gait - physiology
Least-Squares Analysis
Mammals - anatomy & histology
Paleontology
Phylogeny
Physiological aspects
Posture - physiology
Reptiles - anatomy & histology
Vertebrates
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBFhkEgktonNhxIk7LoypIgAS06s2KH6GRdrPbzeaw_54ZJ1nVVBUXblE8VmzPeB67M98Q8hJUXJEj8qNlTsc80xXcOatjbZlOXc5ZyrDA-eu3_PiEfzkTZ5dafWFO2AAPPBzcoWSptbZCjBjHXVkXJiu4kYZZXUvpfB052LwpmBpDLSH9f8vgbrNYghkcQX1YkR_u3qEGQmTKoNB9HtgnD-N_VVlfslZ_Z1IGeKPeRh3dIbdH55LOhk3dJTdce4_cHNpNbu-T7Yz2Qx4GEHXAHDBbdD1lw503KzpmbVG9tFu6AL-aVq2lmOrSLGDOvFloGGsdtdgUAH9o62jT0ou-sut-5SzQAJ-w3QfKNTzDcldL2z0gJ0effn04jsfWC7GWIt_EXDNZYZom40aUmtdZ7RjTIi00GHRtRQmGPuW6NkbWWsgU_JjMpsJmiZa55tlDstfCch4TWqS2xqjLwSxeywocHlQz2pRY9ppVEXkXMECtBpgNhcDX4QjcQYXsU8g-BeFLnkTk7cQuZUZUc2yuMVc-uinyqxPe7CZMX7qW9D3yP1iQfwHyqUb5VP-Sz4i8QOlRiLXRYjLP76rvOvX5-6maCXAhcgkO9HVEP38ERK9HonoJWzTVWEABx4wYXgHlfkAJGsMEw88nSVY4hGl2rVv2HWwbG68I0OIReTRI9m73WDMNzjmLiAxkPjiecKRtzj1gecaTrORlRF4NtyOY8rE5nfkT7XuF3dKS4sn_OPen5Bb4tj6zmiX7ZG-z7t0B-I8b_cyrij86zm16
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbQJiReEOOaMZBBIHjJiBMnToQQKpdpIA0koNPerPiSLVKbdEkj0X_POUla8C5vvFX1cWv73JPj7xDyAkxcmiDyo2FW-TxSOeicUb4yTIU24SxkeMH56FtyOOVfT-KTv-2AxgNsr0ztsJ_UtJnt_z5fvQeFf9crfJq8gaCa-QKfuYFNSSB_3wa3JLCdwRHfvFIA0exfN2-IR5yfK37gwt33meOyemT_y_b7Hwd2sbjSgSDt3dbBHXJ7jDfpZBCQHXLDVnfJzaED5eoeWU1oN5RmAFEL_AJPRpt1gdxZuaBjIRdVtVnROYTaNK8MxeqXcg5zZuVcwVhlqcE-AfjsraVlRc-73DTdwhqgAdZhBxAUdfgMy13Upr1Ppgeff3089MduDL4ScbL0uWIix8pNxnWcKV5EhWVMxWGqwMcrE2fg-0OuCq1FoWIRQmgTmTA2UaBEonj0gGxVsJxHhKahKTARszCLFyKHGAgtj9IZ3oSNco-8dRggFwPyhkQsbHcE1FIi-ySyT0JGkwQe2V-zS-oR6Bz7bcxkn_CkyeUJrzcT1v90LekH5L-zoP6LujmVo65LwUJjTI6wRpbbrEh1lHItNDOqEMIKjzxH6ZEIv1Fhfc9p3rWt_PL9WE5iiCoSATH1dUQ_fzhEr0aiooYt6ny8UwHHjLBeDuWeQwlGRDvDz9aSLHEIK-8qW3ctbBt7scRg2D3ycJDsze7xGjXE68wjwpF553jckao86zHMIx5EGc888nLQDmfKp_J40p9o10lsoBaku__j3B-TWxDu9sXWLNgjW8ums08gpFyqp72p-ANEYnPJ
  priority: 102
  providerName: Scholars Portal
Title A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods
URI https://www.ncbi.nlm.nih.gov/pubmed/22781121
https://www.proquest.com/docview/1027835578
http://dx.doi.org/10.1186/1741-7007-10-60
https://pubmed.ncbi.nlm.nih.gov/PMC3403949
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-217208
https://doaj.org/article/712ddda6560e4e9f8c384c7c1dbf77e7
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgExIviG_CRmUQCF7C4sSJE_HUwqaBtIEGmyperPgjLFKbdk3z0P-euyQtuGNPvFRVfW5s3_k-nPPvCHkNKi5NEPnRMKt8Hqkc9pxRvjJMhTbhLGR4wfnkNDk-51_G8fgPWPTWG3yWJgfgMjNf4IkaaIwEovPdkEM8h4H56OcmtopF-zJ5Q9yj-PzjD7Zutk8cg9Ti9l_Xzn-Zp-3USQdgtDVKR_fJvd6bpMOO_Q_ILVs9JHe6-pKrR2Q1pE2XeAFENXAD7BRdrNPfLss57dO0qJqZFZ2CI03zylDMbSmn0GdSThW0VZYarAKAJ2s1LSt61eRm0cytARpgDNb3QEGG7zDc-czUj8n50eGPj8d-X2vBVyJOlj5XTOSYl8m4jjPFi6iwjKk4TBVYcGXiDCx7yFWhtShULEJwXCITxiYKlEgUj56QnQqG84zQNDQFhlkWevFC5ODhoF5ROsN7rlHukQ8OA-S8w9WQiHTttsCmk8g-ieyTEK8kgUfer9kldQ9jjtU0JrINZ9Lkeod3mw7rJ91IOkL-OwNqfwB5lP1OloKFxpgcQYsst1mR6ijlWmhmVCGEFR55hdIjEVyjwuydX3lT1_Lz1ws5jMFnSAR4zDcRfT9ziN72RMUMpqjz_sYELDOCdjmU-w4lqAjtNL9cS7LEJsyrq-ysqWHaWGklBrXtkaedZG9mj5ekwRtnHhGOzDvL47ZU5WWLUB7xIMp45pE33e5wunwqL4btijaNxPJoQfr8vyRij9wFL7bNoWbBPtlZLhr7AjzFpRqQ22IsBmR3dHj67WzQnrfA5wlPB632-A0RbGj7
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BpDCF4QdwIDDGKCl444ceJEiIeOMbXsggTbNO3FxLGzRWrT0jRC_TD-j3NyqeaNPaG9VfVxe-xzT86FkLeg4qIQOz9qZlSP-yoBmdOqpzRTngk58xgWOO_th4ND_vU4OF4hf7paGDVO2-5DG-frz0e10u5yxRpRj8IP4E6znsCnbaBNQrfNrdwxi98QuZWfhltA5nXP2_5y8HnQa4cL9JQIwnmPKyYSTERkPA1ixTM_M4ypwIsUmCylgxhMmcdVlqYiU4HwwFL72gu07yoRKu7D794gN0UQiLpsbPNkGecFon6xvUSu7Sj0D4QvVNmPLONYzxC4bCnOmcqLaZxWs9PaQG7fI3dbz5b2m9u7T1ZM8YDcamZdLh6SRZ9WTRIIAJXAGWAz6axLxTvLp7RNGaNqohd0DE49TQpNMc8mH8OeUT5WsFYYqnEiAT7lK2le0F9VomfV1GiAASbBWSMoVPAZ0J1OdPmIHF4LaR6T1QLQeUpo5OkMQz4Du3gmEvC2UMepNMaaWz9xyEeLAHLa9PiQ2HXbXgEGlEg-ieSTEDuFrkM2OnLJtG2pjpM9RrIOraLw8ob3yw3dP10Juon0txCqv5jMTmUrCFIwT2udYAMlw02cRakf8VSkTKtMCCMc8ga5R2KjjwIziU6Tqizl8NuR7Afgv4QCvPergH58t4DetUDZBI6YJm31BlwzNhCzINcsSFBXqbX8uuNkiUuY41eYSVXCsXHqC8hT5JAnDWcvT48F2xAZMIcIi-et67FXivys7pbuc9ePeeyQ9UY6rC1b-VG_vtGqkjiqzY2e_RdHvCK3Bwd7u3J3uL_znNwB77rO7WbuGlmdzyrzAjzYuXpZ6wtKfl63gvoL8vWrzw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Nb9Mw1BpDIC6IbwIDDGKCS7Y4ceJEiENHqTYGA8E2TVxMHDtbRJuWphHqH-P38V6SVvPGTmi3qO-5dfy-3fdByEtQcXGEnR81M8rlgUpB5rRylWbKNxFnPsMC50970fYB_3AUHq2QP4taGDXKuu5DG6frz4eN0oaH7OfmROetrMfRJvjTzBV43QbqJPK65MpdM_8NoVv1dqcPdF73_cH7_XfbbjddwFUijGYuV0ykmInIeBYmiudBbhhToR8rsFlKhwnYMp-rPMtErkLhg6kOtB_qwFMiUjyA771CrooQQHhLsPV9GeiFovlne7m5rqXQPzZ8psx-aFnHZojAeVNxylaezeO0up02FnJwi9zsXFvaa3nxNlkx5R1yrR12Ob9L5j1at1kggFQBa4DRpNNFLt5JMaFdzhhVYz2nI_DqaVpqiok2xQjWDIuRAlhpqMaRBHjNV9GipL_qVE_ridGAA1yCw0ZQquAZtjsZ6-oeObgU0twnqyVs5yGhsa9zjPkMrOK5SMHdQiWnsgSLboPUIW8sAshJ2-RDYtttGwIcKJF8EsknIXiKPIdsLMgls66nOo72GMomtoqj8wteLxcsfulC1C2kv7Wh5oPx9Fh2akUK5mutU-ygZLhJ8jgLYp6JjGmVC2GEQ14g90js9FFiKtFxWleV3Pl8KHshODCRAPf9IqRvXy2kVx1SPkY5TLvyDThm7CBmYa5ZmKCvMgv8fMHJEkGY5FeacV3Ba-PYF5Cn2CEPWs5evj1WbENowBwiLJ63jseGlMVJ0y494F6Q8MQh6610WEv6xWGvOdG6ljirzYsf_RdHPCPXv_QH8uPO3u5jcgO86ya3m3lrZHU2rc0T8GBn6mmjLij5cdn66S8fgqua
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+universal+scaling+relationship+between+body+mass+and+proximal+limb+bone+dimensions+in+quadrupedal+terrestrial+tetrapods&rft.jtitle=BMC+biology&rft.au=Campione+Nicol%C3%A1s+E&rft.au=Evans+David+C&rft.date=2012-07-10&rft.pub=BMC&rft.issn=1741-7007&rft.eissn=1741-7007&rft.volume=10&rft.issue=1&rft.spage=60&rft_id=info:doi/10.1186%2F1741-7007-10-60&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_712ddda6560e4e9f8c384c7c1dbf77e7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-7007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-7007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-7007&client=summon