Performance of criteria for selecting evolutionary models in phylogenetics: a comprehensive study based on simulated datasets
Explicit evolutionary models are required in maximum-likelihood and Bayesian inference, the two methods that are overwhelmingly used in phylogenetic studies of DNA sequence data. Appropriate selection of nucleotide substitution models is important because the use of incorrect models can mislead phyl...
Saved in:
Published in | BMC evolutionary biology Vol. 10; no. 1; p. 242 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
09.08.2010
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Explicit evolutionary models are required in maximum-likelihood and Bayesian inference, the two methods that are overwhelmingly used in phylogenetic studies of DNA sequence data. Appropriate selection of nucleotide substitution models is important because the use of incorrect models can mislead phylogenetic inference. To better understand the performance of different model-selection criteria, we used 33,600 simulated data sets to analyse the accuracy, precision, dissimilarity, and biases of the hierarchical likelihood-ratio test, Akaike information criterion, Bayesian information criterion, and decision theory.
We demonstrate that the Bayesian information criterion and decision theory are the most appropriate model-selection criteria because of their high accuracy and precision. Our results also indicate that in some situations different models are selected by different criteria for the same dataset. Such dissimilarity was the highest between the hierarchical likelihood-ratio test and Akaike information criterion, and lowest between the Bayesian information criterion and decision theory. The hierarchical likelihood-ratio test performed poorly when the true model included a proportion of invariable sites, while the Bayesian information criterion and decision theory generally exhibited similar performance to each other.
Our results indicate that the Bayesian information criterion and decision theory should be preferred for model selection. Together with model-adequacy tests, accurate model selection will serve to improve the reliability of phylogenetic inference and related analyses. |
---|---|
AbstractList | Explicit evolutionary models are required in maximum-likelihood and Bayesian inference, the two methods that are overwhelmingly used in phylogenetic studies of DNA sequence data. Appropriate selection of nucleotide substitution models is important because the use of incorrect models can mislead phylogenetic inference. To better understand the performance of different model-selection criteria, we used 33,600 simulated data sets to analyse the accuracy, precision, dissimilarity, and biases of the hierarchical likelihood-ratio test, Akaike information criterion, Bayesian information criterion, and decision theory.BACKGROUNDExplicit evolutionary models are required in maximum-likelihood and Bayesian inference, the two methods that are overwhelmingly used in phylogenetic studies of DNA sequence data. Appropriate selection of nucleotide substitution models is important because the use of incorrect models can mislead phylogenetic inference. To better understand the performance of different model-selection criteria, we used 33,600 simulated data sets to analyse the accuracy, precision, dissimilarity, and biases of the hierarchical likelihood-ratio test, Akaike information criterion, Bayesian information criterion, and decision theory.We demonstrate that the Bayesian information criterion and decision theory are the most appropriate model-selection criteria because of their high accuracy and precision. Our results also indicate that in some situations different models are selected by different criteria for the same dataset. Such dissimilarity was the highest between the hierarchical likelihood-ratio test and Akaike information criterion, and lowest between the Bayesian information criterion and decision theory. The hierarchical likelihood-ratio test performed poorly when the true model included a proportion of invariable sites, while the Bayesian information criterion and decision theory generally exhibited similar performance to each other.RESULTSWe demonstrate that the Bayesian information criterion and decision theory are the most appropriate model-selection criteria because of their high accuracy and precision. Our results also indicate that in some situations different models are selected by different criteria for the same dataset. Such dissimilarity was the highest between the hierarchical likelihood-ratio test and Akaike information criterion, and lowest between the Bayesian information criterion and decision theory. The hierarchical likelihood-ratio test performed poorly when the true model included a proportion of invariable sites, while the Bayesian information criterion and decision theory generally exhibited similar performance to each other.Our results indicate that the Bayesian information criterion and decision theory should be preferred for model selection. Together with model-adequacy tests, accurate model selection will serve to improve the reliability of phylogenetic inference and related analyses.CONCLUSIONSOur results indicate that the Bayesian information criterion and decision theory should be preferred for model selection. Together with model-adequacy tests, accurate model selection will serve to improve the reliability of phylogenetic inference and related analyses. Background Explicit evolutionary models are required in maximum-likelihood and Bayesian inference, the two methods that are overwhelmingly used in phylogenetic studies of DNA sequence data. Appropriate selection of nucleotide substitution models is important because the use of incorrect models can mislead phylogenetic inference. To better understand the performance of different model-selection criteria, we used 33,600 simulated data sets to analyse the accuracy, precision, dissimilarity, and biases of the hierarchical likelihood-ratio test, Akaike information criterion, Bayesian information criterion, and decision theory. Results We demonstrate that the Bayesian information criterion and decision theory are the most appropriate model-selection criteria because of their high accuracy and precision. Our results also indicate that in some situations different models are selected by different criteria for the same dataset. Such dissimilarity was the highest between the hierarchical likelihood-ratio test and Akaike information criterion, and lowest between the Bayesian information criterion and decision theory. The hierarchical likelihood-ratio test performed poorly when the true model included a proportion of invariable sites, while the Bayesian information criterion and decision theory generally exhibited similar performance to each other. Conclusions Our results indicate that the Bayesian information criterion and decision theory should be preferred for model selection. Together with model-adequacy tests, accurate model selection will serve to improve the reliability of phylogenetic inference and related analyses. Explicit evolutionary models are required in maximum-likelihood and Bayesian inference, the two methods that are overwhelmingly used in phylogenetic studies of DNA sequence data. Appropriate selection of nucleotide substitution models is important because the use of incorrect models can mislead phylogenetic inference. To better understand the performance of different model-selection criteria, we used 33,600 simulated data sets to analyse the accuracy, precision, dissimilarity, and biases of the hierarchical likelihood-ratio test, Akaike information criterion, Bayesian information criterion, and decision theory. We demonstrate that the Bayesian information criterion and decision theory are the most appropriate model-selection criteria because of their high accuracy and precision. Our results also indicate that in some situations different models are selected by different criteria for the same dataset. Such dissimilarity was the highest between the hierarchical likelihood-ratio test and Akaike information criterion, and lowest between the Bayesian information criterion and decision theory. The hierarchical likelihood-ratio test performed poorly when the true model included a proportion of invariable sites, while the Bayesian information criterion and decision theory generally exhibited similar performance to each other. Our results indicate that the Bayesian information criterion and decision theory should be preferred for model selection. Together with model-adequacy tests, accurate model selection will serve to improve the reliability of phylogenetic inference and related analyses. Explicit evolutionary models are required in maximum-likelihood and Bayesian inference, the two methods that are overwhelmingly used in phylogenetic studies of DNA sequence data. Appropriate selection of nucleotide substitution models is important because the use of incorrect models can mislead phylogenetic inference. To better understand the performance of different model-selection criteria, we used 33,600 simulated data sets to analyse the accuracy, precision, dissimilarity, and biases of the hierarchical likelihood-ratio test, Akaike information criterion, Bayesian information criterion, and decision theory. We demonstrate that the Bayesian information criterion and decision theory are the most appropriate model-selection criteria because of their high accuracy and precision. Our results also indicate that in some situations different models are selected by different criteria for the same dataset. Such dissimilarity was the highest between the hierarchical likelihood-ratio test and Akaike information criterion, and lowest between the Bayesian information criterion and decision theory. The hierarchical likelihood-ratio test performed poorly when the true model included a proportion of invariable sites, while the Bayesian information criterion and decision theory generally exhibited similar performance to each other. Our results indicate that the Bayesian information criterion and decision theory should be preferred for model selection. Together with model-adequacy tests, accurate model selection will serve to improve the reliability of phylogenetic inference and related analyses. Abstract Background Explicit evolutionary models are required in maximum-likelihood and Bayesian inference, the two methods that are overwhelmingly used in phylogenetic studies of DNA sequence data. Appropriate selection of nucleotide substitution models is important because the use of incorrect models can mislead phylogenetic inference. To better understand the performance of different model-selection criteria, we used 33,600 simulated data sets to analyse the accuracy, precision, dissimilarity, and biases of the hierarchical likelihood-ratio test, Akaike information criterion, Bayesian information criterion, and decision theory. Results We demonstrate that the Bayesian information criterion and decision theory are the most appropriate model-selection criteria because of their high accuracy and precision. Our results also indicate that in some situations different models are selected by different criteria for the same dataset. Such dissimilarity was the highest between the hierarchical likelihood-ratio test and Akaike information criterion, and lowest between the Bayesian information criterion and decision theory. The hierarchical likelihood-ratio test performed poorly when the true model included a proportion of invariable sites, while the Bayesian information criterion and decision theory generally exhibited similar performance to each other. Conclusions Our results indicate that the Bayesian information criterion and decision theory should be preferred for model selection. Together with model-adequacy tests, accurate model selection will serve to improve the reliability of phylogenetic inference and related analyses. |
ArticleNumber | 242 |
Audience | Academic |
Author | Luo, Arong Shi, Weifeng Zhu, Chaodong Qiao, Huijie Zhang, Aibing Zhang, Yanzhou Ho, Simon YW Xu, Weijun |
AuthorAffiliation | 1 Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China 2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China 4 Centre for Macroevolution and Macroecology, Research School of Biology, Australian National University, Canberra ACT 0200, Australia 5 School of Biological Sciences, University of Sydney, Sydney NSW 2006, Australia 3 UCD Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin 4, Ireland 6 Zhongbei College, Nanjing Normal University, Nanjing 210046, China 7 College of Life Sciences, Capital Normal University, Beijing 100048, China |
AuthorAffiliation_xml | – name: 1 Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China – name: 6 Zhongbei College, Nanjing Normal University, Nanjing 210046, China – name: 7 College of Life Sciences, Capital Normal University, Beijing 100048, China – name: 3 UCD Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin 4, Ireland – name: 4 Centre for Macroevolution and Macroecology, Research School of Biology, Australian National University, Canberra ACT 0200, Australia – name: 2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China – name: 5 School of Biological Sciences, University of Sydney, Sydney NSW 2006, Australia |
Author_xml | – sequence: 1 givenname: Arong surname: Luo fullname: Luo, Arong – sequence: 2 givenname: Huijie surname: Qiao fullname: Qiao, Huijie – sequence: 3 givenname: Yanzhou surname: Zhang fullname: Zhang, Yanzhou – sequence: 4 givenname: Weifeng surname: Shi fullname: Shi, Weifeng – sequence: 5 givenname: Simon YW surname: Ho fullname: Ho, Simon YW – sequence: 6 givenname: Weijun surname: Xu fullname: Xu, Weijun – sequence: 7 givenname: Aibing surname: Zhang fullname: Zhang, Aibing – sequence: 8 givenname: Chaodong surname: Zhu fullname: Zhu, Chaodong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20696057$$D View this record in MEDLINE/PubMed |
BookMark | eNqFk8tv1DAQxiNURB9w54QscUActthO4sQckKqKx0qVQDzOlmNPdl0l9mI7FT3wvzNh29KtWqEcHI9_82n8zfiw2PPBQ1E8Z_SYsVa8YVXDFpxV7YLRBa_4o-LgJrR363-_OEzpnFLWtJw9KfY5FVLQujkofn-B2Ic4am-AhJ6Y6DJEpwkGSYIBTHZ-ReAiDFN2wet4ScZgYUjEebJZXw5hBR6yM-kt0cSEcRNhDT65CyApT_aSdDqBJcGT5MZp0Bk3VmcM5vS0eNzrIcGzq_Wo-PHh_ffTT4uzzx-Xpydni66p2rywRrS8EhaLl33XlrLsLAjTiF6UTcsqzhptLC0NZZJC2TVCAiupoQ1owakpj4rlVtcGfa420Y14DxW0U38DIa6UjniHAZS2suGyFFUn24pWlSx7ycDKvtWGNxpQ691WazN1I1gDPkc97Ijunni3VqtwobjkdVtzFDjdCnQuPCCwe4KmqrmVam6lYlRhp1Hl1VUZMfycIGU1umRgGLSHMCWFLglRt_L_JFosm6pmJZIv75DnYYoeO4PF1zVOXFO3_6iVRr-c7wNWaWZNdcLLmkmEZur4Hgo_C6MzOMa9w_hOwuudBGQy_MorPaWklt--7rIvbvfgxrvruUZAbAETQ0oRemVc1vMAYxVumE2cH9B9ttI7idfaD6b8AdK2G9w |
CitedBy_id | crossref_primary_10_1007_s00294_022_01245_z crossref_primary_10_1007_s10709_016_9889_y crossref_primary_10_1111_tpj_15673 crossref_primary_10_1093_molbev_msz291 crossref_primary_10_1038_s41467_019_08822_w crossref_primary_10_1099_jgv_0_000007 crossref_primary_10_3390_fishes6040044 crossref_primary_10_3109_19401736_2014_987238 crossref_primary_10_1002_tafs_10074 crossref_primary_10_1186_1471_2148_14_70 crossref_primary_10_1186_1471_2164_12_84 crossref_primary_10_1016_j_ympev_2015_07_007 crossref_primary_10_1111_j_1463_6409_2011_00480_x crossref_primary_10_1186_1471_2105_13_S19_S12 crossref_primary_10_1655_HERPETOLOGICA_D_15_00059 crossref_primary_10_1007_s00239_024_10162_3 crossref_primary_10_1016_j_ympev_2024_108113 crossref_primary_10_1016_j_ympev_2016_07_017 crossref_primary_10_3390_ijms130911455 crossref_primary_10_1093_zoolinnean_zlab018 crossref_primary_10_1186_s12862_016_0832_8 crossref_primary_10_1186_1471_2148_11_65 crossref_primary_10_1016_j_ympev_2014_09_001 crossref_primary_10_1016_j_meegid_2017_08_015 crossref_primary_10_1080_09397140_2015_1101925 crossref_primary_10_3897_zookeys_1047_66933 crossref_primary_10_1093_gbe_evw179 crossref_primary_10_3897_zse_94_28981 crossref_primary_10_1093_bib_bbz016 crossref_primary_10_3897_zookeys_445_7778 crossref_primary_10_1016_j_ympev_2013_10_002 crossref_primary_10_1016_j_ympev_2015_10_001 crossref_primary_10_1093_jhered_esab013 crossref_primary_10_1371_journal_pone_0266892 crossref_primary_10_1111_jph_12703 crossref_primary_10_1111_jzs_12081 crossref_primary_10_1071_ZO18025 crossref_primary_10_1371_journal_pone_0190511 crossref_primary_10_3390_jof8100997 crossref_primary_10_1111_jeu_12291 crossref_primary_10_1002_cpmc_63 crossref_primary_10_1371_journal_pone_0082400 crossref_primary_10_3732_ajb_1300105 crossref_primary_10_1371_journal_pone_0039304 crossref_primary_10_3389_fmicb_2019_02896 crossref_primary_10_1093_jmammal_gyw170 crossref_primary_10_1002_ece3_10628 crossref_primary_10_1016_j_rsma_2020_101336 crossref_primary_10_1016_j_virol_2015_09_024 crossref_primary_10_1093_molbev_mss232 crossref_primary_10_1016_j_ympev_2011_12_003 crossref_primary_10_1111_lam_12826 crossref_primary_10_1111_jpy_12355 crossref_primary_10_1371_journal_pone_0055336 crossref_primary_10_1016_j_zool_2024_126169 crossref_primary_10_3897_zse_101_133734 crossref_primary_10_1038_s41598_018_32123_9 crossref_primary_10_3390_genes13020384 crossref_primary_10_1371_journal_pone_0085641 crossref_primary_10_1186_s12862_015_0312_6 crossref_primary_10_1371_journal_pcbi_1002495 crossref_primary_10_3897_zookeys_1091_80065 crossref_primary_10_1016_j_ympev_2014_09_026 crossref_primary_10_1643_CG_13_060 crossref_primary_10_1371_journal_pone_0095722 crossref_primary_10_1206_0003_0090_457_1_1 crossref_primary_10_1111_j_1365_3113_2010_00563_x crossref_primary_10_1093_molbev_msae026 crossref_primary_10_1093_jcbiol_ruae057 crossref_primary_10_1071_IS17029 crossref_primary_10_1016_j_ympev_2022_107629 crossref_primary_10_1093_sysbio_syac081 crossref_primary_10_3897_zookeys_1161_99432 crossref_primary_10_3389_fpls_2024_1354812 crossref_primary_10_1016_j_ygeno_2023_110771 crossref_primary_10_1016_j_ympev_2022_107469 crossref_primary_10_1186_s12862_016_0688_y crossref_primary_10_1002_jobm_202300351 crossref_primary_10_1186_s12862_014_0206_z crossref_primary_10_1016_j_ympev_2011_11_035 crossref_primary_10_3897_zse_95_34486 crossref_primary_10_1111_jeb_13070 crossref_primary_10_1080_00222933_2024_2448185 crossref_primary_10_1186_1471_2148_13_232 crossref_primary_10_3897_zookeys_732_21677 crossref_primary_10_3852_14_210 crossref_primary_10_7717_peerj_14571 crossref_primary_10_1016_j_meegid_2016_08_036 crossref_primary_10_1155_2015_395826 crossref_primary_10_1093_botlinnean_boy049 crossref_primary_10_1093_bioinformatics_btae096 crossref_primary_10_1080_17451000_2020_1837883 crossref_primary_10_1186_s12862_025_02362_2 crossref_primary_10_1371_journal_pone_0078140 crossref_primary_10_1016_j_protis_2019_05_001 crossref_primary_10_1371_journal_pone_0070461 crossref_primary_10_1093_zoolinnean_zly071 crossref_primary_10_1111_j_1365_294X_2012_05606_x crossref_primary_10_1371_journal_pone_0061827 crossref_primary_10_1111_jzs_12200 crossref_primary_10_1111_zoj_12105 crossref_primary_10_1099_ijs_0_000076 crossref_primary_10_1016_j_ympev_2012_06_010 crossref_primary_10_1111_jbi_13401 crossref_primary_10_3390_fishes8040201 crossref_primary_10_3897_dez_69_68373 crossref_primary_10_1111_jeb_14138 crossref_primary_10_1016_j_meegid_2017_09_022 crossref_primary_10_1111_zsc_12117 crossref_primary_10_1016_j_cretres_2019_104202 crossref_primary_10_1016_j_ympev_2018_05_017 crossref_primary_10_1093_molbev_msaa075 crossref_primary_10_1080_14772000_2021_2008042 crossref_primary_10_1016_j_ympev_2012_06_008 crossref_primary_10_1534_g3_118_200201 crossref_primary_10_1111_syen_12047 |
Cites_doi | 10.1093/oxfordjournals.molbev.a004175 10.1093/molbev/msj021 10.2307/2412923 10.1007/978-1-59745-251-9_5 10.1080/01621459.1987.10478472 10.1080/10635150490503035 10.1080/10635150500433565 10.1146/annurev.ecolsys.28.1.437 10.1080/10635150801898920 10.1080/10635150390235494 10.1080/106351501753328848 10.1080/106351501750435121 10.1093/oxfordjournals.molbev.a025575 10.1146/annurev.ecolsys.36.102003.152633 10.1093/oxfordjournals.molbev.a026378 10.1080/01621459.1995.10476572 10.1016/S0168-9525(01)02272-7 10.1093/bioinformatics/14.9.817 10.1023/A:1008940618127 10.1016/S0025-5564(97)00081-3 10.1006/jmps.1999.1278 10.1093/sysbio/46.3.426 10.1080/10635150490522304 10.1080/10635150490423520 10.1111/j.1096-0031.1998.tb00334.x 10.2307/2411230 10.1093/molbev/msn083 10.1093/molbev/msi050 10.1016/S1055-7903(03)00186-6 10.1007/BF00166252 10.1093/oxfordjournals.molbev.a026364 10.1093/oxfordjournals.molbev.a025695 10.1093/molbev/msh123 10.1214/aoms/1177729694 10.1007/BF02101694 10.1214/aos/1176344136 10.1023/A:1027314112438 10.1007/PL00006131 10.1186/1471-2105-8-458 10.1007/BF01734359 10.1186/1471-2148-7-S1-S4 10.1266/jjg.65.243 10.1080/10635150490888868 10.1093/oxfordjournals.molbev.a026358 10.1080/10635150490445779 10.1093/oxfordjournals.molbev.a003973 10.1093/oxfordjournals.molbev.a003872 10.1007/BF01731581 10.1080/01621459.1976.10480949 10.1177/0049124104268644 10.2183/pjab.60.95 10.1080/10635150490522232 10.1080/10635150500433722 10.1016/B978-1-4832-3211-9.50009-7 10.1007/BF00160155 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2010 BioMed Central Ltd. 2010. This work is licensed under https://creativecommons.org/licenses/by/2.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright ©2010 Luo et al; licensee BioMed Central Ltd. 2010 Luo et al; licensee BioMed Central Ltd. |
Copyright_xml | – notice: COPYRIGHT 2010 BioMed Central Ltd. – notice: 2010. This work is licensed under https://creativecommons.org/licenses/by/2.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright ©2010 Luo et al; licensee BioMed Central Ltd. 2010 Luo et al; licensee BioMed Central Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QP 7QR 7SN 7SS 7TK 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PATMY PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1186/1471-2148-10-242 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2148 |
EndPage | 242 |
ExternalDocumentID | oai_doaj_org_article_ad9729364b98404493f91ed9f8ac27ae PMC2925852 oai_biomedcentral_com_1471_2148_10_242 A235197588 20696057 10_1186_1471_2148_10_242 |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- 0R~ 23N 2VQ 2WC 2XV 4.4 53G 5VS 6J9 7X7 7XC 88E 8CJ 8FE 8FH 8FI 8FJ AAHBH AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFRAH AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS ATCPS BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BPHCQ BVXVI C1A CCPQU CITATION CS3 D1J DIK DU5 E3Z EAD EAP EAS EBD EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR INH INR IPNFZ ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OVT P2P PATMY PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PYCSY RBZ RIG RNS ROL RPM SBL SV3 TR2 TUS U2A UKHRP WOQ WOW XSB CGR CUY CVF ECM EIF NPM PMFND 3V. 7QP 7QR 7SN 7SS 7TK 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 -A0 ADINQ AFGXO BMC C24 C6C OK1 RSV SOJ 5PM PUEGO |
ID | FETCH-LOGICAL-b748t-dc68246d8219fb8393bde6c76f637814217acd03c0190e3b769e130c07ea620c3 |
IEDL.DBID | RBZ |
ISSN | 1471-2148 |
IngestDate | Wed Aug 27 01:31:27 EDT 2025 Thu Aug 21 18:20:20 EDT 2025 Tue Apr 16 22:44:57 EDT 2024 Mon Jul 21 10:41:41 EDT 2025 Fri Jul 11 00:50:38 EDT 2025 Fri Jul 25 10:34:26 EDT 2025 Tue Jun 17 21:27:12 EDT 2025 Tue Jun 10 20:50:49 EDT 2025 Fri Jun 27 03:42:07 EDT 2025 Thu Apr 03 07:10:28 EDT 2025 Tue Jul 01 04:27:26 EDT 2025 Thu Apr 24 22:57:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b748t-dc68246d8219fb8393bde6c76f637814217acd03c0190e3b769e130c07ea620c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1186/1471-2148-10-242 |
PMID | 20696057 |
PQID | 2955186758 |
PQPubID | 44659 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ad9729364b98404493f91ed9f8ac27ae pubmedcentral_primary_oai_pubmedcentral_nih_gov_2925852 biomedcentral_primary_oai_biomedcentral_com_1471_2148_10_242 proquest_miscellaneous_839665892 proquest_miscellaneous_748974513 proquest_journals_2955186758 gale_infotracmisc_A235197588 gale_infotracacademiconefile_A235197588 gale_incontextgauss_ISR_A235197588 pubmed_primary_20696057 crossref_citationtrail_10_1186_1471_2148_10_242 crossref_primary_10_1186_1471_2148_10_242 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-08-09 |
PublicationDateYYYYMMDD | 2010-08-09 |
PublicationDate_xml | – month: 08 year: 2010 text: 2010-08-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC evolutionary biology |
PublicationTitleAlternate | BMC Evol Biol |
PublicationYear | 2010 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | JP Huelsenbeck (1458_CR9) 2004; 21 J Felsenstein (1458_CR22) 1978; 27 PE Greenwood (1458_CR42) 1996 EC Moriarty (1458_CR50) 2004; 30 J Felsenstein (1458_CR13) 1996; 13 M Kimura (1458_CR62) 1980; 16 KP Burnham (1458_CR40) 2002 J Ripplinger (1458_CR4) 2008; 57 H Akaike (1458_CR27) 1973 L Wasserman (1458_CR34) 2000; 44 J Felsenstein (1458_CR64) 1981; 17 C Tuffley (1458_CR16) 1998; 147 F Frati (1458_CR24) 1997; 44 N Goldman (1458_CR54) 2000; 17 J Sullivan (1458_CR6) 2005; 36 JP Huelsenbeck (1458_CR25) 1997; 28 DP Posada (1458_CR53) 2004; 53 D Pol (1458_CR38) 2004; 53 RE Kass (1458_CR29) 1995; 90 M Arenas (1458_CR60) 2007; 8 S Kullback (1458_CR57) 1951; 22 N Goldman (1458_CR48) 1993; 36 Z Yang (1458_CR51) 1997; 13 N Goldman (1458_CR10) 1994; 11 Z Abdo (1458_CR39) 2005; 22 AE Raftery (1458_CR33) 1996 S Tavaré (1458_CR67) 1986; 17 J Han (1458_CR59) 2000 JP Bollback (1458_CR1) 2002; 19 M Hasegawa (1458_CR66) 1984; 60 AR Lemmon (1458_CR2) 2004; 53 PG Foster (1458_CR14) 2004; 53 N Lartillot (1458_CR35) 2007; 7 R Ota (1458_CR55) 2000; 17 J Sullivan (1458_CR23) 1997; 4 SV Muse (1458_CR11) 1994; 11 G Schwarz (1458_CR32) 1978; 6 D Posada (1458_CR18) 2008; 25 D Posada (1458_CR17) 1998; 14 Z Yang (1458_CR44) 1997; 14 M Pagel (1458_CR12) 2004; 53 CW Cunningham (1458_CR37) 1998; 52 SG Self (1458_CR56) 1987; 82 M Hasegawa (1458_CR65) 1985; 22 D Posada (1458_CR8) 2001; 50 DL Swofford (1458_CR52) 2002 A Rambaut (1458_CR46) 1997; 13 KP Burnham (1458_CR58) 2004; 33 M Hasegawa (1458_CR28) 1990; 65 J Sullivan (1458_CR26) 1997; 46 D Posada (1458_CR19) 2009 MA Suchard (1458_CR31) 2001; 18 SY Ho (1458_CR21) 2004; 53 WP Maddison (1458_CR47) 2009 P Smyth (1458_CR36) 2000; 10 B Shapiro (1458_CR20) 2006; 23 ME Alfaro (1458_CR41) 2006; 55 A Zharkikh (1458_CR63) 1994; 9 P Lopez (1458_CR15) 2002; 19 J Sullivan (1458_CR43) 2001; 50 N Lartillot (1458_CR30) 2006; 55 GEP Box (1458_CR7) 1976; 71 ME Siddall (1458_CR45) 1998; 14 M Steel (1458_CR5) 2000; 17 S Whelan (1458_CR49) 2001; 17 TH Jukes (1458_CR61) 1969 V Minin (1458_CR3) 2003; 52 |
References_xml | – volume: 19 start-page: 1171 year: 2002 ident: 1458_CR1 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a004175 – volume: 23 start-page: 7 year: 2006 ident: 1458_CR20 publication-title: Mol Biol Evol doi: 10.1093/molbev/msj021 – volume: 27 start-page: 401 year: 1978 ident: 1458_CR22 publication-title: Syst Zool doi: 10.2307/2412923 – start-page: 93 volume-title: Bioinformatics for DNA sequence analysis year: 2009 ident: 1458_CR19 doi: 10.1007/978-1-59745-251-9_5 – volume: 82 start-page: 605 year: 1987 ident: 1458_CR56 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1987.10478472 – volume: 53 start-page: 623 year: 2004 ident: 1458_CR21 publication-title: Syst Biol doi: 10.1080/10635150490503035 – volume: 55 start-page: 89 year: 2006 ident: 1458_CR41 publication-title: Syst Biol doi: 10.1080/10635150500433565 – volume: 28 start-page: 437 year: 1997 ident: 1458_CR25 publication-title: Annu Rev Ecol Syst doi: 10.1146/annurev.ecolsys.28.1.437 – volume: 57 start-page: 76 year: 2008 ident: 1458_CR4 publication-title: Syst Biol doi: 10.1080/10635150801898920 – volume: 52 start-page: 674 year: 2003 ident: 1458_CR3 publication-title: Syst Biol doi: 10.1080/10635150390235494 – volume: 11 start-page: 725 year: 1994 ident: 1458_CR10 publication-title: Mol Biol Evol – volume: 50 start-page: 723 year: 2001 ident: 1458_CR43 publication-title: Syst Biol doi: 10.1080/106351501753328848 – volume: 50 start-page: 580 year: 2001 ident: 1458_CR8 publication-title: Syst Biol doi: 10.1080/106351501750435121 – volume: 13 start-page: 93 year: 1996 ident: 1458_CR13 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a025575 – volume: 36 start-page: 445 year: 2005 ident: 1458_CR6 publication-title: Annu Rev Ecol Evol Syst doi: 10.1146/annurev.ecolsys.36.102003.152633 – volume: 17 start-page: 975 year: 2000 ident: 1458_CR54 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a026378 – start-page: 196 volume-title: Data Mining: Concepts and Techniques. Chapter 8 year: 2000 ident: 1458_CR59 – volume: 90 start-page: 773 year: 1995 ident: 1458_CR29 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1995.10476572 – volume: 17 start-page: 262 year: 2001 ident: 1458_CR49 publication-title: Trends Genet doi: 10.1016/S0168-9525(01)02272-7 – volume: 14 start-page: 817 year: 1998 ident: 1458_CR17 publication-title: Bioinformatics doi: 10.1093/bioinformatics/14.9.817 – volume-title: Mesquite: a modular system for evolutionary analysis, version 2.6 year: 2009 ident: 1458_CR47 – volume: 10 start-page: 63 year: 2000 ident: 1458_CR36 publication-title: Stat Comput doi: 10.1023/A:1008940618127 – volume: 11 start-page: 715 year: 1994 ident: 1458_CR11 publication-title: Mol Biol Evol – volume: 147 start-page: 63 year: 1998 ident: 1458_CR16 publication-title: Math Biosci doi: 10.1016/S0025-5564(97)00081-3 – volume: 44 start-page: 92 year: 2000 ident: 1458_CR34 publication-title: J Math Psychol doi: 10.1006/jmps.1999.1278 – volume: 46 start-page: 426 year: 1997 ident: 1458_CR26 publication-title: Syst Biol doi: 10.1093/sysbio/46.3.426 – volume: 53 start-page: 793 year: 2004 ident: 1458_CR53 publication-title: Syst Biol doi: 10.1080/10635150490522304 – volume: 53 start-page: 265 year: 2004 ident: 1458_CR2 publication-title: Syst Biol doi: 10.1080/10635150490423520 – volume-title: A Guide to Chi-Squared Testing year: 1996 ident: 1458_CR42 – volume: 17 start-page: 57 year: 1986 ident: 1458_CR67 publication-title: Lect Math Life Sci – volume: 14 start-page: 209 year: 1998 ident: 1458_CR45 publication-title: Cladistics doi: 10.1111/j.1096-0031.1998.tb00334.x – volume: 52 start-page: 978 year: 1998 ident: 1458_CR37 publication-title: Evolution doi: 10.2307/2411230 – volume: 25 start-page: 1253 year: 2008 ident: 1458_CR18 publication-title: Mol Biol Evol doi: 10.1093/molbev/msn083 – volume: 22 start-page: 691 year: 2005 ident: 1458_CR39 publication-title: Mol Biol Evol doi: 10.1093/molbev/msi050 – volume: 13 start-page: 235 year: 1997 ident: 1458_CR46 publication-title: Comput Appl Biosci – volume: 30 start-page: 409 year: 2004 ident: 1458_CR50 publication-title: Mol Phylogenet Evol doi: 10.1016/S1055-7903(03)00186-6 – volume: 36 start-page: 182 year: 1993 ident: 1458_CR48 publication-title: J Mol Evol doi: 10.1007/BF00166252 – volume: 17 start-page: 839 year: 2000 ident: 1458_CR5 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a026364 – volume: 14 start-page: 105 year: 1997 ident: 1458_CR44 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a025695 – volume: 21 start-page: 1123 year: 2004 ident: 1458_CR9 publication-title: Mol Biol Evol doi: 10.1093/molbev/msh123 – volume: 22 start-page: 79 year: 1951 ident: 1458_CR57 publication-title: Ann Math Stat doi: 10.1214/aoms/1177729694 – volume: 22 start-page: 160 year: 1985 ident: 1458_CR65 publication-title: J Mol Evol doi: 10.1007/BF02101694 – volume: 6 start-page: 461 year: 1978 ident: 1458_CR32 publication-title: Ann Stat doi: 10.1214/aos/1176344136 – volume: 4 start-page: 77 year: 1997 ident: 1458_CR23 publication-title: J Mammal Evol doi: 10.1023/A:1027314112438 – volume: 44 start-page: 145 year: 1997 ident: 1458_CR24 publication-title: J Mol Evol doi: 10.1007/PL00006131 – volume: 8 start-page: 458 year: 2007 ident: 1458_CR60 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-458 – volume: 17 start-page: 368 year: 1981 ident: 1458_CR64 publication-title: J Mol Evol doi: 10.1007/BF01734359 – start-page: 163 volume-title: Markov Chain Monte Carlo in Practice year: 1996 ident: 1458_CR33 – volume: 7 start-page: S4 year: 2007 ident: 1458_CR35 publication-title: BMC Evol Biol doi: 10.1186/1471-2148-7-S1-S4 – volume: 65 start-page: 243 year: 1990 ident: 1458_CR28 publication-title: Jpn J Genet doi: 10.1266/jjg.65.243 – volume: 53 start-page: 949 year: 2004 ident: 1458_CR38 publication-title: Syst Biol doi: 10.1080/10635150490888868 – volume: 17 start-page: 798 year: 2000 ident: 1458_CR55 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a026358 – volume: 53 start-page: 485 year: 2004 ident: 1458_CR14 publication-title: Syst Biol doi: 10.1080/10635150490445779 – start-page: 267 volume-title: Proceedings of the Second International Symposium on Information Theory year: 1973 ident: 1458_CR27 – volume-title: PAUP*. Phylogenetic analysis using parsimony (*and other methods), version 4.0 b 10 year: 2002 ident: 1458_CR52 – volume: 19 start-page: 1 year: 2002 ident: 1458_CR15 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a003973 – volume: 18 start-page: 1001 year: 2001 ident: 1458_CR31 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a003872 – volume: 16 start-page: 111 year: 1980 ident: 1458_CR62 publication-title: J Mol Evol doi: 10.1007/BF01731581 – volume: 71 start-page: 791 year: 1976 ident: 1458_CR7 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1976.10480949 – volume: 33 start-page: 261 year: 2004 ident: 1458_CR58 publication-title: Sociol Methods Res doi: 10.1177/0049124104268644 – volume: 60 start-page: 95 year: 1984 ident: 1458_CR66 publication-title: Proc Jpn Acad Ser B Phys Biol Sci doi: 10.2183/pjab.60.95 – volume: 53 start-page: 571 year: 2004 ident: 1458_CR12 publication-title: Syst Biol doi: 10.1080/10635150490522232 – volume: 55 start-page: 195 year: 2006 ident: 1458_CR30 publication-title: Syst Biol doi: 10.1080/10635150500433722 – start-page: 21 volume-title: Mammalian Protein Metabolism year: 1969 ident: 1458_CR61 doi: 10.1016/B978-1-4832-3211-9.50009-7 – volume-title: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach year: 2002 ident: 1458_CR40 – volume: 13 start-page: 555 year: 1997 ident: 1458_CR51 publication-title: Comput Appl Biosci – volume: 9 start-page: 315 year: 1994 ident: 1458_CR63 publication-title: J Mol Evol doi: 10.1007/BF00160155 |
SSID | ssj0017821 |
Score | 2.361056 |
Snippet | Explicit evolutionary models are required in maximum-likelihood and Bayesian inference, the two methods that are overwhelmingly used in phylogenetic studies of... Background Explicit evolutionary models are required in maximum-likelihood and Bayesian inference, the two methods that are overwhelmingly used in phylogenetic... BACKGROUND: Explicit evolutionary models are required in maximum-likelihood and Bayesian inference, the two methods that are overwhelmingly used in... Abstract Background Explicit evolutionary models are required in maximum-likelihood and Bayesian inference, the two methods that are overwhelmingly used in... |
SourceID | doaj pubmedcentral biomedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 242 |
SubjectTerms | Accuracy Adequacy Bayes Theorem Bayesian analysis Computer Simulation Criteria Datasets Decision theory Evolution Evolution, Molecular Likelihood Functions Mathematical models Model testing Models, Genetic Nucleotide sequence Nucleotides Phylogenetic trees Phylogenetics Phylogeny Simulation Statistical inference |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kUPBFrJ_RKosI4kO43Gazmy2-tGKpgiJqoW_LZj_sQU3kclfoQ_93Z5LNeYsWX3y83c1dMjM3Mz8y8xtCXipXhMYFbFG2Zc6DrXJjhc8LbvjcFbWTCvudP34SJ6f8w1l1tjXqC2vCRnrgUXAz4xTkf6XgjQIswrkqg5p7p0JtLJPGo_eFmDeBqfj-AOLeALXA9eYMMv7pBWUtZps19EAMR7Qnne4XSYAaePz_9NZb4SotpdyKTcd3yZ2YVNLD8WH2yC3f3iO745jJq_vk-vPv7gDaBQqOAhmaDYVF2g-DcCCAUX8ZzdAsr-gwIaeni5aCHuBrwCUiofMBNRSr0Jf-fKx8pwM_LcVg6GjX0n7xAweCwQesPe39qn9ATo_ffXt7ksexC3kjeb3KnRU148KBCFVoIIEqG-eFlSKIEgmyAMQY64rSYhu6LxsplIdIaAvpjWCFLR-SnbZr_WNCpQVAVAdQOsCuqmlqC_mOmhuJvHWVChl5k8he_xwpNjSSXqc78GwaVadRdRqgC6guI7NJVdpGSnOcrHGhB2hTi79c8XpzxfRbN589Qu0n9zQsgHnqaJ76X-aZkRdoOxqpNlqs5flu1n2v33_9og8ZDkcEvFZn5FU8FDq4f2tiawQIEdm5kpP7yUnwBTbdnkxUR1_Ua6aQdQ-BYUboZhuvxPq61nfrXiMHkeTVvLz5CBiCgHRVgVwejTa_kQwrBADhSmZEJv-GRHTpTrs4H7jMmWIAWNmT_yHrp-T2WNuBBT37ZGe1XPtnkDKumueDd_gFw5Bnxg priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgifls9JYggPpRt0zZpRJBTPE5BEfVg30Kaj7uFsz03u8I9-L8702b3Luj5uE2ym52ZzEc68xtCnktb-M56LFE2VV570-TacJcXta5LW7RWSKx3_vSZHxzWH-fNPF64hZhWudGJo6K2g8E78hmTiB2G7u2b0585do3Ct6uxhcZVcg2hyzClS8y3AVcJ1q_cvJps-awERZwzvEED3cOwOXtS436SmKYRwf9vPX3BUKVJlBes0v4tcjO6k3Rv4v9tcsX1d8j1qcHk2V3y-8t5XQAdPAUVgdjMmsJDGsYWOGC6qPsVBVAvz-jYGyfQRU-BA_A1oAwRyvkV1RTzz5fueMp5pyMyLUUzaOnQ07D4ga3A4ANmnQa3CvfI4f777-8O8thwIe9E3a5ya3jLam6BbNJ34DpVnXXcCO55hdBYEL5oY4vKYAG6qzrBpQMbaArhNGeFqe6TnX7o3UNChYFQqPXAbgi4mq5rDXg6stQCEesa6TPyOqG9Op3ANRTCXacj8N8Usk4h6xQELcC6jMw2rFImgpljT40TNQY1Lf_HipfbFZvfunzuW-R-sqfxwbA8UvFEK20lBCYVrzsJQXJdy8rL0lnpW22Y0C4jz1B2FIJs9JjFc6TXIagP376qPYZtEUGU24y8iJP8APs3OhZFABERlyuZuZvMBC1g0uGNiKqohYI6PzMZodthXImZdb0b1kEh-pCom7K6fAoIAgdHVQJdHkwyv6UMKziEwI3IiEhOQ0K6dKRfHI8o5kwyCFXZo_9v_DG5MeVrYJLOLtlZLdfuCbiBq-7peNb_ACs7XaM priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgERIXxHsDC7IQEuIQNg_HjhEILYjVgrQIAZX2Zjl-7FYqCTQtogf-OzN5tGvo3jg2HqfpeDzjr5n5hpAn0ia-sh5LlE0eM2-KWBvu4oRpltqktEJivfPxR340YR9OipNNefSgwHYrtMN-UpP57PmvH6vXsOFfdRu-5PspONg4w3_GwKdAyLlMrkBcErhNj9nmnQLEwg5-jdLjS8std_ir-n0WBK2O2_9fD34uhIXplefi1eENcn04aNKD3jJukkuuvkWu9q0nV7fJ70-bigHaeArOA1mbNYWLtO2a40BQo-7nYJp6vqJd15yWTmsKawO3ATeJJM8vqKaYmT53Z302PO04aykGSEubmrbTb9gkDD5gPmrrFu0dMjl89_XtUTy0YogrwcpFbA0vM8YtqFD6Cg5VeWUdN4J7niNpFgAbbWySGyxNd3kluHQQHU0inOZZYvK7ZKduardLqDAAkkoPhgBQrKiq0sAZSKZaIJddIX1EXga6V9972g2FRNjhCPw2hUuncOkUwBlYuojsj0ulzEBzjt02ZqqDOyXfMuPZesb4XRfLvsHVD56pu9DMT9Ww15W2EiBLzlklAT4zJnMvU2elL7XJhHYReYy2o5B-o8b8nlO9bFv1_stndZBhw0TAcGVEng5CvoHnN3oolwAlImNXILkXSIJ_MOHwaKJq3F4qk8jEh2AxInQ9jDMx5652zbJVyEskWJHmF4uAIXA4wkrQy73e5teayRIO4LgQERHBbghUF47U07OO3zyTGYDY7P7_0PUDcq3P98Aknz2ys5gv3UM4Ri6qR513-APECm7Q priority: 102 providerName: Scholars Portal |
Title | Performance of criteria for selecting evolutionary models in phylogenetics: a comprehensive study based on simulated datasets |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20696057 https://www.proquest.com/docview/2955186758 https://www.proquest.com/docview/748974513 https://www.proquest.com/docview/839665892 http://dx.doi.org/10.1186/1471-2148-10-242 https://pubmed.ncbi.nlm.nih.gov/PMC2925852 https://doaj.org/article/ad9729364b98404493f91ed9f8ac27ae |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBdry2AvY9_z1gUxBmMPprYsS9bYSzNaukFL6VYIexGyPtpA54w4GfRh__vubCetuvZpL4FYkuPcne70s06_I-SdclmoXcAjyrZIebBlaqzwacYNz11WOanwvPPhkTg45V8n5eSKJufGDn5eiZ0c3GfK8L0XeAwIKBtki3GIg4jMxz_WOwYQ6Tpwteq92pK85Q43zrZfRCGpY-7_1z9fC1Bx8uS1aLT_iDwclpF0t9f7Y3LPN0_I_b6w5OVT8uf46jwAnQUKrgE5mQ2Fi7TtSt9AyKL-92B4Zn5Ju5o4LZ02FCQPtwEniBTOH6mhmHc-9-d9rjvtGGkphj9HZw1tpz-xBBh8wWzT1i_aZ-R0f-_754N0KLSQ1pJXi9RZUTEuHIhQhRqWTEXtvLBSBFEgJRbAFmNdVlg8eO6LWgrlIfbZTHojWGaL52SzmTX-JaHSAgSqAqgZgFZZ15WFFY7KjUSmulKFhHyKZK9_9aQaGmmu4xb4bxpVp1F1GsAKqC4hOytVaTuQmGMtjQvdgZlK3DLiw3rE6rfu7jtG7UfP1F0Ae9TDTNbGKQAkheC1AnDMuSqCyr1ToTKWSeMT8hZtRyO5RoPZO2dm2bb6y7cTvcuwHCIgtCoh74dOYQbPb81wGAKEiHxcUc_tqCfMfhs3r0xUD96n1Uwhzx5CwYTQdTOOxIy6xs-WrUbWIcnLvLi7CxiCgAWqArm86G1-LRmWCYC-pUyIjGZDJLq4pZmed-zlTDGAqOzV_xnCa_Kgz-PA5J1tsrmYL_0bWB4u6hHZkBM5IlvjvaPjk1H3kgU-D3k16jzGX1L6ZL4 |
linkProvider | BioMedCentral |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiDcLBSwEQhyiTZzEiREItdBql7arqrRSb8axnXalkpTNLmgP_CV-IzN5bGtBufWY2E4cz3ge8cw3hLwUxs8zk2OKsg69KNexpzS3nh-pKDB-ahKB-c67Yz48jD4fxUcr5HeXC4NhlZ1MrAW1KTX-Ix8wgdhhaN5-OPvuYdUoPF3tSmg0bLFtFz_BZavejz4BfV8xtrV58HHotVUFvCyJ0plnNE9ZxE0KezXPwD4IM2O5TnjOQ8R_AhtdaeOHGrOsbZglXFgQ9NpPrOLM1yE89xpZjUJwZXpkdWNzvLe_PLcAfRt0h6EpHwQg-j2G_-xA2jEsB-9k1Z86yrCuGfC3ZrigGt2wzQt6cOs2udUasHS94bg7ZMUWd8n1pqTl4h75tXeeiUDLnIJQQjRoReEmreqiO6Asqf3RsryaLmhdjaeik4ICzeExIH4RPPotVRQj3qf2pImypzUWLkXFa2hZ0GryDYuPwQXGuVZ2Vt0nh1dCjAekV5SFfURoosH5SnNgMHDx4ixLNdhWIlAJYuTFIu-Td87ay7MGzkMiwLbbAt8mkXQSSSfBTQLS9cmgI5XULXw6VvE4lbUblfJ_jHizHNG96_K-G0h9Z071jXJ6LFsZIpUR4AqFPMoEuOVRJMJcBNaIPFWaJcr2yQvkHYmwHgXGDR2reVXJ0Zd9uc6wECNsnrRPXred8hLmr1WbhgGLiEhgTs81pyfIHe02dywqW7lXyfNd2id02YwjMZavsOW8koh3lERxEF7eBRiBg2ksYF0eNjy_XBnmc3C646RPEmc3OEvnthSTkxo3nQkGzjF7_P-JPyc3hge7O3JnNN5-Qm420SIYIrRGerPp3D4FI3SWPWt3PiVfr1rY_AEmAJqO |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELagCMSl4s2WAhZCQhyW7NNeIy4tELU8qqpQqerF8vrRRqS7VTZB6oH_zsw-QgztiVuyHm-S8XjGX3bmG0JeChO50jgsUdZpmDmdh0ozG0aZymITFYYLrHf-usd2DrNPR_lRX1mHtTDlmbY_e6Wr2UXPRPRmtRZ92jpweKF_jM6N6_Z9wUYx-NkwwT_IwLVA5LlObvA857hbD7aPl48WICS2KGyQHp5dXnKHv4rgp17sain-_3XkK5HMz7JcCVvjO2S9P2_Src5A7pJrtrpHbnYdKC_uk1_7fwoHaO0o-BAkb1YULtKm7ZEDsY2uKou2zXMaOqkoLBHcBrwlcj2_pYpigvrMnnZJ8bSlrqUYJw2tK9pMzrBXGLzBtNTGzpsH5HD88fv7nbDvyBCWPCvmodGsSDJmQIXClXC2SktjmebMsRS5swDfKG2iVGOFuk1LzoSFIKkjbhVLIp0-JGtVXdnHhHINWKlwYA-AyPKyLDQchUSsOFLa5cIF5J2ne3nesW9I5MP2R-C3SVw6iUsnAdXA0gVkNCyV1D3bOTbdmMoW9RTskhmvlzOGz7padhtX3_tO7YV6diL7LS-VEYBcUpaVAlB0lonUidga4QqlE65sQF6g7Uhk4agwzedELZpG7n47kFsJ9k0EKFcE5FUv5Go0edVXTYASkbjLk9z0JMFNaH94MFHZu6lGJgIJ-RAzBoQuh3Empt5Vtl40EumJeJbH6dUiYAgMTrIC9PKos_mlZpKIAUbOeUC4txs81fkj1eS0pTlPRAJYNtn4P0N4Tm7tfxjLL7t7n5-Q213uByb8bJK1-Wxhn8KRcl4-a13Eb4Z4c9w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+criteria+for+selecting+evolutionary+models+in+phylogenetics%3A+a+comprehensive+study+based+on+simulated+datasets&rft.jtitle=BMC+evolutionary+biology&rft.au=Luo+Arong&rft.au=Qiao+Huijie&rft.au=Zhang+Yanzhou&rft.au=Shi+Weifeng&rft.date=2010-08-09&rft.pub=BMC&rft.issn=1471-2148&rft.eissn=1471-2148&rft.volume=10&rft.issue=1&rft.spage=242&rft_id=info:doi/10.1186%2F1471-2148-10-242&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ad9729364b98404493f91ed9f8ac27ae |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2148&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2148&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2148&client=summon |