Performance of criteria for selecting evolutionary models in phylogenetics: a comprehensive study based on simulated datasets

Explicit evolutionary models are required in maximum-likelihood and Bayesian inference, the two methods that are overwhelmingly used in phylogenetic studies of DNA sequence data. Appropriate selection of nucleotide substitution models is important because the use of incorrect models can mislead phyl...

Full description

Saved in:
Bibliographic Details
Published inBMC evolutionary biology Vol. 10; no. 1; p. 242
Main Authors Luo, Arong, Qiao, Huijie, Zhang, Yanzhou, Shi, Weifeng, Ho, Simon YW, Xu, Weijun, Zhang, Aibing, Zhu, Chaodong
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 09.08.2010
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Explicit evolutionary models are required in maximum-likelihood and Bayesian inference, the two methods that are overwhelmingly used in phylogenetic studies of DNA sequence data. Appropriate selection of nucleotide substitution models is important because the use of incorrect models can mislead phylogenetic inference. To better understand the performance of different model-selection criteria, we used 33,600 simulated data sets to analyse the accuracy, precision, dissimilarity, and biases of the hierarchical likelihood-ratio test, Akaike information criterion, Bayesian information criterion, and decision theory. We demonstrate that the Bayesian information criterion and decision theory are the most appropriate model-selection criteria because of their high accuracy and precision. Our results also indicate that in some situations different models are selected by different criteria for the same dataset. Such dissimilarity was the highest between the hierarchical likelihood-ratio test and Akaike information criterion, and lowest between the Bayesian information criterion and decision theory. The hierarchical likelihood-ratio test performed poorly when the true model included a proportion of invariable sites, while the Bayesian information criterion and decision theory generally exhibited similar performance to each other. Our results indicate that the Bayesian information criterion and decision theory should be preferred for model selection. Together with model-adequacy tests, accurate model selection will serve to improve the reliability of phylogenetic inference and related analyses.
AbstractList Explicit evolutionary models are required in maximum-likelihood and Bayesian inference, the two methods that are overwhelmingly used in phylogenetic studies of DNA sequence data. Appropriate selection of nucleotide substitution models is important because the use of incorrect models can mislead phylogenetic inference. To better understand the performance of different model-selection criteria, we used 33,600 simulated data sets to analyse the accuracy, precision, dissimilarity, and biases of the hierarchical likelihood-ratio test, Akaike information criterion, Bayesian information criterion, and decision theory.BACKGROUNDExplicit evolutionary models are required in maximum-likelihood and Bayesian inference, the two methods that are overwhelmingly used in phylogenetic studies of DNA sequence data. Appropriate selection of nucleotide substitution models is important because the use of incorrect models can mislead phylogenetic inference. To better understand the performance of different model-selection criteria, we used 33,600 simulated data sets to analyse the accuracy, precision, dissimilarity, and biases of the hierarchical likelihood-ratio test, Akaike information criterion, Bayesian information criterion, and decision theory.We demonstrate that the Bayesian information criterion and decision theory are the most appropriate model-selection criteria because of their high accuracy and precision. Our results also indicate that in some situations different models are selected by different criteria for the same dataset. Such dissimilarity was the highest between the hierarchical likelihood-ratio test and Akaike information criterion, and lowest between the Bayesian information criterion and decision theory. The hierarchical likelihood-ratio test performed poorly when the true model included a proportion of invariable sites, while the Bayesian information criterion and decision theory generally exhibited similar performance to each other.RESULTSWe demonstrate that the Bayesian information criterion and decision theory are the most appropriate model-selection criteria because of their high accuracy and precision. Our results also indicate that in some situations different models are selected by different criteria for the same dataset. Such dissimilarity was the highest between the hierarchical likelihood-ratio test and Akaike information criterion, and lowest between the Bayesian information criterion and decision theory. The hierarchical likelihood-ratio test performed poorly when the true model included a proportion of invariable sites, while the Bayesian information criterion and decision theory generally exhibited similar performance to each other.Our results indicate that the Bayesian information criterion and decision theory should be preferred for model selection. Together with model-adequacy tests, accurate model selection will serve to improve the reliability of phylogenetic inference and related analyses.CONCLUSIONSOur results indicate that the Bayesian information criterion and decision theory should be preferred for model selection. Together with model-adequacy tests, accurate model selection will serve to improve the reliability of phylogenetic inference and related analyses.
Background Explicit evolutionary models are required in maximum-likelihood and Bayesian inference, the two methods that are overwhelmingly used in phylogenetic studies of DNA sequence data. Appropriate selection of nucleotide substitution models is important because the use of incorrect models can mislead phylogenetic inference. To better understand the performance of different model-selection criteria, we used 33,600 simulated data sets to analyse the accuracy, precision, dissimilarity, and biases of the hierarchical likelihood-ratio test, Akaike information criterion, Bayesian information criterion, and decision theory. Results We demonstrate that the Bayesian information criterion and decision theory are the most appropriate model-selection criteria because of their high accuracy and precision. Our results also indicate that in some situations different models are selected by different criteria for the same dataset. Such dissimilarity was the highest between the hierarchical likelihood-ratio test and Akaike information criterion, and lowest between the Bayesian information criterion and decision theory. The hierarchical likelihood-ratio test performed poorly when the true model included a proportion of invariable sites, while the Bayesian information criterion and decision theory generally exhibited similar performance to each other. Conclusions Our results indicate that the Bayesian information criterion and decision theory should be preferred for model selection. Together with model-adequacy tests, accurate model selection will serve to improve the reliability of phylogenetic inference and related analyses.
Explicit evolutionary models are required in maximum-likelihood and Bayesian inference, the two methods that are overwhelmingly used in phylogenetic studies of DNA sequence data. Appropriate selection of nucleotide substitution models is important because the use of incorrect models can mislead phylogenetic inference. To better understand the performance of different model-selection criteria, we used 33,600 simulated data sets to analyse the accuracy, precision, dissimilarity, and biases of the hierarchical likelihood-ratio test, Akaike information criterion, Bayesian information criterion, and decision theory. We demonstrate that the Bayesian information criterion and decision theory are the most appropriate model-selection criteria because of their high accuracy and precision. Our results also indicate that in some situations different models are selected by different criteria for the same dataset. Such dissimilarity was the highest between the hierarchical likelihood-ratio test and Akaike information criterion, and lowest between the Bayesian information criterion and decision theory. The hierarchical likelihood-ratio test performed poorly when the true model included a proportion of invariable sites, while the Bayesian information criterion and decision theory generally exhibited similar performance to each other. Our results indicate that the Bayesian information criterion and decision theory should be preferred for model selection. Together with model-adequacy tests, accurate model selection will serve to improve the reliability of phylogenetic inference and related analyses.
Explicit evolutionary models are required in maximum-likelihood and Bayesian inference, the two methods that are overwhelmingly used in phylogenetic studies of DNA sequence data. Appropriate selection of nucleotide substitution models is important because the use of incorrect models can mislead phylogenetic inference. To better understand the performance of different model-selection criteria, we used 33,600 simulated data sets to analyse the accuracy, precision, dissimilarity, and biases of the hierarchical likelihood-ratio test, Akaike information criterion, Bayesian information criterion, and decision theory. We demonstrate that the Bayesian information criterion and decision theory are the most appropriate model-selection criteria because of their high accuracy and precision. Our results also indicate that in some situations different models are selected by different criteria for the same dataset. Such dissimilarity was the highest between the hierarchical likelihood-ratio test and Akaike information criterion, and lowest between the Bayesian information criterion and decision theory. The hierarchical likelihood-ratio test performed poorly when the true model included a proportion of invariable sites, while the Bayesian information criterion and decision theory generally exhibited similar performance to each other. Our results indicate that the Bayesian information criterion and decision theory should be preferred for model selection. Together with model-adequacy tests, accurate model selection will serve to improve the reliability of phylogenetic inference and related analyses.
Abstract Background Explicit evolutionary models are required in maximum-likelihood and Bayesian inference, the two methods that are overwhelmingly used in phylogenetic studies of DNA sequence data. Appropriate selection of nucleotide substitution models is important because the use of incorrect models can mislead phylogenetic inference. To better understand the performance of different model-selection criteria, we used 33,600 simulated data sets to analyse the accuracy, precision, dissimilarity, and biases of the hierarchical likelihood-ratio test, Akaike information criterion, Bayesian information criterion, and decision theory. Results We demonstrate that the Bayesian information criterion and decision theory are the most appropriate model-selection criteria because of their high accuracy and precision. Our results also indicate that in some situations different models are selected by different criteria for the same dataset. Such dissimilarity was the highest between the hierarchical likelihood-ratio test and Akaike information criterion, and lowest between the Bayesian information criterion and decision theory. The hierarchical likelihood-ratio test performed poorly when the true model included a proportion of invariable sites, while the Bayesian information criterion and decision theory generally exhibited similar performance to each other. Conclusions Our results indicate that the Bayesian information criterion and decision theory should be preferred for model selection. Together with model-adequacy tests, accurate model selection will serve to improve the reliability of phylogenetic inference and related analyses.
ArticleNumber 242
Audience Academic
Author Luo, Arong
Shi, Weifeng
Zhu, Chaodong
Qiao, Huijie
Zhang, Aibing
Zhang, Yanzhou
Ho, Simon YW
Xu, Weijun
AuthorAffiliation 1 Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China
4 Centre for Macroevolution and Macroecology, Research School of Biology, Australian National University, Canberra ACT 0200, Australia
5 School of Biological Sciences, University of Sydney, Sydney NSW 2006, Australia
3 UCD Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin 4, Ireland
6 Zhongbei College, Nanjing Normal University, Nanjing 210046, China
7 College of Life Sciences, Capital Normal University, Beijing 100048, China
AuthorAffiliation_xml – name: 1 Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
– name: 6 Zhongbei College, Nanjing Normal University, Nanjing 210046, China
– name: 7 College of Life Sciences, Capital Normal University, Beijing 100048, China
– name: 3 UCD Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin 4, Ireland
– name: 4 Centre for Macroevolution and Macroecology, Research School of Biology, Australian National University, Canberra ACT 0200, Australia
– name: 2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China
– name: 5 School of Biological Sciences, University of Sydney, Sydney NSW 2006, Australia
Author_xml – sequence: 1
  givenname: Arong
  surname: Luo
  fullname: Luo, Arong
– sequence: 2
  givenname: Huijie
  surname: Qiao
  fullname: Qiao, Huijie
– sequence: 3
  givenname: Yanzhou
  surname: Zhang
  fullname: Zhang, Yanzhou
– sequence: 4
  givenname: Weifeng
  surname: Shi
  fullname: Shi, Weifeng
– sequence: 5
  givenname: Simon YW
  surname: Ho
  fullname: Ho, Simon YW
– sequence: 6
  givenname: Weijun
  surname: Xu
  fullname: Xu, Weijun
– sequence: 7
  givenname: Aibing
  surname: Zhang
  fullname: Zhang, Aibing
– sequence: 8
  givenname: Chaodong
  surname: Zhu
  fullname: Zhu, Chaodong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20696057$$D View this record in MEDLINE/PubMed
BookMark eNqFk8tv1DAQxiNURB9w54QscUActthO4sQckKqKx0qVQDzOlmNPdl0l9mI7FT3wvzNh29KtWqEcHI9_82n8zfiw2PPBQ1E8Z_SYsVa8YVXDFpxV7YLRBa_4o-LgJrR363-_OEzpnFLWtJw9KfY5FVLQujkofn-B2Ic4am-AhJ6Y6DJEpwkGSYIBTHZ-ReAiDFN2wet4ScZgYUjEebJZXw5hBR6yM-kt0cSEcRNhDT65CyApT_aSdDqBJcGT5MZp0Bk3VmcM5vS0eNzrIcGzq_Wo-PHh_ffTT4uzzx-Xpydni66p2rywRrS8EhaLl33XlrLsLAjTiF6UTcsqzhptLC0NZZJC2TVCAiupoQ1owakpj4rlVtcGfa420Y14DxW0U38DIa6UjniHAZS2suGyFFUn24pWlSx7ycDKvtWGNxpQ691WazN1I1gDPkc97Ijunni3VqtwobjkdVtzFDjdCnQuPCCwe4KmqrmVam6lYlRhp1Hl1VUZMfycIGU1umRgGLSHMCWFLglRt_L_JFosm6pmJZIv75DnYYoeO4PF1zVOXFO3_6iVRr-c7wNWaWZNdcLLmkmEZur4Hgo_C6MzOMa9w_hOwuudBGQy_MorPaWklt--7rIvbvfgxrvruUZAbAETQ0oRemVc1vMAYxVumE2cH9B9ttI7idfaD6b8AdK2G9w
CitedBy_id crossref_primary_10_1007_s00294_022_01245_z
crossref_primary_10_1007_s10709_016_9889_y
crossref_primary_10_1111_tpj_15673
crossref_primary_10_1093_molbev_msz291
crossref_primary_10_1038_s41467_019_08822_w
crossref_primary_10_1099_jgv_0_000007
crossref_primary_10_3390_fishes6040044
crossref_primary_10_3109_19401736_2014_987238
crossref_primary_10_1002_tafs_10074
crossref_primary_10_1186_1471_2148_14_70
crossref_primary_10_1186_1471_2164_12_84
crossref_primary_10_1016_j_ympev_2015_07_007
crossref_primary_10_1111_j_1463_6409_2011_00480_x
crossref_primary_10_1186_1471_2105_13_S19_S12
crossref_primary_10_1655_HERPETOLOGICA_D_15_00059
crossref_primary_10_1007_s00239_024_10162_3
crossref_primary_10_1016_j_ympev_2024_108113
crossref_primary_10_1016_j_ympev_2016_07_017
crossref_primary_10_3390_ijms130911455
crossref_primary_10_1093_zoolinnean_zlab018
crossref_primary_10_1186_s12862_016_0832_8
crossref_primary_10_1186_1471_2148_11_65
crossref_primary_10_1016_j_ympev_2014_09_001
crossref_primary_10_1016_j_meegid_2017_08_015
crossref_primary_10_1080_09397140_2015_1101925
crossref_primary_10_3897_zookeys_1047_66933
crossref_primary_10_1093_gbe_evw179
crossref_primary_10_3897_zse_94_28981
crossref_primary_10_1093_bib_bbz016
crossref_primary_10_3897_zookeys_445_7778
crossref_primary_10_1016_j_ympev_2013_10_002
crossref_primary_10_1016_j_ympev_2015_10_001
crossref_primary_10_1093_jhered_esab013
crossref_primary_10_1371_journal_pone_0266892
crossref_primary_10_1111_jph_12703
crossref_primary_10_1111_jzs_12081
crossref_primary_10_1071_ZO18025
crossref_primary_10_1371_journal_pone_0190511
crossref_primary_10_3390_jof8100997
crossref_primary_10_1111_jeu_12291
crossref_primary_10_1002_cpmc_63
crossref_primary_10_1371_journal_pone_0082400
crossref_primary_10_3732_ajb_1300105
crossref_primary_10_1371_journal_pone_0039304
crossref_primary_10_3389_fmicb_2019_02896
crossref_primary_10_1093_jmammal_gyw170
crossref_primary_10_1002_ece3_10628
crossref_primary_10_1016_j_rsma_2020_101336
crossref_primary_10_1016_j_virol_2015_09_024
crossref_primary_10_1093_molbev_mss232
crossref_primary_10_1016_j_ympev_2011_12_003
crossref_primary_10_1111_lam_12826
crossref_primary_10_1111_jpy_12355
crossref_primary_10_1371_journal_pone_0055336
crossref_primary_10_1016_j_zool_2024_126169
crossref_primary_10_3897_zse_101_133734
crossref_primary_10_1038_s41598_018_32123_9
crossref_primary_10_3390_genes13020384
crossref_primary_10_1371_journal_pone_0085641
crossref_primary_10_1186_s12862_015_0312_6
crossref_primary_10_1371_journal_pcbi_1002495
crossref_primary_10_3897_zookeys_1091_80065
crossref_primary_10_1016_j_ympev_2014_09_026
crossref_primary_10_1643_CG_13_060
crossref_primary_10_1371_journal_pone_0095722
crossref_primary_10_1206_0003_0090_457_1_1
crossref_primary_10_1111_j_1365_3113_2010_00563_x
crossref_primary_10_1093_molbev_msae026
crossref_primary_10_1093_jcbiol_ruae057
crossref_primary_10_1071_IS17029
crossref_primary_10_1016_j_ympev_2022_107629
crossref_primary_10_1093_sysbio_syac081
crossref_primary_10_3897_zookeys_1161_99432
crossref_primary_10_3389_fpls_2024_1354812
crossref_primary_10_1016_j_ygeno_2023_110771
crossref_primary_10_1016_j_ympev_2022_107469
crossref_primary_10_1186_s12862_016_0688_y
crossref_primary_10_1002_jobm_202300351
crossref_primary_10_1186_s12862_014_0206_z
crossref_primary_10_1016_j_ympev_2011_11_035
crossref_primary_10_3897_zse_95_34486
crossref_primary_10_1111_jeb_13070
crossref_primary_10_1080_00222933_2024_2448185
crossref_primary_10_1186_1471_2148_13_232
crossref_primary_10_3897_zookeys_732_21677
crossref_primary_10_3852_14_210
crossref_primary_10_7717_peerj_14571
crossref_primary_10_1016_j_meegid_2016_08_036
crossref_primary_10_1155_2015_395826
crossref_primary_10_1093_botlinnean_boy049
crossref_primary_10_1093_bioinformatics_btae096
crossref_primary_10_1080_17451000_2020_1837883
crossref_primary_10_1186_s12862_025_02362_2
crossref_primary_10_1371_journal_pone_0078140
crossref_primary_10_1016_j_protis_2019_05_001
crossref_primary_10_1371_journal_pone_0070461
crossref_primary_10_1093_zoolinnean_zly071
crossref_primary_10_1111_j_1365_294X_2012_05606_x
crossref_primary_10_1371_journal_pone_0061827
crossref_primary_10_1111_jzs_12200
crossref_primary_10_1111_zoj_12105
crossref_primary_10_1099_ijs_0_000076
crossref_primary_10_1016_j_ympev_2012_06_010
crossref_primary_10_1111_jbi_13401
crossref_primary_10_3390_fishes8040201
crossref_primary_10_3897_dez_69_68373
crossref_primary_10_1111_jeb_14138
crossref_primary_10_1016_j_meegid_2017_09_022
crossref_primary_10_1111_zsc_12117
crossref_primary_10_1016_j_cretres_2019_104202
crossref_primary_10_1016_j_ympev_2018_05_017
crossref_primary_10_1093_molbev_msaa075
crossref_primary_10_1080_14772000_2021_2008042
crossref_primary_10_1016_j_ympev_2012_06_008
crossref_primary_10_1534_g3_118_200201
crossref_primary_10_1111_syen_12047
Cites_doi 10.1093/oxfordjournals.molbev.a004175
10.1093/molbev/msj021
10.2307/2412923
10.1007/978-1-59745-251-9_5
10.1080/01621459.1987.10478472
10.1080/10635150490503035
10.1080/10635150500433565
10.1146/annurev.ecolsys.28.1.437
10.1080/10635150801898920
10.1080/10635150390235494
10.1080/106351501753328848
10.1080/106351501750435121
10.1093/oxfordjournals.molbev.a025575
10.1146/annurev.ecolsys.36.102003.152633
10.1093/oxfordjournals.molbev.a026378
10.1080/01621459.1995.10476572
10.1016/S0168-9525(01)02272-7
10.1093/bioinformatics/14.9.817
10.1023/A:1008940618127
10.1016/S0025-5564(97)00081-3
10.1006/jmps.1999.1278
10.1093/sysbio/46.3.426
10.1080/10635150490522304
10.1080/10635150490423520
10.1111/j.1096-0031.1998.tb00334.x
10.2307/2411230
10.1093/molbev/msn083
10.1093/molbev/msi050
10.1016/S1055-7903(03)00186-6
10.1007/BF00166252
10.1093/oxfordjournals.molbev.a026364
10.1093/oxfordjournals.molbev.a025695
10.1093/molbev/msh123
10.1214/aoms/1177729694
10.1007/BF02101694
10.1214/aos/1176344136
10.1023/A:1027314112438
10.1007/PL00006131
10.1186/1471-2105-8-458
10.1007/BF01734359
10.1186/1471-2148-7-S1-S4
10.1266/jjg.65.243
10.1080/10635150490888868
10.1093/oxfordjournals.molbev.a026358
10.1080/10635150490445779
10.1093/oxfordjournals.molbev.a003973
10.1093/oxfordjournals.molbev.a003872
10.1007/BF01731581
10.1080/01621459.1976.10480949
10.1177/0049124104268644
10.2183/pjab.60.95
10.1080/10635150490522232
10.1080/10635150500433722
10.1016/B978-1-4832-3211-9.50009-7
10.1007/BF00160155
ContentType Journal Article
Copyright COPYRIGHT 2010 BioMed Central Ltd.
2010. This work is licensed under https://creativecommons.org/licenses/by/2.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright ©2010 Luo et al; licensee BioMed Central Ltd. 2010 Luo et al; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2010 BioMed Central Ltd.
– notice: 2010. This work is licensed under https://creativecommons.org/licenses/by/2.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright ©2010 Luo et al; licensee BioMed Central Ltd. 2010 Luo et al; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QP
7QR
7SN
7SS
7TK
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PATMY
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1186/1471-2148-10-242
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
Genetics Abstracts
MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2148
EndPage 242
ExternalDocumentID oai_doaj_org_article_ad9729364b98404493f91ed9f8ac27ae
PMC2925852
oai_biomedcentral_com_1471_2148_10_242
A235197588
20696057
10_1186_1471_2148_10_242
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
0R~
23N
2VQ
2WC
2XV
4.4
53G
5VS
6J9
7X7
7XC
88E
8CJ
8FE
8FH
8FI
8FJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BPHCQ
BVXVI
C1A
CCPQU
CITATION
CS3
D1J
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
IPNFZ
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OVT
P2P
PATMY
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PYCSY
RBZ
RIG
RNS
ROL
RPM
SBL
SV3
TR2
TUS
U2A
UKHRP
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7QP
7QR
7SN
7SS
7TK
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
-A0
ADINQ
AFGXO
BMC
C24
C6C
OK1
RSV
SOJ
5PM
PUEGO
ID FETCH-LOGICAL-b748t-dc68246d8219fb8393bde6c76f637814217acd03c0190e3b769e130c07ea620c3
IEDL.DBID RBZ
ISSN 1471-2148
IngestDate Wed Aug 27 01:31:27 EDT 2025
Thu Aug 21 18:20:20 EDT 2025
Tue Apr 16 22:44:57 EDT 2024
Mon Jul 21 10:41:41 EDT 2025
Fri Jul 11 00:50:38 EDT 2025
Fri Jul 25 10:34:26 EDT 2025
Tue Jun 17 21:27:12 EDT 2025
Tue Jun 10 20:50:49 EDT 2025
Fri Jun 27 03:42:07 EDT 2025
Thu Apr 03 07:10:28 EDT 2025
Tue Jul 01 04:27:26 EDT 2025
Thu Apr 24 22:57:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b748t-dc68246d8219fb8393bde6c76f637814217acd03c0190e3b769e130c07ea620c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink http://dx.doi.org/10.1186/1471-2148-10-242
PMID 20696057
PQID 2955186758
PQPubID 44659
ParticipantIDs doaj_primary_oai_doaj_org_article_ad9729364b98404493f91ed9f8ac27ae
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2925852
biomedcentral_primary_oai_biomedcentral_com_1471_2148_10_242
proquest_miscellaneous_839665892
proquest_miscellaneous_748974513
proquest_journals_2955186758
gale_infotracmisc_A235197588
gale_infotracacademiconefile_A235197588
gale_incontextgauss_ISR_A235197588
pubmed_primary_20696057
crossref_citationtrail_10_1186_1471_2148_10_242
crossref_primary_10_1186_1471_2148_10_242
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-08-09
PublicationDateYYYYMMDD 2010-08-09
PublicationDate_xml – month: 08
  year: 2010
  text: 2010-08-09
  day: 09
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC evolutionary biology
PublicationTitleAlternate BMC Evol Biol
PublicationYear 2010
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References JP Huelsenbeck (1458_CR9) 2004; 21
J Felsenstein (1458_CR22) 1978; 27
PE Greenwood (1458_CR42) 1996
EC Moriarty (1458_CR50) 2004; 30
J Felsenstein (1458_CR13) 1996; 13
M Kimura (1458_CR62) 1980; 16
KP Burnham (1458_CR40) 2002
J Ripplinger (1458_CR4) 2008; 57
H Akaike (1458_CR27) 1973
L Wasserman (1458_CR34) 2000; 44
J Felsenstein (1458_CR64) 1981; 17
C Tuffley (1458_CR16) 1998; 147
F Frati (1458_CR24) 1997; 44
N Goldman (1458_CR54) 2000; 17
J Sullivan (1458_CR6) 2005; 36
JP Huelsenbeck (1458_CR25) 1997; 28
DP Posada (1458_CR53) 2004; 53
D Pol (1458_CR38) 2004; 53
RE Kass (1458_CR29) 1995; 90
M Arenas (1458_CR60) 2007; 8
S Kullback (1458_CR57) 1951; 22
N Goldman (1458_CR48) 1993; 36
Z Yang (1458_CR51) 1997; 13
N Goldman (1458_CR10) 1994; 11
Z Abdo (1458_CR39) 2005; 22
AE Raftery (1458_CR33) 1996
S Tavaré (1458_CR67) 1986; 17
J Han (1458_CR59) 2000
JP Bollback (1458_CR1) 2002; 19
M Hasegawa (1458_CR66) 1984; 60
AR Lemmon (1458_CR2) 2004; 53
PG Foster (1458_CR14) 2004; 53
N Lartillot (1458_CR35) 2007; 7
R Ota (1458_CR55) 2000; 17
J Sullivan (1458_CR23) 1997; 4
SV Muse (1458_CR11) 1994; 11
G Schwarz (1458_CR32) 1978; 6
D Posada (1458_CR18) 2008; 25
D Posada (1458_CR17) 1998; 14
Z Yang (1458_CR44) 1997; 14
M Pagel (1458_CR12) 2004; 53
CW Cunningham (1458_CR37) 1998; 52
SG Self (1458_CR56) 1987; 82
M Hasegawa (1458_CR65) 1985; 22
D Posada (1458_CR8) 2001; 50
DL Swofford (1458_CR52) 2002
A Rambaut (1458_CR46) 1997; 13
KP Burnham (1458_CR58) 2004; 33
M Hasegawa (1458_CR28) 1990; 65
J Sullivan (1458_CR26) 1997; 46
D Posada (1458_CR19) 2009
MA Suchard (1458_CR31) 2001; 18
SY Ho (1458_CR21) 2004; 53
WP Maddison (1458_CR47) 2009
P Smyth (1458_CR36) 2000; 10
B Shapiro (1458_CR20) 2006; 23
ME Alfaro (1458_CR41) 2006; 55
A Zharkikh (1458_CR63) 1994; 9
P Lopez (1458_CR15) 2002; 19
J Sullivan (1458_CR43) 2001; 50
N Lartillot (1458_CR30) 2006; 55
GEP Box (1458_CR7) 1976; 71
ME Siddall (1458_CR45) 1998; 14
M Steel (1458_CR5) 2000; 17
S Whelan (1458_CR49) 2001; 17
TH Jukes (1458_CR61) 1969
V Minin (1458_CR3) 2003; 52
References_xml – volume: 19
  start-page: 1171
  year: 2002
  ident: 1458_CR1
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a004175
– volume: 23
  start-page: 7
  year: 2006
  ident: 1458_CR20
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msj021
– volume: 27
  start-page: 401
  year: 1978
  ident: 1458_CR22
  publication-title: Syst Zool
  doi: 10.2307/2412923
– start-page: 93
  volume-title: Bioinformatics for DNA sequence analysis
  year: 2009
  ident: 1458_CR19
  doi: 10.1007/978-1-59745-251-9_5
– volume: 82
  start-page: 605
  year: 1987
  ident: 1458_CR56
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1987.10478472
– volume: 53
  start-page: 623
  year: 2004
  ident: 1458_CR21
  publication-title: Syst Biol
  doi: 10.1080/10635150490503035
– volume: 55
  start-page: 89
  year: 2006
  ident: 1458_CR41
  publication-title: Syst Biol
  doi: 10.1080/10635150500433565
– volume: 28
  start-page: 437
  year: 1997
  ident: 1458_CR25
  publication-title: Annu Rev Ecol Syst
  doi: 10.1146/annurev.ecolsys.28.1.437
– volume: 57
  start-page: 76
  year: 2008
  ident: 1458_CR4
  publication-title: Syst Biol
  doi: 10.1080/10635150801898920
– volume: 52
  start-page: 674
  year: 2003
  ident: 1458_CR3
  publication-title: Syst Biol
  doi: 10.1080/10635150390235494
– volume: 11
  start-page: 725
  year: 1994
  ident: 1458_CR10
  publication-title: Mol Biol Evol
– volume: 50
  start-page: 723
  year: 2001
  ident: 1458_CR43
  publication-title: Syst Biol
  doi: 10.1080/106351501753328848
– volume: 50
  start-page: 580
  year: 2001
  ident: 1458_CR8
  publication-title: Syst Biol
  doi: 10.1080/106351501750435121
– volume: 13
  start-page: 93
  year: 1996
  ident: 1458_CR13
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a025575
– volume: 36
  start-page: 445
  year: 2005
  ident: 1458_CR6
  publication-title: Annu Rev Ecol Evol Syst
  doi: 10.1146/annurev.ecolsys.36.102003.152633
– volume: 17
  start-page: 975
  year: 2000
  ident: 1458_CR54
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a026378
– start-page: 196
  volume-title: Data Mining: Concepts and Techniques. Chapter 8
  year: 2000
  ident: 1458_CR59
– volume: 90
  start-page: 773
  year: 1995
  ident: 1458_CR29
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1995.10476572
– volume: 17
  start-page: 262
  year: 2001
  ident: 1458_CR49
  publication-title: Trends Genet
  doi: 10.1016/S0168-9525(01)02272-7
– volume: 14
  start-page: 817
  year: 1998
  ident: 1458_CR17
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/14.9.817
– volume-title: Mesquite: a modular system for evolutionary analysis, version 2.6
  year: 2009
  ident: 1458_CR47
– volume: 10
  start-page: 63
  year: 2000
  ident: 1458_CR36
  publication-title: Stat Comput
  doi: 10.1023/A:1008940618127
– volume: 11
  start-page: 715
  year: 1994
  ident: 1458_CR11
  publication-title: Mol Biol Evol
– volume: 147
  start-page: 63
  year: 1998
  ident: 1458_CR16
  publication-title: Math Biosci
  doi: 10.1016/S0025-5564(97)00081-3
– volume: 44
  start-page: 92
  year: 2000
  ident: 1458_CR34
  publication-title: J Math Psychol
  doi: 10.1006/jmps.1999.1278
– volume: 46
  start-page: 426
  year: 1997
  ident: 1458_CR26
  publication-title: Syst Biol
  doi: 10.1093/sysbio/46.3.426
– volume: 53
  start-page: 793
  year: 2004
  ident: 1458_CR53
  publication-title: Syst Biol
  doi: 10.1080/10635150490522304
– volume: 53
  start-page: 265
  year: 2004
  ident: 1458_CR2
  publication-title: Syst Biol
  doi: 10.1080/10635150490423520
– volume-title: A Guide to Chi-Squared Testing
  year: 1996
  ident: 1458_CR42
– volume: 17
  start-page: 57
  year: 1986
  ident: 1458_CR67
  publication-title: Lect Math Life Sci
– volume: 14
  start-page: 209
  year: 1998
  ident: 1458_CR45
  publication-title: Cladistics
  doi: 10.1111/j.1096-0031.1998.tb00334.x
– volume: 52
  start-page: 978
  year: 1998
  ident: 1458_CR37
  publication-title: Evolution
  doi: 10.2307/2411230
– volume: 25
  start-page: 1253
  year: 2008
  ident: 1458_CR18
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msn083
– volume: 22
  start-page: 691
  year: 2005
  ident: 1458_CR39
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msi050
– volume: 13
  start-page: 235
  year: 1997
  ident: 1458_CR46
  publication-title: Comput Appl Biosci
– volume: 30
  start-page: 409
  year: 2004
  ident: 1458_CR50
  publication-title: Mol Phylogenet Evol
  doi: 10.1016/S1055-7903(03)00186-6
– volume: 36
  start-page: 182
  year: 1993
  ident: 1458_CR48
  publication-title: J Mol Evol
  doi: 10.1007/BF00166252
– volume: 17
  start-page: 839
  year: 2000
  ident: 1458_CR5
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a026364
– volume: 14
  start-page: 105
  year: 1997
  ident: 1458_CR44
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a025695
– volume: 21
  start-page: 1123
  year: 2004
  ident: 1458_CR9
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msh123
– volume: 22
  start-page: 79
  year: 1951
  ident: 1458_CR57
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177729694
– volume: 22
  start-page: 160
  year: 1985
  ident: 1458_CR65
  publication-title: J Mol Evol
  doi: 10.1007/BF02101694
– volume: 6
  start-page: 461
  year: 1978
  ident: 1458_CR32
  publication-title: Ann Stat
  doi: 10.1214/aos/1176344136
– volume: 4
  start-page: 77
  year: 1997
  ident: 1458_CR23
  publication-title: J Mammal Evol
  doi: 10.1023/A:1027314112438
– volume: 44
  start-page: 145
  year: 1997
  ident: 1458_CR24
  publication-title: J Mol Evol
  doi: 10.1007/PL00006131
– volume: 8
  start-page: 458
  year: 2007
  ident: 1458_CR60
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-458
– volume: 17
  start-page: 368
  year: 1981
  ident: 1458_CR64
  publication-title: J Mol Evol
  doi: 10.1007/BF01734359
– start-page: 163
  volume-title: Markov Chain Monte Carlo in Practice
  year: 1996
  ident: 1458_CR33
– volume: 7
  start-page: S4
  year: 2007
  ident: 1458_CR35
  publication-title: BMC Evol Biol
  doi: 10.1186/1471-2148-7-S1-S4
– volume: 65
  start-page: 243
  year: 1990
  ident: 1458_CR28
  publication-title: Jpn J Genet
  doi: 10.1266/jjg.65.243
– volume: 53
  start-page: 949
  year: 2004
  ident: 1458_CR38
  publication-title: Syst Biol
  doi: 10.1080/10635150490888868
– volume: 17
  start-page: 798
  year: 2000
  ident: 1458_CR55
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a026358
– volume: 53
  start-page: 485
  year: 2004
  ident: 1458_CR14
  publication-title: Syst Biol
  doi: 10.1080/10635150490445779
– start-page: 267
  volume-title: Proceedings of the Second International Symposium on Information Theory
  year: 1973
  ident: 1458_CR27
– volume-title: PAUP*. Phylogenetic analysis using parsimony (*and other methods), version 4.0 b 10
  year: 2002
  ident: 1458_CR52
– volume: 19
  start-page: 1
  year: 2002
  ident: 1458_CR15
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a003973
– volume: 18
  start-page: 1001
  year: 2001
  ident: 1458_CR31
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a003872
– volume: 16
  start-page: 111
  year: 1980
  ident: 1458_CR62
  publication-title: J Mol Evol
  doi: 10.1007/BF01731581
– volume: 71
  start-page: 791
  year: 1976
  ident: 1458_CR7
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1976.10480949
– volume: 33
  start-page: 261
  year: 2004
  ident: 1458_CR58
  publication-title: Sociol Methods Res
  doi: 10.1177/0049124104268644
– volume: 60
  start-page: 95
  year: 1984
  ident: 1458_CR66
  publication-title: Proc Jpn Acad Ser B Phys Biol Sci
  doi: 10.2183/pjab.60.95
– volume: 53
  start-page: 571
  year: 2004
  ident: 1458_CR12
  publication-title: Syst Biol
  doi: 10.1080/10635150490522232
– volume: 55
  start-page: 195
  year: 2006
  ident: 1458_CR30
  publication-title: Syst Biol
  doi: 10.1080/10635150500433722
– start-page: 21
  volume-title: Mammalian Protein Metabolism
  year: 1969
  ident: 1458_CR61
  doi: 10.1016/B978-1-4832-3211-9.50009-7
– volume-title: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach
  year: 2002
  ident: 1458_CR40
– volume: 13
  start-page: 555
  year: 1997
  ident: 1458_CR51
  publication-title: Comput Appl Biosci
– volume: 9
  start-page: 315
  year: 1994
  ident: 1458_CR63
  publication-title: J Mol Evol
  doi: 10.1007/BF00160155
SSID ssj0017821
Score 2.361056
Snippet Explicit evolutionary models are required in maximum-likelihood and Bayesian inference, the two methods that are overwhelmingly used in phylogenetic studies of...
Background Explicit evolutionary models are required in maximum-likelihood and Bayesian inference, the two methods that are overwhelmingly used in phylogenetic...
BACKGROUND: Explicit evolutionary models are required in maximum-likelihood and Bayesian inference, the two methods that are overwhelmingly used in...
Abstract Background Explicit evolutionary models are required in maximum-likelihood and Bayesian inference, the two methods that are overwhelmingly used in...
SourceID doaj
pubmedcentral
biomedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 242
SubjectTerms Accuracy
Adequacy
Bayes Theorem
Bayesian analysis
Computer Simulation
Criteria
Datasets
Decision theory
Evolution
Evolution, Molecular
Likelihood Functions
Mathematical models
Model testing
Models, Genetic
Nucleotide sequence
Nucleotides
Phylogenetic trees
Phylogenetics
Phylogeny
Simulation
Statistical inference
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kUPBFrJ_RKosI4kO43Gazmy2-tGKpgiJqoW_LZj_sQU3kclfoQ_93Z5LNeYsWX3y83c1dMjM3Mz8y8xtCXipXhMYFbFG2Zc6DrXJjhc8LbvjcFbWTCvudP34SJ6f8w1l1tjXqC2vCRnrgUXAz4xTkf6XgjQIswrkqg5p7p0JtLJPGo_eFmDeBqfj-AOLeALXA9eYMMv7pBWUtZps19EAMR7Qnne4XSYAaePz_9NZb4SotpdyKTcd3yZ2YVNLD8WH2yC3f3iO745jJq_vk-vPv7gDaBQqOAhmaDYVF2g-DcCCAUX8ZzdAsr-gwIaeni5aCHuBrwCUiofMBNRSr0Jf-fKx8pwM_LcVg6GjX0n7xAweCwQesPe39qn9ATo_ffXt7ksexC3kjeb3KnRU148KBCFVoIIEqG-eFlSKIEgmyAMQY64rSYhu6LxsplIdIaAvpjWCFLR-SnbZr_WNCpQVAVAdQOsCuqmlqC_mOmhuJvHWVChl5k8he_xwpNjSSXqc78GwaVadRdRqgC6guI7NJVdpGSnOcrHGhB2hTi79c8XpzxfRbN589Qu0n9zQsgHnqaJ76X-aZkRdoOxqpNlqs5flu1n2v33_9og8ZDkcEvFZn5FU8FDq4f2tiawQIEdm5kpP7yUnwBTbdnkxUR1_Ua6aQdQ-BYUboZhuvxPq61nfrXiMHkeTVvLz5CBiCgHRVgVwejTa_kQwrBADhSmZEJv-GRHTpTrs4H7jMmWIAWNmT_yHrp-T2WNuBBT37ZGe1XPtnkDKumueDd_gFw5Bnxg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgifls9JYggPpRt0zZpRJBTPE5BEfVg30Kaj7uFsz03u8I9-L8702b3Luj5uE2ym52ZzEc68xtCnktb-M56LFE2VV570-TacJcXta5LW7RWSKx3_vSZHxzWH-fNPF64hZhWudGJo6K2g8E78hmTiB2G7u2b0585do3Ct6uxhcZVcg2hyzClS8y3AVcJ1q_cvJps-awERZwzvEED3cOwOXtS436SmKYRwf9vPX3BUKVJlBes0v4tcjO6k3Rv4v9tcsX1d8j1qcHk2V3y-8t5XQAdPAUVgdjMmsJDGsYWOGC6qPsVBVAvz-jYGyfQRU-BA_A1oAwRyvkV1RTzz5fueMp5pyMyLUUzaOnQ07D4ga3A4ANmnQa3CvfI4f777-8O8thwIe9E3a5ya3jLam6BbNJ34DpVnXXcCO55hdBYEL5oY4vKYAG6qzrBpQMbaArhNGeFqe6TnX7o3UNChYFQqPXAbgi4mq5rDXg6stQCEesa6TPyOqG9Op3ANRTCXacj8N8Usk4h6xQELcC6jMw2rFImgpljT40TNQY1Lf_HipfbFZvfunzuW-R-sqfxwbA8UvFEK20lBCYVrzsJQXJdy8rL0lnpW22Y0C4jz1B2FIJs9JjFc6TXIagP376qPYZtEUGU24y8iJP8APs3OhZFABERlyuZuZvMBC1g0uGNiKqohYI6PzMZodthXImZdb0b1kEh-pCom7K6fAoIAgdHVQJdHkwyv6UMKziEwI3IiEhOQ0K6dKRfHI8o5kwyCFXZo_9v_DG5MeVrYJLOLtlZLdfuCbiBq-7peNb_ACs7XaM
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgERIXxHsDC7IQEuIQNg_HjhEILYjVgrQIAZX2Zjl-7FYqCTQtogf-OzN5tGvo3jg2HqfpeDzjr5n5hpAn0ia-sh5LlE0eM2-KWBvu4oRpltqktEJivfPxR340YR9OipNNefSgwHYrtMN-UpP57PmvH6vXsOFfdRu-5PspONg4w3_GwKdAyLlMrkBcErhNj9nmnQLEwg5-jdLjS8std_ir-n0WBK2O2_9fD34uhIXplefi1eENcn04aNKD3jJukkuuvkWu9q0nV7fJ70-bigHaeArOA1mbNYWLtO2a40BQo-7nYJp6vqJd15yWTmsKawO3ATeJJM8vqKaYmT53Z302PO04aykGSEubmrbTb9gkDD5gPmrrFu0dMjl89_XtUTy0YogrwcpFbA0vM8YtqFD6Cg5VeWUdN4J7niNpFgAbbWySGyxNd3kluHQQHU0inOZZYvK7ZKduardLqDAAkkoPhgBQrKiq0sAZSKZaIJddIX1EXga6V9972g2FRNjhCPw2hUuncOkUwBlYuojsj0ulzEBzjt02ZqqDOyXfMuPZesb4XRfLvsHVD56pu9DMT9Ww15W2EiBLzlklAT4zJnMvU2elL7XJhHYReYy2o5B-o8b8nlO9bFv1_stndZBhw0TAcGVEng5CvoHnN3oolwAlImNXILkXSIJ_MOHwaKJq3F4qk8jEh2AxInQ9jDMx5652zbJVyEskWJHmF4uAIXA4wkrQy73e5teayRIO4LgQERHBbghUF47U07OO3zyTGYDY7P7_0PUDcq3P98Aknz2ys5gv3UM4Ri6qR513-APECm7Q
  priority: 102
  providerName: Scholars Portal
Title Performance of criteria for selecting evolutionary models in phylogenetics: a comprehensive study based on simulated datasets
URI https://www.ncbi.nlm.nih.gov/pubmed/20696057
https://www.proquest.com/docview/2955186758
https://www.proquest.com/docview/748974513
https://www.proquest.com/docview/839665892
http://dx.doi.org/10.1186/1471-2148-10-242
https://pubmed.ncbi.nlm.nih.gov/PMC2925852
https://doaj.org/article/ad9729364b98404493f91ed9f8ac27ae
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBdry2AvY9_z1gUxBmMPprYsS9bYSzNaukFL6VYIexGyPtpA54w4GfRh__vubCetuvZpL4FYkuPcne70s06_I-SdclmoXcAjyrZIebBlaqzwacYNz11WOanwvPPhkTg45V8n5eSKJufGDn5eiZ0c3GfK8L0XeAwIKBtki3GIg4jMxz_WOwYQ6Tpwteq92pK85Q43zrZfRCGpY-7_1z9fC1Bx8uS1aLT_iDwclpF0t9f7Y3LPN0_I_b6w5OVT8uf46jwAnQUKrgE5mQ2Fi7TtSt9AyKL-92B4Zn5Ju5o4LZ02FCQPtwEniBTOH6mhmHc-9-d9rjvtGGkphj9HZw1tpz-xBBh8wWzT1i_aZ-R0f-_754N0KLSQ1pJXi9RZUTEuHIhQhRqWTEXtvLBSBFEgJRbAFmNdVlg8eO6LWgrlIfbZTHojWGaL52SzmTX-JaHSAgSqAqgZgFZZ15WFFY7KjUSmulKFhHyKZK9_9aQaGmmu4xb4bxpVp1F1GsAKqC4hOytVaTuQmGMtjQvdgZlK3DLiw3rE6rfu7jtG7UfP1F0Ae9TDTNbGKQAkheC1AnDMuSqCyr1ToTKWSeMT8hZtRyO5RoPZO2dm2bb6y7cTvcuwHCIgtCoh74dOYQbPb81wGAKEiHxcUc_tqCfMfhs3r0xUD96n1Uwhzx5CwYTQdTOOxIy6xs-WrUbWIcnLvLi7CxiCgAWqArm86G1-LRmWCYC-pUyIjGZDJLq4pZmed-zlTDGAqOzV_xnCa_Kgz-PA5J1tsrmYL_0bWB4u6hHZkBM5IlvjvaPjk1H3kgU-D3k16jzGX1L6ZL4
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiDcLBSwEQhyiTZzEiREItdBql7arqrRSb8axnXalkpTNLmgP_CV-IzN5bGtBufWY2E4cz3ge8cw3hLwUxs8zk2OKsg69KNexpzS3nh-pKDB-ahKB-c67Yz48jD4fxUcr5HeXC4NhlZ1MrAW1KTX-Ix8wgdhhaN5-OPvuYdUoPF3tSmg0bLFtFz_BZavejz4BfV8xtrV58HHotVUFvCyJ0plnNE9ZxE0KezXPwD4IM2O5TnjOQ8R_AhtdaeOHGrOsbZglXFgQ9NpPrOLM1yE89xpZjUJwZXpkdWNzvLe_PLcAfRt0h6EpHwQg-j2G_-xA2jEsB-9k1Z86yrCuGfC3ZrigGt2wzQt6cOs2udUasHS94bg7ZMUWd8n1pqTl4h75tXeeiUDLnIJQQjRoReEmreqiO6Asqf3RsryaLmhdjaeik4ICzeExIH4RPPotVRQj3qf2pImypzUWLkXFa2hZ0GryDYuPwQXGuVZ2Vt0nh1dCjAekV5SFfURoosH5SnNgMHDx4ixLNdhWIlAJYuTFIu-Td87ay7MGzkMiwLbbAt8mkXQSSSfBTQLS9cmgI5XULXw6VvE4lbUblfJ_jHizHNG96_K-G0h9Z071jXJ6LFsZIpUR4AqFPMoEuOVRJMJcBNaIPFWaJcr2yQvkHYmwHgXGDR2reVXJ0Zd9uc6wECNsnrRPXred8hLmr1WbhgGLiEhgTs81pyfIHe02dywqW7lXyfNd2id02YwjMZavsOW8koh3lERxEF7eBRiBg2ksYF0eNjy_XBnmc3C646RPEmc3OEvnthSTkxo3nQkGzjF7_P-JPyc3hge7O3JnNN5-Qm420SIYIrRGerPp3D4FI3SWPWt3PiVfr1rY_AEmAJqO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELagCMSl4s2WAhZCQhyW7NNeIy4tELU8qqpQqerF8vrRRqS7VTZB6oH_zsw-QgztiVuyHm-S8XjGX3bmG0JeChO50jgsUdZpmDmdh0ozG0aZymITFYYLrHf-usd2DrNPR_lRX1mHtTDlmbY_e6Wr2UXPRPRmtRZ92jpweKF_jM6N6_Z9wUYx-NkwwT_IwLVA5LlObvA857hbD7aPl48WICS2KGyQHp5dXnKHv4rgp17sain-_3XkK5HMz7JcCVvjO2S9P2_Src5A7pJrtrpHbnYdKC_uk1_7fwoHaO0o-BAkb1YULtKm7ZEDsY2uKou2zXMaOqkoLBHcBrwlcj2_pYpigvrMnnZJ8bSlrqUYJw2tK9pMzrBXGLzBtNTGzpsH5HD88fv7nbDvyBCWPCvmodGsSDJmQIXClXC2SktjmebMsRS5swDfKG2iVGOFuk1LzoSFIKkjbhVLIp0-JGtVXdnHhHINWKlwYA-AyPKyLDQchUSsOFLa5cIF5J2ne3nesW9I5MP2R-C3SVw6iUsnAdXA0gVkNCyV1D3bOTbdmMoW9RTskhmvlzOGz7padhtX3_tO7YV6diL7LS-VEYBcUpaVAlB0lonUidga4QqlE65sQF6g7Uhk4agwzedELZpG7n47kFsJ9k0EKFcE5FUv5Go0edVXTYASkbjLk9z0JMFNaH94MFHZu6lGJgIJ-RAzBoQuh3Empt5Vtl40EumJeJbH6dUiYAgMTrIC9PKos_mlZpKIAUbOeUC4txs81fkj1eS0pTlPRAJYNtn4P0N4Tm7tfxjLL7t7n5-Q213uByb8bJK1-Wxhn8KRcl4-a13Eb4Z4c9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+criteria+for+selecting+evolutionary+models+in+phylogenetics%3A+a+comprehensive+study+based+on+simulated+datasets&rft.jtitle=BMC+evolutionary+biology&rft.au=Luo+Arong&rft.au=Qiao+Huijie&rft.au=Zhang+Yanzhou&rft.au=Shi+Weifeng&rft.date=2010-08-09&rft.pub=BMC&rft.issn=1471-2148&rft.eissn=1471-2148&rft.volume=10&rft.issue=1&rft.spage=242&rft_id=info:doi/10.1186%2F1471-2148-10-242&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ad9729364b98404493f91ed9f8ac27ae
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2148&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2148&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2148&client=summon