Basal DNA repair machinery is subject to positive selection in ionizing-radiation-resistant bacteria

Ionizing-radiation-resistant bacteria (IRRB) show a surprising capacity for adaptation to ionizing radiation and desiccation. Positive Darwinian selection is expected to play an important role in this trait, but no data are currently available regarding the role of positive adaptive selection in res...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 9; no. 1; p. 297
Main Authors Sghaier, Haïtham, Ghedira, Kaïs, Benkahla, Alia, Barkallah, Insaf
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 21.06.2008
BioMed Central
BMC
Subjects
Online AccessGet full text
ISSN1471-2164
1471-2164
DOI10.1186/1471-2164-9-297

Cover

Loading…
Abstract Ionizing-radiation-resistant bacteria (IRRB) show a surprising capacity for adaptation to ionizing radiation and desiccation. Positive Darwinian selection is expected to play an important role in this trait, but no data are currently available regarding the role of positive adaptive selection in resistance to ionizing-radiation and tolerance of desiccation. We analyzed the four known genome sequences of IRRB (Deinococcus geothermalis, Deinococcus radiodurans, Kineococcus radiotolerans, and Rubrobacter xylanophilus) to determine the role of positive Darwinian selection in the evolution of resistance to ionizing radiation and tolerance of desiccation. We used the programs MultiParanoid and DnaSP to deduce the sets of orthologs that potentially evolved due to positive Darwinian selection in IRRB. We find that positive selection targets 689 ortholog sets of IRRB. Among these, 58 ortholog sets are absent in ionizing-radiation-sensitive bacteria (IRSB: Escherichia coli and Thermus thermophilus). The most striking finding is that all basal DNA repair genes in IRRB, unlike many of their orthologs in IRSB, are subject to positive selection. Our results provide the first in silico prediction of positively selected genes with potential roles in the molecular basis of resistance to gamma-radiation and tolerance of desiccation in IRRB. Identification of these genes provides a basis for future experimental work aimed at understanding the metabolic networks in which they participate.
AbstractList Abstract Background Ionizing-radiation-resistant bacteria (IRRB) show a surprising capacity for adaptation to ionizing radiation and desiccation. Positive Darwinian selection is expected to play an important role in this trait, but no data are currently available regarding the role of positive adaptive selection in resistance to ionizing-radiation and tolerance of desiccation. We analyzed the four known genome sequences of IRRB (Deinococcus geothermalis, Deinococcus radiodurans, Kineococcus radiotolerans, and Rubrobacter xylanophilus) to determine the role of positive Darwinian selection in the evolution of resistance to ionizing radiation and tolerance of desiccation. Results We used the programs MultiParanoid and DnaSP to deduce the sets of orthologs that potentially evolved due to positive Darwinian selection in IRRB. We find that positive selection targets 689 ortholog sets of IRRB. Among these, 58 ortholog sets are absent in ionizing-radiation-sensitive bacteria (IRSB: Escherichia coli and Thermus thermophilus). The most striking finding is that all basal DNA repair genes in IRRB, unlike many of their orthologs in IRSB, are subject to positive selection. Conclusion Our results provide the first in silico prediction of positively selected genes with potential roles in the molecular basis of resistance to γ-radiation and tolerance of desiccation in IRRB. Identification of these genes provides a basis for future experimental work aimed at understanding the metabolic networks in which they participate.
BACKGROUND: Ionizing-radiation-resistant bacteria (IRRB) show a surprising capacity for adaptation to ionizing radiation and desiccation. Positive Darwinian selection is expected to play an important role in this trait, but no data are currently available regarding the role of positive adaptive selection in resistance to ionizing-radiation and tolerance of desiccation. We analyzed the four known genome sequences of IRRB (Deinococcus geothermalis, Deinococcus radiodurans, Kineococcus radiotolerans, and Rubrobacter xylanophilus) to determine the role of positive Darwinian selection in the evolution of resistance to ionizing radiation and tolerance of desiccation. RESULTS: We used the programs MultiParanoid and DnaSP to deduce the sets of orthologs that potentially evolved due to positive Darwinian selection in IRRB. We find that positive selection targets 689 ortholog sets of IRRB. Among these, 58 ortholog sets are absent in ionizing-radiation-sensitive bacteria (IRSB: Escherichia coli and Thermus thermophilus). The most striking finding is that all basal DNA repair genes in IRRB, unlike many of their orthologs in IRSB, are subject to positive selection. CONCLUSION: Our results provide the first in silico prediction of positively selected genes with potential roles in the molecular basis of resistance to γ-radiation and tolerance of desiccation in IRRB. Identification of these genes provides a basis for future experimental work aimed at understanding the metabolic networks in which they participate.
Ionizing-radiation-resistant bacteria (IRRB) show a surprising capacity for adaptation to ionizing radiation and desiccation. Positive Darwinian selection is expected to play an important role in this trait, but no data are currently available regarding the role of positive adaptive selection in resistance to ionizing-radiation and tolerance of desiccation. We analyzed the four known genome sequences of IRRB (Deinococcus geothermalis, Deinococcus radiodurans, Kineococcus radiotolerans, and Rubrobacter xylanophilus) to determine the role of positive Darwinian selection in the evolution of resistance to ionizing radiation and tolerance of desiccation.BACKGROUNDIonizing-radiation-resistant bacteria (IRRB) show a surprising capacity for adaptation to ionizing radiation and desiccation. Positive Darwinian selection is expected to play an important role in this trait, but no data are currently available regarding the role of positive adaptive selection in resistance to ionizing-radiation and tolerance of desiccation. We analyzed the four known genome sequences of IRRB (Deinococcus geothermalis, Deinococcus radiodurans, Kineococcus radiotolerans, and Rubrobacter xylanophilus) to determine the role of positive Darwinian selection in the evolution of resistance to ionizing radiation and tolerance of desiccation.We used the programs MultiParanoid and DnaSP to deduce the sets of orthologs that potentially evolved due to positive Darwinian selection in IRRB. We find that positive selection targets 689 ortholog sets of IRRB. Among these, 58 ortholog sets are absent in ionizing-radiation-sensitive bacteria (IRSB: Escherichia coli and Thermus thermophilus). The most striking finding is that all basal DNA repair genes in IRRB, unlike many of their orthologs in IRSB, are subject to positive selection.RESULTSWe used the programs MultiParanoid and DnaSP to deduce the sets of orthologs that potentially evolved due to positive Darwinian selection in IRRB. We find that positive selection targets 689 ortholog sets of IRRB. Among these, 58 ortholog sets are absent in ionizing-radiation-sensitive bacteria (IRSB: Escherichia coli and Thermus thermophilus). The most striking finding is that all basal DNA repair genes in IRRB, unlike many of their orthologs in IRSB, are subject to positive selection.Our results provide the first in silico prediction of positively selected genes with potential roles in the molecular basis of resistance to gamma-radiation and tolerance of desiccation in IRRB. Identification of these genes provides a basis for future experimental work aimed at understanding the metabolic networks in which they participate.CONCLUSIONOur results provide the first in silico prediction of positively selected genes with potential roles in the molecular basis of resistance to gamma-radiation and tolerance of desiccation in IRRB. Identification of these genes provides a basis for future experimental work aimed at understanding the metabolic networks in which they participate.
Background Ionizing-radiation-resistant bacteria (IRRB) show a surprising capacity for adaptation to ionizing radiation and desiccation. Positive Darwinian selection is expected to play an important role in this trait, but no data are currently available regarding the role of positive adaptive selection in resistance to ionizing-radiation and tolerance of desiccation. We analyzed the four known genome sequences of IRRB (Deinococcus geothermalis, Deinococcus radiodurans, Kineococcus radiotolerans, and Rubrobacter xylanophilus) to determine the role of positive Darwinian selection in the evolution of resistance to ionizing radiation and tolerance of desiccation. Results We used the programs MultiParanoid and DnaSP to deduce the sets of orthologs that potentially evolved due to positive Darwinian selection in IRRB. We find that positive selection targets 689 ortholog sets of IRRB. Among these, 58 ortholog sets are absent in ionizing-radiation-sensitive bacteria (IRSB: Escherichia coli and Thermus thermophilus). The most striking finding is that all basal DNA repair genes in IRRB, unlike many of their orthologs in IRSB, are subject to positive selection. Conclusion Our results provide the first in silico prediction of positively selected genes with potential roles in the molecular basis of resistance to g-radiation and tolerance of desiccation in IRRB. Identification of these genes provides a basis for future experimental work aimed at understanding the metabolic networks in which they participate.
Ionizing-radiation-resistant bacteria (IRRB) show a surprising capacity for adaptation to ionizing radiation and desiccation. Positive Darwinian selection is expected to play an important role in this trait, but no data are currently available regarding the role of positive adaptive selection in resistance to ionizing-radiation and tolerance of desiccation. We analyzed the four known genome sequences of IRRB (Deinococcus geothermalis, Deinococcus radiodurans, Kineococcus radiotolerans, and Rubrobacter xylanophilus) to determine the role of positive Darwinian selection in the evolution of resistance to ionizing radiation and tolerance of desiccation. We used the programs MultiParanoid and DnaSP to deduce the sets of orthologs that potentially evolved due to positive Darwinian selection in IRRB. We find that positive selection targets 689 ortholog sets of IRRB. Among these, 58 ortholog sets are absent in ionizing-radiation-sensitive bacteria (IRSB: Escherichia coli and Thermus thermophilus). The most striking finding is that all basal DNA repair genes in IRRB, unlike many of their orthologs in IRSB, are subject to positive selection. Our results provide the first in silico prediction of positively selected genes with potential roles in the molecular basis of resistance to gamma-radiation and tolerance of desiccation in IRRB. Identification of these genes provides a basis for future experimental work aimed at understanding the metabolic networks in which they participate.
Background: Ionizing-radiation-resistant bacteria (IRRB) show a surprising capacity for adaptation to ionizing radiation and desiccation. Positive Darwinian selection is expected to play an important role in this trait, but no data are currently available regarding the role of positive adaptive selection in resistance to ionizing-radiation and tolerance of desiccation. We analyzed the four known genome sequences of IRRB (Deinococcus geothermalis, Deinococcus radiodurans, Kineococcus radiotolerans, and Rubrobacter xylanophilus) to determine the role of positive Darwinian selection in the evolution of resistance to ionizing radiation and tolerance of desiccation. Results: We used the programs MultiParanoid and DnaSP to deduce the sets of orthologs that potentially evolved due to positive Darwinian selection in IRRB. We find that positive selection targets 689 ortholog sets of IRRB. Among these, 58 ortholog sets are absent in ionizing-radiation-sensitive bacteria (IRSB: Escherichia coli and Thermus thermophilus). The most striking finding is that all basal DNA repair genes in IRRB, unlike many of their orthologs in IRSB, are subject to positive selection. Conclusion: Our results provide the first in silico prediction of positively selected genes with potential roles in the molecular basis of resistance to gamma-radiation and tolerance of desiccation in IRRB. Identification of these genes provides a basis for future experimental work aimed at understanding the metabolic networks in which they participate.
Audience Academic
Author Sghaier, Haïtham
Ghedira, Kaïs
Benkahla, Alia
Barkallah, Insaf
AuthorAffiliation 1 Unit of Microbiology and Molecular Biology, National Center for Nuclear Sciences and Technologies (CNSTN), Sidi Thabet Technopark, 2020 Sidi Thabet, Tunisia
2 Group of Bioinformatics and Modelling, Laboratory of Immunology, Vaccinology, and Molecular Genetics, Institute Pasteur of Tunis, 13, place Pasteur BP 74, 1002 Tunis, Tunisia
AuthorAffiliation_xml – name: 1 Unit of Microbiology and Molecular Biology, National Center for Nuclear Sciences and Technologies (CNSTN), Sidi Thabet Technopark, 2020 Sidi Thabet, Tunisia
– name: 2 Group of Bioinformatics and Modelling, Laboratory of Immunology, Vaccinology, and Molecular Genetics, Institute Pasteur of Tunis, 13, place Pasteur BP 74, 1002 Tunis, Tunisia
Author_xml – sequence: 1
  givenname: Haïtham
  surname: Sghaier
  fullname: Sghaier, Haïtham
– sequence: 2
  givenname: Kaïs
  surname: Ghedira
  fullname: Ghedira, Kaïs
– sequence: 3
  givenname: Alia
  surname: Benkahla
  fullname: Benkahla, Alia
– sequence: 4
  givenname: Insaf
  surname: Barkallah
  fullname: Barkallah, Insaf
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18570673$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01358559$$DView record in HAL
BookMark eNqFk8tr3DAQxk1JaR7tubdiKBRycCLJsixdCpv0kYWlhT7OQtZjV4ttbSTt0vSvr7xO0zgkFMtYfPrNp2FmfJwd9K7XWfYagjMIKTmHuIYFggQXrECsfpYd3SkH9_aH2XEIawBgTVH1IjuEtKoBqcujTF2IINr8w5dZ7vVGWJ93Qq5sr_1NbkMets1ay5hHl29csNHudB50myTr-tym5Xr72_bLwgtlxaAWXgcbouhj3ggZtbfiZfbciDboV7ffk-znp48_Lq-KxdfP88vZomhqTGOBMCGASGBqZUqGamyAMZQiyVhZmaqCiCKgRKnKxhBMaQ2AkoBACaSWUMnyJJuPvsqJNd942wl_w52wfC84v-TCRytbzZkyihiGTaMxJoiy9EpSlkpULJmj5PV-9Npsm04rqfvoRTsxnZ70dsWXbscRxpCUMBmcjgarB2FXswUfNADLilYV2w3sxcg21j1x2fREuo4P3eVDdznjqffJ5N1txt5db3WIvLNB6rYVvXbbwAlDhKXU_gsiADCs9uDbEVyKVDLbG5culwPMZ5CmAaKwGqizR6j0KN1ZmebV2KRPAk4nAYmJ-ldcim0IfP7925R9c78NdyX5O8EJOB8B6V0IXpt_CODDP_JInaoHEdLG_eimvG37ZNwfHWsShg
CitedBy_id crossref_primary_10_1242_jeb_090837
crossref_primary_10_1371_journal_pone_0304810
crossref_primary_10_3389_fmicb_2017_00961
crossref_primary_10_1016_j_mib_2008_09_013
crossref_primary_10_1134_S1022795411070076
crossref_primary_10_1186_s12862_019_1457_5
crossref_primary_10_1016_j_sjbs_2021_09_020
crossref_primary_10_21603_2308_4057_2024_1_583
crossref_primary_10_1016_j_mrrev_2015_10_001
crossref_primary_10_1080_07391102_2024_2313168
crossref_primary_10_1007_s13213_011_0281_y
crossref_primary_10_1534_genetics_116_196154
crossref_primary_10_3389_fmicb_2024_1395751
crossref_primary_10_1128_MRA_00818_19
crossref_primary_10_1371_journal_pone_0021764
crossref_primary_10_1038_cmi_2014_122
crossref_primary_10_1080_09553002_2019_1649501
crossref_primary_10_1371_journal_pone_0003878
crossref_primary_10_1007_s12033_024_01263_x
crossref_primary_10_1186_s40168_021_01020_1
crossref_primary_10_1134_S0031030113090220
crossref_primary_10_1016_j_compbiolchem_2017_05_002
crossref_primary_10_1099_mgen_0_001038
crossref_primary_10_1371_journal_pone_0066012
crossref_primary_10_4137_GEI_S2380
crossref_primary_10_1007_s13213_013_0612_2
crossref_primary_10_1007_s11270_014_2133_4
crossref_primary_10_1016_j_ygeno_2020_11_029
crossref_primary_10_1007_s00792_020_01207_8
crossref_primary_10_1016_j_micres_2014_10_003
crossref_primary_10_1089_cmb_2015_0134
crossref_primary_10_1099_ijs_0_021246_0
crossref_primary_10_1007_s12275_017_7242_5
crossref_primary_10_1371_journal_pone_0299532
crossref_primary_10_1371_journal_pntd_0004712
crossref_primary_10_1007_s00239_013_9577_9
crossref_primary_10_1007_s10482_015_0494_3
crossref_primary_10_1016_j_micres_2016_06_001
ContentType Journal Article
Copyright COPYRIGHT 2008 BioMed Central Ltd.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright © 2008 Sghaier et al; licensee BioMed Central Ltd. 2008 Sghaier et al; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2008 BioMed Central Ltd.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Copyright © 2008 Sghaier et al; licensee BioMed Central Ltd. 2008 Sghaier et al; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7QL
7T7
7TM
8FD
C1K
FR3
P64
RC3
7X8
1XC
5PM
DOA
DOI 10.1186/1471-2164-9-297
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Genetics Abstracts
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage 297
ExternalDocumentID oai_doaj_org_article_9dfd6f94fbe446289628c633da59f642
PMC2441631
oai_HAL_hal_01358559v1
oai_biomedcentral_com_1471_2164_9_297
A180678153
18570673
10_1186_1471_2164_9_297
Genre Journal Article
GeographicLocations Tunisia
GeographicLocations_xml – name: Tunisia
GroupedDBID ---
0R~
23N
2VQ
2WC
2XV
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
IPNFZ
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T7
7TM
8FD
C1K
FR3
P64
RC3
7X8
-A0
ABVAZ
ACRMQ
ADINQ
AFGXO
AFNRJ
AIXEN
C24
1XC
5PM
ID FETCH-LOGICAL-b748t-246606c0f7df39274f0ff882c9935f5512820da3d3bf6488700dc061c0cec1dc3
IEDL.DBID RBZ
ISSN 1471-2164
IngestDate Wed Aug 27 01:24:58 EDT 2025
Thu Aug 21 13:55:35 EDT 2025
Fri May 09 12:09:46 EDT 2025
Wed May 22 07:11:31 EDT 2024
Fri Jul 11 02:16:47 EDT 2025
Fri Jul 11 10:08:04 EDT 2025
Tue Jun 17 22:20:04 EDT 2025
Tue Jun 10 21:28:50 EDT 2025
Fri Jun 27 05:29:41 EDT 2025
Mon Jul 21 05:55:24 EDT 2025
Tue Jul 01 02:21:41 EDT 2025
Thu Apr 24 22:58:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b748t-246606c0f7df39274f0ff882c9935f5512820da3d3bf6488700dc061c0cec1dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC2441631
OpenAccessLink http://dx.doi.org/10.1186/1471-2164-9-297
PMID 18570673
PQID 20041563
PQPubID 23462
ParticipantIDs doaj_primary_oai_doaj_org_article_9dfd6f94fbe446289628c633da59f642
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2441631
hal_primary_oai_HAL_hal_01358559v1
biomedcentral_primary_oai_biomedcentral_com_1471_2164_9_297
proquest_miscellaneous_69269163
proquest_miscellaneous_20041563
gale_infotracmisc_A180678153
gale_infotracacademiconefile_A180678153
gale_incontextgauss_ISR_A180678153
pubmed_primary_18570673
crossref_primary_10_1186_1471_2164_9_297
crossref_citationtrail_10_1186_1471_2164_9_297
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-06-21
PublicationDateYYYYMMDD 2008-06-21
PublicationDate_xml – month: 06
  year: 2008
  text: 2008-06-21
  day: 21
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle BMC genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2008
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References 17475002 - Genome Biol. 2007;8(5):R71
7854254 - Microbiol Rev. 1994 Dec;58(4):755-805
15618510 - Science. 2004 Dec 24;306(5705):2216-21
12804570 - Biochem Biophys Res Commun. 2003 Jun 27;306(2):354-60
16151108 - Appl Environ Microbiol. 2005 Sep;71(9):5225-35
17981842 - Nucleic Acids Res. 2008 Jan;36(Database issue):D475-9
18087756 - Theory Biosci. 2007 Aug;126(1):43-5
12054260 - Int J Syst Evol Microbiol. 2002 May;52(Pt 3):933-8
9343349 - Annu Rev Microbiol. 1997;51:203-24
16242020 - BMC Evol Biol. 2005;5:57
10567266 - Science. 1999 Nov 19;286(5444):1571-7
11846468 - Cryobiology. 2001 Sep;43(2):133-9
16478457 - Environ Microbiol. 2006 Mar;8(3):514-25
16261171 - Nat Rev Microbiol. 2005 Nov;3(11):882-92
17895995 - PLoS One. 2007;2(9):e955
7504195 - Mutat Res. 1994 Jan;314(1):87-97
2513255 - Genetics. 1989 Nov;123(3):585-95
16251465 - Genome Res. 2005 Nov;15(11):1553-65
15514074 - Genetics. 2004 Oct;168(2):1041-51
15459345 - Science. 2004 Nov 5;306(5698):1025-8
12514053 - Appl Environ Microbiol. 2003 Jan;69(1):644-8
8550493 - J Bacteriol. 1996 Feb;178(3):633-7
18273068 - ISME J. 2008 Apr;2(4):393-403
17675366 - Genome Res. 2007 Sep;17(9):1336-43
17006450 - Nature. 2006 Oct 5;443(7111):569-73
16280508 - Int J Syst Evol Microbiol. 2005 Nov;55(Pt 6):2441-6
15388754 - Int J Syst Evol Microbiol. 2004 Sep;54(Pt 5):1849-55
15454524 - Genetics. 2004 Sep;168(1):21-33
10666704 - Mol Biol Evol. 2000 Jan;17(1):32-43
10967210 - FEMS Microbiol Ecol. 2000 Aug 1;33(2):111-120
16683019 - PLoS Comput Biol. 2006 Apr;2(4):e38
11538142 - Adv Space Res. 1992;12(4):221-9
17373858 - PLoS Biol. 2007 Apr;5(4):e92
15458422 - Mol Microbiol. 2004 Oct;54(1):278-85
11114436 - Trends Ecol Evol. 2000 Dec 1;15(12):496-503
10591012 - Extremophiles. 1999 Nov;3(4):235-8
7984417 - Nucleic Acids Res. 1994 Nov 11;22(22):4673-80
9367129 - Comput Appl Biosci. 1997 Oct;13(5):555-6
References_xml – reference: 17475002 - Genome Biol. 2007;8(5):R71
– reference: 7984417 - Nucleic Acids Res. 1994 Nov 11;22(22):4673-80
– reference: 10567266 - Science. 1999 Nov 19;286(5444):1571-7
– reference: 15458422 - Mol Microbiol. 2004 Oct;54(1):278-85
– reference: 12804570 - Biochem Biophys Res Commun. 2003 Jun 27;306(2):354-60
– reference: 16478457 - Environ Microbiol. 2006 Mar;8(3):514-25
– reference: 17895995 - PLoS One. 2007;2(9):e955
– reference: 18273068 - ISME J. 2008 Apr;2(4):393-403
– reference: 11538142 - Adv Space Res. 1992;12(4):221-9
– reference: 7854254 - Microbiol Rev. 1994 Dec;58(4):755-805
– reference: 15388754 - Int J Syst Evol Microbiol. 2004 Sep;54(Pt 5):1849-55
– reference: 10967210 - FEMS Microbiol Ecol. 2000 Aug 1;33(2):111-120
– reference: 10666704 - Mol Biol Evol. 2000 Jan;17(1):32-43
– reference: 17006450 - Nature. 2006 Oct 5;443(7111):569-73
– reference: 7504195 - Mutat Res. 1994 Jan;314(1):87-97
– reference: 10591012 - Extremophiles. 1999 Nov;3(4):235-8
– reference: 16251465 - Genome Res. 2005 Nov;15(11):1553-65
– reference: 2513255 - Genetics. 1989 Nov;123(3):585-95
– reference: 17981842 - Nucleic Acids Res. 2008 Jan;36(Database issue):D475-9
– reference: 9367129 - Comput Appl Biosci. 1997 Oct;13(5):555-6
– reference: 8550493 - J Bacteriol. 1996 Feb;178(3):633-7
– reference: 17675366 - Genome Res. 2007 Sep;17(9):1336-43
– reference: 18087756 - Theory Biosci. 2007 Aug;126(1):43-5
– reference: 16683019 - PLoS Comput Biol. 2006 Apr;2(4):e38
– reference: 12054260 - Int J Syst Evol Microbiol. 2002 May;52(Pt 3):933-8
– reference: 15618510 - Science. 2004 Dec 24;306(5705):2216-21
– reference: 15459345 - Science. 2004 Nov 5;306(5698):1025-8
– reference: 15454524 - Genetics. 2004 Sep;168(1):21-33
– reference: 16151108 - Appl Environ Microbiol. 2005 Sep;71(9):5225-35
– reference: 12514053 - Appl Environ Microbiol. 2003 Jan;69(1):644-8
– reference: 11114436 - Trends Ecol Evol. 2000 Dec 1;15(12):496-503
– reference: 17373858 - PLoS Biol. 2007 Apr;5(4):e92
– reference: 16261171 - Nat Rev Microbiol. 2005 Nov;3(11):882-92
– reference: 9343349 - Annu Rev Microbiol. 1997;51:203-24
– reference: 15514074 - Genetics. 2004 Oct;168(2):1041-51
– reference: 11846468 - Cryobiology. 2001 Sep;43(2):133-9
– reference: 16280508 - Int J Syst Evol Microbiol. 2005 Nov;55(Pt 6):2441-6
– reference: 16242020 - BMC Evol Biol. 2005;5:57
SSID ssj0017825
Score 2.1025887
Snippet Ionizing-radiation-resistant bacteria (IRRB) show a surprising capacity for adaptation to ionizing radiation and desiccation. Positive Darwinian selection is...
Background Ionizing-radiation-resistant bacteria (IRRB) show a surprising capacity for adaptation to ionizing radiation and desiccation. Positive Darwinian...
BACKGROUND: Ionizing-radiation-resistant bacteria (IRRB) show a surprising capacity for adaptation to ionizing radiation and desiccation. Positive Darwinian...
Background: Ionizing-radiation-resistant bacteria (IRRB) show a surprising capacity for adaptation to ionizing radiation and desiccation. Positive Darwinian...
Abstract Background Ionizing-radiation-resistant bacteria (IRRB) show a surprising capacity for adaptation to ionizing radiation and desiccation. Positive...
SourceID doaj
pubmedcentral
hal
biomedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 297
SubjectTerms Actinobacteria - genetics
Actinobacteria - metabolism
Actinobacteria - radiation effects
Actinomycetales - genetics
Actinomycetales - metabolism
Actinomycetales - radiation effects
Bacteria - genetics
Bacteria - metabolism
Bacteria - radiation effects
Bacterial genetics
Deinococcus - genetics
Deinococcus - metabolism
Deinococcus - radiation effects
Deinococcus geothermalis
Deinococcus radiodurans
Desiccation
DNA repair
DNA Repair - genetics
DNA Repair - radiation effects
Escherichia coli
Genes
Genes, Bacterial
Identification and classification
Life Sciences
Physiological aspects
Radiation Tolerance - genetics
Selection, Genetic
Species Specificity
Thermus thermophilus
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZgEhIviN8EBlgTEryYOXFsJ-KpA6aC0B6ASXuzYsemlUaKknTS-Ou5S9Iyb5p4QWpf7HPjns--79rzd4S84iJ33AbNrEwdyzPuWCkKyWourPRa1yoMbJ9Han6cfz6RJxdKfWFO2EgPPCpuv6wDyJd5sD7He5QlvJ0Soq5kGQA84-kLPm8TTE3_H4Dfk8O9Ip2yDCKCidQnLdT-to2VLEOup-ii-2nknwYa_-1hfXMxdF8BopfzKS84qMO75M6ELOls_Eb3yA3f3Ce3xlqT5w9IfVB10P3haEZbcEHLlv4c8ih9e06XHe3WFn-Rof2KjnlcZ552Q40cWDi6hBds_t_g51iLbAbYyiBSR_TZ9NSOnM_VQ3J8-PH7-zmbSiwwq_OiZ1muIIJxPOg6AFLSeeAhAOh2AFtkADQFERmvK1ELC8qGA4nz2gEEcNx5l9ZOPCI7zarxTwjV2hauECIg42DgolA2BK-Cq4J0XmYJeRcp2vwa6TQMElzHPbDXDC6TwWUypYFlSsjbzbIYN7GXYxGNUzNEMYW6OuDNdsDmSdeKHuA6RxMaGsAOzWSH5l92mJA9tBKDnBoNJu38qNZdZz59-2pmaYGYAHxLQl5PQmEFs3fVdAcCNIg0XJHkbiQJm95F3XuLSyqcz74YbANMDyGgLM_ShLzc2KrB8ZhO1_jVusPaoxi4i-slVJkpiBxA4vFo23-ViCURlIYeHVl9NJm4p1kuBuJygJLwkenT_6HvZ-T2mLqjYDPvkp2-XfvngA97-2I4Cv4AZFdgGw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfYEBIviO8VBlgTErx4OHFiJ0IIdcBUEOwBmLQ3K3bstVJJIWknyl_PnZOupNuE1L7Y59S9D9_v2vMdIc-5SCw3XjGTRpYlMbcsF1nKSi5M6pQqpQ_VPo_k6Dj5dJKerNsBdQxsLg3tsJ_UcT3d__1r-RYM_k0w-Ey-iuCAZTHgfpazOFdb5Dq4JYV9HL4k678UwBWm4apRR9zV-bnkARt336c9lxUq-5-f31vjMH0Bm26mWP7jsw5vk1sd2KTDVjvukGuuuktutO0nl_dIeVA0MP3-aEhr8EqTmv4IqZWuXtJJQ5uFwR9p6HxG29SuM0eb0DYHZEkn8ILz4A-4PlZjgQMcZRC8IyCt5tS0ZaCL--T48MP3dyPWdV1gRiXZnMWJhKDGcq9KD-BJJZ57DzjcApJJPQAsCNJ4WYhSGC_B_BXnpQVUYLl1NiqteEC2q1nldghVymQ2E8JjEULPRSaN9056W_jUujQekNc9RuufbYUNjTWv-zNgfhrFpFFMOtcgpgHZX4lF266gOfbVmOoQ2GTy4oKX5wtWn3Ql6QHKubehMDCrT3Vn0zovPahynnjjErzim8PbSiHKIs2BNfD19lBLNJbZqDCP57RYNI3--O2rHkYZwgRwNwPyoiPyM9i9LbprEcBBrMzVo9ztUcI5YHvTe-MNFo6GnzWOAcyHqDDNz6IBebbSVY3rMcOucrNFg-1IMZYXV1PIPJYQTADFw1a310zELglSwYzqaX1vM_2ZajIOtcwBXcIjo0f_3ddjcrNN1ZFgqbtke14v3BPAg3PzNNj5X96IW5I
  priority: 102
  providerName: Scholars Portal
Title Basal DNA repair machinery is subject to positive selection in ionizing-radiation-resistant bacteria
URI https://www.ncbi.nlm.nih.gov/pubmed/18570673
https://www.proquest.com/docview/20041563
https://www.proquest.com/docview/69269163
http://dx.doi.org/10.1186/1471-2164-9-297
https://hal.science/hal-01358559
https://pubmed.ncbi.nlm.nih.gov/PMC2441631
https://doaj.org/article/9dfd6f94fbe446289628c633da59f642
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYEBIviPG1wjasCQleDE7s2Il4aoGpINjDYNLEixU7Nq00UtS0k8Zfz52TdqRjT0htH3znxPWdfXfJ-XeEvOBCOm6DZjZLHJMpd6wQecYqLmzmta5UiGifx2p8Kj-dZWdXYNEbb_CTXL1JYPtkKXj1rGBpobfI7VRqiVUaTkbf1y8MwNBl8SBRx9yh-PzjAhsn2897Bini9q93561JJF_zPDcTKP-ySEf3yb3OlaTDVvY75JavH5A7bXHJy4ekGpUNkN8fD-kcbM50Tn_GxEk_v6TThjZLi49g6GJG28StC0-bWBQHJEWn8IHV_hsMG5sjfAG2MgjN0d2sF9S2IM_lI3J69OHbuzHraiowq2W-YKlUELI4HnQVwDXSMvAQwMt24KdkAdwnCMF4VYpK2KBgcWvOKwc233HnXVI58Zhs17Pa7xKqtc1dLkRAiMHARa5sCF4FV4bM-SwdkLe9iTa_WvwMg4jWfQosLoNiMigmUxgQ04C8XonFuA6uHKtmnJsYtuTqeodX6w6rO93IOkI59wYUG0DvTLdiTVEFUNRCBuslHuAt4OuUEFWZFTA18PcOUUsMgmjUmKXzo1w2jfn49cQMkxydADAmA_KyYwozGL0ru0MPMIOIu9Xj3Otxwip3PfLhZGMKx8PPBtvAiYeYLysukgF5vtJVg_0xf672s2WDxUYxUhc3c6giVRAqAMeTVrevJhFrICgNFN3T-t5g-pR6OolI5eA7wiWTp_-lCc_I3TZJR8Eq3iPbi_nS74MnuLAH8QkK_H6R-UHcD_4ApERaQQ
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELa2IQQviN8UBosmJHjxcOLYTsRTC1QdlD6MTZp4sWInXiu1CUraSeOv5y5Jy9KxJ6T2JT4nju9sf9fefUfIW8ZDy4xT1Ajf0jBglsY8EjRl3IhMqVS6mu1zIkdn4ddzcb5DhutcGLOwSE66mNnq6HoC-rzetdfBYs1aj-QHH_ZWGgDkpzENYrVL7ighFC7Qk8HPzb8JcAqKOsuoFW4pfv5xg62093nntKpJ_Tdb9-60br4BS7ejK68dV8OH5EGLM71-8yqPyE6WPyZ3m8qTV09IOkgqaP486XslHEiz0lvUUZVZeeXNKq9aGfx9xlsWXhPVdZl5VV0xB9TozeADW8FvOPVoidwGeJWC345YNF96pmGATp6Ss-GX008j2hZcoEaF0ZIGoQR_xjKnUge4SYWOOQcQ3AKIEQ6wFfhnLE14yo2TsPIVY6kFQGCZzayfWv6M7OVFnr0gnlImshHnDvkHHeORNM5l0tnECZuJoEc-diZa_2rINTTSXXdbQPEa1aRRTTrWoKYeOVqrRduWyxxLasx17dNE8maH95sO6yfdKjpAPXcGVF8oygvdGqCOUwdWHIfOZCFm98bwtZLzNBExTA283iFaiUaGjRxDeC6SVVXp4x8nuu9HiBDgpOmRd62QK2D0NmkzImAGkZSrI7nfkYQtwHaaD6dbUzjqjzVeA4QPDqGIL_0eOVjbqsb-GFyXZ8Wqwkqk6Mbz2yVkHEjwI0DieWPbfycRCyRIBS2qY_WdwXRb8tm0pjEHYAm39F_-lyUckHuj0-9jPT6efHtF7jfRPBJW9D7ZW5ar7DVAxqV5U-8HfwCHOmc5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELa2IRAviJ-jMDZrQoIXb0mc2Il4ahmlg6lCwKSJFyt24rWiTaeknTT-eu6ctFs69oTUSpV9TlLf2fdd6_uOkLceD42nrWQ68g0LA8-whMcRyzyuo1zKTFjH9jkUg9Pwy1l0tkE-L3Nh9NQgOel0bKqDmwnoE7drwwfz-_Ais_Vij8WhD5srCwDzs4QFidwk9ySSSmHY3vu1-jsB3GDk0owa4Ybj5x8XWMt7n7TclWP1X-3dmyPXfQuXrh-vvOGv-o_JowZo0m5tGU_IRl48Jffr0pNXz0jWSyvoPhp2aQkeaVzSqTtWmZdXdFzRaqHxBxo6n9H6WNdlTitXMgf0SMfwgr3gD7g9ViK5AbYyCNwRjBZzqmsK6PQ5Oe1_-vlxwJqKC0zLMJ6zIBQQ0BjPyswCcJKh9awFDG4AxUQWwBUEaF6W8oxrK2DpS8_LDCAC45nc-JnhL8hWMSvyl4RKqWMTc26RgNB6PBba2lxYk9rI5FHQIR9aE60uanYNhXzX7R7QvEI1KVSTShSoqUMOlmpRpiEzx5oaE-WCmljcHvB-NWB5pztFe6jn1gO5hll5rpr1rJLMghknodV5iOm9CbyN4DxLowSmBr7ePlqJQoqNAs_wnKeLqlLHP76rrh8jRABX0yHvGiE7Q9NOm5QImEFk5WpJ7rQkYQ8wre790doUDronCtsA4kNEGCWXfofsLW1V4Xg8XVfks0WFpUgxjud3S4gkEBBIgMR2bdvXk4gVEoSEHtmy-tbDtHuK8cjxmAOyhEv6r_7LEvbIg29HfXVyPPz6mjysT_MIWNA7ZGteLvI3ABnnetdtB38B3PJnBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Basal+DNA+repair+machinery+is+subject+to+positive+selection+in+ionizing-radiation-resistant+bacteria&rft.jtitle=BMC+genomics&rft.au=Sghaier%2C+Haietham&rft.au=Ghedira%2C+Kaies&rft.au=Benkahla%2C+Alia&rft.au=Barkallah%2C+Insaf&rft.date=2008-06-21&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=9&rft.spage=297&rft.epage=297&rft_id=info:doi/10.1186%2F1471-2164-9-297&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon