Basal DNA repair machinery is subject to positive selection in ionizing-radiation-resistant bacteria
Ionizing-radiation-resistant bacteria (IRRB) show a surprising capacity for adaptation to ionizing radiation and desiccation. Positive Darwinian selection is expected to play an important role in this trait, but no data are currently available regarding the role of positive adaptive selection in res...
Saved in:
Published in | BMC genomics Vol. 9; no. 1; p. 297 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
21.06.2008
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1471-2164 1471-2164 |
DOI | 10.1186/1471-2164-9-297 |
Cover
Loading…
Abstract | Ionizing-radiation-resistant bacteria (IRRB) show a surprising capacity for adaptation to ionizing radiation and desiccation. Positive Darwinian selection is expected to play an important role in this trait, but no data are currently available regarding the role of positive adaptive selection in resistance to ionizing-radiation and tolerance of desiccation. We analyzed the four known genome sequences of IRRB (Deinococcus geothermalis, Deinococcus radiodurans, Kineococcus radiotolerans, and Rubrobacter xylanophilus) to determine the role of positive Darwinian selection in the evolution of resistance to ionizing radiation and tolerance of desiccation.
We used the programs MultiParanoid and DnaSP to deduce the sets of orthologs that potentially evolved due to positive Darwinian selection in IRRB. We find that positive selection targets 689 ortholog sets of IRRB. Among these, 58 ortholog sets are absent in ionizing-radiation-sensitive bacteria (IRSB: Escherichia coli and Thermus thermophilus). The most striking finding is that all basal DNA repair genes in IRRB, unlike many of their orthologs in IRSB, are subject to positive selection.
Our results provide the first in silico prediction of positively selected genes with potential roles in the molecular basis of resistance to gamma-radiation and tolerance of desiccation in IRRB. Identification of these genes provides a basis for future experimental work aimed at understanding the metabolic networks in which they participate. |
---|---|
AbstractList | Abstract Background Ionizing-radiation-resistant bacteria (IRRB) show a surprising capacity for adaptation to ionizing radiation and desiccation. Positive Darwinian selection is expected to play an important role in this trait, but no data are currently available regarding the role of positive adaptive selection in resistance to ionizing-radiation and tolerance of desiccation. We analyzed the four known genome sequences of IRRB (Deinococcus geothermalis, Deinococcus radiodurans, Kineococcus radiotolerans, and Rubrobacter xylanophilus) to determine the role of positive Darwinian selection in the evolution of resistance to ionizing radiation and tolerance of desiccation. Results We used the programs MultiParanoid and DnaSP to deduce the sets of orthologs that potentially evolved due to positive Darwinian selection in IRRB. We find that positive selection targets 689 ortholog sets of IRRB. Among these, 58 ortholog sets are absent in ionizing-radiation-sensitive bacteria (IRSB: Escherichia coli and Thermus thermophilus). The most striking finding is that all basal DNA repair genes in IRRB, unlike many of their orthologs in IRSB, are subject to positive selection. Conclusion Our results provide the first in silico prediction of positively selected genes with potential roles in the molecular basis of resistance to γ-radiation and tolerance of desiccation in IRRB. Identification of these genes provides a basis for future experimental work aimed at understanding the metabolic networks in which they participate. BACKGROUND: Ionizing-radiation-resistant bacteria (IRRB) show a surprising capacity for adaptation to ionizing radiation and desiccation. Positive Darwinian selection is expected to play an important role in this trait, but no data are currently available regarding the role of positive adaptive selection in resistance to ionizing-radiation and tolerance of desiccation. We analyzed the four known genome sequences of IRRB (Deinococcus geothermalis, Deinococcus radiodurans, Kineococcus radiotolerans, and Rubrobacter xylanophilus) to determine the role of positive Darwinian selection in the evolution of resistance to ionizing radiation and tolerance of desiccation. RESULTS: We used the programs MultiParanoid and DnaSP to deduce the sets of orthologs that potentially evolved due to positive Darwinian selection in IRRB. We find that positive selection targets 689 ortholog sets of IRRB. Among these, 58 ortholog sets are absent in ionizing-radiation-sensitive bacteria (IRSB: Escherichia coli and Thermus thermophilus). The most striking finding is that all basal DNA repair genes in IRRB, unlike many of their orthologs in IRSB, are subject to positive selection. CONCLUSION: Our results provide the first in silico prediction of positively selected genes with potential roles in the molecular basis of resistance to γ-radiation and tolerance of desiccation in IRRB. Identification of these genes provides a basis for future experimental work aimed at understanding the metabolic networks in which they participate. Ionizing-radiation-resistant bacteria (IRRB) show a surprising capacity for adaptation to ionizing radiation and desiccation. Positive Darwinian selection is expected to play an important role in this trait, but no data are currently available regarding the role of positive adaptive selection in resistance to ionizing-radiation and tolerance of desiccation. We analyzed the four known genome sequences of IRRB (Deinococcus geothermalis, Deinococcus radiodurans, Kineococcus radiotolerans, and Rubrobacter xylanophilus) to determine the role of positive Darwinian selection in the evolution of resistance to ionizing radiation and tolerance of desiccation.BACKGROUNDIonizing-radiation-resistant bacteria (IRRB) show a surprising capacity for adaptation to ionizing radiation and desiccation. Positive Darwinian selection is expected to play an important role in this trait, but no data are currently available regarding the role of positive adaptive selection in resistance to ionizing-radiation and tolerance of desiccation. We analyzed the four known genome sequences of IRRB (Deinococcus geothermalis, Deinococcus radiodurans, Kineococcus radiotolerans, and Rubrobacter xylanophilus) to determine the role of positive Darwinian selection in the evolution of resistance to ionizing radiation and tolerance of desiccation.We used the programs MultiParanoid and DnaSP to deduce the sets of orthologs that potentially evolved due to positive Darwinian selection in IRRB. We find that positive selection targets 689 ortholog sets of IRRB. Among these, 58 ortholog sets are absent in ionizing-radiation-sensitive bacteria (IRSB: Escherichia coli and Thermus thermophilus). The most striking finding is that all basal DNA repair genes in IRRB, unlike many of their orthologs in IRSB, are subject to positive selection.RESULTSWe used the programs MultiParanoid and DnaSP to deduce the sets of orthologs that potentially evolved due to positive Darwinian selection in IRRB. We find that positive selection targets 689 ortholog sets of IRRB. Among these, 58 ortholog sets are absent in ionizing-radiation-sensitive bacteria (IRSB: Escherichia coli and Thermus thermophilus). The most striking finding is that all basal DNA repair genes in IRRB, unlike many of their orthologs in IRSB, are subject to positive selection.Our results provide the first in silico prediction of positively selected genes with potential roles in the molecular basis of resistance to gamma-radiation and tolerance of desiccation in IRRB. Identification of these genes provides a basis for future experimental work aimed at understanding the metabolic networks in which they participate.CONCLUSIONOur results provide the first in silico prediction of positively selected genes with potential roles in the molecular basis of resistance to gamma-radiation and tolerance of desiccation in IRRB. Identification of these genes provides a basis for future experimental work aimed at understanding the metabolic networks in which they participate. Background Ionizing-radiation-resistant bacteria (IRRB) show a surprising capacity for adaptation to ionizing radiation and desiccation. Positive Darwinian selection is expected to play an important role in this trait, but no data are currently available regarding the role of positive adaptive selection in resistance to ionizing-radiation and tolerance of desiccation. We analyzed the four known genome sequences of IRRB (Deinococcus geothermalis, Deinococcus radiodurans, Kineococcus radiotolerans, and Rubrobacter xylanophilus) to determine the role of positive Darwinian selection in the evolution of resistance to ionizing radiation and tolerance of desiccation. Results We used the programs MultiParanoid and DnaSP to deduce the sets of orthologs that potentially evolved due to positive Darwinian selection in IRRB. We find that positive selection targets 689 ortholog sets of IRRB. Among these, 58 ortholog sets are absent in ionizing-radiation-sensitive bacteria (IRSB: Escherichia coli and Thermus thermophilus). The most striking finding is that all basal DNA repair genes in IRRB, unlike many of their orthologs in IRSB, are subject to positive selection. Conclusion Our results provide the first in silico prediction of positively selected genes with potential roles in the molecular basis of resistance to g-radiation and tolerance of desiccation in IRRB. Identification of these genes provides a basis for future experimental work aimed at understanding the metabolic networks in which they participate. Ionizing-radiation-resistant bacteria (IRRB) show a surprising capacity for adaptation to ionizing radiation and desiccation. Positive Darwinian selection is expected to play an important role in this trait, but no data are currently available regarding the role of positive adaptive selection in resistance to ionizing-radiation and tolerance of desiccation. We analyzed the four known genome sequences of IRRB (Deinococcus geothermalis, Deinococcus radiodurans, Kineococcus radiotolerans, and Rubrobacter xylanophilus) to determine the role of positive Darwinian selection in the evolution of resistance to ionizing radiation and tolerance of desiccation. We used the programs MultiParanoid and DnaSP to deduce the sets of orthologs that potentially evolved due to positive Darwinian selection in IRRB. We find that positive selection targets 689 ortholog sets of IRRB. Among these, 58 ortholog sets are absent in ionizing-radiation-sensitive bacteria (IRSB: Escherichia coli and Thermus thermophilus). The most striking finding is that all basal DNA repair genes in IRRB, unlike many of their orthologs in IRSB, are subject to positive selection. Our results provide the first in silico prediction of positively selected genes with potential roles in the molecular basis of resistance to gamma-radiation and tolerance of desiccation in IRRB. Identification of these genes provides a basis for future experimental work aimed at understanding the metabolic networks in which they participate. Background: Ionizing-radiation-resistant bacteria (IRRB) show a surprising capacity for adaptation to ionizing radiation and desiccation. Positive Darwinian selection is expected to play an important role in this trait, but no data are currently available regarding the role of positive adaptive selection in resistance to ionizing-radiation and tolerance of desiccation. We analyzed the four known genome sequences of IRRB (Deinococcus geothermalis, Deinococcus radiodurans, Kineococcus radiotolerans, and Rubrobacter xylanophilus) to determine the role of positive Darwinian selection in the evolution of resistance to ionizing radiation and tolerance of desiccation. Results: We used the programs MultiParanoid and DnaSP to deduce the sets of orthologs that potentially evolved due to positive Darwinian selection in IRRB. We find that positive selection targets 689 ortholog sets of IRRB. Among these, 58 ortholog sets are absent in ionizing-radiation-sensitive bacteria (IRSB: Escherichia coli and Thermus thermophilus). The most striking finding is that all basal DNA repair genes in IRRB, unlike many of their orthologs in IRSB, are subject to positive selection. Conclusion: Our results provide the first in silico prediction of positively selected genes with potential roles in the molecular basis of resistance to gamma-radiation and tolerance of desiccation in IRRB. Identification of these genes provides a basis for future experimental work aimed at understanding the metabolic networks in which they participate. |
Audience | Academic |
Author | Sghaier, Haïtham Ghedira, Kaïs Benkahla, Alia Barkallah, Insaf |
AuthorAffiliation | 1 Unit of Microbiology and Molecular Biology, National Center for Nuclear Sciences and Technologies (CNSTN), Sidi Thabet Technopark, 2020 Sidi Thabet, Tunisia 2 Group of Bioinformatics and Modelling, Laboratory of Immunology, Vaccinology, and Molecular Genetics, Institute Pasteur of Tunis, 13, place Pasteur BP 74, 1002 Tunis, Tunisia |
AuthorAffiliation_xml | – name: 1 Unit of Microbiology and Molecular Biology, National Center for Nuclear Sciences and Technologies (CNSTN), Sidi Thabet Technopark, 2020 Sidi Thabet, Tunisia – name: 2 Group of Bioinformatics and Modelling, Laboratory of Immunology, Vaccinology, and Molecular Genetics, Institute Pasteur of Tunis, 13, place Pasteur BP 74, 1002 Tunis, Tunisia |
Author_xml | – sequence: 1 givenname: Haïtham surname: Sghaier fullname: Sghaier, Haïtham – sequence: 2 givenname: Kaïs surname: Ghedira fullname: Ghedira, Kaïs – sequence: 3 givenname: Alia surname: Benkahla fullname: Benkahla, Alia – sequence: 4 givenname: Insaf surname: Barkallah fullname: Barkallah, Insaf |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18570673$$D View this record in MEDLINE/PubMed https://hal.science/hal-01358559$$DView record in HAL |
BookMark | eNqFk8tr3DAQxk1JaR7tubdiKBRycCLJsixdCpv0kYWlhT7OQtZjV4ttbSTt0vSvr7xO0zgkFMtYfPrNp2FmfJwd9K7XWfYagjMIKTmHuIYFggQXrECsfpYd3SkH9_aH2XEIawBgTVH1IjuEtKoBqcujTF2IINr8w5dZ7vVGWJ93Qq5sr_1NbkMets1ay5hHl29csNHudB50myTr-tym5Xr72_bLwgtlxaAWXgcbouhj3ggZtbfiZfbciDboV7ffk-znp48_Lq-KxdfP88vZomhqTGOBMCGASGBqZUqGamyAMZQiyVhZmaqCiCKgRKnKxhBMaQ2AkoBACaSWUMnyJJuPvsqJNd942wl_w52wfC84v-TCRytbzZkyihiGTaMxJoiy9EpSlkpULJmj5PV-9Npsm04rqfvoRTsxnZ70dsWXbscRxpCUMBmcjgarB2FXswUfNADLilYV2w3sxcg21j1x2fREuo4P3eVDdznjqffJ5N1txt5db3WIvLNB6rYVvXbbwAlDhKXU_gsiADCs9uDbEVyKVDLbG5culwPMZ5CmAaKwGqizR6j0KN1ZmebV2KRPAk4nAYmJ-ldcim0IfP7925R9c78NdyX5O8EJOB8B6V0IXpt_CODDP_JInaoHEdLG_eimvG37ZNwfHWsShg |
CitedBy_id | crossref_primary_10_1242_jeb_090837 crossref_primary_10_1371_journal_pone_0304810 crossref_primary_10_3389_fmicb_2017_00961 crossref_primary_10_1016_j_mib_2008_09_013 crossref_primary_10_1134_S1022795411070076 crossref_primary_10_1186_s12862_019_1457_5 crossref_primary_10_1016_j_sjbs_2021_09_020 crossref_primary_10_21603_2308_4057_2024_1_583 crossref_primary_10_1016_j_mrrev_2015_10_001 crossref_primary_10_1080_07391102_2024_2313168 crossref_primary_10_1007_s13213_011_0281_y crossref_primary_10_1534_genetics_116_196154 crossref_primary_10_3389_fmicb_2024_1395751 crossref_primary_10_1128_MRA_00818_19 crossref_primary_10_1371_journal_pone_0021764 crossref_primary_10_1038_cmi_2014_122 crossref_primary_10_1080_09553002_2019_1649501 crossref_primary_10_1371_journal_pone_0003878 crossref_primary_10_1007_s12033_024_01263_x crossref_primary_10_1186_s40168_021_01020_1 crossref_primary_10_1134_S0031030113090220 crossref_primary_10_1016_j_compbiolchem_2017_05_002 crossref_primary_10_1099_mgen_0_001038 crossref_primary_10_1371_journal_pone_0066012 crossref_primary_10_4137_GEI_S2380 crossref_primary_10_1007_s13213_013_0612_2 crossref_primary_10_1007_s11270_014_2133_4 crossref_primary_10_1016_j_ygeno_2020_11_029 crossref_primary_10_1007_s00792_020_01207_8 crossref_primary_10_1016_j_micres_2014_10_003 crossref_primary_10_1089_cmb_2015_0134 crossref_primary_10_1099_ijs_0_021246_0 crossref_primary_10_1007_s12275_017_7242_5 crossref_primary_10_1371_journal_pone_0299532 crossref_primary_10_1371_journal_pntd_0004712 crossref_primary_10_1007_s00239_013_9577_9 crossref_primary_10_1007_s10482_015_0494_3 crossref_primary_10_1016_j_micres_2016_06_001 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2008 BioMed Central Ltd. Distributed under a Creative Commons Attribution 4.0 International License Copyright © 2008 Sghaier et al; licensee BioMed Central Ltd. 2008 Sghaier et al; licensee BioMed Central Ltd. |
Copyright_xml | – notice: COPYRIGHT 2008 BioMed Central Ltd. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Copyright © 2008 Sghaier et al; licensee BioMed Central Ltd. 2008 Sghaier et al; licensee BioMed Central Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7QL 7T7 7TM 8FD C1K FR3 P64 RC3 7X8 1XC 5PM DOA |
DOI | 10.1186/1471-2164-9-297 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2164 |
EndPage | 297 |
ExternalDocumentID | oai_doaj_org_article_9dfd6f94fbe446289628c633da59f642 PMC2441631 oai_HAL_hal_01358559v1 oai_biomedcentral_com_1471_2164_9_297 A180678153 18570673 10_1186_1471_2164_9_297 |
Genre | Journal Article |
GeographicLocations | Tunisia |
GeographicLocations_xml | – name: Tunisia |
GroupedDBID | --- 0R~ 23N 2VQ 2WC 2XV 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C1A C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR INH INR IPNFZ ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB CGR CUY CVF ECM EIF NPM 7QL 7T7 7TM 8FD C1K FR3 P64 RC3 7X8 -A0 ABVAZ ACRMQ ADINQ AFGXO AFNRJ AIXEN C24 1XC 5PM |
ID | FETCH-LOGICAL-b748t-246606c0f7df39274f0ff882c9935f5512820da3d3bf6488700dc061c0cec1dc3 |
IEDL.DBID | RBZ |
ISSN | 1471-2164 |
IngestDate | Wed Aug 27 01:24:58 EDT 2025 Thu Aug 21 13:55:35 EDT 2025 Fri May 09 12:09:46 EDT 2025 Wed May 22 07:11:31 EDT 2024 Fri Jul 11 02:16:47 EDT 2025 Fri Jul 11 10:08:04 EDT 2025 Tue Jun 17 22:20:04 EDT 2025 Tue Jun 10 21:28:50 EDT 2025 Fri Jun 27 05:29:41 EDT 2025 Mon Jul 21 05:55:24 EDT 2025 Tue Jul 01 02:21:41 EDT 2025 Thu Apr 24 22:58:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b748t-246606c0f7df39274f0ff882c9935f5512820da3d3bf6488700dc061c0cec1dc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC2441631 |
OpenAccessLink | http://dx.doi.org/10.1186/1471-2164-9-297 |
PMID | 18570673 |
PQID | 20041563 |
PQPubID | 23462 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9dfd6f94fbe446289628c633da59f642 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2441631 hal_primary_oai_HAL_hal_01358559v1 biomedcentral_primary_oai_biomedcentral_com_1471_2164_9_297 proquest_miscellaneous_69269163 proquest_miscellaneous_20041563 gale_infotracmisc_A180678153 gale_infotracacademiconefile_A180678153 gale_incontextgauss_ISR_A180678153 pubmed_primary_18570673 crossref_primary_10_1186_1471_2164_9_297 crossref_citationtrail_10_1186_1471_2164_9_297 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-06-21 |
PublicationDateYYYYMMDD | 2008-06-21 |
PublicationDate_xml | – month: 06 year: 2008 text: 2008-06-21 day: 21 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | BMC genomics |
PublicationTitleAlternate | BMC Genomics |
PublicationYear | 2008 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | 17475002 - Genome Biol. 2007;8(5):R71 7854254 - Microbiol Rev. 1994 Dec;58(4):755-805 15618510 - Science. 2004 Dec 24;306(5705):2216-21 12804570 - Biochem Biophys Res Commun. 2003 Jun 27;306(2):354-60 16151108 - Appl Environ Microbiol. 2005 Sep;71(9):5225-35 17981842 - Nucleic Acids Res. 2008 Jan;36(Database issue):D475-9 18087756 - Theory Biosci. 2007 Aug;126(1):43-5 12054260 - Int J Syst Evol Microbiol. 2002 May;52(Pt 3):933-8 9343349 - Annu Rev Microbiol. 1997;51:203-24 16242020 - BMC Evol Biol. 2005;5:57 10567266 - Science. 1999 Nov 19;286(5444):1571-7 11846468 - Cryobiology. 2001 Sep;43(2):133-9 16478457 - Environ Microbiol. 2006 Mar;8(3):514-25 16261171 - Nat Rev Microbiol. 2005 Nov;3(11):882-92 17895995 - PLoS One. 2007;2(9):e955 7504195 - Mutat Res. 1994 Jan;314(1):87-97 2513255 - Genetics. 1989 Nov;123(3):585-95 16251465 - Genome Res. 2005 Nov;15(11):1553-65 15514074 - Genetics. 2004 Oct;168(2):1041-51 15459345 - Science. 2004 Nov 5;306(5698):1025-8 12514053 - Appl Environ Microbiol. 2003 Jan;69(1):644-8 8550493 - J Bacteriol. 1996 Feb;178(3):633-7 18273068 - ISME J. 2008 Apr;2(4):393-403 17675366 - Genome Res. 2007 Sep;17(9):1336-43 17006450 - Nature. 2006 Oct 5;443(7111):569-73 16280508 - Int J Syst Evol Microbiol. 2005 Nov;55(Pt 6):2441-6 15388754 - Int J Syst Evol Microbiol. 2004 Sep;54(Pt 5):1849-55 15454524 - Genetics. 2004 Sep;168(1):21-33 10666704 - Mol Biol Evol. 2000 Jan;17(1):32-43 10967210 - FEMS Microbiol Ecol. 2000 Aug 1;33(2):111-120 16683019 - PLoS Comput Biol. 2006 Apr;2(4):e38 11538142 - Adv Space Res. 1992;12(4):221-9 17373858 - PLoS Biol. 2007 Apr;5(4):e92 15458422 - Mol Microbiol. 2004 Oct;54(1):278-85 11114436 - Trends Ecol Evol. 2000 Dec 1;15(12):496-503 10591012 - Extremophiles. 1999 Nov;3(4):235-8 7984417 - Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 9367129 - Comput Appl Biosci. 1997 Oct;13(5):555-6 |
References_xml | – reference: 17475002 - Genome Biol. 2007;8(5):R71 – reference: 7984417 - Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 – reference: 10567266 - Science. 1999 Nov 19;286(5444):1571-7 – reference: 15458422 - Mol Microbiol. 2004 Oct;54(1):278-85 – reference: 12804570 - Biochem Biophys Res Commun. 2003 Jun 27;306(2):354-60 – reference: 16478457 - Environ Microbiol. 2006 Mar;8(3):514-25 – reference: 17895995 - PLoS One. 2007;2(9):e955 – reference: 18273068 - ISME J. 2008 Apr;2(4):393-403 – reference: 11538142 - Adv Space Res. 1992;12(4):221-9 – reference: 7854254 - Microbiol Rev. 1994 Dec;58(4):755-805 – reference: 15388754 - Int J Syst Evol Microbiol. 2004 Sep;54(Pt 5):1849-55 – reference: 10967210 - FEMS Microbiol Ecol. 2000 Aug 1;33(2):111-120 – reference: 10666704 - Mol Biol Evol. 2000 Jan;17(1):32-43 – reference: 17006450 - Nature. 2006 Oct 5;443(7111):569-73 – reference: 7504195 - Mutat Res. 1994 Jan;314(1):87-97 – reference: 10591012 - Extremophiles. 1999 Nov;3(4):235-8 – reference: 16251465 - Genome Res. 2005 Nov;15(11):1553-65 – reference: 2513255 - Genetics. 1989 Nov;123(3):585-95 – reference: 17981842 - Nucleic Acids Res. 2008 Jan;36(Database issue):D475-9 – reference: 9367129 - Comput Appl Biosci. 1997 Oct;13(5):555-6 – reference: 8550493 - J Bacteriol. 1996 Feb;178(3):633-7 – reference: 17675366 - Genome Res. 2007 Sep;17(9):1336-43 – reference: 18087756 - Theory Biosci. 2007 Aug;126(1):43-5 – reference: 16683019 - PLoS Comput Biol. 2006 Apr;2(4):e38 – reference: 12054260 - Int J Syst Evol Microbiol. 2002 May;52(Pt 3):933-8 – reference: 15618510 - Science. 2004 Dec 24;306(5705):2216-21 – reference: 15459345 - Science. 2004 Nov 5;306(5698):1025-8 – reference: 15454524 - Genetics. 2004 Sep;168(1):21-33 – reference: 16151108 - Appl Environ Microbiol. 2005 Sep;71(9):5225-35 – reference: 12514053 - Appl Environ Microbiol. 2003 Jan;69(1):644-8 – reference: 11114436 - Trends Ecol Evol. 2000 Dec 1;15(12):496-503 – reference: 17373858 - PLoS Biol. 2007 Apr;5(4):e92 – reference: 16261171 - Nat Rev Microbiol. 2005 Nov;3(11):882-92 – reference: 9343349 - Annu Rev Microbiol. 1997;51:203-24 – reference: 15514074 - Genetics. 2004 Oct;168(2):1041-51 – reference: 11846468 - Cryobiology. 2001 Sep;43(2):133-9 – reference: 16280508 - Int J Syst Evol Microbiol. 2005 Nov;55(Pt 6):2441-6 – reference: 16242020 - BMC Evol Biol. 2005;5:57 |
SSID | ssj0017825 |
Score | 2.1025887 |
Snippet | Ionizing-radiation-resistant bacteria (IRRB) show a surprising capacity for adaptation to ionizing radiation and desiccation. Positive Darwinian selection is... Background Ionizing-radiation-resistant bacteria (IRRB) show a surprising capacity for adaptation to ionizing radiation and desiccation. Positive Darwinian... BACKGROUND: Ionizing-radiation-resistant bacteria (IRRB) show a surprising capacity for adaptation to ionizing radiation and desiccation. Positive Darwinian... Background: Ionizing-radiation-resistant bacteria (IRRB) show a surprising capacity for adaptation to ionizing radiation and desiccation. Positive Darwinian... Abstract Background Ionizing-radiation-resistant bacteria (IRRB) show a surprising capacity for adaptation to ionizing radiation and desiccation. Positive... |
SourceID | doaj pubmedcentral hal biomedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 297 |
SubjectTerms | Actinobacteria - genetics Actinobacteria - metabolism Actinobacteria - radiation effects Actinomycetales - genetics Actinomycetales - metabolism Actinomycetales - radiation effects Bacteria - genetics Bacteria - metabolism Bacteria - radiation effects Bacterial genetics Deinococcus - genetics Deinococcus - metabolism Deinococcus - radiation effects Deinococcus geothermalis Deinococcus radiodurans Desiccation DNA repair DNA Repair - genetics DNA Repair - radiation effects Escherichia coli Genes Genes, Bacterial Identification and classification Life Sciences Physiological aspects Radiation Tolerance - genetics Selection, Genetic Species Specificity Thermus thermophilus |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZgEhIviN8EBlgTEryYOXFsJ-KpA6aC0B6ASXuzYsemlUaKknTS-Ou5S9Iyb5p4QWpf7HPjns--79rzd4S84iJ33AbNrEwdyzPuWCkKyWourPRa1yoMbJ9Han6cfz6RJxdKfWFO2EgPPCpuv6wDyJd5sD7He5QlvJ0Soq5kGQA84-kLPm8TTE3_H4Dfk8O9Ip2yDCKCidQnLdT-to2VLEOup-ii-2nknwYa_-1hfXMxdF8BopfzKS84qMO75M6ELOls_Eb3yA3f3Ce3xlqT5w9IfVB10P3haEZbcEHLlv4c8ih9e06XHe3WFn-Rof2KjnlcZ552Q40cWDi6hBds_t_g51iLbAbYyiBSR_TZ9NSOnM_VQ3J8-PH7-zmbSiwwq_OiZ1muIIJxPOg6AFLSeeAhAOh2AFtkADQFERmvK1ELC8qGA4nz2gEEcNx5l9ZOPCI7zarxTwjV2hauECIg42DgolA2BK-Cq4J0XmYJeRcp2vwa6TQMElzHPbDXDC6TwWUypYFlSsjbzbIYN7GXYxGNUzNEMYW6OuDNdsDmSdeKHuA6RxMaGsAOzWSH5l92mJA9tBKDnBoNJu38qNZdZz59-2pmaYGYAHxLQl5PQmEFs3fVdAcCNIg0XJHkbiQJm95F3XuLSyqcz74YbANMDyGgLM_ShLzc2KrB8ZhO1_jVusPaoxi4i-slVJkpiBxA4vFo23-ViCURlIYeHVl9NJm4p1kuBuJygJLwkenT_6HvZ-T2mLqjYDPvkp2-XfvngA97-2I4Cv4AZFdgGw priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfYEBIviO8VBlgTErx4OHFiJ0IIdcBUEOwBmLQ3K3bstVJJIWknyl_PnZOupNuE1L7Y59S9D9_v2vMdIc-5SCw3XjGTRpYlMbcsF1nKSi5M6pQqpQ_VPo_k6Dj5dJKerNsBdQxsLg3tsJ_UcT3d__1r-RYM_k0w-Ey-iuCAZTHgfpazOFdb5Dq4JYV9HL4k678UwBWm4apRR9zV-bnkARt336c9lxUq-5-f31vjMH0Bm26mWP7jsw5vk1sd2KTDVjvukGuuuktutO0nl_dIeVA0MP3-aEhr8EqTmv4IqZWuXtJJQ5uFwR9p6HxG29SuM0eb0DYHZEkn8ILz4A-4PlZjgQMcZRC8IyCt5tS0ZaCL--T48MP3dyPWdV1gRiXZnMWJhKDGcq9KD-BJJZ57DzjcApJJPQAsCNJ4WYhSGC_B_BXnpQVUYLl1NiqteEC2q1nldghVymQ2E8JjEULPRSaN9056W_jUujQekNc9RuufbYUNjTWv-zNgfhrFpFFMOtcgpgHZX4lF266gOfbVmOoQ2GTy4oKX5wtWn3Ql6QHKubehMDCrT3Vn0zovPahynnjjErzim8PbSiHKIs2BNfD19lBLNJbZqDCP57RYNI3--O2rHkYZwgRwNwPyoiPyM9i9LbprEcBBrMzVo9ztUcI5YHvTe-MNFo6GnzWOAcyHqDDNz6IBebbSVY3rMcOucrNFg-1IMZYXV1PIPJYQTADFw1a310zELglSwYzqaX1vM_2ZajIOtcwBXcIjo0f_3ddjcrNN1ZFgqbtke14v3BPAg3PzNNj5X96IW5I priority: 102 providerName: Scholars Portal |
Title | Basal DNA repair machinery is subject to positive selection in ionizing-radiation-resistant bacteria |
URI | https://www.ncbi.nlm.nih.gov/pubmed/18570673 https://www.proquest.com/docview/20041563 https://www.proquest.com/docview/69269163 http://dx.doi.org/10.1186/1471-2164-9-297 https://hal.science/hal-01358559 https://pubmed.ncbi.nlm.nih.gov/PMC2441631 https://doaj.org/article/9dfd6f94fbe446289628c633da59f642 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYEBIviPG1wjasCQleDE7s2Il4aoGpINjDYNLEixU7Nq00UtS0k8Zfz52TdqRjT0htH3znxPWdfXfJ-XeEvOBCOm6DZjZLHJMpd6wQecYqLmzmta5UiGifx2p8Kj-dZWdXYNEbb_CTXL1JYPtkKXj1rGBpobfI7VRqiVUaTkbf1y8MwNBl8SBRx9yh-PzjAhsn2897Bini9q93561JJF_zPDcTKP-ySEf3yb3OlaTDVvY75JavH5A7bXHJy4ekGpUNkN8fD-kcbM50Tn_GxEk_v6TThjZLi49g6GJG28StC0-bWBQHJEWn8IHV_hsMG5sjfAG2MgjN0d2sF9S2IM_lI3J69OHbuzHraiowq2W-YKlUELI4HnQVwDXSMvAQwMt24KdkAdwnCMF4VYpK2KBgcWvOKwc233HnXVI58Zhs17Pa7xKqtc1dLkRAiMHARa5sCF4FV4bM-SwdkLe9iTa_WvwMg4jWfQosLoNiMigmUxgQ04C8XonFuA6uHKtmnJsYtuTqeodX6w6rO93IOkI59wYUG0DvTLdiTVEFUNRCBuslHuAt4OuUEFWZFTA18PcOUUsMgmjUmKXzo1w2jfn49cQMkxydADAmA_KyYwozGL0ru0MPMIOIu9Xj3Otxwip3PfLhZGMKx8PPBtvAiYeYLysukgF5vtJVg_0xf672s2WDxUYxUhc3c6giVRAqAMeTVrevJhFrICgNFN3T-t5g-pR6OolI5eA7wiWTp_-lCc_I3TZJR8Eq3iPbi_nS74MnuLAH8QkK_H6R-UHcD_4ApERaQQ |
linkProvider | BioMedCentral |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELa2IQQviN8UBosmJHjxcOLYTsRTC1QdlD6MTZp4sWInXiu1CUraSeOv5y5Jy9KxJ6T2JT4nju9sf9fefUfIW8ZDy4xT1Ajf0jBglsY8EjRl3IhMqVS6mu1zIkdn4ddzcb5DhutcGLOwSE66mNnq6HoC-rzetdfBYs1aj-QHH_ZWGgDkpzENYrVL7ighFC7Qk8HPzb8JcAqKOsuoFW4pfv5xg62093nntKpJ_Tdb9-60br4BS7ejK68dV8OH5EGLM71-8yqPyE6WPyZ3m8qTV09IOkgqaP486XslHEiz0lvUUZVZeeXNKq9aGfx9xlsWXhPVdZl5VV0xB9TozeADW8FvOPVoidwGeJWC345YNF96pmGATp6Ss-GX008j2hZcoEaF0ZIGoQR_xjKnUge4SYWOOQcQ3AKIEQ6wFfhnLE14yo2TsPIVY6kFQGCZzayfWv6M7OVFnr0gnlImshHnDvkHHeORNM5l0tnECZuJoEc-diZa_2rINTTSXXdbQPEa1aRRTTrWoKYeOVqrRduWyxxLasx17dNE8maH95sO6yfdKjpAPXcGVF8oygvdGqCOUwdWHIfOZCFm98bwtZLzNBExTA283iFaiUaGjRxDeC6SVVXp4x8nuu9HiBDgpOmRd62QK2D0NmkzImAGkZSrI7nfkYQtwHaaD6dbUzjqjzVeA4QPDqGIL_0eOVjbqsb-GFyXZ8Wqwkqk6Mbz2yVkHEjwI0DieWPbfycRCyRIBS2qY_WdwXRb8tm0pjEHYAm39F_-lyUckHuj0-9jPT6efHtF7jfRPBJW9D7ZW5ar7DVAxqV5U-8HfwCHOmc5 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELa2IRAviJ-jMDZrQoIXb0mc2Il4ahmlg6lCwKSJFyt24rWiTaeknTT-eu6ctFs69oTUSpV9TlLf2fdd6_uOkLceD42nrWQ68g0LA8-whMcRyzyuo1zKTFjH9jkUg9Pwy1l0tkE-L3Nh9NQgOel0bKqDmwnoE7drwwfz-_Ais_Vij8WhD5srCwDzs4QFidwk9ySSSmHY3vu1-jsB3GDk0owa4Ybj5x8XWMt7n7TclWP1X-3dmyPXfQuXrh-vvOGv-o_JowZo0m5tGU_IRl48Jffr0pNXz0jWSyvoPhp2aQkeaVzSqTtWmZdXdFzRaqHxBxo6n9H6WNdlTitXMgf0SMfwgr3gD7g9ViK5AbYyCNwRjBZzqmsK6PQ5Oe1_-vlxwJqKC0zLMJ6zIBQQ0BjPyswCcJKh9awFDG4AxUQWwBUEaF6W8oxrK2DpS8_LDCAC45nc-JnhL8hWMSvyl4RKqWMTc26RgNB6PBba2lxYk9rI5FHQIR9aE60uanYNhXzX7R7QvEI1KVSTShSoqUMOlmpRpiEzx5oaE-WCmljcHvB-NWB5pztFe6jn1gO5hll5rpr1rJLMghknodV5iOm9CbyN4DxLowSmBr7ePlqJQoqNAs_wnKeLqlLHP76rrh8jRABX0yHvGiE7Q9NOm5QImEFk5WpJ7rQkYQ8wre790doUDronCtsA4kNEGCWXfofsLW1V4Xg8XVfks0WFpUgxjud3S4gkEBBIgMR2bdvXk4gVEoSEHtmy-tbDtHuK8cjxmAOyhEv6r_7LEvbIg29HfXVyPPz6mjysT_MIWNA7ZGteLvI3ABnnetdtB38B3PJnBA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Basal+DNA+repair+machinery+is+subject+to+positive+selection+in+ionizing-radiation-resistant+bacteria&rft.jtitle=BMC+genomics&rft.au=Sghaier%2C+Haietham&rft.au=Ghedira%2C+Kaies&rft.au=Benkahla%2C+Alia&rft.au=Barkallah%2C+Insaf&rft.date=2008-06-21&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=9&rft.spage=297&rft.epage=297&rft_id=info:doi/10.1186%2F1471-2164-9-297&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |