A glimpse on the pattern of rodent diversification: a phylogenetic approach

Development of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have revolutionized the field of evolutionary biology and resulted in an unprecedented expansion of our knowledge about the tree of life. These methods have helped to shed light on th...

Full description

Saved in:
Bibliographic Details
Published inBMC evolutionary biology Vol. 12; no. 1; p. 88
Main Authors Fabre, Pierre-Henri, Hautier, Lionel, Dimitrov, Dimitar, P Douzery, Emmanuel J
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 14.06.2012
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Development of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have revolutionized the field of evolutionary biology and resulted in an unprecedented expansion of our knowledge about the tree of life. These methods have helped to shed light on the macroevolution of many taxonomic groups such as the placentals (Mammalia). However, despite the increase of studies addressing the diversification patterns of organisms, no synthesis has addressed the case of the most diversified mammalian clade: the Rodentia. Here we present a rodent maximum likelihood phylogeny inferred from a molecular supermatrix. It is based on 11 mitochondrial and nuclear genes that covers 1,265 species, i.e., respectively 56% and 81% of the known specific and generic rodent diversity. The inferred topology recovered all Rodentia clades proposed by recent molecular works. A relaxed molecular clock dating approach provided a time framework for speciation events. We found that the Myomorpha clade shows a greater degree of variation in diversification rates than Sciuroidea, Caviomorpha, Castorimorpha and Anomaluromorpha. We identified a number of shifts in diversification rates within the major clades: two in Castorimorpha, three in Ctenohystrica, 6 within the squirrel-related clade and 24 in the Myomorpha clade. The majority of these shifts occurred within the most recent familial rodent radiations: the Cricetidae and Muridae clades. Using the topological imbalances and the time line we discuss the potential role of different diversification factors that might have shaped the rodents radiation. The present glimpse on the diversification pattern of rodents can be used for further comparative meta-analyses. Muroid lineages have a greater degree of variation in their diversification rates than any other rodent group. Different topological signatures suggest distinct diversification processes among rodent lineages. In particular, Muroidea and Sciuroidea display widespread distribution and have undergone evolutionary and adaptive radiation on most of the continents. Our results show that rodents experienced shifts in diversification rate regularly through the Tertiary, but at different periods for each clade. A comparison between the rodent fossil record and our results suggest that extinction led to the loss of diversification signal for most of the Paleogene nodes.
AbstractList BACKGROUND: Development of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have revolutionized the field of evolutionary biology and resulted in an unprecedented expansion of our knowledge about the tree of life. These methods have helped to shed light on the macroevolution of many taxonomic groups such as the placentals (Mammalia). However, despite the increase of studies addressing the diversification patterns of organisms, no synthesis has addressed the case of the most diversified mammalian clade: the Rodentia. RESULTS: Here we present a rodent maximum likelihood phylogeny inferred from a molecular supermatrix. It is based on 11 mitochondrial and nuclear genes that covers 1,265 species, i.e., respectively 56% and 81% of the known specific and generic rodent diversity. The inferred topology recovered all Rodentia clades proposed by recent molecular works. A relaxed molecular clock dating approach provided a time framework for speciation events. We found that the Myomorpha clade shows a greater degree of variation in diversification rates than Sciuroidea, Caviomorpha, Castorimorpha and Anomaluromorpha. We identified a number of shifts in diversification rates within the major clades: two in Castorimorpha, three in Ctenohystrica, 6 within the squirrel-related clade and 24 in the Myomorpha clade. The majority of these shifts occurred within the most recent familial rodent radiations: the Cricetidae and Muridae clades. Using the topological imbalances and the time line we discuss the potential role of different diversification factors that might have shaped the rodents radiation. CONCLUSIONS: The present glimpse on the diversification pattern of rodents can be used for further comparative meta-analyses. Muroid lineages have a greater degree of variation in their diversification rates than any other rodent group. Different topological signatures suggest distinct diversification processes among rodent lineages. In particular, Muroidea and Sciuroidea display widespread distribution and have undergone evolutionary and adaptive radiation on most of the continents. Our results show that rodents experienced shifts in diversification rate regularly through the Tertiary, but at different periods for each clade. A comparison between the rodent fossil record and our results suggest that extinction led to the loss of diversification signal for most of the Paleogene nodes.
Abstract Background Development of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have revolutionized the field of evolutionary biology and resulted in an unprecedented expansion of our knowledge about the tree of life. These methods have helped to shed light on the macroevolution of many taxonomic groups such as the placentals (Mammalia). However, despite the increase of studies addressing the diversification patterns of organisms, no synthesis has addressed the case of the most diversified mammalian clade: the Rodentia. Results Here we present a rodent maximum likelihood phylogeny inferred from a molecular supermatrix. It is based on 11 mitochondrial and nuclear genes that covers 1,265 species, i.e., respectively 56% and 81% of the known specific and generic rodent diversity. The inferred topology recovered all Rodentia clades proposed by recent molecular works. A relaxed molecular clock dating approach provided a time framework for speciation events. We found that the Myomorpha clade shows a greater degree of variation in diversification rates than Sciuroidea, Caviomorpha, Castorimorpha and Anomaluromorpha. We identified a number of shifts in diversification rates within the major clades: two in Castorimorpha, three in Ctenohystrica, 6 within the squirrel-related clade and 24 in the Myomorpha clade. The majority of these shifts occurred within the most recent familial rodent radiations: the Cricetidae and Muridae clades. Using the topological imbalances and the time line we discuss the potential role of different diversification factors that might have shaped the rodents radiation. Conclusions The present glimpse on the diversification pattern of rodents can be used for further comparative meta-analyses. Muroid lineages have a greater degree of variation in their diversification rates than any other rodent group. Different topological signatures suggest distinct diversification processes among rodent lineages. In particular, Muroidea and Sciuroidea display widespread distribution and have undergone evolutionary and adaptive radiation on most of the continents. Our results show that rodents experienced shifts in diversification rate regularly through the Tertiary, but at different periods for each clade. A comparison between the rodent fossil record and our results suggest that extinction led to the loss of diversification signal for most of the Paleogene nodes.
Development of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have revolutionized the field of evolutionary biology and resulted in an unprecedented expansion of our knowledge about the tree of life. These methods have helped to shed light on the macroevolution of many taxonomic groups such as the placentals (Mammalia). However, despite the increase of studies addressing the diversification patterns of organisms, no synthesis has addressed the case of the most diversified mammalian clade: the Rodentia. Here we present a rodent maximum likelihood phylogeny inferred from a molecular supermatrix. It is based on 11 mitochondrial and nuclear genes that covers 1,265 species, i.e., respectively 56% and 81% of the known specific and generic rodent diversity. The inferred topology recovered all Rodentia clades proposed by recent molecular works. A relaxed molecular clock dating approach provided a time framework for speciation events. We found that the Myomorpha clade shows a greater degree of variation in diversification rates than Sciuroidea, Caviomorpha, Castorimorpha and Anomaluromorpha. We identified a number of shifts in diversification rates within the major clades: two in Castorimorpha, three in Ctenohystrica, 6 within the squirrel-related clade and 24 in the Myomorpha clade. The majority of these shifts occurred within the most recent familial rodent radiations: the Cricetidae and Muridae clades. Using the topological imbalances and the time line we discuss the potential role of different diversification factors that might have shaped the rodents radiation. The present glimpse on the diversification pattern of rodents can be used for further comparative meta-analyses. Muroid lineages have a greater degree of variation in their diversification rates than any other rodent group. Different topological signatures suggest distinct diversification processes among rodent lineages. In particular, Muroidea and Sciuroidea display widespread distribution and have undergone evolutionary and adaptive radiation on most of the continents. Our results show that rodents experienced shifts in diversification rate regularly through the Tertiary, but at different periods for each clade. A comparison between the rodent fossil record and our results suggest that extinction led to the loss of diversification signal for most of the Paleogene nodes.
Doc number: 88 Abstract Background: Development of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have revolutionized the field of evolutionary biology and resulted in an unprecedented expansion of our knowledge about the tree of life. These methods have helped to shed light on the macroevolution of many taxonomic groups such as the placentals (Mammalia). However, despite the increase of studies addressing the diversification patterns of organisms, no synthesis has addressed the case of the most diversified mammalian clade: the Rodentia. Results: Here we present a rodent maximum likelihood phylogeny inferred from a molecular supermatrix. It is based on 11 mitochondrial and nuclear genes that covers 1,265 species, i.e. , respectively 56% and 81% of the known specific and generic rodent diversity. The inferred topology recovered all Rodentia clades proposed by recent molecular works. A relaxed molecular clock dating approach provided a time framework for speciation events. We found that the Myomorpha clade shows a greater degree of variation in diversification rates than Sciuroidea, Caviomorpha, Castorimorpha and Anomaluromorpha. We identified a number of shifts in diversification rates within the major clades: two in Castorimorpha, three in Ctenohystrica, 6 within the squirrel-related clade and 24 in the Myomorpha clade. The majority of these shifts occurred within the most recent familial rodent radiations: the Cricetidae and Muridae clades. Using the topological imbalances and the time line we discuss the potential role of different diversification factors that might have shaped the rodents radiation. Conclusions: The present glimpse on the diversification pattern of rodents can be used for further comparative meta-analyses. Muroid lineages have a greater degree of variation in their diversification rates than any other rodent group. Different topological signatures suggest distinct diversification processes among rodent lineages. In particular, Muroidea and Sciuroidea display widespread distribution and have undergone evolutionary and adaptive radiation on most of the continents. Our results show that rodents experienced shifts in diversification rate regularly through the Tertiary, but at different periods for each clade. A comparison between the rodent fossil record and our results suggest that extinction led to the loss of diversification signal for most of the Paleogene nodes.
Development of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have revolutionized the field of evolutionary biology and resulted in an unprecedented expansion of our knowledge about the tree of life. These methods have helped to shed light on the macroevolution of many taxonomic groups such as the placentals (Mammalia). However, despite the increase of studies addressing the diversification patterns of organisms, no synthesis has addressed the case of the most diversified mammalian clade: the Rodentia. Here we present a rodent maximum likelihood phylogeny inferred from a molecular supermatrix. It is based on 11 mitochondrial and nuclear genes that covers 1,265 species, i.e., respectively 56% and 81% of the known specific and generic rodent diversity. The inferred topology recovered all Rodentia clades proposed by recent molecular works. A relaxed molecular clock dating approach provided a time framework for speciation events. We found that the Myomorpha clade shows a greater degree of variation in diversification rates than Sciuroidea, Caviomorpha, Castorimorpha and Anomaluromorpha. We identified a number of shifts in diversification rates within the major clades: two in Castorimorpha, three in Ctenohystrica, 6 within the squirrel-related clade and 24 in the Myomorpha clade. The majority of these shifts occurred within the most recent familial rodent radiations: the Cricetidae and Muridae clades. Using the topological imbalances and the time line we discuss the potential role of different diversification factors that might have shaped the rodents radiation. The present glimpse on the diversification pattern of rodents can be used for further comparative meta-analyses. Muroid lineages have a greater degree of variation in their diversification rates than any other rodent group. Different topological signatures suggest distinct diversification processes among rodent lineages. In particular, Muroidea and Sciuroidea display widespread distribution and have undergone evolutionary and adaptive radiation on most of the continents. Our results show that rodents experienced shifts in diversification rate regularly through the Tertiary, but at different periods for each clade. A comparison between the rodent fossil record and our results suggest that extinction led to the loss of diversification signal for most of the Paleogene nodes.
Development of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have revolutionized the field of evolutionary biology and resulted in an unprecedented expansion of our knowledge about the tree of life. These methods have helped to shed light on the macroevolution of many taxonomic groups such as the placentals (Mammalia). However, despite the increase of studies addressing the diversification patterns of organisms, no synthesis has addressed the case of the most diversified mammalian clade: the Rodentia.BACKGROUNDDevelopment of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have revolutionized the field of evolutionary biology and resulted in an unprecedented expansion of our knowledge about the tree of life. These methods have helped to shed light on the macroevolution of many taxonomic groups such as the placentals (Mammalia). However, despite the increase of studies addressing the diversification patterns of organisms, no synthesis has addressed the case of the most diversified mammalian clade: the Rodentia.Here we present a rodent maximum likelihood phylogeny inferred from a molecular supermatrix. It is based on 11 mitochondrial and nuclear genes that covers 1,265 species, i.e., respectively 56% and 81% of the known specific and generic rodent diversity. The inferred topology recovered all Rodentia clades proposed by recent molecular works. A relaxed molecular clock dating approach provided a time framework for speciation events. We found that the Myomorpha clade shows a greater degree of variation in diversification rates than Sciuroidea, Caviomorpha, Castorimorpha and Anomaluromorpha. We identified a number of shifts in diversification rates within the major clades: two in Castorimorpha, three in Ctenohystrica, 6 within the squirrel-related clade and 24 in the Myomorpha clade. The majority of these shifts occurred within the most recent familial rodent radiations: the Cricetidae and Muridae clades. Using the topological imbalances and the time line we discuss the potential role of different diversification factors that might have shaped the rodents radiation.RESULTSHere we present a rodent maximum likelihood phylogeny inferred from a molecular supermatrix. It is based on 11 mitochondrial and nuclear genes that covers 1,265 species, i.e., respectively 56% and 81% of the known specific and generic rodent diversity. The inferred topology recovered all Rodentia clades proposed by recent molecular works. A relaxed molecular clock dating approach provided a time framework for speciation events. We found that the Myomorpha clade shows a greater degree of variation in diversification rates than Sciuroidea, Caviomorpha, Castorimorpha and Anomaluromorpha. We identified a number of shifts in diversification rates within the major clades: two in Castorimorpha, three in Ctenohystrica, 6 within the squirrel-related clade and 24 in the Myomorpha clade. The majority of these shifts occurred within the most recent familial rodent radiations: the Cricetidae and Muridae clades. Using the topological imbalances and the time line we discuss the potential role of different diversification factors that might have shaped the rodents radiation.The present glimpse on the diversification pattern of rodents can be used for further comparative meta-analyses. Muroid lineages have a greater degree of variation in their diversification rates than any other rodent group. Different topological signatures suggest distinct diversification processes among rodent lineages. In particular, Muroidea and Sciuroidea display widespread distribution and have undergone evolutionary and adaptive radiation on most of the continents. Our results show that rodents experienced shifts in diversification rate regularly through the Tertiary, but at different periods for each clade. A comparison between the rodent fossil record and our results suggest that extinction led to the loss of diversification signal for most of the Paleogene nodes.CONCLUSIONSThe present glimpse on the diversification pattern of rodents can be used for further comparative meta-analyses. Muroid lineages have a greater degree of variation in their diversification rates than any other rodent group. Different topological signatures suggest distinct diversification processes among rodent lineages. In particular, Muroidea and Sciuroidea display widespread distribution and have undergone evolutionary and adaptive radiation on most of the continents. Our results show that rodents experienced shifts in diversification rate regularly through the Tertiary, but at different periods for each clade. A comparison between the rodent fossil record and our results suggest that extinction led to the loss of diversification signal for most of the Paleogene nodes.
Audience Academic
Author Dimitrov, Dimitar
Hautier, Lionel
Fabre, Pierre-Henri
P Douzery, Emmanuel J
AuthorAffiliation 1 Center for Macroecology, Evolution and Climate (CMEC, Department of Biology), Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
2 Institut des Sciences de l’Evolution (ISEM, UMR 5554 CNRS-IRD), Université Montpellier II, Place E. Bataillon - CC 064 - 34095 Montpellier Cedex 5, France
3 Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
AuthorAffiliation_xml – name: 2 Institut des Sciences de l’Evolution (ISEM, UMR 5554 CNRS-IRD), Université Montpellier II, Place E. Bataillon - CC 064 - 34095 Montpellier Cedex 5, France
– name: 3 Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
– name: 1 Center for Macroecology, Evolution and Climate (CMEC, Department of Biology), Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
Author_xml – sequence: 1
  givenname: Pierre-Henri
  surname: Fabre
  fullname: Fabre, Pierre-Henri
– sequence: 2
  givenname: Lionel
  surname: Hautier
  fullname: Hautier, Lionel
– sequence: 3
  givenname: Dimitar
  surname: Dimitrov
  fullname: Dimitrov, Dimitar
– sequence: 4
  givenname: Emmanuel J
  surname: P Douzery
  fullname: P Douzery, Emmanuel J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22697210$$D View this record in MEDLINE/PubMed
BookMark eNqFk0tr3DAQgE1JaR7tubdi6KU9bKKXJauHwjb0sTRQ6OMsZEn2arElR9KG5t9XzqbbOCQUH2xG33yMZsbHxYHzzhTFSwhOIazpGSQMLhAk9QKiRV0_KY72kYM734fFcYwbACCrEXxWHCJEOUMQHBVfl2XX22GMpvSuTGtTjjIlE1zp2zJ4bVwqtb0yIdrWKpmsd-9KWY7r6953xplkVSnHMXip1s-Lp63so3lx-z4pfn36-PP8y-Li2-fV-fJi0TBCUy6IAaCqCiqOleKkZhhLoA1hmlBkOCONZLSBDadM6pZyjiUHqMJSo6Y1AJ8Uq51Xe7kRY7CDDNfCSytuAj50QoZcWG-EYYwpTFCWcqIYbnQWNS2sFNKa1yS73u9c47YZjFb5vkH2M-n8xNm16PyVwBVGuMZZ8GEnaKx_RDA_UX4Q02DENBgBkajrLHlzW0Xwl1sTkxhsVKbvpTN-GwXEsKKAAgD-jyKGIYSY8oy-vodu_Da4PJpMUcgBJBz9ozqZG2Zd63OZapKKZYUJ4BUHU4WnD1D50WawKi9la3N8lvB2lpCZZH6nTm5jFKsf3-fsq7tD2Dfv75pm4GwHqOBjDKbdIxCI6Ud4oKPVvQxl08365rpt_2jeH87hB1Y
CitedBy_id crossref_primary_10_1002_hipo_23075
crossref_primary_10_1111_joa_13579
crossref_primary_10_3389_feart_2015_00056
crossref_primary_10_1007_s00335_018_9748_5
crossref_primary_10_1371_journal_pone_0096032
crossref_primary_10_1111_eth_13234
crossref_primary_10_1242_dev_113993
crossref_primary_10_3389_fcell_2023_1192789
crossref_primary_10_1186_s12862_021_01813_w
crossref_primary_10_1093_jmammal_gyy179
crossref_primary_10_1007_s10914_018_9444_y
crossref_primary_10_1371_journal_pone_0307380
crossref_primary_10_1111_evo_14086
crossref_primary_10_1113_JP276608
crossref_primary_10_1016_j_cub_2019_04_020
crossref_primary_10_1038_s41598_017_00723_6
crossref_primary_10_1080_08912963_2018_1506778
crossref_primary_10_1111_acel_12628
crossref_primary_10_1111_jeb_12698
crossref_primary_10_1016_j_ympev_2015_10_016
crossref_primary_10_1371_journal_pone_0258693
crossref_primary_10_7717_peerj_3741
crossref_primary_10_1098_rspb_2019_0672
crossref_primary_10_1080_14772019_2020_1796833
crossref_primary_10_1017_S0031182024000556
crossref_primary_10_1093_biolre_ioy197
crossref_primary_10_1093_sysbio_syx047
crossref_primary_10_1093_ve_veae061
crossref_primary_10_1098_rsos_220926
crossref_primary_10_1111_evo_12919
crossref_primary_10_1002_cne_24723
crossref_primary_10_1371_journal_pone_0248198
crossref_primary_10_1016_j_meegid_2019_103934
crossref_primary_10_1007_s10914_017_9425_6
crossref_primary_10_1371_journal_pgen_1008354
crossref_primary_10_1002_ar_25146
crossref_primary_10_1371_journal_pone_0151895
crossref_primary_10_3390_land12030690
crossref_primary_10_1080_14772019_2025_2456620
crossref_primary_10_1016_j_jtherbio_2014_01_006
crossref_primary_10_1016_j_ympev_2018_07_017
crossref_primary_10_1071_RD17431
crossref_primary_10_1016_j_gene_2013_07_059
crossref_primary_10_1111_jeb_12905
crossref_primary_10_1038_srep23087
crossref_primary_10_1016_j_ympev_2021_107120
crossref_primary_10_1093_mspecies_sez001
crossref_primary_10_1093_icb_icx047
crossref_primary_10_1111_acel_12172
crossref_primary_10_1017_pab_2017_28
crossref_primary_10_1084_jem_20211220
crossref_primary_10_1007_s10528_022_10213_8
crossref_primary_10_1111_joa_13596
crossref_primary_10_1002_jmor_21412
crossref_primary_10_1073_pnas_2420726122
crossref_primary_10_1038_s41598_018_29646_6
crossref_primary_10_1002_ar_23751
crossref_primary_10_1093_mspecies_sez007
crossref_primary_10_1038_srep11658
crossref_primary_10_1111_febs_15260
crossref_primary_10_1111_joa_12707
crossref_primary_10_1206_863_1
crossref_primary_10_1111_evo_14305
crossref_primary_10_1002_bies_201500010
crossref_primary_10_1111_brv_12350
crossref_primary_10_1128_JVI_00141_14
crossref_primary_10_7717_peerj_3826
crossref_primary_10_1002_spp2_1454
crossref_primary_10_1002_ece3_521
crossref_primary_10_1007_s12542_015_0267_3
crossref_primary_10_1038_s41598_019_57144_w
crossref_primary_10_1111_jzs_12530
crossref_primary_10_1126_science_abm7993
crossref_primary_10_1186_s12915_024_02053_2
crossref_primary_10_1002_ar_23989
crossref_primary_10_1002_jmor_20678
crossref_primary_10_1186_s12862_019_1480_6
crossref_primary_10_1371_journal_pone_0146179
crossref_primary_10_1128_JVI_00404_19
crossref_primary_10_1016_j_ygeno_2019_09_016
crossref_primary_10_3389_fgene_2022_984513
crossref_primary_10_1016_j_jcz_2023_03_004
crossref_primary_10_1126_science_adp7290
crossref_primary_10_7717_peerj_8847
crossref_primary_10_1086_711398
crossref_primary_10_1080_08912963_2022_2029430
crossref_primary_10_1128_AAC_00048_21
crossref_primary_10_1016_j_coviro_2016_01_015
crossref_primary_10_7717_peerj_556
crossref_primary_10_1086_689398
crossref_primary_10_1111_jeb_12373
crossref_primary_10_1093_jmammal_gyy099
crossref_primary_10_1007_s00360_014_0853_9
crossref_primary_10_1038_srep40233
crossref_primary_10_1007_s10914_013_9242_5
crossref_primary_10_1002_jez_b_22588
crossref_primary_10_1111_evo_13633
crossref_primary_10_1111_bij_12495
crossref_primary_10_1002_wsbm_1436
crossref_primary_10_1111_jeb_12937
crossref_primary_10_21638_spbu03_2023_407
crossref_primary_10_3389_fnins_2019_01280
crossref_primary_10_1111_nph_13570
crossref_primary_10_1111_pala_12378
crossref_primary_10_1111_ecog_03504
crossref_primary_10_3390_genes13020288
crossref_primary_10_1086_706305
crossref_primary_10_1111_jzs_12551
crossref_primary_10_7717_peerj_448
crossref_primary_10_1111_joa_12152
crossref_primary_10_1534_g3_119_400512
crossref_primary_10_1177_0023677218769921
crossref_primary_10_1590_0102_33062021abb0253
crossref_primary_10_1002_ar_23287
crossref_primary_10_1093_evolut_qpae146
crossref_primary_10_1038_s42003_021_01887_8
crossref_primary_10_3389_fevo_2014_00044
crossref_primary_10_1371_journal_pone_0289812
crossref_primary_10_3389_fevo_2021_636039
crossref_primary_10_1111_jbi_13098
crossref_primary_10_1016_j_exer_2024_110055
crossref_primary_10_1016_j_cell_2019_03_043
crossref_primary_10_1093_molbev_msv175
crossref_primary_10_3389_fevo_2020_00230
crossref_primary_10_1371_journal_pone_0050197
crossref_primary_10_1016_j_ympev_2014_05_016
crossref_primary_10_1038_s41597_024_03905_w
crossref_primary_10_1111_2041_210X_13492
crossref_primary_10_1186_1742_9994_10_27
crossref_primary_10_1186_s12915_023_01538_w
crossref_primary_10_3389_fimmu_2022_752186
crossref_primary_10_1016_j_jhevol_2017_01_018
crossref_primary_10_1007_s10914_023_09675_3
crossref_primary_10_1111_bij_12238
crossref_primary_10_1111_cla_12112
crossref_primary_10_1093_molbev_msaf016
crossref_primary_10_1093_zoolinnean_zlz048
crossref_primary_10_1111_joa_12980
crossref_primary_10_1242_dev_202891
crossref_primary_10_1038_srep14444
crossref_primary_10_1093_cz_zoz037
crossref_primary_10_1515_mammalia_2017_0104
crossref_primary_10_1016_j_celrep_2015_03_064
crossref_primary_10_1038_s41598_018_27068_y
crossref_primary_10_1111_jzs_12325
crossref_primary_10_1111_mam_12215
crossref_primary_10_1371_journal_pone_0183070
crossref_primary_10_1016_j_jchemneu_2014_01_002
crossref_primary_10_1098_rsos_190387
crossref_primary_10_1007_s10914_020_09511_y
crossref_primary_10_3390_genes12091450
crossref_primary_10_1111_cla_12343
crossref_primary_10_17798_bitlisfen_1179758
crossref_primary_10_1098_rsos_181317
crossref_primary_10_1206_3894_1
crossref_primary_10_7717_peerj_16693
crossref_primary_10_1002_jmor_20990
crossref_primary_10_1016_j_crpv_2019_05_003
crossref_primary_10_1016_j_cub_2015_09_037
crossref_primary_10_1038_s42003_018_0191_7
crossref_primary_10_1098_rspb_2023_1379
crossref_primary_10_1111_1755_0998_13555
crossref_primary_10_1007_s00435_024_00661_8
crossref_primary_10_1111_mec_15401
crossref_primary_10_1128_JVI_00850_18
crossref_primary_10_1093_icb_icx092
crossref_primary_10_7717_peerj_663
crossref_primary_10_1016_j_cbi_2023_110679
crossref_primary_10_1098_rstb_2016_0443
crossref_primary_10_1007_s12549_016_0255_y
crossref_primary_10_1093_jmammal_gyz096
crossref_primary_10_1038_s41467_024_50901_0
crossref_primary_10_1007_s10914_023_09699_9
crossref_primary_10_1007_s11692_016_9390_7
crossref_primary_10_1016_j_cub_2020_08_035
crossref_primary_10_1007_s00440_021_01095_9
crossref_primary_10_3897_CompCytogen_v13i2_34224
crossref_primary_10_1038_s41598_023_50861_3
crossref_primary_10_1002_spp2_1068
crossref_primary_10_5252_geodiversitas2019v41a4
crossref_primary_10_1038_s43705_021_00053_9
crossref_primary_10_1093_mspecies_sex002
crossref_primary_10_1111_jbi_13619
crossref_primary_10_1111_joa_13296
crossref_primary_10_1111_jzs_12343
crossref_primary_10_1186_1471_2148_13_94
crossref_primary_10_1016_j_yebeh_2015_12_020
crossref_primary_10_3389_fbioe_2022_806314
crossref_primary_10_1007_s42991_021_00116_3
crossref_primary_10_7554_eLife_39270
crossref_primary_10_1111_ede_12132
crossref_primary_10_1093_zoolinnean_zlz071
crossref_primary_10_1159_000381840
crossref_primary_10_1111_evo_13155
crossref_primary_10_1111_jeb_12975
crossref_primary_10_1002_ece3_1407
crossref_primary_10_1111_jeb_12857
crossref_primary_10_1111_bij_12695
crossref_primary_10_1038_s42003_022_04108_y
crossref_primary_10_1016_j_ympev_2024_108233
crossref_primary_10_1093_cz_zoab070
crossref_primary_10_1093_molbev_msae071
crossref_primary_10_1007_s10914_020_09512_x
crossref_primary_10_1177_17470218211049331
crossref_primary_10_1186_s12862_015_0455_5
crossref_primary_10_1111_let_12292
crossref_primary_10_1095_biolreprod_113_116871
crossref_primary_10_1007_s10914_015_9300_2
crossref_primary_10_1093_gbe_evz280
crossref_primary_10_1002_jmor_20495
crossref_primary_10_1093_jmammal_gyx016
crossref_primary_10_1038_s42003_023_04415_y
crossref_primary_10_1080_14772019_2018_1457727
crossref_primary_10_1126_science_aap7714
crossref_primary_10_1111_evo_14493
crossref_primary_10_1186_s12862_014_0256_2
crossref_primary_10_1111_jbi_13058
crossref_primary_10_1111_evo_12079
crossref_primary_10_1111_evo_13168
crossref_primary_10_1093_biolinnean_blz042
crossref_primary_10_1007_s10914_023_09656_6
crossref_primary_10_1128_JVI_01738_18
crossref_primary_10_1038_ncomms6172
crossref_primary_10_1016_j_ympev_2013_07_022
crossref_primary_10_1093_cz_zoac055
crossref_primary_10_1002_ece3_7765
crossref_primary_10_1186_s12864_023_09560_6
crossref_primary_10_1111_zsc_12272
crossref_primary_10_1080_02724634_2017_1385476
crossref_primary_10_1016_j_gloplacha_2016_12_014
crossref_primary_10_1111_jeb_12279
crossref_primary_10_1186_s12862_016_0778_x
crossref_primary_10_1371_journal_pone_0079080
crossref_primary_10_1002_ps_6905
crossref_primary_10_1111_evo_12642
crossref_primary_10_1093_bioinformatics_bty903
crossref_primary_10_1038_srep43562
crossref_primary_10_1093_jmammal_gyab133
crossref_primary_10_1093_zoolinnean_zlac005
crossref_primary_10_3897_zoologia_35_e24572
crossref_primary_10_1002_ece3_5592
crossref_primary_10_1038_s41598_019_47469_x
crossref_primary_10_2992_007_086_0202
crossref_primary_10_1038_s41598_018_35547_5
crossref_primary_10_1093_gigascience_giz159
crossref_primary_10_3390_v16121885
crossref_primary_10_7717_peerj_12451
crossref_primary_10_1007_s10914_017_9422_9
crossref_primary_10_1111_jne_13237
crossref_primary_10_1111_mam_12372
crossref_primary_10_1002_ece3_3613
crossref_primary_10_1002_ar_25521
crossref_primary_10_1111_jeb_12962
crossref_primary_10_1111_zoj_12288
crossref_primary_10_1016_j_isci_2022_104230
crossref_primary_10_1098_rsbl_2018_0366
crossref_primary_10_1007_s10914_016_9363_8
crossref_primary_10_1111_syen_12489
crossref_primary_10_1093_molbev_msu144
crossref_primary_10_3389_feart_2022_1004509
crossref_primary_10_1111_brv_12243
crossref_primary_10_1371_journal_pone_0108148
crossref_primary_10_1098_rsos_160107
crossref_primary_10_1086_706810
crossref_primary_10_1111_zoj_12201
crossref_primary_10_1038_hdy_2014_12
crossref_primary_10_1016_j_virusres_2017_03_011
crossref_primary_10_1111_jzs_12143
crossref_primary_10_1186_s13071_014_0457_y
crossref_primary_10_1007_s13364_020_00491_1
crossref_primary_10_1644_13_MAMM_R_068_1
crossref_primary_10_25288_tjb_370630
crossref_primary_10_24072_pcjournal_22
crossref_primary_10_1016_j_cub_2022_08_021
crossref_primary_10_1007_s10531_024_02952_4
crossref_primary_10_1111_2041_210X_14166
crossref_primary_10_1016_j_ympev_2015_01_013
crossref_primary_10_1093_biolinnean_blz134
crossref_primary_10_3390_genes10020109
crossref_primary_10_1073_pnas_2310752120
crossref_primary_10_1111_bij_12789
crossref_primary_10_1093_bioinformatics_btu315
crossref_primary_10_1038_s41396_018_0211_0
crossref_primary_10_7717_peerj_160
crossref_primary_10_1007_s10914_018_9430_4
crossref_primary_10_1093_jme_tjx085
crossref_primary_10_1002_jmor_21540
crossref_primary_10_1007_s10211_022_00389_y
crossref_primary_10_1016_j_jhevol_2017_07_009
crossref_primary_10_1016_j_semcdb_2017_12_006
crossref_primary_10_1093_sysbio_syab023
crossref_primary_10_1111_jbi_12718
crossref_primary_10_7717_peerj_14693
crossref_primary_10_1007_s10914_017_9423_8
crossref_primary_10_1111_jzs_12152
crossref_primary_10_1080_15627020_2019_1628661
crossref_primary_10_1186_1471_2148_14_106
crossref_primary_10_1007_s10914_015_9306_9
crossref_primary_10_1371_journal_pone_0276475
crossref_primary_10_1095_biolreprod_114_127621
crossref_primary_10_7717_peerj_2320
crossref_primary_10_1093_molbev_msab271
crossref_primary_10_3390_d17010061
crossref_primary_10_1007_s11692_022_09596_8
crossref_primary_10_1073_pnas_1704009114
crossref_primary_10_1371_journal_pbio_1001775
crossref_primary_10_1093_sysbio_syt050
crossref_primary_10_1007_s10914_024_09739_y
crossref_primary_10_1093_icb_icw034
crossref_primary_10_1093_sysbio_syy064
crossref_primary_10_1007_s10709_021_00113_x
crossref_primary_10_1098_rsbl_2019_0155
crossref_primary_10_1111_joa_13430
crossref_primary_10_1111_geb_13050
crossref_primary_10_1371_journal_pone_0100687
crossref_primary_10_1007_s10914_021_09594_1
crossref_primary_10_3389_fimmu_2020_605270
crossref_primary_10_1111_ecog_04102
crossref_primary_10_1093_molbev_msy019
crossref_primary_10_1159_000538090
crossref_primary_10_1186_s12985_017_0766_9
crossref_primary_10_1111_zsc_12117
crossref_primary_10_1002_jmor_20929
crossref_primary_10_1093_biolinnean_bly068
crossref_primary_10_1093_ve_vey026
crossref_primary_10_1007_s00203_023_03732_4
crossref_primary_10_1016_j_ympev_2023_107992
crossref_primary_10_1111_jzs_12292
crossref_primary_10_1016_j_beproc_2020_104102
crossref_primary_10_3389_fgene_2023_1041103
crossref_primary_10_1007_s11692_018_9453_z
crossref_primary_10_1038_srep33578
crossref_primary_10_3390_d15111145
crossref_primary_10_7717_peerj_14319
crossref_primary_10_1093_sysbio_syz044
crossref_primary_10_1111_mam_12170
crossref_primary_10_1002_jmor_20236
crossref_primary_10_1007_s10682_020_10034_4
crossref_primary_10_1111_ecog_03001
crossref_primary_10_1016_j_mambio_2015_12_001
crossref_primary_10_1007_s11692_018_9449_8
crossref_primary_10_1186_s12862_015_0440_z
crossref_primary_10_1016_j_ympev_2022_107576
crossref_primary_10_1111_evo_13702
crossref_primary_10_1016_j_zool_2014_12_006
crossref_primary_10_1007_s10914_021_09561_w
Cites_doi 10.1093/oxfordjournals.molbev.a003860
10.1186/1471-2148-9-259
10.2307/2409668
10.1080/10635150500481390
10.1073/pnas.0701289104
10.1016/j.tree.2004.03.015
10.1016/S0169-5347(97)01242-1
10.1093/molbev/msq019
10.1016/j.tree.2004.05.006
10.1016/j.ympev.2009.10.033
10.1186/1471-2148-8-199
10.1186/1471-2148-8-321
10.1080/10635150290069913
10.1007/BF02101694
10.1016/j.tree.2005.12.003
10.1126/science.1156963
10.1038/nature05634
10.2307/2408678
10.1371/journal.pone.0014622
10.1126/science.1079705
10.1126/science.1147555
10.1644/07-MAMM-A-195.1
10.1038/365434a0
10.1093/nar/gkh340
10.1098/rsbl.2007.0377
10.1186/1471-2148-7-214
10.1016/j.ympev.2004.11.015
10.1016/j.tree.2006.10.002
10.1073/pnas.92.23.10718
10.1016/j.ympev.2003.09.015
10.1098/rspb.2003.2458
10.1017/S1477200004001549
10.1007/BF01734359
10.1111/j.1469-185X.1993.tb00731.x
10.1093/oxfordjournals.molbev.a025845
10.1080/10635150290102546
10.1016/j.ympev.2008.05.046
10.1016/S1055-7903(03)00132-5
10.1080/10635150390218330
10.1186/1471-2148-10-184
10.1016/j.ympev.2006.03.016
10.1644/10-MAMM-A-121.1
10.1016/j.ympev.2005.06.018
10.1006/mpev.2001.1056
10.1093/sysbio/syp060
10.1016/j.ympev.2009.08.004
10.1080/10635150500431254
10.1080/10635150490468701
10.1666/0094-8373(2000)026<0707:NMFQMP>2.0.CO;2
10.1093/oxfordjournals.molbev.a004164
10.1016/S1055-7903(02)00368-8
10.1080/106351599259988
10.1016/S0169-5347(01)02161-9
10.1016/j.ympev.2005.05.002
10.1098/rstb.2011.0025
10.2307/2406300
10.1080/10635150802044011
10.1186/1471-2148-7-16
10.1093/oxfordjournals.molbev.a003743
10.1111/j.1365-2699.2009.02190.x
10.1111/j.1096-3642.2004.00150.x
10.1644/08-MAMM-A-180R1.1
10.1093/bioinformatics/14.9.817
10.1016/S1055-7903(03)00204-5
10.1644/08-MAMM-A-318.1
10.1093/oxfordjournals.molbev.a026201
10.1016/S0022-5193(05)80104-3
10.1016/0169-5347(96)10041-0
10.1126/science.1056346
10.2307/2411985
10.1093/oxfordjournals.molbev.a026140
10.1016/S1055-7903(02)00304-4
10.1080/10635150290102311
10.1016/j.ympev.2005.08.011
10.1098/rspb.2000.1278
10.1006/mpev.1995.1032
10.1016/j.ympev.2005.04.016
10.1098/rspb.1998.0271
10.1080/10635150490423971
10.1016/j.ympev.2008.01.001
10.1080/10635150390235403
10.1093/sysbio/syq092
10.1023/A:1020668004578
10.1146/annurev.es.24.110193.002343
10.1093/oxfordjournals.molbev.a026334
10.1073/pnas.1113242108
10.1006/mpev.1994.1023
10.1007/BF01041591
10.1186/1471-2148-6-80
10.1016/j.ympev.2003.07.002
10.1093/bioinformatics/bti175
10.1073/pnas.1117133109
10.1093/bioinformatics/17.12.1246
10.2307/2937185
10.1016/j.ympev.2012.01.020
10.1073/pnas.1018956108
10.1186/1471-2148-9-71
10.1126/science.1124187
10.1086/282063
10.1126/science.1211028
10.1098/rstb.1994.0068
10.2307/2410033
10.1007/s10914-007-9070-6
10.1073/pnas.0807230106
10.1186/1471-2148-6-93
10.1111/j.1096-3642.2008.00399.x
10.2307/2992186
10.1073/pnas.032662799
10.1111/j.1463-6409.2007.00296.x
10.1098/rspb.1997.0158
10.1371/journal.pgen.1001342
10.1093/bioinformatics/btl446
ContentType Journal Article
Copyright COPYRIGHT 2012 BioMed Central Ltd.
2012 Fabre et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright ©2012 Fabre et al.; licensee BioMed Central Ltd. 2012 Fabre et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2012 BioMed Central Ltd.
– notice: 2012 Fabre et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright ©2012 Fabre et al.; licensee BioMed Central Ltd. 2012 Fabre et al.; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QP
7QR
7SN
7SS
7TK
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PATMY
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1186/1471-2148-12-88
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Genetics Abstracts


MEDLINE
Publicly Available Content Database


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Zoology
EISSN 1471-2148
EndPage 88
ExternalDocumentID oai_doaj_org_article_e777c34297494c73bd025bf15c2dd984
PMC3532383
oai_biomedcentral_com_1471_2148_12_88
2852507661
A534095908
22697210
10_1186_1471_2148_12_88
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Denmark
France
United Kingdom
GeographicLocations_xml – name: United Kingdom
– name: Denmark
– name: France
GroupedDBID ---
0R~
23N
2VQ
2WC
2XV
4.4
53G
5VS
6J9
7X7
7XC
88E
8CJ
8FE
8FH
8FI
8FJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BPHCQ
BVXVI
C1A
CCPQU
CITATION
CS3
D1J
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
IPNFZ
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OVT
P2P
PATMY
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PYCSY
RBZ
RIG
RNS
ROL
RPM
SBL
SV3
TR2
TUS
U2A
UKHRP
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
3V.
7QP
7QR
7SN
7SS
7TK
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
-A0
ADINQ
AFGXO
BMC
C24
C6C
OK1
RSV
SOJ
5PM
PUEGO
ID FETCH-LOGICAL-b746t-21700c551c93cc948733a0de47d462e974ba76b1b967adf6993a90253ad2bfe03
IEDL.DBID RBZ
ISSN 1471-2148
IngestDate Wed Aug 27 01:25:37 EDT 2025
Thu Aug 21 13:41:41 EDT 2025
Tue Apr 16 22:43:59 EDT 2024
Tue Aug 05 11:28:50 EDT 2025
Tue Aug 05 10:45:55 EDT 2025
Fri Jul 25 10:27:00 EDT 2025
Tue Jun 17 22:04:49 EDT 2025
Mon Jul 21 10:57:36 EDT 2025
Fri Jun 27 05:57:26 EDT 2025
Thu Apr 03 06:57:49 EDT 2025
Tue Jul 01 04:27:31 EDT 2025
Thu Apr 24 23:10:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b746t-21700c551c93cc948733a0de47d462e974ba76b1b967adf6993a90253ad2bfe03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink http://dx.doi.org/10.1186/1471-2148-12-88
PMID 22697210
PQID 1261901492
PQPubID 44659
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_e777c34297494c73bd025bf15c2dd984
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3532383
biomedcentral_primary_oai_biomedcentral_com_1471_2148_12_88
proquest_miscellaneous_1315606000
proquest_miscellaneous_1273111369
proquest_journals_1261901492
gale_infotracmisc_A534095908
gale_infotracacademiconefile_A534095908
gale_incontextgauss_ISR_A534095908
pubmed_primary_22697210
crossref_primary_10_1186_1471_2148_12_88
crossref_citationtrail_10_1186_1471_2148_12_88
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-06-14
PublicationDateYYYYMMDD 2012-06-14
PublicationDate_xml – month: 06
  year: 2012
  text: 2012-06-14
  day: 14
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC evolutionary biology
PublicationTitleAlternate BMC Evol Biol
PublicationYear 2012
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References 10.1186/1471-2148-12-88-B42
10.1186/1471-2148-12-88-B41
10.1186/1471-2148-12-88-B40
10.1186/1471-2148-12-88-B84
10.1186/1471-2148-12-88-B131
10.1186/1471-2148-12-88-B83
10.1186/1471-2148-12-88-B46
10.1186/1471-2148-12-88-B45
10.1186/1471-2148-12-88-B89
10.1186/1471-2148-12-88-B44
10.1186/1471-2148-12-88-B88
10.1186/1471-2148-12-88-B135
10.1186/1471-2148-12-88-B43
10.1186/1471-2148-12-88-B136
10.1186/1471-2148-12-88-B47
10.1186/1471-2148-12-88-B137
10.1186/1471-2148-12-88-B138
10.1186/1471-2148-12-88-B31
10.1186/1471-2148-12-88-B75
10.1186/1471-2148-12-88-B30
10.1186/1471-2148-12-88-B74
10.1186/1471-2148-12-88-B141
10.1186/1471-2148-12-88-B73
10.1186/1471-2148-12-88-B142
10.1186/1471-2148-12-88-B143
10.1186/1471-2148-12-88-B79
10.1186/1471-2148-12-88-B144
10.1186/1471-2148-12-88-B78
10.1186/1471-2148-12-88-B101
10.1186/1471-2148-12-88-B146
10.1186/1471-2148-12-88-B147
10.1186/1471-2148-12-88-B39
10.1186/1471-2148-12-88-B38
10.1186/1471-2148-12-88-B36
-
10.1186/1471-2148-12-88-B148
10.1186/1471-2148-12-88-B108
10.1186/1471-2148-12-88-B109
10.1186/1471-2148-12-88-B80
10.1186/1471-2148-12-88-B20
10.1186/1471-2148-12-88-B64
10.1186/1471-2148-12-88-B63
10.1186/1471-2148-12-88-B62
10.1186/1471-2148-12-88-B61
10.1186/1471-2148-12-88-B110
10.1186/1471-2148-12-88-B24
10.1186/1471-2148-12-88-B68
10.1186/1471-2148-12-88-B155
10.1186/1471-2148-12-88-B23
10.1186/1471-2148-12-88-B67
10.1186/1471-2148-12-88-B156
10.1186/1471-2148-12-88-B22
10.1186/1471-2148-12-88-B66
10.1186/1471-2148-12-88-B21
10.1186/1471-2148-12-88-B65
10.1186/1471-2148-12-88-B28
10.1186/1471-2148-12-88-B27
10.1186/1471-2148-12-88-B26
10.1186/1471-2148-12-88-B25
10.1186/1471-2148-12-88-B69
10.1186/1471-2148-12-88-B29
10.1186/1471-2148-12-88-B150
10.1186/1471-2148-12-88-B117
10.1186/1471-2148-12-88-B118
10.1186/1471-2148-12-88-B71
10.1186/1471-2148-12-88-B53
10.1186/1471-2148-12-88-B97
10.1186/1471-2148-12-88-B162
10.1186/1471-2148-12-88-B52
10.1186/1471-2148-12-88-B96
10.1186/1471-2148-12-88-B120
10.1186/1471-2148-12-88-B50
10.1186/1471-2148-12-88-B6
10.1186/1471-2148-12-88-B57
10.1186/1471-2148-12-88-B5
10.1186/1471-2148-12-88-B56
10.1186/1471-2148-12-88-B55
10.1186/1471-2148-12-88-B54
10.1186/1471-2148-12-88-B16
10.1186/1471-2148-12-88-B15
10.1186/1471-2148-12-88-B59
10.1186/1471-2148-12-88-B58
10.1186/1471-2148-12-88-B4
10.1186/1471-2148-12-88-B60
References_xml – ident: 10.1186/1471-2148-12-88-B25
  doi: 10.1093/oxfordjournals.molbev.a003860
– ident: 10.1186/1471-2148-12-88-B65
  doi: 10.1186/1471-2148-9-259
– ident: -
  doi: 10.2307/2409668
– ident: 10.1186/1471-2148-12-88-B110
  doi: 10.1080/10635150500481390
– ident: 10.1186/1471-2148-12-88-B16
  doi: 10.1073/pnas.0701289104
– ident: 10.1186/1471-2148-12-88-B56
  doi: 10.1016/j.tree.2004.03.015
– ident: 10.1186/1471-2148-12-88-B55
  doi: 10.1016/S0169-5347(97)01242-1
– ident: 10.1186/1471-2148-12-88-B31
  doi: 10.1093/molbev/msq019
– ident: 10.1186/1471-2148-12-88-B142
  doi: 10.1016/j.tree.2004.05.006
– ident: 10.1186/1471-2148-12-88-B67
  doi: 10.1016/j.ympev.2009.10.033
– ident: 10.1186/1471-2148-12-88-B46
  doi: 10.1186/1471-2148-8-199
– ident: 10.1186/1471-2148-12-88-B29
  doi: 10.1186/1471-2148-8-321
– ident: 10.1186/1471-2148-12-88-B75
  doi: 10.1080/10635150290069913
– ident: 10.1186/1471-2148-12-88-B79
  doi: 10.1007/BF02101694
– ident: 10.1186/1471-2148-12-88-B117
  doi: 10.1016/j.tree.2005.12.003
– ident: 10.1186/1471-2148-12-88-B4
  doi: 10.1126/science.1156963
– ident: 10.1186/1471-2148-12-88-B61
  doi: 10.1038/nature05634
– ident: -
  doi: 10.2307/2408678
– ident: 10.1186/1471-2148-12-88-B52
  doi: 10.1371/journal.pone.0014622
– ident: 10.1186/1471-2148-12-88-B36
  doi: 10.1126/science.1079705
– ident: 10.1186/1471-2148-12-88-B143
  doi: 10.1126/science.1147555
– ident: -
  doi: 10.1644/07-MAMM-A-195.1
– ident: -
  doi: 10.1038/365434a0
– ident: 10.1186/1471-2148-12-88-B144
  doi: 10.1093/nar/gkh340
– ident: 10.1186/1471-2148-12-88-B156
  doi: 10.1098/rsbl.2007.0377
– ident: 10.1186/1471-2148-12-88-B120
  doi: 10.1186/1471-2148-7-214
– ident: 10.1186/1471-2148-12-88-B44
  doi: 10.1016/j.ympev.2004.11.015
– ident: 10.1186/1471-2148-12-88-B155
  doi: 10.1016/j.tree.2006.10.002
– ident: 10.1186/1471-2148-12-88-B108
  doi: 10.1073/pnas.92.23.10718
– ident: 10.1186/1471-2148-12-88-B136
  doi: 10.1016/j.ympev.2003.09.015
– ident: -
  doi: 10.1098/rspb.2003.2458
– ident: -
  doi: 10.1017/S1477200004001549
– ident: 10.1186/1471-2148-12-88-B118
  doi: 10.1007/BF01734359
– ident: -
  doi: 10.1111/j.1469-185X.1993.tb00731.x
– ident: 10.1186/1471-2148-12-88-B89
  doi: 10.1093/oxfordjournals.molbev.a025845
– ident: 10.1186/1471-2148-12-88-B88
  doi: 10.1080/10635150290102546
– ident: 10.1186/1471-2148-12-88-B68
  doi: 10.1016/j.ympev.2008.05.046
– ident: 10.1186/1471-2148-12-88-B38
  doi: 10.1016/S1055-7903(03)00132-5
– ident: 10.1186/1471-2148-12-88-B84
  doi: 10.1080/10635150390218330
– ident: 10.1186/1471-2148-12-88-B50
  doi: 10.1186/1471-2148-10-184
– ident: 10.1186/1471-2148-12-88-B138
  doi: 10.1016/j.ympev.2006.03.016
– ident: -
  doi: 10.1644/10-MAMM-A-121.1
– ident: 10.1186/1471-2148-12-88-B101
  doi: 10.1016/j.ympev.2005.06.018
– ident: 10.1186/1471-2148-12-88-B22
  doi: 10.1006/mpev.2001.1056
– ident: 10.1186/1471-2148-12-88-B69
  doi: 10.1093/sysbio/syp060
– ident: 10.1186/1471-2148-12-88-B64
  doi: 10.1016/j.ympev.2009.08.004
– ident: 10.1186/1471-2148-12-88-B78
  doi: 10.1080/10635150500431254
– ident: 10.1186/1471-2148-12-88-B41
  doi: 10.1080/10635150490468701
– ident: -
  doi: 10.1666/0094-8373(2000)026<0707:NMFQMP>2.0.CO;2
– ident: 10.1186/1471-2148-12-88-B26
  doi: 10.1093/oxfordjournals.molbev.a004164
– ident: 10.1186/1471-2148-12-88-B39
  doi: 10.1016/S1055-7903(02)00368-8
– ident: 10.1186/1471-2148-12-88-B135
  doi: 10.1080/106351599259988
– ident: 10.1186/1471-2148-12-88-B5
  doi: 10.1016/S0169-5347(01)02161-9
– ident: 10.1186/1471-2148-12-88-B71
  doi: 10.1016/j.ympev.2005.05.002
– ident: 10.1186/1471-2148-12-88-B162
  doi: 10.1098/rstb.2011.0025
– ident: -
  doi: 10.2307/2406300
– ident: 10.1186/1471-2148-12-88-B141
  doi: 10.1080/10635150802044011
– ident: 10.1186/1471-2148-12-88-B21
  doi: 10.1186/1471-2148-7-16
– ident: 10.1186/1471-2148-12-88-B74
  doi: 10.1093/oxfordjournals.molbev.a003743
– ident: -
  doi: 10.1111/j.1365-2699.2009.02190.x
– ident: -
  doi: 10.1111/j.1096-3642.2004.00150.x
– ident: -
  doi: 10.1644/08-MAMM-A-180R1.1
– ident: 10.1186/1471-2148-12-88-B147
  doi: 10.1093/bioinformatics/14.9.817
– ident: 10.1186/1471-2148-12-88-B42
  doi: 10.1016/S1055-7903(03)00204-5
– ident: -
  doi: 10.1644/08-MAMM-A-318.1
– ident: -
  doi: 10.1093/oxfordjournals.molbev.a026201
– ident: 10.1186/1471-2148-12-88-B80
  doi: 10.1016/S0022-5193(05)80104-3
– ident: 10.1186/1471-2148-12-88-B83
  doi: 10.1016/0169-5347(96)10041-0
– ident: 10.1186/1471-2148-12-88-B63
  doi: 10.1126/science.1056346
– ident: -
  doi: 10.2307/2411985
– ident: 10.1186/1471-2148-12-88-B24
  doi: 10.1093/oxfordjournals.molbev.a026140
– ident: 10.1186/1471-2148-12-88-B27
  doi: 10.1016/S1055-7903(02)00304-4
– ident: 10.1186/1471-2148-12-88-B57
  doi: 10.1080/10635150290102311
– ident: 10.1186/1471-2148-12-88-B137
  doi: 10.1016/j.ympev.2005.08.011
– ident: -
  doi: 10.1098/rspb.2000.1278
– ident: 10.1186/1471-2148-12-88-B20
  doi: 10.1006/mpev.1995.1032
– ident: 10.1186/1471-2148-12-88-B43
  doi: 10.1016/j.ympev.2005.04.016
– ident: -
  doi: 10.1098/rspb.1998.0271
– ident: 10.1186/1471-2148-12-88-B58
  doi: 10.1080/10635150490423971
– ident: 10.1186/1471-2148-12-88-B47
  doi: 10.1016/j.ympev.2008.01.001
– ident: 10.1186/1471-2148-12-88-B28
  doi: 10.1080/10635150390235403
– ident: 10.1186/1471-2148-12-88-B53
  doi: 10.1093/sysbio/syq092
– ident: -
  doi: 10.1023/A:1020668004578
– ident: -
  doi: 10.1146/annurev.es.24.110193.002343
– ident: 10.1186/1471-2148-12-88-B146
  doi: 10.1093/oxfordjournals.molbev.a026334
– ident: 10.1186/1471-2148-12-88-B131
  doi: 10.1073/pnas.1113242108
– ident: 10.1186/1471-2148-12-88-B23
  doi: 10.1006/mpev.1994.1023
– ident: -
  doi: 10.1007/BF01041591
– ident: 10.1186/1471-2148-12-88-B45
  doi: 10.1186/1471-2148-6-80
– ident: 10.1186/1471-2148-12-88-B40
  doi: 10.1016/j.ympev.2003.07.002
– ident: 10.1186/1471-2148-12-88-B73
  doi: 10.1093/bioinformatics/bti175
– ident: 10.1186/1471-2148-12-88-B109
  doi: 10.1073/pnas.1117133109
– ident: 10.1186/1471-2148-12-88-B150
  doi: 10.1093/bioinformatics/17.12.1246
– ident: -
  doi: 10.2307/2937185
– ident: 10.1186/1471-2148-12-88-B54
  doi: 10.1016/j.ympev.2012.01.020
– ident: 10.1186/1471-2148-12-88-B97
  doi: 10.1073/pnas.1018956108
– ident: 10.1186/1471-2148-12-88-B30
  doi: 10.1186/1471-2148-9-71
– ident: 10.1186/1471-2148-12-88-B15
  doi: 10.1126/science.1124187
– ident: -
  doi: 10.1086/282063
– ident: 10.1186/1471-2148-12-88-B62
  doi: 10.1126/science.1211028
– ident: 10.1186/1471-2148-12-88-B6
  doi: 10.1098/rstb.1994.0068
– ident: -
  doi: 10.2307/2410033
– ident: -
  doi: 10.1007/s10914-007-9070-6
– ident: 10.1186/1471-2148-12-88-B96
  doi: 10.1073/pnas.0807230106
– ident: 10.1186/1471-2148-12-88-B60
  doi: 10.1186/1471-2148-6-93
– ident: -
  doi: 10.1111/j.1096-3642.2008.00399.x
– ident: -
  doi: 10.2307/2992186
– ident: 10.1186/1471-2148-12-88-B59
  doi: 10.1073/pnas.032662799
– ident: -
  doi: 10.1111/j.1463-6409.2007.00296.x
– ident: -
  doi: 10.1098/rspb.1997.0158
– ident: 10.1186/1471-2148-12-88-B66
  doi: 10.1371/journal.pgen.1001342
– ident: 10.1186/1471-2148-12-88-B148
  doi: 10.1093/bioinformatics/btl446
SSID ssj0017821
Score 2.5242705
Snippet Development of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have revolutionized the field of...
Background Development of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have revolutionized the field...
Doc number: 88 Abstract Background: Development of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have...
Background: Development of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have revolutionized the field...
BACKGROUND: Development of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have revolutionized the field...
Abstract Background Development of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have revolutionized...
SourceID doaj
pubmedcentral
biomedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 88
SubjectTerms Adaptive radiation
Analysis
Animals
Caviomorpha
Cell Nucleus - genetics
Cricetidae
Diversification
DNA, Mitochondrial - genetics
Endangered & extinct species
Estimates
Evolution
Evolution, Molecular
Evolutionary biology
Fossils
Genetic Speciation
Genetic Variation
Genetics
Guinea Pigs
Mammalia
Mice
Muridae
Myomorpha
Paleogene
Phylogenetics
Phylogeny
Physiological aspects
Radiation
Rodentia
Rodentia - classification
Rodentia - genetics
Rodents
Speciation
Species Specificity
Studies
Topology
Trees
Zoology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBggxCgkto4kccw2lBVAUEB6BSb5afpdKSrNjdA_-emTxWa1XAhWs8TuLJeOazM_6GkGdSulh73LXxrShFkm3pmE9l7a2uZBCaDWTVnz43J6fiw5k82yv1hTlhIz3wqLijqJTyHLymElp4xV2AKO1SLT0LQbcDEyjEvHkxNf0_gLg3LLXA9ZYMEP9E6lO3zdHuGiYlYMGV7KD7MotPA43_ZWe9F63yTMq90HR8g1yfMCVdjGO5Sa7E7ha5OlaZ_HWbfFzQ8-XFj9U60r6jAPjoaiDV7GifKPhPuCkNY3pGmnbwXlFLQf_QH1wh3JXO1ON3yOnxu29vT8qphkLplGg2MFBVVR5gkdfcew3LE85tFaJQQTQsgladVY2rnW6UDakBuGLxzyO3gbkUK36XHHR9F-8Typ10KkWtZahFsqlNlinJbFtZq6NOBXmdadKsRr4MgwzWeQtMJoPfweB3MDUzbVuQl7PejZ_oybFKxtIMy5S2udzhxa7D_KQ_ir7BD5m90HABDM1Mhmb-ZWgFeYpmYJA0o8OsnHO7Xa_N-69fzEJygfupFTzp-SSUenh7b6dDDqBB5NnKJA8zSZjVPm-erc1MXmUNg2kQv8EEKsiTXTP2xEy5LvZblFG8xkI9-i8yHM_PA9StCnJvNOCdbgCOI6ETtKjMtDPl5S3dxfeBl5xLDgCQP_gf2n5IrgE0ZZiUV4tDcrD5uY2PAP5t3ONhpv8GXXVTZg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4t2lBRmEBJfQ-JE4hgNaEFUBwQGotOJi2Y69VFqSbXf3wL9nJutdaip6i-Jx4njs8efJ-BtCnlWVC8yj18Y3spCxagrHfSyYt7qsWqn5QFb9-Ut9dCw_TqpJcrgtUljlxiYOhrrtPfrIDxhCfcTz_M38tMCsUfh3NaXQuEquIXUZhnSpyXbDxWD1Y4nOhzX1AQNDXHD0oDGwAs0_R9xn2co0EPhfNNPn1qk8hvLconR4i9xMaJKO1-q_Ta6E7g65vs4v-RuufvTD1V3yaUyns5Nf80WgfUcB9NH5QKzZ0T5SsKHweNquQzRi8uK9opaCDqA-mEN4Pt3Qj98jx4fvv787KlIehcIpWS_hk1VZeoBGXgvvNWxRhLBlG6RqZc0D7CicVbVjTtfKtrEGyGLx76OwLXcxlOI-2en6LuwSKlzlVAxaVy2T0cYmWq4qbpvSWh10HJHXWZ-a-ZozwyCLdV4CyjWoEYMaMYybphmRlxsNGJ8oyjFTxswMW5WmvljhxbbC5k3_FX2LKs0aNNzoz6YmzVITlFJewBKtpJZeCddCN7jIKs_bVjdyRJ7igDBInNFhZM7UrhYL8-HbVzOuhESfaglvep6EYg-t9zYddIAeRK6tTHI_k4SZ7fPizbgzybIszN95MCJPtsVYE6PlutCvUEYJhsl69CUyAs_QA9wtR-TBeihv-wYgOZI6QYnKBnnWeXlJd_Jz4CYXlQAQKB5e3vQ9cgOAJ8eQOyb3yc7ybBUeAbhbusfDDP4DTaxMmg
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDI9gCIkXxPfKBgoICV462iZpGhBCB2IaoPEAnLS3KEmTY9LR3u5DYv89dq-9LWwgXmsnTR07dlLnZ0KeCWF97vDUxlU85UFUqS1cSHNnVCZqrooOrPrwS3kw5p-OxNFZOaBegItLt3ZYT2o8n-79Ojl9Cwb_pjP4qnyZwwKbFngyloN1V1fJNXBLEq30kJ_9UgBX2O2-BuYe5-eSDv64-z6NXFaH7H9x_T7nwOLkynPeav8WudmHmXS01ovb5Ipv7pDr68KTp3fJ5xGdTI9_zhaetg2FGJDOOpzNhraBwpIKndJ6nbER-kO9V9RQmBJoD6sj9EoHNPJ7ZLz_4fv7g7Qvq5BaycslfKjMMgeRklPMOQU7FsZMVnsua14WHjYY1sjS5laV0tShhAjG4M9IZurCBp-x-2SraRu_TSizwsrglRJ1zoMJVTCFFIWpMmOUVyEhryNJ6tkaQkMjqHVMAfvSOA8a50Hnha6qhOwNcteuRyzHwhlT3e1cqvJigxebBsOb_sr6DicyGlD3oJ1PdG-02kspHQOPLbniTjJbgxhsyIUr6lpVPCFPUQ004mg0mKgzMavFQn_89lWPBON4xJrBm573TKGF0TvT33sACSL0VsS5G3GCobuYPGibHuwEPqbEkA5sKiFPNmRsiclzjW9XyCNZjrV71D94GF6ph-g3S8iDtQJvZAMROmI8AUVGqh0JL6Y0xz86qHImGMSE7OF_jG2H3IBgtMA0vJzvkq3lfOUfQcC3tI87Q_4NUQhPyQ
  priority: 102
  providerName: Scholars Portal
Title A glimpse on the pattern of rodent diversification: a phylogenetic approach
URI https://www.ncbi.nlm.nih.gov/pubmed/22697210
https://www.proquest.com/docview/1261901492
https://www.proquest.com/docview/1273111369
https://www.proquest.com/docview/1315606000
http://dx.doi.org/10.1186/1471-2148-12-88
https://pubmed.ncbi.nlm.nih.gov/PMC3532383
https://doaj.org/article/e777c34297494c73bd025bf15c2dd984
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZoKyQuiDeBEhmEBJeFXT_WNpwS1KqAWqFCpYqLZXvtUilsIpIc-PfMbDahboELlxwyY-_ueJ5-fCbkuZQ-VgFnbYIWhUhSF56FVFTBmVI2wrAOrPrwqD44ER9O5elvsOhLK_iVrl9X4D4LhvNeFdiu3iI7TEAYxMJ8_HWzYACBrqut1sw9is8fOrh0sn2SBaQOt_-qd74QnvKtkxdi0f4tcrNPIuloNeq3ybXY3iHXV9dK_rxLPo7o2eT8-2we6bSlkOHRWYei2dJpouAwoVParPZjpH7K7g11FAQO7cH3Qa90jTV-j5zs7315d1D0lyYUXol6AR-qyjJAHhQMD8FAPcK5K5soVCNqFqF88E7VvvKmVq5JNeQnDpcauWuYT7Hk98l2O23jQ0K5l16laIxsKpFc0skxJZnTpXMmmjQgbzNJ2tkKIMMiZHVOAeuxOA4Wx8FWzGo9IK_WcrehxyPHazEmtqtLdH21wctNg_WT_so6xoHMXqj7AxTL9iZpo1IqcIjHShgRFPcNiMGnSgbWNEaLAXmGamARJaPFbThnbjmf2_efj-1IcoETqCU86UXPlKbw9sH1pxpAggislXHuZpxgxiEnr7XN9m5kDh9TY8IGFjMgTzdkbIlb49o4XSKP4hXezGP-wcPxwDzktuWAPFgp8EY2kH8jghNQVKbamfBySnv-rQMi55JDxscf_ZcePCY3IAlluP2uErtke_FjGZ9AorfwQ7KlTtWQ7Iz3jj4dD7vpEvg9FHrYGf8vqJ9QhA
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGJwQviP8UBhgEgpewxHbiGIRQB5taulVobNLEi3Ecu0wqSVlboX0pPiN3aVIWTextb1F8dqy7y93P9vmOkBdxnLnI4q6NTUUgfJwGGbM-iKxRYZwLxapk1XujpH8oPh_FR2vkT3MXBsMqG5tYGeq8tLhHvhkh1Ec8zz5MfwVYNQpPV5sSGku1GLrT37Bkm70ffAL5vmRsZ_vgYz-oqwoEmRTJPGCYkc4CULCKW6sAsHNuwtwJmYuEOcDXmZFJFmUqkSb3CThwg2dx3OQs8y7kMO4Vsi44LGU6ZH1re_Rlf3VuAf42qhMIRWmyGYHphw-KFAMgsLhL61L9pOULq5IB5x3DGc_Yjto84wZ3bpIbNX6lvaXC3SJrrrhNri4rWp7C07eyerpDhj06nhz_nM4cLQsKMJNOq1SeBS09BasNw9N8GRTi633Dt9RQkDr0BwMM49Mm4fldcngpPL5HOkVZuAeE8izOpHdKxXkkvPGpN0zGzKShMcop3yXvWjzV02WWDo15s9stoE4aJaJRIjpiOk275E0jAW3rpOhYm2Oiq8VRmpzv8HrVofnSf0m3UKStCVUvypOxru2CdlJKywEUSKGElTzLgQ2Zj2LL8lylokueo0JoTNVRYCzQ2CxmMz34uq97MRe4ixvCl17VRL6E2VtTX60ADmJ2rxblRosSbIltNzd6p2tbNtP__rwuebZqxp4Yn1e4coE0kkdYHkhdQMPx1j4A7LBL7i9VecUbWARgGilokS0lbzGv3VIc_6iyofOYA-zkDy-e-lNyrX-wt6t3B6PhI3IdYC_DgL9IbJDO_GThHgO0nGdP6v-Zku-XbUL-At2fiek
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKEYgL4s1CAYOQ4JI2ie04htMWqFoKFVqoVPVi2Y69VGyT1T6Q-u-ZyWO1ocCFW5QZO8l4Zjx2Zj4T8lII6xOHuzYu5xEPIo9s6kKUOKNiUXCV1mDVn4-y_WP-8UScbJBRVwtjz53_2QrdzC5aJKLt9Vr0Se3A4cL92JkWobH7PNtJwM9GKW6QJWDk-RVyVQoh0VhHu6erPwswI9aLsI65hfv5Qwe_lcBPejNXDfB_2Y2vzWP9HMu1SWvvFrnZRpt02KjHbbLhyzvkWnP-5MVdcjik48nZ-XTuaVVSCAXptIbbLGkVKHhW6JQWTeJGaPf23lBDYWSgPThJ6JV2oOT3yPHeh2_v9qP2dIXISp4t4ENlHDsImJxizilYuDBm4sJzWfAs9bDOsEZmNrEqk6YIGQQyBv9JMlOkNviY3SebZVX6h4QyK6wMXilRJDyYkAeTSpGaPDZGeRUG5G1PknraIGloxLbuU2BoNY6DxnHQSarzfEC2O7lr1wKX4_kZE10vYPLscoPXqwbdk_7KuosD2Xuh-kY1G-vWdrWXUjoGE7fkijvJbAFisCERLi0KlfMBeYFqoBFOo8R8nbFZzuf64OtIDwXjuNMaw5NetUyhQt01bfkDSBARuHqcWz1OsHfXJ3faplt_M4ePyTCyA9MakOcrMrbEHLrSV0vkkSzBI3zUP3gYVtZDEBwPyINGgVeygUAdoZ6AInuq3RNen1Kefa8Ry5lgEBqyR_-lB8_I9S_v9_Sng6PDx-QGBK4ppuwlfItsLmZL_wSCw4V9Wlv7L17gX6I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+glimpse+on+the+pattern+of+rodent+diversification%3A+a+phylogenetic+approach&rft.jtitle=BMC+evolutionary+biology&rft.au=Fabre%2C+Pierre-Henri&rft.au=Hautier%2C+Lionel&rft.au=Dimitrov%2C+Dimitar&rft.au=Douzery%2C+Emmanuel+J+P&rft.date=2012-06-14&rft.issn=1471-2148&rft.eissn=1471-2148&rft.volume=12&rft.spage=88&rft_id=info:doi/10.1186%2F1471-2148-12-88&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2148&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2148&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2148&client=summon