A glimpse on the pattern of rodent diversification: a phylogenetic approach
Development of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have revolutionized the field of evolutionary biology and resulted in an unprecedented expansion of our knowledge about the tree of life. These methods have helped to shed light on th...
Saved in:
Published in | BMC evolutionary biology Vol. 12; no. 1; p. 88 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
14.06.2012
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Development of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have revolutionized the field of evolutionary biology and resulted in an unprecedented expansion of our knowledge about the tree of life. These methods have helped to shed light on the macroevolution of many taxonomic groups such as the placentals (Mammalia). However, despite the increase of studies addressing the diversification patterns of organisms, no synthesis has addressed the case of the most diversified mammalian clade: the Rodentia.
Here we present a rodent maximum likelihood phylogeny inferred from a molecular supermatrix. It is based on 11 mitochondrial and nuclear genes that covers 1,265 species, i.e., respectively 56% and 81% of the known specific and generic rodent diversity. The inferred topology recovered all Rodentia clades proposed by recent molecular works. A relaxed molecular clock dating approach provided a time framework for speciation events. We found that the Myomorpha clade shows a greater degree of variation in diversification rates than Sciuroidea, Caviomorpha, Castorimorpha and Anomaluromorpha. We identified a number of shifts in diversification rates within the major clades: two in Castorimorpha, three in Ctenohystrica, 6 within the squirrel-related clade and 24 in the Myomorpha clade. The majority of these shifts occurred within the most recent familial rodent radiations: the Cricetidae and Muridae clades. Using the topological imbalances and the time line we discuss the potential role of different diversification factors that might have shaped the rodents radiation.
The present glimpse on the diversification pattern of rodents can be used for further comparative meta-analyses. Muroid lineages have a greater degree of variation in their diversification rates than any other rodent group. Different topological signatures suggest distinct diversification processes among rodent lineages. In particular, Muroidea and Sciuroidea display widespread distribution and have undergone evolutionary and adaptive radiation on most of the continents. Our results show that rodents experienced shifts in diversification rate regularly through the Tertiary, but at different periods for each clade. A comparison between the rodent fossil record and our results suggest that extinction led to the loss of diversification signal for most of the Paleogene nodes. |
---|---|
AbstractList | BACKGROUND: Development of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have revolutionized the field of evolutionary biology and resulted in an unprecedented expansion of our knowledge about the tree of life. These methods have helped to shed light on the macroevolution of many taxonomic groups such as the placentals (Mammalia). However, despite the increase of studies addressing the diversification patterns of organisms, no synthesis has addressed the case of the most diversified mammalian clade: the Rodentia. RESULTS: Here we present a rodent maximum likelihood phylogeny inferred from a molecular supermatrix. It is based on 11 mitochondrial and nuclear genes that covers 1,265 species, i.e., respectively 56% and 81% of the known specific and generic rodent diversity. The inferred topology recovered all Rodentia clades proposed by recent molecular works. A relaxed molecular clock dating approach provided a time framework for speciation events. We found that the Myomorpha clade shows a greater degree of variation in diversification rates than Sciuroidea, Caviomorpha, Castorimorpha and Anomaluromorpha. We identified a number of shifts in diversification rates within the major clades: two in Castorimorpha, three in Ctenohystrica, 6 within the squirrel-related clade and 24 in the Myomorpha clade. The majority of these shifts occurred within the most recent familial rodent radiations: the Cricetidae and Muridae clades. Using the topological imbalances and the time line we discuss the potential role of different diversification factors that might have shaped the rodents radiation. CONCLUSIONS: The present glimpse on the diversification pattern of rodents can be used for further comparative meta-analyses. Muroid lineages have a greater degree of variation in their diversification rates than any other rodent group. Different topological signatures suggest distinct diversification processes among rodent lineages. In particular, Muroidea and Sciuroidea display widespread distribution and have undergone evolutionary and adaptive radiation on most of the continents. Our results show that rodents experienced shifts in diversification rate regularly through the Tertiary, but at different periods for each clade. A comparison between the rodent fossil record and our results suggest that extinction led to the loss of diversification signal for most of the Paleogene nodes. Abstract Background Development of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have revolutionized the field of evolutionary biology and resulted in an unprecedented expansion of our knowledge about the tree of life. These methods have helped to shed light on the macroevolution of many taxonomic groups such as the placentals (Mammalia). However, despite the increase of studies addressing the diversification patterns of organisms, no synthesis has addressed the case of the most diversified mammalian clade: the Rodentia. Results Here we present a rodent maximum likelihood phylogeny inferred from a molecular supermatrix. It is based on 11 mitochondrial and nuclear genes that covers 1,265 species, i.e., respectively 56% and 81% of the known specific and generic rodent diversity. The inferred topology recovered all Rodentia clades proposed by recent molecular works. A relaxed molecular clock dating approach provided a time framework for speciation events. We found that the Myomorpha clade shows a greater degree of variation in diversification rates than Sciuroidea, Caviomorpha, Castorimorpha and Anomaluromorpha. We identified a number of shifts in diversification rates within the major clades: two in Castorimorpha, three in Ctenohystrica, 6 within the squirrel-related clade and 24 in the Myomorpha clade. The majority of these shifts occurred within the most recent familial rodent radiations: the Cricetidae and Muridae clades. Using the topological imbalances and the time line we discuss the potential role of different diversification factors that might have shaped the rodents radiation. Conclusions The present glimpse on the diversification pattern of rodents can be used for further comparative meta-analyses. Muroid lineages have a greater degree of variation in their diversification rates than any other rodent group. Different topological signatures suggest distinct diversification processes among rodent lineages. In particular, Muroidea and Sciuroidea display widespread distribution and have undergone evolutionary and adaptive radiation on most of the continents. Our results show that rodents experienced shifts in diversification rate regularly through the Tertiary, but at different periods for each clade. A comparison between the rodent fossil record and our results suggest that extinction led to the loss of diversification signal for most of the Paleogene nodes. Development of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have revolutionized the field of evolutionary biology and resulted in an unprecedented expansion of our knowledge about the tree of life. These methods have helped to shed light on the macroevolution of many taxonomic groups such as the placentals (Mammalia). However, despite the increase of studies addressing the diversification patterns of organisms, no synthesis has addressed the case of the most diversified mammalian clade: the Rodentia. Here we present a rodent maximum likelihood phylogeny inferred from a molecular supermatrix. It is based on 11 mitochondrial and nuclear genes that covers 1,265 species, i.e., respectively 56% and 81% of the known specific and generic rodent diversity. The inferred topology recovered all Rodentia clades proposed by recent molecular works. A relaxed molecular clock dating approach provided a time framework for speciation events. We found that the Myomorpha clade shows a greater degree of variation in diversification rates than Sciuroidea, Caviomorpha, Castorimorpha and Anomaluromorpha. We identified a number of shifts in diversification rates within the major clades: two in Castorimorpha, three in Ctenohystrica, 6 within the squirrel-related clade and 24 in the Myomorpha clade. The majority of these shifts occurred within the most recent familial rodent radiations: the Cricetidae and Muridae clades. Using the topological imbalances and the time line we discuss the potential role of different diversification factors that might have shaped the rodents radiation. The present glimpse on the diversification pattern of rodents can be used for further comparative meta-analyses. Muroid lineages have a greater degree of variation in their diversification rates than any other rodent group. Different topological signatures suggest distinct diversification processes among rodent lineages. In particular, Muroidea and Sciuroidea display widespread distribution and have undergone evolutionary and adaptive radiation on most of the continents. Our results show that rodents experienced shifts in diversification rate regularly through the Tertiary, but at different periods for each clade. A comparison between the rodent fossil record and our results suggest that extinction led to the loss of diversification signal for most of the Paleogene nodes. Doc number: 88 Abstract Background: Development of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have revolutionized the field of evolutionary biology and resulted in an unprecedented expansion of our knowledge about the tree of life. These methods have helped to shed light on the macroevolution of many taxonomic groups such as the placentals (Mammalia). However, despite the increase of studies addressing the diversification patterns of organisms, no synthesis has addressed the case of the most diversified mammalian clade: the Rodentia. Results: Here we present a rodent maximum likelihood phylogeny inferred from a molecular supermatrix. It is based on 11 mitochondrial and nuclear genes that covers 1,265 species, i.e. , respectively 56% and 81% of the known specific and generic rodent diversity. The inferred topology recovered all Rodentia clades proposed by recent molecular works. A relaxed molecular clock dating approach provided a time framework for speciation events. We found that the Myomorpha clade shows a greater degree of variation in diversification rates than Sciuroidea, Caviomorpha, Castorimorpha and Anomaluromorpha. We identified a number of shifts in diversification rates within the major clades: two in Castorimorpha, three in Ctenohystrica, 6 within the squirrel-related clade and 24 in the Myomorpha clade. The majority of these shifts occurred within the most recent familial rodent radiations: the Cricetidae and Muridae clades. Using the topological imbalances and the time line we discuss the potential role of different diversification factors that might have shaped the rodents radiation. Conclusions: The present glimpse on the diversification pattern of rodents can be used for further comparative meta-analyses. Muroid lineages have a greater degree of variation in their diversification rates than any other rodent group. Different topological signatures suggest distinct diversification processes among rodent lineages. In particular, Muroidea and Sciuroidea display widespread distribution and have undergone evolutionary and adaptive radiation on most of the continents. Our results show that rodents experienced shifts in diversification rate regularly through the Tertiary, but at different periods for each clade. A comparison between the rodent fossil record and our results suggest that extinction led to the loss of diversification signal for most of the Paleogene nodes. Development of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have revolutionized the field of evolutionary biology and resulted in an unprecedented expansion of our knowledge about the tree of life. These methods have helped to shed light on the macroevolution of many taxonomic groups such as the placentals (Mammalia). However, despite the increase of studies addressing the diversification patterns of organisms, no synthesis has addressed the case of the most diversified mammalian clade: the Rodentia. Here we present a rodent maximum likelihood phylogeny inferred from a molecular supermatrix. It is based on 11 mitochondrial and nuclear genes that covers 1,265 species, i.e., respectively 56% and 81% of the known specific and generic rodent diversity. The inferred topology recovered all Rodentia clades proposed by recent molecular works. A relaxed molecular clock dating approach provided a time framework for speciation events. We found that the Myomorpha clade shows a greater degree of variation in diversification rates than Sciuroidea, Caviomorpha, Castorimorpha and Anomaluromorpha. We identified a number of shifts in diversification rates within the major clades: two in Castorimorpha, three in Ctenohystrica, 6 within the squirrel-related clade and 24 in the Myomorpha clade. The majority of these shifts occurred within the most recent familial rodent radiations: the Cricetidae and Muridae clades. Using the topological imbalances and the time line we discuss the potential role of different diversification factors that might have shaped the rodents radiation. The present glimpse on the diversification pattern of rodents can be used for further comparative meta-analyses. Muroid lineages have a greater degree of variation in their diversification rates than any other rodent group. Different topological signatures suggest distinct diversification processes among rodent lineages. In particular, Muroidea and Sciuroidea display widespread distribution and have undergone evolutionary and adaptive radiation on most of the continents. Our results show that rodents experienced shifts in diversification rate regularly through the Tertiary, but at different periods for each clade. A comparison between the rodent fossil record and our results suggest that extinction led to the loss of diversification signal for most of the Paleogene nodes. Development of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have revolutionized the field of evolutionary biology and resulted in an unprecedented expansion of our knowledge about the tree of life. These methods have helped to shed light on the macroevolution of many taxonomic groups such as the placentals (Mammalia). However, despite the increase of studies addressing the diversification patterns of organisms, no synthesis has addressed the case of the most diversified mammalian clade: the Rodentia.BACKGROUNDDevelopment of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have revolutionized the field of evolutionary biology and resulted in an unprecedented expansion of our knowledge about the tree of life. These methods have helped to shed light on the macroevolution of many taxonomic groups such as the placentals (Mammalia). However, despite the increase of studies addressing the diversification patterns of organisms, no synthesis has addressed the case of the most diversified mammalian clade: the Rodentia.Here we present a rodent maximum likelihood phylogeny inferred from a molecular supermatrix. It is based on 11 mitochondrial and nuclear genes that covers 1,265 species, i.e., respectively 56% and 81% of the known specific and generic rodent diversity. The inferred topology recovered all Rodentia clades proposed by recent molecular works. A relaxed molecular clock dating approach provided a time framework for speciation events. We found that the Myomorpha clade shows a greater degree of variation in diversification rates than Sciuroidea, Caviomorpha, Castorimorpha and Anomaluromorpha. We identified a number of shifts in diversification rates within the major clades: two in Castorimorpha, three in Ctenohystrica, 6 within the squirrel-related clade and 24 in the Myomorpha clade. The majority of these shifts occurred within the most recent familial rodent radiations: the Cricetidae and Muridae clades. Using the topological imbalances and the time line we discuss the potential role of different diversification factors that might have shaped the rodents radiation.RESULTSHere we present a rodent maximum likelihood phylogeny inferred from a molecular supermatrix. It is based on 11 mitochondrial and nuclear genes that covers 1,265 species, i.e., respectively 56% and 81% of the known specific and generic rodent diversity. The inferred topology recovered all Rodentia clades proposed by recent molecular works. A relaxed molecular clock dating approach provided a time framework for speciation events. We found that the Myomorpha clade shows a greater degree of variation in diversification rates than Sciuroidea, Caviomorpha, Castorimorpha and Anomaluromorpha. We identified a number of shifts in diversification rates within the major clades: two in Castorimorpha, three in Ctenohystrica, 6 within the squirrel-related clade and 24 in the Myomorpha clade. The majority of these shifts occurred within the most recent familial rodent radiations: the Cricetidae and Muridae clades. Using the topological imbalances and the time line we discuss the potential role of different diversification factors that might have shaped the rodents radiation.The present glimpse on the diversification pattern of rodents can be used for further comparative meta-analyses. Muroid lineages have a greater degree of variation in their diversification rates than any other rodent group. Different topological signatures suggest distinct diversification processes among rodent lineages. In particular, Muroidea and Sciuroidea display widespread distribution and have undergone evolutionary and adaptive radiation on most of the continents. Our results show that rodents experienced shifts in diversification rate regularly through the Tertiary, but at different periods for each clade. A comparison between the rodent fossil record and our results suggest that extinction led to the loss of diversification signal for most of the Paleogene nodes.CONCLUSIONSThe present glimpse on the diversification pattern of rodents can be used for further comparative meta-analyses. Muroid lineages have a greater degree of variation in their diversification rates than any other rodent group. Different topological signatures suggest distinct diversification processes among rodent lineages. In particular, Muroidea and Sciuroidea display widespread distribution and have undergone evolutionary and adaptive radiation on most of the continents. Our results show that rodents experienced shifts in diversification rate regularly through the Tertiary, but at different periods for each clade. A comparison between the rodent fossil record and our results suggest that extinction led to the loss of diversification signal for most of the Paleogene nodes. |
Audience | Academic |
Author | Dimitrov, Dimitar Hautier, Lionel Fabre, Pierre-Henri P Douzery, Emmanuel J |
AuthorAffiliation | 1 Center for Macroecology, Evolution and Climate (CMEC, Department of Biology), Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark 2 Institut des Sciences de l’Evolution (ISEM, UMR 5554 CNRS-IRD), Université Montpellier II, Place E. Bataillon - CC 064 - 34095 Montpellier Cedex 5, France 3 Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK |
AuthorAffiliation_xml | – name: 2 Institut des Sciences de l’Evolution (ISEM, UMR 5554 CNRS-IRD), Université Montpellier II, Place E. Bataillon - CC 064 - 34095 Montpellier Cedex 5, France – name: 3 Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK – name: 1 Center for Macroecology, Evolution and Climate (CMEC, Department of Biology), Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark |
Author_xml | – sequence: 1 givenname: Pierre-Henri surname: Fabre fullname: Fabre, Pierre-Henri – sequence: 2 givenname: Lionel surname: Hautier fullname: Hautier, Lionel – sequence: 3 givenname: Dimitar surname: Dimitrov fullname: Dimitrov, Dimitar – sequence: 4 givenname: Emmanuel J surname: P Douzery fullname: P Douzery, Emmanuel J |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22697210$$D View this record in MEDLINE/PubMed |
BookMark | eNqFk0tr3DAQgE1JaR7tubdi6KU9bKKXJauHwjb0sTRQ6OMsZEn2arElR9KG5t9XzqbbOCQUH2xG33yMZsbHxYHzzhTFSwhOIazpGSQMLhAk9QKiRV0_KY72kYM734fFcYwbACCrEXxWHCJEOUMQHBVfl2XX22GMpvSuTGtTjjIlE1zp2zJ4bVwqtb0yIdrWKpmsd-9KWY7r6953xplkVSnHMXip1s-Lp63so3lx-z4pfn36-PP8y-Li2-fV-fJi0TBCUy6IAaCqCiqOleKkZhhLoA1hmlBkOCONZLSBDadM6pZyjiUHqMJSo6Y1AJ8Uq51Xe7kRY7CDDNfCSytuAj50QoZcWG-EYYwpTFCWcqIYbnQWNS2sFNKa1yS73u9c47YZjFb5vkH2M-n8xNm16PyVwBVGuMZZ8GEnaKx_RDA_UX4Q02DENBgBkajrLHlzW0Xwl1sTkxhsVKbvpTN-GwXEsKKAAgD-jyKGIYSY8oy-vodu_Da4PJpMUcgBJBz9ozqZG2Zd63OZapKKZYUJ4BUHU4WnD1D50WawKi9la3N8lvB2lpCZZH6nTm5jFKsf3-fsq7tD2Dfv75pm4GwHqOBjDKbdIxCI6Ud4oKPVvQxl08365rpt_2jeH87hB1Y |
CitedBy_id | crossref_primary_10_1002_hipo_23075 crossref_primary_10_1111_joa_13579 crossref_primary_10_3389_feart_2015_00056 crossref_primary_10_1007_s00335_018_9748_5 crossref_primary_10_1371_journal_pone_0096032 crossref_primary_10_1111_eth_13234 crossref_primary_10_1242_dev_113993 crossref_primary_10_3389_fcell_2023_1192789 crossref_primary_10_1186_s12862_021_01813_w crossref_primary_10_1093_jmammal_gyy179 crossref_primary_10_1007_s10914_018_9444_y crossref_primary_10_1371_journal_pone_0307380 crossref_primary_10_1111_evo_14086 crossref_primary_10_1113_JP276608 crossref_primary_10_1016_j_cub_2019_04_020 crossref_primary_10_1038_s41598_017_00723_6 crossref_primary_10_1080_08912963_2018_1506778 crossref_primary_10_1111_acel_12628 crossref_primary_10_1111_jeb_12698 crossref_primary_10_1016_j_ympev_2015_10_016 crossref_primary_10_1371_journal_pone_0258693 crossref_primary_10_7717_peerj_3741 crossref_primary_10_1098_rspb_2019_0672 crossref_primary_10_1080_14772019_2020_1796833 crossref_primary_10_1017_S0031182024000556 crossref_primary_10_1093_biolre_ioy197 crossref_primary_10_1093_sysbio_syx047 crossref_primary_10_1093_ve_veae061 crossref_primary_10_1098_rsos_220926 crossref_primary_10_1111_evo_12919 crossref_primary_10_1002_cne_24723 crossref_primary_10_1371_journal_pone_0248198 crossref_primary_10_1016_j_meegid_2019_103934 crossref_primary_10_1007_s10914_017_9425_6 crossref_primary_10_1371_journal_pgen_1008354 crossref_primary_10_1002_ar_25146 crossref_primary_10_1371_journal_pone_0151895 crossref_primary_10_3390_land12030690 crossref_primary_10_1080_14772019_2025_2456620 crossref_primary_10_1016_j_jtherbio_2014_01_006 crossref_primary_10_1016_j_ympev_2018_07_017 crossref_primary_10_1071_RD17431 crossref_primary_10_1016_j_gene_2013_07_059 crossref_primary_10_1111_jeb_12905 crossref_primary_10_1038_srep23087 crossref_primary_10_1016_j_ympev_2021_107120 crossref_primary_10_1093_mspecies_sez001 crossref_primary_10_1093_icb_icx047 crossref_primary_10_1111_acel_12172 crossref_primary_10_1017_pab_2017_28 crossref_primary_10_1084_jem_20211220 crossref_primary_10_1007_s10528_022_10213_8 crossref_primary_10_1111_joa_13596 crossref_primary_10_1002_jmor_21412 crossref_primary_10_1073_pnas_2420726122 crossref_primary_10_1038_s41598_018_29646_6 crossref_primary_10_1002_ar_23751 crossref_primary_10_1093_mspecies_sez007 crossref_primary_10_1038_srep11658 crossref_primary_10_1111_febs_15260 crossref_primary_10_1111_joa_12707 crossref_primary_10_1206_863_1 crossref_primary_10_1111_evo_14305 crossref_primary_10_1002_bies_201500010 crossref_primary_10_1111_brv_12350 crossref_primary_10_1128_JVI_00141_14 crossref_primary_10_7717_peerj_3826 crossref_primary_10_1002_spp2_1454 crossref_primary_10_1002_ece3_521 crossref_primary_10_1007_s12542_015_0267_3 crossref_primary_10_1038_s41598_019_57144_w crossref_primary_10_1111_jzs_12530 crossref_primary_10_1126_science_abm7993 crossref_primary_10_1186_s12915_024_02053_2 crossref_primary_10_1002_ar_23989 crossref_primary_10_1002_jmor_20678 crossref_primary_10_1186_s12862_019_1480_6 crossref_primary_10_1371_journal_pone_0146179 crossref_primary_10_1128_JVI_00404_19 crossref_primary_10_1016_j_ygeno_2019_09_016 crossref_primary_10_3389_fgene_2022_984513 crossref_primary_10_1016_j_jcz_2023_03_004 crossref_primary_10_1126_science_adp7290 crossref_primary_10_7717_peerj_8847 crossref_primary_10_1086_711398 crossref_primary_10_1080_08912963_2022_2029430 crossref_primary_10_1128_AAC_00048_21 crossref_primary_10_1016_j_coviro_2016_01_015 crossref_primary_10_7717_peerj_556 crossref_primary_10_1086_689398 crossref_primary_10_1111_jeb_12373 crossref_primary_10_1093_jmammal_gyy099 crossref_primary_10_1007_s00360_014_0853_9 crossref_primary_10_1038_srep40233 crossref_primary_10_1007_s10914_013_9242_5 crossref_primary_10_1002_jez_b_22588 crossref_primary_10_1111_evo_13633 crossref_primary_10_1111_bij_12495 crossref_primary_10_1002_wsbm_1436 crossref_primary_10_1111_jeb_12937 crossref_primary_10_21638_spbu03_2023_407 crossref_primary_10_3389_fnins_2019_01280 crossref_primary_10_1111_nph_13570 crossref_primary_10_1111_pala_12378 crossref_primary_10_1111_ecog_03504 crossref_primary_10_3390_genes13020288 crossref_primary_10_1086_706305 crossref_primary_10_1111_jzs_12551 crossref_primary_10_7717_peerj_448 crossref_primary_10_1111_joa_12152 crossref_primary_10_1534_g3_119_400512 crossref_primary_10_1177_0023677218769921 crossref_primary_10_1590_0102_33062021abb0253 crossref_primary_10_1002_ar_23287 crossref_primary_10_1093_evolut_qpae146 crossref_primary_10_1038_s42003_021_01887_8 crossref_primary_10_3389_fevo_2014_00044 crossref_primary_10_1371_journal_pone_0289812 crossref_primary_10_3389_fevo_2021_636039 crossref_primary_10_1111_jbi_13098 crossref_primary_10_1016_j_exer_2024_110055 crossref_primary_10_1016_j_cell_2019_03_043 crossref_primary_10_1093_molbev_msv175 crossref_primary_10_3389_fevo_2020_00230 crossref_primary_10_1371_journal_pone_0050197 crossref_primary_10_1016_j_ympev_2014_05_016 crossref_primary_10_1038_s41597_024_03905_w crossref_primary_10_1111_2041_210X_13492 crossref_primary_10_1186_1742_9994_10_27 crossref_primary_10_1186_s12915_023_01538_w crossref_primary_10_3389_fimmu_2022_752186 crossref_primary_10_1016_j_jhevol_2017_01_018 crossref_primary_10_1007_s10914_023_09675_3 crossref_primary_10_1111_bij_12238 crossref_primary_10_1111_cla_12112 crossref_primary_10_1093_molbev_msaf016 crossref_primary_10_1093_zoolinnean_zlz048 crossref_primary_10_1111_joa_12980 crossref_primary_10_1242_dev_202891 crossref_primary_10_1038_srep14444 crossref_primary_10_1093_cz_zoz037 crossref_primary_10_1515_mammalia_2017_0104 crossref_primary_10_1016_j_celrep_2015_03_064 crossref_primary_10_1038_s41598_018_27068_y crossref_primary_10_1111_jzs_12325 crossref_primary_10_1111_mam_12215 crossref_primary_10_1371_journal_pone_0183070 crossref_primary_10_1016_j_jchemneu_2014_01_002 crossref_primary_10_1098_rsos_190387 crossref_primary_10_1007_s10914_020_09511_y crossref_primary_10_3390_genes12091450 crossref_primary_10_1111_cla_12343 crossref_primary_10_17798_bitlisfen_1179758 crossref_primary_10_1098_rsos_181317 crossref_primary_10_1206_3894_1 crossref_primary_10_7717_peerj_16693 crossref_primary_10_1002_jmor_20990 crossref_primary_10_1016_j_crpv_2019_05_003 crossref_primary_10_1016_j_cub_2015_09_037 crossref_primary_10_1038_s42003_018_0191_7 crossref_primary_10_1098_rspb_2023_1379 crossref_primary_10_1111_1755_0998_13555 crossref_primary_10_1007_s00435_024_00661_8 crossref_primary_10_1111_mec_15401 crossref_primary_10_1128_JVI_00850_18 crossref_primary_10_1093_icb_icx092 crossref_primary_10_7717_peerj_663 crossref_primary_10_1016_j_cbi_2023_110679 crossref_primary_10_1098_rstb_2016_0443 crossref_primary_10_1007_s12549_016_0255_y crossref_primary_10_1093_jmammal_gyz096 crossref_primary_10_1038_s41467_024_50901_0 crossref_primary_10_1007_s10914_023_09699_9 crossref_primary_10_1007_s11692_016_9390_7 crossref_primary_10_1016_j_cub_2020_08_035 crossref_primary_10_1007_s00440_021_01095_9 crossref_primary_10_3897_CompCytogen_v13i2_34224 crossref_primary_10_1038_s41598_023_50861_3 crossref_primary_10_1002_spp2_1068 crossref_primary_10_5252_geodiversitas2019v41a4 crossref_primary_10_1038_s43705_021_00053_9 crossref_primary_10_1093_mspecies_sex002 crossref_primary_10_1111_jbi_13619 crossref_primary_10_1111_joa_13296 crossref_primary_10_1111_jzs_12343 crossref_primary_10_1186_1471_2148_13_94 crossref_primary_10_1016_j_yebeh_2015_12_020 crossref_primary_10_3389_fbioe_2022_806314 crossref_primary_10_1007_s42991_021_00116_3 crossref_primary_10_7554_eLife_39270 crossref_primary_10_1111_ede_12132 crossref_primary_10_1093_zoolinnean_zlz071 crossref_primary_10_1159_000381840 crossref_primary_10_1111_evo_13155 crossref_primary_10_1111_jeb_12975 crossref_primary_10_1002_ece3_1407 crossref_primary_10_1111_jeb_12857 crossref_primary_10_1111_bij_12695 crossref_primary_10_1038_s42003_022_04108_y crossref_primary_10_1016_j_ympev_2024_108233 crossref_primary_10_1093_cz_zoab070 crossref_primary_10_1093_molbev_msae071 crossref_primary_10_1007_s10914_020_09512_x crossref_primary_10_1177_17470218211049331 crossref_primary_10_1186_s12862_015_0455_5 crossref_primary_10_1111_let_12292 crossref_primary_10_1095_biolreprod_113_116871 crossref_primary_10_1007_s10914_015_9300_2 crossref_primary_10_1093_gbe_evz280 crossref_primary_10_1002_jmor_20495 crossref_primary_10_1093_jmammal_gyx016 crossref_primary_10_1038_s42003_023_04415_y crossref_primary_10_1080_14772019_2018_1457727 crossref_primary_10_1126_science_aap7714 crossref_primary_10_1111_evo_14493 crossref_primary_10_1186_s12862_014_0256_2 crossref_primary_10_1111_jbi_13058 crossref_primary_10_1111_evo_12079 crossref_primary_10_1111_evo_13168 crossref_primary_10_1093_biolinnean_blz042 crossref_primary_10_1007_s10914_023_09656_6 crossref_primary_10_1128_JVI_01738_18 crossref_primary_10_1038_ncomms6172 crossref_primary_10_1016_j_ympev_2013_07_022 crossref_primary_10_1093_cz_zoac055 crossref_primary_10_1002_ece3_7765 crossref_primary_10_1186_s12864_023_09560_6 crossref_primary_10_1111_zsc_12272 crossref_primary_10_1080_02724634_2017_1385476 crossref_primary_10_1016_j_gloplacha_2016_12_014 crossref_primary_10_1111_jeb_12279 crossref_primary_10_1186_s12862_016_0778_x crossref_primary_10_1371_journal_pone_0079080 crossref_primary_10_1002_ps_6905 crossref_primary_10_1111_evo_12642 crossref_primary_10_1093_bioinformatics_bty903 crossref_primary_10_1038_srep43562 crossref_primary_10_1093_jmammal_gyab133 crossref_primary_10_1093_zoolinnean_zlac005 crossref_primary_10_3897_zoologia_35_e24572 crossref_primary_10_1002_ece3_5592 crossref_primary_10_1038_s41598_019_47469_x crossref_primary_10_2992_007_086_0202 crossref_primary_10_1038_s41598_018_35547_5 crossref_primary_10_1093_gigascience_giz159 crossref_primary_10_3390_v16121885 crossref_primary_10_7717_peerj_12451 crossref_primary_10_1007_s10914_017_9422_9 crossref_primary_10_1111_jne_13237 crossref_primary_10_1111_mam_12372 crossref_primary_10_1002_ece3_3613 crossref_primary_10_1002_ar_25521 crossref_primary_10_1111_jeb_12962 crossref_primary_10_1111_zoj_12288 crossref_primary_10_1016_j_isci_2022_104230 crossref_primary_10_1098_rsbl_2018_0366 crossref_primary_10_1007_s10914_016_9363_8 crossref_primary_10_1111_syen_12489 crossref_primary_10_1093_molbev_msu144 crossref_primary_10_3389_feart_2022_1004509 crossref_primary_10_1111_brv_12243 crossref_primary_10_1371_journal_pone_0108148 crossref_primary_10_1098_rsos_160107 crossref_primary_10_1086_706810 crossref_primary_10_1111_zoj_12201 crossref_primary_10_1038_hdy_2014_12 crossref_primary_10_1016_j_virusres_2017_03_011 crossref_primary_10_1111_jzs_12143 crossref_primary_10_1186_s13071_014_0457_y crossref_primary_10_1007_s13364_020_00491_1 crossref_primary_10_1644_13_MAMM_R_068_1 crossref_primary_10_25288_tjb_370630 crossref_primary_10_24072_pcjournal_22 crossref_primary_10_1016_j_cub_2022_08_021 crossref_primary_10_1007_s10531_024_02952_4 crossref_primary_10_1111_2041_210X_14166 crossref_primary_10_1016_j_ympev_2015_01_013 crossref_primary_10_1093_biolinnean_blz134 crossref_primary_10_3390_genes10020109 crossref_primary_10_1073_pnas_2310752120 crossref_primary_10_1111_bij_12789 crossref_primary_10_1093_bioinformatics_btu315 crossref_primary_10_1038_s41396_018_0211_0 crossref_primary_10_7717_peerj_160 crossref_primary_10_1007_s10914_018_9430_4 crossref_primary_10_1093_jme_tjx085 crossref_primary_10_1002_jmor_21540 crossref_primary_10_1007_s10211_022_00389_y crossref_primary_10_1016_j_jhevol_2017_07_009 crossref_primary_10_1016_j_semcdb_2017_12_006 crossref_primary_10_1093_sysbio_syab023 crossref_primary_10_1111_jbi_12718 crossref_primary_10_7717_peerj_14693 crossref_primary_10_1007_s10914_017_9423_8 crossref_primary_10_1111_jzs_12152 crossref_primary_10_1080_15627020_2019_1628661 crossref_primary_10_1186_1471_2148_14_106 crossref_primary_10_1007_s10914_015_9306_9 crossref_primary_10_1371_journal_pone_0276475 crossref_primary_10_1095_biolreprod_114_127621 crossref_primary_10_7717_peerj_2320 crossref_primary_10_1093_molbev_msab271 crossref_primary_10_3390_d17010061 crossref_primary_10_1007_s11692_022_09596_8 crossref_primary_10_1073_pnas_1704009114 crossref_primary_10_1371_journal_pbio_1001775 crossref_primary_10_1093_sysbio_syt050 crossref_primary_10_1007_s10914_024_09739_y crossref_primary_10_1093_icb_icw034 crossref_primary_10_1093_sysbio_syy064 crossref_primary_10_1007_s10709_021_00113_x crossref_primary_10_1098_rsbl_2019_0155 crossref_primary_10_1111_joa_13430 crossref_primary_10_1111_geb_13050 crossref_primary_10_1371_journal_pone_0100687 crossref_primary_10_1007_s10914_021_09594_1 crossref_primary_10_3389_fimmu_2020_605270 crossref_primary_10_1111_ecog_04102 crossref_primary_10_1093_molbev_msy019 crossref_primary_10_1159_000538090 crossref_primary_10_1186_s12985_017_0766_9 crossref_primary_10_1111_zsc_12117 crossref_primary_10_1002_jmor_20929 crossref_primary_10_1093_biolinnean_bly068 crossref_primary_10_1093_ve_vey026 crossref_primary_10_1007_s00203_023_03732_4 crossref_primary_10_1016_j_ympev_2023_107992 crossref_primary_10_1111_jzs_12292 crossref_primary_10_1016_j_beproc_2020_104102 crossref_primary_10_3389_fgene_2023_1041103 crossref_primary_10_1007_s11692_018_9453_z crossref_primary_10_1038_srep33578 crossref_primary_10_3390_d15111145 crossref_primary_10_7717_peerj_14319 crossref_primary_10_1093_sysbio_syz044 crossref_primary_10_1111_mam_12170 crossref_primary_10_1002_jmor_20236 crossref_primary_10_1007_s10682_020_10034_4 crossref_primary_10_1111_ecog_03001 crossref_primary_10_1016_j_mambio_2015_12_001 crossref_primary_10_1007_s11692_018_9449_8 crossref_primary_10_1186_s12862_015_0440_z crossref_primary_10_1016_j_ympev_2022_107576 crossref_primary_10_1111_evo_13702 crossref_primary_10_1016_j_zool_2014_12_006 crossref_primary_10_1007_s10914_021_09561_w |
Cites_doi | 10.1093/oxfordjournals.molbev.a003860 10.1186/1471-2148-9-259 10.2307/2409668 10.1080/10635150500481390 10.1073/pnas.0701289104 10.1016/j.tree.2004.03.015 10.1016/S0169-5347(97)01242-1 10.1093/molbev/msq019 10.1016/j.tree.2004.05.006 10.1016/j.ympev.2009.10.033 10.1186/1471-2148-8-199 10.1186/1471-2148-8-321 10.1080/10635150290069913 10.1007/BF02101694 10.1016/j.tree.2005.12.003 10.1126/science.1156963 10.1038/nature05634 10.2307/2408678 10.1371/journal.pone.0014622 10.1126/science.1079705 10.1126/science.1147555 10.1644/07-MAMM-A-195.1 10.1038/365434a0 10.1093/nar/gkh340 10.1098/rsbl.2007.0377 10.1186/1471-2148-7-214 10.1016/j.ympev.2004.11.015 10.1016/j.tree.2006.10.002 10.1073/pnas.92.23.10718 10.1016/j.ympev.2003.09.015 10.1098/rspb.2003.2458 10.1017/S1477200004001549 10.1007/BF01734359 10.1111/j.1469-185X.1993.tb00731.x 10.1093/oxfordjournals.molbev.a025845 10.1080/10635150290102546 10.1016/j.ympev.2008.05.046 10.1016/S1055-7903(03)00132-5 10.1080/10635150390218330 10.1186/1471-2148-10-184 10.1016/j.ympev.2006.03.016 10.1644/10-MAMM-A-121.1 10.1016/j.ympev.2005.06.018 10.1006/mpev.2001.1056 10.1093/sysbio/syp060 10.1016/j.ympev.2009.08.004 10.1080/10635150500431254 10.1080/10635150490468701 10.1666/0094-8373(2000)026<0707:NMFQMP>2.0.CO;2 10.1093/oxfordjournals.molbev.a004164 10.1016/S1055-7903(02)00368-8 10.1080/106351599259988 10.1016/S0169-5347(01)02161-9 10.1016/j.ympev.2005.05.002 10.1098/rstb.2011.0025 10.2307/2406300 10.1080/10635150802044011 10.1186/1471-2148-7-16 10.1093/oxfordjournals.molbev.a003743 10.1111/j.1365-2699.2009.02190.x 10.1111/j.1096-3642.2004.00150.x 10.1644/08-MAMM-A-180R1.1 10.1093/bioinformatics/14.9.817 10.1016/S1055-7903(03)00204-5 10.1644/08-MAMM-A-318.1 10.1093/oxfordjournals.molbev.a026201 10.1016/S0022-5193(05)80104-3 10.1016/0169-5347(96)10041-0 10.1126/science.1056346 10.2307/2411985 10.1093/oxfordjournals.molbev.a026140 10.1016/S1055-7903(02)00304-4 10.1080/10635150290102311 10.1016/j.ympev.2005.08.011 10.1098/rspb.2000.1278 10.1006/mpev.1995.1032 10.1016/j.ympev.2005.04.016 10.1098/rspb.1998.0271 10.1080/10635150490423971 10.1016/j.ympev.2008.01.001 10.1080/10635150390235403 10.1093/sysbio/syq092 10.1023/A:1020668004578 10.1146/annurev.es.24.110193.002343 10.1093/oxfordjournals.molbev.a026334 10.1073/pnas.1113242108 10.1006/mpev.1994.1023 10.1007/BF01041591 10.1186/1471-2148-6-80 10.1016/j.ympev.2003.07.002 10.1093/bioinformatics/bti175 10.1073/pnas.1117133109 10.1093/bioinformatics/17.12.1246 10.2307/2937185 10.1016/j.ympev.2012.01.020 10.1073/pnas.1018956108 10.1186/1471-2148-9-71 10.1126/science.1124187 10.1086/282063 10.1126/science.1211028 10.1098/rstb.1994.0068 10.2307/2410033 10.1007/s10914-007-9070-6 10.1073/pnas.0807230106 10.1186/1471-2148-6-93 10.1111/j.1096-3642.2008.00399.x 10.2307/2992186 10.1073/pnas.032662799 10.1111/j.1463-6409.2007.00296.x 10.1098/rspb.1997.0158 10.1371/journal.pgen.1001342 10.1093/bioinformatics/btl446 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2012 BioMed Central Ltd. 2012 Fabre et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright ©2012 Fabre et al.; licensee BioMed Central Ltd. 2012 Fabre et al.; licensee BioMed Central Ltd. |
Copyright_xml | – notice: COPYRIGHT 2012 BioMed Central Ltd. – notice: 2012 Fabre et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright ©2012 Fabre et al.; licensee BioMed Central Ltd. 2012 Fabre et al.; licensee BioMed Central Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QP 7QR 7SN 7SS 7TK 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PATMY PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1186/1471-2148-12-88 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Zoology |
EISSN | 1471-2148 |
EndPage | 88 |
ExternalDocumentID | oai_doaj_org_article_e777c34297494c73bd025bf15c2dd984 PMC3532383 oai_biomedcentral_com_1471_2148_12_88 2852507661 A534095908 22697210 10_1186_1471_2148_12_88 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Denmark France United Kingdom |
GeographicLocations_xml | – name: United Kingdom – name: Denmark – name: France |
GroupedDBID | --- 0R~ 23N 2VQ 2WC 2XV 4.4 53G 5VS 6J9 7X7 7XC 88E 8CJ 8FE 8FH 8FI 8FJ AAHBH AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFRAH AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS ATCPS BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BPHCQ BVXVI C1A CCPQU CITATION CS3 D1J DIK DU5 E3Z EAD EAP EAS EBD EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR INH INR IPNFZ ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OVT P2P PATMY PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PYCSY RBZ RIG RNS ROL RPM SBL SV3 TR2 TUS U2A UKHRP WOQ WOW XSB CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 3V. 7QP 7QR 7SN 7SS 7TK 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 -A0 ADINQ AFGXO BMC C24 C6C OK1 RSV SOJ 5PM PUEGO |
ID | FETCH-LOGICAL-b746t-21700c551c93cc948733a0de47d462e974ba76b1b967adf6993a90253ad2bfe03 |
IEDL.DBID | RBZ |
ISSN | 1471-2148 |
IngestDate | Wed Aug 27 01:25:37 EDT 2025 Thu Aug 21 13:41:41 EDT 2025 Tue Apr 16 22:43:59 EDT 2024 Tue Aug 05 11:28:50 EDT 2025 Tue Aug 05 10:45:55 EDT 2025 Fri Jul 25 10:27:00 EDT 2025 Tue Jun 17 22:04:49 EDT 2025 Mon Jul 21 10:57:36 EDT 2025 Fri Jun 27 05:57:26 EDT 2025 Thu Apr 03 06:57:49 EDT 2025 Tue Jul 01 04:27:31 EDT 2025 Thu Apr 24 23:10:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b746t-21700c551c93cc948733a0de47d462e974ba76b1b967adf6993a90253ad2bfe03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | http://dx.doi.org/10.1186/1471-2148-12-88 |
PMID | 22697210 |
PQID | 1261901492 |
PQPubID | 44659 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e777c34297494c73bd025bf15c2dd984 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3532383 biomedcentral_primary_oai_biomedcentral_com_1471_2148_12_88 proquest_miscellaneous_1315606000 proquest_miscellaneous_1273111369 proquest_journals_1261901492 gale_infotracmisc_A534095908 gale_infotracacademiconefile_A534095908 gale_incontextgauss_ISR_A534095908 pubmed_primary_22697210 crossref_primary_10_1186_1471_2148_12_88 crossref_citationtrail_10_1186_1471_2148_12_88 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-06-14 |
PublicationDateYYYYMMDD | 2012-06-14 |
PublicationDate_xml | – month: 06 year: 2012 text: 2012-06-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC evolutionary biology |
PublicationTitleAlternate | BMC Evol Biol |
PublicationYear | 2012 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | 10.1186/1471-2148-12-88-B42 10.1186/1471-2148-12-88-B41 10.1186/1471-2148-12-88-B40 10.1186/1471-2148-12-88-B84 10.1186/1471-2148-12-88-B131 10.1186/1471-2148-12-88-B83 10.1186/1471-2148-12-88-B46 10.1186/1471-2148-12-88-B45 10.1186/1471-2148-12-88-B89 10.1186/1471-2148-12-88-B44 10.1186/1471-2148-12-88-B88 10.1186/1471-2148-12-88-B135 10.1186/1471-2148-12-88-B43 10.1186/1471-2148-12-88-B136 10.1186/1471-2148-12-88-B47 10.1186/1471-2148-12-88-B137 10.1186/1471-2148-12-88-B138 10.1186/1471-2148-12-88-B31 10.1186/1471-2148-12-88-B75 10.1186/1471-2148-12-88-B30 10.1186/1471-2148-12-88-B74 10.1186/1471-2148-12-88-B141 10.1186/1471-2148-12-88-B73 10.1186/1471-2148-12-88-B142 10.1186/1471-2148-12-88-B143 10.1186/1471-2148-12-88-B79 10.1186/1471-2148-12-88-B144 10.1186/1471-2148-12-88-B78 10.1186/1471-2148-12-88-B101 10.1186/1471-2148-12-88-B146 10.1186/1471-2148-12-88-B147 10.1186/1471-2148-12-88-B39 10.1186/1471-2148-12-88-B38 10.1186/1471-2148-12-88-B36 - 10.1186/1471-2148-12-88-B148 10.1186/1471-2148-12-88-B108 10.1186/1471-2148-12-88-B109 10.1186/1471-2148-12-88-B80 10.1186/1471-2148-12-88-B20 10.1186/1471-2148-12-88-B64 10.1186/1471-2148-12-88-B63 10.1186/1471-2148-12-88-B62 10.1186/1471-2148-12-88-B61 10.1186/1471-2148-12-88-B110 10.1186/1471-2148-12-88-B24 10.1186/1471-2148-12-88-B68 10.1186/1471-2148-12-88-B155 10.1186/1471-2148-12-88-B23 10.1186/1471-2148-12-88-B67 10.1186/1471-2148-12-88-B156 10.1186/1471-2148-12-88-B22 10.1186/1471-2148-12-88-B66 10.1186/1471-2148-12-88-B21 10.1186/1471-2148-12-88-B65 10.1186/1471-2148-12-88-B28 10.1186/1471-2148-12-88-B27 10.1186/1471-2148-12-88-B26 10.1186/1471-2148-12-88-B25 10.1186/1471-2148-12-88-B69 10.1186/1471-2148-12-88-B29 10.1186/1471-2148-12-88-B150 10.1186/1471-2148-12-88-B117 10.1186/1471-2148-12-88-B118 10.1186/1471-2148-12-88-B71 10.1186/1471-2148-12-88-B53 10.1186/1471-2148-12-88-B97 10.1186/1471-2148-12-88-B162 10.1186/1471-2148-12-88-B52 10.1186/1471-2148-12-88-B96 10.1186/1471-2148-12-88-B120 10.1186/1471-2148-12-88-B50 10.1186/1471-2148-12-88-B6 10.1186/1471-2148-12-88-B57 10.1186/1471-2148-12-88-B5 10.1186/1471-2148-12-88-B56 10.1186/1471-2148-12-88-B55 10.1186/1471-2148-12-88-B54 10.1186/1471-2148-12-88-B16 10.1186/1471-2148-12-88-B15 10.1186/1471-2148-12-88-B59 10.1186/1471-2148-12-88-B58 10.1186/1471-2148-12-88-B4 10.1186/1471-2148-12-88-B60 |
References_xml | – ident: 10.1186/1471-2148-12-88-B25 doi: 10.1093/oxfordjournals.molbev.a003860 – ident: 10.1186/1471-2148-12-88-B65 doi: 10.1186/1471-2148-9-259 – ident: - doi: 10.2307/2409668 – ident: 10.1186/1471-2148-12-88-B110 doi: 10.1080/10635150500481390 – ident: 10.1186/1471-2148-12-88-B16 doi: 10.1073/pnas.0701289104 – ident: 10.1186/1471-2148-12-88-B56 doi: 10.1016/j.tree.2004.03.015 – ident: 10.1186/1471-2148-12-88-B55 doi: 10.1016/S0169-5347(97)01242-1 – ident: 10.1186/1471-2148-12-88-B31 doi: 10.1093/molbev/msq019 – ident: 10.1186/1471-2148-12-88-B142 doi: 10.1016/j.tree.2004.05.006 – ident: 10.1186/1471-2148-12-88-B67 doi: 10.1016/j.ympev.2009.10.033 – ident: 10.1186/1471-2148-12-88-B46 doi: 10.1186/1471-2148-8-199 – ident: 10.1186/1471-2148-12-88-B29 doi: 10.1186/1471-2148-8-321 – ident: 10.1186/1471-2148-12-88-B75 doi: 10.1080/10635150290069913 – ident: 10.1186/1471-2148-12-88-B79 doi: 10.1007/BF02101694 – ident: 10.1186/1471-2148-12-88-B117 doi: 10.1016/j.tree.2005.12.003 – ident: 10.1186/1471-2148-12-88-B4 doi: 10.1126/science.1156963 – ident: 10.1186/1471-2148-12-88-B61 doi: 10.1038/nature05634 – ident: - doi: 10.2307/2408678 – ident: 10.1186/1471-2148-12-88-B52 doi: 10.1371/journal.pone.0014622 – ident: 10.1186/1471-2148-12-88-B36 doi: 10.1126/science.1079705 – ident: 10.1186/1471-2148-12-88-B143 doi: 10.1126/science.1147555 – ident: - doi: 10.1644/07-MAMM-A-195.1 – ident: - doi: 10.1038/365434a0 – ident: 10.1186/1471-2148-12-88-B144 doi: 10.1093/nar/gkh340 – ident: 10.1186/1471-2148-12-88-B156 doi: 10.1098/rsbl.2007.0377 – ident: 10.1186/1471-2148-12-88-B120 doi: 10.1186/1471-2148-7-214 – ident: 10.1186/1471-2148-12-88-B44 doi: 10.1016/j.ympev.2004.11.015 – ident: 10.1186/1471-2148-12-88-B155 doi: 10.1016/j.tree.2006.10.002 – ident: 10.1186/1471-2148-12-88-B108 doi: 10.1073/pnas.92.23.10718 – ident: 10.1186/1471-2148-12-88-B136 doi: 10.1016/j.ympev.2003.09.015 – ident: - doi: 10.1098/rspb.2003.2458 – ident: - doi: 10.1017/S1477200004001549 – ident: 10.1186/1471-2148-12-88-B118 doi: 10.1007/BF01734359 – ident: - doi: 10.1111/j.1469-185X.1993.tb00731.x – ident: 10.1186/1471-2148-12-88-B89 doi: 10.1093/oxfordjournals.molbev.a025845 – ident: 10.1186/1471-2148-12-88-B88 doi: 10.1080/10635150290102546 – ident: 10.1186/1471-2148-12-88-B68 doi: 10.1016/j.ympev.2008.05.046 – ident: 10.1186/1471-2148-12-88-B38 doi: 10.1016/S1055-7903(03)00132-5 – ident: 10.1186/1471-2148-12-88-B84 doi: 10.1080/10635150390218330 – ident: 10.1186/1471-2148-12-88-B50 doi: 10.1186/1471-2148-10-184 – ident: 10.1186/1471-2148-12-88-B138 doi: 10.1016/j.ympev.2006.03.016 – ident: - doi: 10.1644/10-MAMM-A-121.1 – ident: 10.1186/1471-2148-12-88-B101 doi: 10.1016/j.ympev.2005.06.018 – ident: 10.1186/1471-2148-12-88-B22 doi: 10.1006/mpev.2001.1056 – ident: 10.1186/1471-2148-12-88-B69 doi: 10.1093/sysbio/syp060 – ident: 10.1186/1471-2148-12-88-B64 doi: 10.1016/j.ympev.2009.08.004 – ident: 10.1186/1471-2148-12-88-B78 doi: 10.1080/10635150500431254 – ident: 10.1186/1471-2148-12-88-B41 doi: 10.1080/10635150490468701 – ident: - doi: 10.1666/0094-8373(2000)026<0707:NMFQMP>2.0.CO;2 – ident: 10.1186/1471-2148-12-88-B26 doi: 10.1093/oxfordjournals.molbev.a004164 – ident: 10.1186/1471-2148-12-88-B39 doi: 10.1016/S1055-7903(02)00368-8 – ident: 10.1186/1471-2148-12-88-B135 doi: 10.1080/106351599259988 – ident: 10.1186/1471-2148-12-88-B5 doi: 10.1016/S0169-5347(01)02161-9 – ident: 10.1186/1471-2148-12-88-B71 doi: 10.1016/j.ympev.2005.05.002 – ident: 10.1186/1471-2148-12-88-B162 doi: 10.1098/rstb.2011.0025 – ident: - doi: 10.2307/2406300 – ident: 10.1186/1471-2148-12-88-B141 doi: 10.1080/10635150802044011 – ident: 10.1186/1471-2148-12-88-B21 doi: 10.1186/1471-2148-7-16 – ident: 10.1186/1471-2148-12-88-B74 doi: 10.1093/oxfordjournals.molbev.a003743 – ident: - doi: 10.1111/j.1365-2699.2009.02190.x – ident: - doi: 10.1111/j.1096-3642.2004.00150.x – ident: - doi: 10.1644/08-MAMM-A-180R1.1 – ident: 10.1186/1471-2148-12-88-B147 doi: 10.1093/bioinformatics/14.9.817 – ident: 10.1186/1471-2148-12-88-B42 doi: 10.1016/S1055-7903(03)00204-5 – ident: - doi: 10.1644/08-MAMM-A-318.1 – ident: - doi: 10.1093/oxfordjournals.molbev.a026201 – ident: 10.1186/1471-2148-12-88-B80 doi: 10.1016/S0022-5193(05)80104-3 – ident: 10.1186/1471-2148-12-88-B83 doi: 10.1016/0169-5347(96)10041-0 – ident: 10.1186/1471-2148-12-88-B63 doi: 10.1126/science.1056346 – ident: - doi: 10.2307/2411985 – ident: 10.1186/1471-2148-12-88-B24 doi: 10.1093/oxfordjournals.molbev.a026140 – ident: 10.1186/1471-2148-12-88-B27 doi: 10.1016/S1055-7903(02)00304-4 – ident: 10.1186/1471-2148-12-88-B57 doi: 10.1080/10635150290102311 – ident: 10.1186/1471-2148-12-88-B137 doi: 10.1016/j.ympev.2005.08.011 – ident: - doi: 10.1098/rspb.2000.1278 – ident: 10.1186/1471-2148-12-88-B20 doi: 10.1006/mpev.1995.1032 – ident: 10.1186/1471-2148-12-88-B43 doi: 10.1016/j.ympev.2005.04.016 – ident: - doi: 10.1098/rspb.1998.0271 – ident: 10.1186/1471-2148-12-88-B58 doi: 10.1080/10635150490423971 – ident: 10.1186/1471-2148-12-88-B47 doi: 10.1016/j.ympev.2008.01.001 – ident: 10.1186/1471-2148-12-88-B28 doi: 10.1080/10635150390235403 – ident: 10.1186/1471-2148-12-88-B53 doi: 10.1093/sysbio/syq092 – ident: - doi: 10.1023/A:1020668004578 – ident: - doi: 10.1146/annurev.es.24.110193.002343 – ident: 10.1186/1471-2148-12-88-B146 doi: 10.1093/oxfordjournals.molbev.a026334 – ident: 10.1186/1471-2148-12-88-B131 doi: 10.1073/pnas.1113242108 – ident: 10.1186/1471-2148-12-88-B23 doi: 10.1006/mpev.1994.1023 – ident: - doi: 10.1007/BF01041591 – ident: 10.1186/1471-2148-12-88-B45 doi: 10.1186/1471-2148-6-80 – ident: 10.1186/1471-2148-12-88-B40 doi: 10.1016/j.ympev.2003.07.002 – ident: 10.1186/1471-2148-12-88-B73 doi: 10.1093/bioinformatics/bti175 – ident: 10.1186/1471-2148-12-88-B109 doi: 10.1073/pnas.1117133109 – ident: 10.1186/1471-2148-12-88-B150 doi: 10.1093/bioinformatics/17.12.1246 – ident: - doi: 10.2307/2937185 – ident: 10.1186/1471-2148-12-88-B54 doi: 10.1016/j.ympev.2012.01.020 – ident: 10.1186/1471-2148-12-88-B97 doi: 10.1073/pnas.1018956108 – ident: 10.1186/1471-2148-12-88-B30 doi: 10.1186/1471-2148-9-71 – ident: 10.1186/1471-2148-12-88-B15 doi: 10.1126/science.1124187 – ident: - doi: 10.1086/282063 – ident: 10.1186/1471-2148-12-88-B62 doi: 10.1126/science.1211028 – ident: 10.1186/1471-2148-12-88-B6 doi: 10.1098/rstb.1994.0068 – ident: - doi: 10.2307/2410033 – ident: - doi: 10.1007/s10914-007-9070-6 – ident: 10.1186/1471-2148-12-88-B96 doi: 10.1073/pnas.0807230106 – ident: 10.1186/1471-2148-12-88-B60 doi: 10.1186/1471-2148-6-93 – ident: - doi: 10.1111/j.1096-3642.2008.00399.x – ident: - doi: 10.2307/2992186 – ident: 10.1186/1471-2148-12-88-B59 doi: 10.1073/pnas.032662799 – ident: - doi: 10.1111/j.1463-6409.2007.00296.x – ident: - doi: 10.1098/rspb.1997.0158 – ident: 10.1186/1471-2148-12-88-B66 doi: 10.1371/journal.pgen.1001342 – ident: 10.1186/1471-2148-12-88-B148 doi: 10.1093/bioinformatics/btl446 |
SSID | ssj0017821 |
Score | 2.5242705 |
Snippet | Development of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have revolutionized the field of... Background Development of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have revolutionized the field... Doc number: 88 Abstract Background: Development of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have... Background: Development of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have revolutionized the field... BACKGROUND: Development of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have revolutionized the field... Abstract Background Development of phylogenetic methods that do not rely on fossils for the study of evolutionary processes through time have revolutionized... |
SourceID | doaj pubmedcentral biomedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 88 |
SubjectTerms | Adaptive radiation Analysis Animals Caviomorpha Cell Nucleus - genetics Cricetidae Diversification DNA, Mitochondrial - genetics Endangered & extinct species Estimates Evolution Evolution, Molecular Evolutionary biology Fossils Genetic Speciation Genetic Variation Genetics Guinea Pigs Mammalia Mice Muridae Myomorpha Paleogene Phylogenetics Phylogeny Physiological aspects Radiation Rodentia Rodentia - classification Rodentia - genetics Rodents Speciation Species Specificity Studies Topology Trees Zoology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBggxCgkto4kccw2lBVAUEB6BSb5afpdKSrNjdA_-emTxWa1XAhWs8TuLJeOazM_6GkGdSulh73LXxrShFkm3pmE9l7a2uZBCaDWTVnz43J6fiw5k82yv1hTlhIz3wqLijqJTyHLymElp4xV2AKO1SLT0LQbcDEyjEvHkxNf0_gLg3LLXA9ZYMEP9E6lO3zdHuGiYlYMGV7KD7MotPA43_ZWe9F63yTMq90HR8g1yfMCVdjGO5Sa7E7ha5OlaZ_HWbfFzQ8-XFj9U60r6jAPjoaiDV7GifKPhPuCkNY3pGmnbwXlFLQf_QH1wh3JXO1ON3yOnxu29vT8qphkLplGg2MFBVVR5gkdfcew3LE85tFaJQQTQsgladVY2rnW6UDakBuGLxzyO3gbkUK36XHHR9F-8Typ10KkWtZahFsqlNlinJbFtZq6NOBXmdadKsRr4MgwzWeQtMJoPfweB3MDUzbVuQl7PejZ_oybFKxtIMy5S2udzhxa7D_KQ_ir7BD5m90HABDM1Mhmb-ZWgFeYpmYJA0o8OsnHO7Xa_N-69fzEJygfupFTzp-SSUenh7b6dDDqBB5NnKJA8zSZjVPm-erc1MXmUNg2kQv8EEKsiTXTP2xEy5LvZblFG8xkI9-i8yHM_PA9StCnJvNOCdbgCOI6ETtKjMtDPl5S3dxfeBl5xLDgCQP_gf2n5IrgE0ZZiUV4tDcrD5uY2PAP5t3ONhpv8GXXVTZg priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4t2lBRmEBJfQ-JE4hgNaEFUBwQGotOJi2Y69VFqSbXf3wL9nJutdaip6i-Jx4njs8efJ-BtCnlWVC8yj18Y3spCxagrHfSyYt7qsWqn5QFb9-Ut9dCw_TqpJcrgtUljlxiYOhrrtPfrIDxhCfcTz_M38tMCsUfh3NaXQuEquIXUZhnSpyXbDxWD1Y4nOhzX1AQNDXHD0oDGwAs0_R9xn2co0EPhfNNPn1qk8hvLconR4i9xMaJKO1-q_Ta6E7g65vs4v-RuufvTD1V3yaUyns5Nf80WgfUcB9NH5QKzZ0T5SsKHweNquQzRi8uK9opaCDqA-mEN4Pt3Qj98jx4fvv787KlIehcIpWS_hk1VZeoBGXgvvNWxRhLBlG6RqZc0D7CicVbVjTtfKtrEGyGLx76OwLXcxlOI-2en6LuwSKlzlVAxaVy2T0cYmWq4qbpvSWh10HJHXWZ-a-ZozwyCLdV4CyjWoEYMaMYybphmRlxsNGJ8oyjFTxswMW5WmvljhxbbC5k3_FX2LKs0aNNzoz6YmzVITlFJewBKtpJZeCddCN7jIKs_bVjdyRJ7igDBInNFhZM7UrhYL8-HbVzOuhESfaglvep6EYg-t9zYddIAeRK6tTHI_k4SZ7fPizbgzybIszN95MCJPtsVYE6PlutCvUEYJhsl69CUyAs_QA9wtR-TBeihv-wYgOZI6QYnKBnnWeXlJd_Jz4CYXlQAQKB5e3vQ9cgOAJ8eQOyb3yc7ybBUeAbhbusfDDP4DTaxMmg priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDI9gCIkXxPfKBgoICV462iZpGhBCB2IaoPEAnLS3KEmTY9LR3u5DYv89dq-9LWwgXmsnTR07dlLnZ0KeCWF97vDUxlU85UFUqS1cSHNnVCZqrooOrPrwS3kw5p-OxNFZOaBegItLt3ZYT2o8n-79Ojl9Cwb_pjP4qnyZwwKbFngyloN1V1fJNXBLEq30kJ_9UgBX2O2-BuYe5-eSDv64-z6NXFaH7H9x_T7nwOLkynPeav8WudmHmXS01ovb5Ipv7pDr68KTp3fJ5xGdTI9_zhaetg2FGJDOOpzNhraBwpIKndJ6nbER-kO9V9RQmBJoD6sj9EoHNPJ7ZLz_4fv7g7Qvq5BaycslfKjMMgeRklPMOQU7FsZMVnsua14WHjYY1sjS5laV0tShhAjG4M9IZurCBp-x-2SraRu_TSizwsrglRJ1zoMJVTCFFIWpMmOUVyEhryNJ6tkaQkMjqHVMAfvSOA8a50Hnha6qhOwNcteuRyzHwhlT3e1cqvJigxebBsOb_sr6DicyGlD3oJ1PdG-02kspHQOPLbniTjJbgxhsyIUr6lpVPCFPUQ004mg0mKgzMavFQn_89lWPBON4xJrBm573TKGF0TvT33sACSL0VsS5G3GCobuYPGibHuwEPqbEkA5sKiFPNmRsiclzjW9XyCNZjrV71D94GF6ph-g3S8iDtQJvZAMROmI8AUVGqh0JL6Y0xz86qHImGMSE7OF_jG2H3IBgtMA0vJzvkq3lfOUfQcC3tI87Q_4NUQhPyQ priority: 102 providerName: Scholars Portal |
Title | A glimpse on the pattern of rodent diversification: a phylogenetic approach |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22697210 https://www.proquest.com/docview/1261901492 https://www.proquest.com/docview/1273111369 https://www.proquest.com/docview/1315606000 http://dx.doi.org/10.1186/1471-2148-12-88 https://pubmed.ncbi.nlm.nih.gov/PMC3532383 https://doaj.org/article/e777c34297494c73bd025bf15c2dd984 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZoKyQuiDeBEhmEBJeFXT_WNpwS1KqAWqFCpYqLZXvtUilsIpIc-PfMbDahboELlxwyY-_ueJ5-fCbkuZQ-VgFnbYIWhUhSF56FVFTBmVI2wrAOrPrwqD44ER9O5elvsOhLK_iVrl9X4D4LhvNeFdiu3iI7TEAYxMJ8_HWzYACBrqut1sw9is8fOrh0sn2SBaQOt_-qd74QnvKtkxdi0f4tcrNPIuloNeq3ybXY3iHXV9dK_rxLPo7o2eT8-2we6bSlkOHRWYei2dJpouAwoVParPZjpH7K7g11FAQO7cH3Qa90jTV-j5zs7315d1D0lyYUXol6AR-qyjJAHhQMD8FAPcK5K5soVCNqFqF88E7VvvKmVq5JNeQnDpcauWuYT7Hk98l2O23jQ0K5l16laIxsKpFc0skxJZnTpXMmmjQgbzNJ2tkKIMMiZHVOAeuxOA4Wx8FWzGo9IK_WcrehxyPHazEmtqtLdH21wctNg_WT_so6xoHMXqj7AxTL9iZpo1IqcIjHShgRFPcNiMGnSgbWNEaLAXmGamARJaPFbThnbjmf2_efj-1IcoETqCU86UXPlKbw9sH1pxpAggislXHuZpxgxiEnr7XN9m5kDh9TY8IGFjMgTzdkbIlb49o4XSKP4hXezGP-wcPxwDzktuWAPFgp8EY2kH8jghNQVKbamfBySnv-rQMi55JDxscf_ZcePCY3IAlluP2uErtke_FjGZ9AorfwQ7KlTtWQ7Iz3jj4dD7vpEvg9FHrYGf8vqJ9QhA |
linkProvider | BioMedCentral |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGJwQviP8UBhgEgpewxHbiGIRQB5taulVobNLEi3Ecu0wqSVlboX0pPiN3aVIWTextb1F8dqy7y93P9vmOkBdxnLnI4q6NTUUgfJwGGbM-iKxRYZwLxapk1XujpH8oPh_FR2vkT3MXBsMqG5tYGeq8tLhHvhkh1Ec8zz5MfwVYNQpPV5sSGku1GLrT37Bkm70ffAL5vmRsZ_vgYz-oqwoEmRTJPGCYkc4CULCKW6sAsHNuwtwJmYuEOcDXmZFJFmUqkSb3CThwg2dx3OQs8y7kMO4Vsi44LGU6ZH1re_Rlf3VuAf42qhMIRWmyGYHphw-KFAMgsLhL61L9pOULq5IB5x3DGc_Yjto84wZ3bpIbNX6lvaXC3SJrrrhNri4rWp7C07eyerpDhj06nhz_nM4cLQsKMJNOq1SeBS09BasNw9N8GRTi633Dt9RQkDr0BwMM49Mm4fldcngpPL5HOkVZuAeE8izOpHdKxXkkvPGpN0zGzKShMcop3yXvWjzV02WWDo15s9stoE4aJaJRIjpiOk275E0jAW3rpOhYm2Oiq8VRmpzv8HrVofnSf0m3UKStCVUvypOxru2CdlJKywEUSKGElTzLgQ2Zj2LL8lylokueo0JoTNVRYCzQ2CxmMz34uq97MRe4ixvCl17VRL6E2VtTX60ADmJ2rxblRosSbIltNzd6p2tbNtP__rwuebZqxp4Yn1e4coE0kkdYHkhdQMPx1j4A7LBL7i9VecUbWARgGilokS0lbzGv3VIc_6iyofOYA-zkDy-e-lNyrX-wt6t3B6PhI3IdYC_DgL9IbJDO_GThHgO0nGdP6v-Zku-XbUL-At2fiek |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKEYgL4s1CAYOQ4JI2ie04htMWqFoKFVqoVPVi2Y69VGyT1T6Q-u-ZyWO1ocCFW5QZO8l4Zjx2Zj4T8lII6xOHuzYu5xEPIo9s6kKUOKNiUXCV1mDVn4-y_WP-8UScbJBRVwtjz53_2QrdzC5aJKLt9Vr0Se3A4cL92JkWobH7PNtJwM9GKW6QJWDk-RVyVQoh0VhHu6erPwswI9aLsI65hfv5Qwe_lcBPejNXDfB_2Y2vzWP9HMu1SWvvFrnZRpt02KjHbbLhyzvkWnP-5MVdcjik48nZ-XTuaVVSCAXptIbbLGkVKHhW6JQWTeJGaPf23lBDYWSgPThJ6JV2oOT3yPHeh2_v9qP2dIXISp4t4ENlHDsImJxizilYuDBm4sJzWfAs9bDOsEZmNrEqk6YIGQQyBv9JMlOkNviY3SebZVX6h4QyK6wMXilRJDyYkAeTSpGaPDZGeRUG5G1PknraIGloxLbuU2BoNY6DxnHQSarzfEC2O7lr1wKX4_kZE10vYPLscoPXqwbdk_7KuosD2Xuh-kY1G-vWdrWXUjoGE7fkijvJbAFisCERLi0KlfMBeYFqoBFOo8R8nbFZzuf64OtIDwXjuNMaw5NetUyhQt01bfkDSBARuHqcWz1OsHfXJ3faplt_M4ePyTCyA9MakOcrMrbEHLrSV0vkkSzBI3zUP3gYVtZDEBwPyINGgVeygUAdoZ6AInuq3RNen1Kefa8Ry5lgEBqyR_-lB8_I9S_v9_Sng6PDx-QGBK4ppuwlfItsLmZL_wSCw4V9Wlv7L17gX6I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+glimpse+on+the+pattern+of+rodent+diversification%3A+a+phylogenetic+approach&rft.jtitle=BMC+evolutionary+biology&rft.au=Fabre%2C+Pierre-Henri&rft.au=Hautier%2C+Lionel&rft.au=Dimitrov%2C+Dimitar&rft.au=Douzery%2C+Emmanuel+J+P&rft.date=2012-06-14&rft.issn=1471-2148&rft.eissn=1471-2148&rft.volume=12&rft.spage=88&rft_id=info:doi/10.1186%2F1471-2148-12-88&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2148&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2148&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2148&client=summon |