Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae

The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the production of bio-ethanol. Weak organic acids such as acetic and formic acids are necessarily released during the pretreatment (i.e. solubilization and hydrol...

Full description

Saved in:
Bibliographic Details
Published inMicrobial cell factories Vol. 10; no. 1; p. 2
Main Authors Hasunuma, Tomohisa, Sanda, Tomoya, Yamada, Ryosuke, Yoshimura, Kazuya, Ishii, Jun, Kondo, Akihiko
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 10.01.2011
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the production of bio-ethanol. Weak organic acids such as acetic and formic acids are necessarily released during the pretreatment (i.e. solubilization and hydrolysis) of lignocelluloses, which negatively affect microbial growth and ethanol production. However, since the mode of toxicity is complicated, genetic engineering strategies addressing yeast tolerance to weak organic acids have been rare. Thus, enhanced basic research is expected to identify target genes for improved weak acid tolerance. In this study, the effect of acetic acid on xylose fermentation was analyzed by examining metabolite profiles in a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Metabolome analysis revealed that metabolites involved in the non-oxidative pentose phosphate pathway (PPP) [e.g. sedoheptulose-7-phosphate, ribulose-5-phosphate, ribose-5-phosphate and erythrose-4-phosphate] were significantly accumulated by the addition of acetate, indicating the possibility that acetic acid slows down the flux of the pathway. Accordingly, a gene encoding a PPP-related enzyme, transaldolase or transketolase, was overexpressed in the xylose-fermenting yeast, which successfully conferred increased ethanol productivity in the presence of acetic and formic acid. Our metabolomic approach revealed one of the molecular events underlying the response to acetic acid and focuses attention on the non-oxidative PPP as a target for metabolic engineering. An important challenge for metabolic engineering is identification of gene targets that have material importance. This study has demonstrated that metabolomics is a powerful tool to develop rational strategies to confer tolerance to stress through genetic engineering.
AbstractList The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the production of bio-ethanol. Weak organic acids such as acetic and formic acids are necessarily released during the pretreatment (i.e. solubilization and hydrolysis) of lignocelluloses, which negatively affect microbial growth and ethanol production. However, since the mode of toxicity is complicated, genetic engineering strategies addressing yeast tolerance to weak organic acids have been rare. Thus, enhanced basic research is expected to identify target genes for improved weak acid tolerance. In this study, the effect of acetic acid on xylose fermentation was analyzed by examining metabolite profiles in a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Metabolome analysis revealed that metabolites involved in the non-oxidative pentose phosphate pathway (PPP) [e.g. sedoheptulose-7-phosphate, ribulose-5-phosphate, ribose-5-phosphate and erythrose-4-phosphate] were significantly accumulated by the addition of acetate, indicating the possibility that acetic acid slows down the flux of the pathway. Accordingly, a gene encoding a PPP-related enzyme, transaldolase or transketolase, was overexpressed in the xylose-fermenting yeast, which successfully conferred increased ethanol productivity in the presence of acetic and formic acid. Our metabolomic approach revealed one of the molecular events underlying the response to acetic acid and focuses attention on the non-oxidative PPP as a target for metabolic engineering. An important challenge for metabolic engineering is identification of gene targets that have material importance. This study has demonstrated that metabolomics is a powerful tool to develop rational strategies to confer tolerance to stress through genetic engineering.
The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the production of bio-ethanol. Weak organic acids such as acetic and formic acids are necessarily released during the pretreatment (i.e. solubilization and hydrolysis) of lignocelluloses, which negatively affect microbial growth and ethanol production. However, since the mode of toxicity is complicated, genetic engineering strategies addressing yeast tolerance to weak organic acids have been rare. Thus, enhanced basic research is expected to identify target genes for improved weak acid tolerance. In this study, the effect of acetic acid on xylose fermentation was analyzed by examining metabolite profiles in a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Metabolome analysis revealed that metabolites involved in the non-oxidative pentose phosphate pathway (PPP) [e.g. sedoheptulose-7-phosphate, ribulose-5-phosphate, ribose-5-phosphate and erythrose-4-phosphate] were significantly accumulated by the addition of acetate, indicating the possibility that acetic acid slows down the flux of the pathway. Accordingly, a gene encoding a PPP-related enzyme, transaldolase or transketolase, was overexpressed in the xylose-fermenting yeast, which successfully conferred increased ethanol productivity in the presence of acetic and formic acid. Our metabolomic approach revealed one of the molecular events underlying the response to acetic acid and focuses attention on the non-oxidative PPP as a target for metabolic engineering. An important challenge for metabolic engineering is identification of gene targets that have material importance. This study has demonstrated that metabolomics is a powerful tool to develop rational strategies to confer tolerance to stress through genetic engineering.
BACKGROUND: The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the production of bio-ethanol. Weak organic acids such as acetic and formic acids are necessarily released during the pretreatment (i.e. solubilization and hydrolysis) of lignocelluloses, which negatively affect microbial growth and ethanol production. However, since the mode of toxicity is complicated, genetic engineering strategies addressing yeast tolerance to weak organic acids have been rare. Thus, enhanced basic research is expected to identify target genes for improved weak acid tolerance. RESULTS: In this study, the effect of acetic acid on xylose fermentation was analyzed by examining metabolite profiles in a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Metabolome analysis revealed that metabolites involved in the non-oxidative pentose phosphate pathway (PPP) [e.g. sedoheptulose-7-phosphate, ribulose-5-phosphate, ribose-5-phosphate and erythrose-4-phosphate] were significantly accumulated by the addition of acetate, indicating the possibility that acetic acid slows down the flux of the pathway. Accordingly, a gene encoding a PPP-related enzyme, transaldolase or transketolase, was overexpressed in the xylose-fermenting yeast, which successfully conferred increased ethanol productivity in the presence of acetic and formic acid. CONCLUSIONS: Our metabolomic approach revealed one of the molecular events underlying the response to acetic acid and focuses attention on the non-oxidative PPP as a target for metabolic engineering. An important challenge for metabolic engineering is identification of gene targets that have material importance. This study has demonstrated that metabolomics is a powerful tool to develop rational strategies to confer tolerance to stress through genetic engineering.
Abstract Background The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the production of bio-ethanol. Weak organic acids such as acetic and formic acids are necessarily released during the pretreatment (i.e. solubilization and hydrolysis) of lignocelluloses, which negatively affect microbial growth and ethanol production. However, since the mode of toxicity is complicated, genetic engineering strategies addressing yeast tolerance to weak organic acids have been rare. Thus, enhanced basic research is expected to identify target genes for improved weak acid tolerance. Results In this study, the effect of acetic acid on xylose fermentation was analyzed by examining metabolite profiles in a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Metabolome analysis revealed that metabolites involved in the non-oxidative pentose phosphate pathway (PPP) [e.g. sedoheptulose-7-phosphate, ribulose-5-phosphate, ribose-5-phosphate and erythrose-4-phosphate] were significantly accumulated by the addition of acetate, indicating the possibility that acetic acid slows down the flux of the pathway. Accordingly, a gene encoding a PPP-related enzyme, transaldolase or transketolase, was overexpressed in the xylose-fermenting yeast, which successfully conferred increased ethanol productivity in the presence of acetic and formic acid. Conclusions Our metabolomic approach revealed one of the molecular events underlying the response to acetic acid and focuses attention on the non-oxidative PPP as a target for metabolic engineering. An important challenge for metabolic engineering is identification of gene targets that have material importance. This study has demonstrated that metabolomics is a powerful tool to develop rational strategies to confer tolerance to stress through genetic engineering.
The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the production of bio-ethanol. Weak organic acids such as acetic and formic acids are necessarily released during the pretreatment (i.e. solubilization and hydrolysis) of lignocelluloses, which negatively affect microbial growth and ethanol production. However, since the mode of toxicity is complicated, genetic engineering strategies addressing yeast tolerance to weak organic acids have been rare. Thus, enhanced basic research is expected to identify target genes for improved weak acid tolerance.BACKGROUNDThe development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the production of bio-ethanol. Weak organic acids such as acetic and formic acids are necessarily released during the pretreatment (i.e. solubilization and hydrolysis) of lignocelluloses, which negatively affect microbial growth and ethanol production. However, since the mode of toxicity is complicated, genetic engineering strategies addressing yeast tolerance to weak organic acids have been rare. Thus, enhanced basic research is expected to identify target genes for improved weak acid tolerance.In this study, the effect of acetic acid on xylose fermentation was analyzed by examining metabolite profiles in a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Metabolome analysis revealed that metabolites involved in the non-oxidative pentose phosphate pathway (PPP) [e.g. sedoheptulose-7-phosphate, ribulose-5-phosphate, ribose-5-phosphate and erythrose-4-phosphate] were significantly accumulated by the addition of acetate, indicating the possibility that acetic acid slows down the flux of the pathway. Accordingly, a gene encoding a PPP-related enzyme, transaldolase or transketolase, was overexpressed in the xylose-fermenting yeast, which successfully conferred increased ethanol productivity in the presence of acetic and formic acid.RESULTSIn this study, the effect of acetic acid on xylose fermentation was analyzed by examining metabolite profiles in a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Metabolome analysis revealed that metabolites involved in the non-oxidative pentose phosphate pathway (PPP) [e.g. sedoheptulose-7-phosphate, ribulose-5-phosphate, ribose-5-phosphate and erythrose-4-phosphate] were significantly accumulated by the addition of acetate, indicating the possibility that acetic acid slows down the flux of the pathway. Accordingly, a gene encoding a PPP-related enzyme, transaldolase or transketolase, was overexpressed in the xylose-fermenting yeast, which successfully conferred increased ethanol productivity in the presence of acetic and formic acid.Our metabolomic approach revealed one of the molecular events underlying the response to acetic acid and focuses attention on the non-oxidative PPP as a target for metabolic engineering. An important challenge for metabolic engineering is identification of gene targets that have material importance. This study has demonstrated that metabolomics is a powerful tool to develop rational strategies to confer tolerance to stress through genetic engineering.CONCLUSIONSOur metabolomic approach revealed one of the molecular events underlying the response to acetic acid and focuses attention on the non-oxidative PPP as a target for metabolic engineering. An important challenge for metabolic engineering is identification of gene targets that have material importance. This study has demonstrated that metabolomics is a powerful tool to develop rational strategies to confer tolerance to stress through genetic engineering.
ArticleNumber 2
Audience Academic
Author Ishii, Jun
Sanda, Tomoya
Kondo, Akihiko
Hasunuma, Tomohisa
Yoshimura, Kazuya
Yamada, Ryosuke
AuthorAffiliation 2 Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
1 Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
AuthorAffiliation_xml – name: 2 Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
– name: 1 Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
Author_xml – sequence: 1
  givenname: Tomohisa
  surname: Hasunuma
  fullname: Hasunuma, Tomohisa
– sequence: 2
  givenname: Tomoya
  surname: Sanda
  fullname: Sanda, Tomoya
– sequence: 3
  givenname: Ryosuke
  surname: Yamada
  fullname: Yamada, Ryosuke
– sequence: 4
  givenname: Kazuya
  surname: Yoshimura
  fullname: Yoshimura, Kazuya
– sequence: 5
  givenname: Jun
  surname: Ishii
  fullname: Ishii, Jun
– sequence: 6
  givenname: Akihiko
  surname: Kondo
  fullname: Kondo, Akihiko
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21219616$$D View this record in MEDLINE/PubMed
BookMark eNqFU8luFDEQbaEgssCVI7LggDh08NbbBWkUsUQKQiJwtmx39cRRtx1sT8j8Dl9KNZNEmUCE-mCr_N6rqlfV-8WODx6K4jmjh4y19Vsmm6rkbdWVjJb8UbF3G9i5c98t9lM6p5Q1bSOeFLuccdbVrN4rfn2GrE0YnSUXOp_91GsCfuk8QHR-SYxO0JPgybSBhcnZRGzwA8REtIWMRO17MoQ4zVfrepLDCFF7C3gjmkSwYTLOa5_J1XoMCUpkT-DznCHlqJ0nYSCn2tozHcO0toA5IMKlS07D0-LxoMcEz67Pg-L7h_ffjj6VJ18-Hh8tTkrTiC6XzcC7xgotBVDeDkYYyaDvehha3gIwKkVvmK1YZQ2nltm64RL9aCQTHYbEQXG80e2DPlcX0U06rlXQTv0JhLhUOmK_IyhZ9Q3FrLxpqaz7ru25MZ2knEJlasx9ULzbaF2szAS9xWajHrdEt1-8O1PLcKkE5VUrJAosNgLGhQcEtl_QYzXPW83zVoyquaHX10XE8GMFKavJJQvjqD2EVVIdw-orQev_IlvZSFFVlCHy5T3keVhFj3NRHeVctLVsEfRqA1pqNMv5IWCJdpZUC_S8qlvcP0Qd_gOFXw-4Srjmg8P4FuHNFgExGa7yUq9SUsenX7exL-4O4Na4m81HgNwAbAwpRRiUdVlnF2Y73Tg7OP9gf3t6eI92o_wA4TenLSeG
CitedBy_id crossref_primary_10_1016_j_tibtech_2013_10_003
crossref_primary_10_1002_yea_3082
crossref_primary_10_1016_j_rser_2019_109353
crossref_primary_10_1016_j_jbiosc_2017_03_004
crossref_primary_10_1007_s00449_018_1967_3
crossref_primary_10_1016_j_jbiosc_2017_05_015
crossref_primary_10_1021_es201648g
crossref_primary_10_1186_1754_6834_6_16
crossref_primary_10_3389_fgene_2019_00683
crossref_primary_10_1186_s13068_015_0329_5
crossref_primary_10_1007_s10295_013_1293_3
crossref_primary_10_1007_s00253_015_7094_z
crossref_primary_10_1093_femsyr_foy011
crossref_primary_10_1002_biot_201800704
crossref_primary_10_1016_j_jprot_2015_09_001
crossref_primary_10_1021_acs_jafc_2c04160
crossref_primary_10_1371_journal_pone_0188385
crossref_primary_10_1016_j_biotechadv_2013_05_002
crossref_primary_10_1007_s11274_019_2775_x
crossref_primary_10_5650_oleoscience_14_95
crossref_primary_10_1186_s13568_016_0210_3
crossref_primary_10_1186_s12934_014_0151_y
crossref_primary_10_1002_bit_24992
crossref_primary_10_1039_C7RA04049K
crossref_primary_10_1371_journal_pone_0161448
crossref_primary_10_1007_s00294_022_01237_z
crossref_primary_10_1016_j_biortech_2015_01_097
crossref_primary_10_1186_s13068_020_01833_6
crossref_primary_10_1038_s41598_023_39661_x
crossref_primary_10_1186_s12934_016_0465_z
crossref_primary_10_3390_fermentation8120721
crossref_primary_10_1007_s00253_014_5902_5
crossref_primary_10_1016_j_biortech_2016_03_158
crossref_primary_10_1016_j_ymben_2017_08_002
crossref_primary_10_1016_j_biortech_2013_09_109
crossref_primary_10_3109_07388551_2015_1128877
crossref_primary_10_1071_CH16022
crossref_primary_10_1186_s12934_018_0998_4
crossref_primary_10_1186_s13068_017_0781_5
crossref_primary_10_1186_s12864_019_5959_8
crossref_primary_10_1016_j_biotechadv_2015_08_004
crossref_primary_10_1038_s41598_023_48408_7
crossref_primary_10_1007_s11306_018_1386_0
crossref_primary_10_1016_j_biortech_2018_04_010
crossref_primary_10_1007_s11274_017_2259_9
crossref_primary_10_1016_j_mimet_2013_04_006
crossref_primary_10_1016_j_biotechadv_2011_10_011
crossref_primary_10_1016_j_ymben_2012_03_004
crossref_primary_10_1093_nar_gkv358
crossref_primary_10_1007_s00253_015_6595_0
crossref_primary_10_1186_s12934_015_0242_4
crossref_primary_10_1371_journal_pone_0128417
crossref_primary_10_1002_bbb_2042
crossref_primary_10_1007_s00449_018_2015_z
crossref_primary_10_1007_s10570_019_02402_3
crossref_primary_10_1016_j_ab_2017_12_005
crossref_primary_10_1016_j_jbiosc_2023_10_004
crossref_primary_10_1016_j_tibtech_2019_07_009
crossref_primary_10_1016_j_ymben_2014_02_008
crossref_primary_10_1016_j_jbiosc_2018_08_013
crossref_primary_10_3389_fbioe_2017_00081
crossref_primary_10_1016_j_biortech_2011_06_028
crossref_primary_10_1016_j_jbiotec_2012_10_017
crossref_primary_10_1016_j_cbpa_2015_06_004
crossref_primary_10_1016_j_ymben_2015_02_004
crossref_primary_10_1021_ac302881e
crossref_primary_10_1080_1343943X_2017_1389614
crossref_primary_10_1089_ind_2013_0004
crossref_primary_10_1007_s00253_012_4376_6
crossref_primary_10_1002_advs_202100199
crossref_primary_10_1007_s00253_015_7167_z
crossref_primary_10_1089_ind_2021_0029
crossref_primary_10_1186_s13068_015_0258_3
crossref_primary_10_1002_bit_27243
crossref_primary_10_1186_s13068_015_0421_x
crossref_primary_10_1186_s40538_014_0022_0
crossref_primary_10_1016_j_biortech_2021_125200
crossref_primary_10_1186_1475_2859_10_5
crossref_primary_10_1007_s00253_014_6158_9
crossref_primary_10_1271_bbb_110482
crossref_primary_10_1371_journal_pone_0148635
crossref_primary_10_1016_j_jbiosc_2017_08_001
crossref_primary_10_1016_j_ymben_2015_04_005
crossref_primary_10_1007_s12010_013_0504_8
crossref_primary_10_3390_metabo13101052
crossref_primary_10_1016_j_jbiotec_2016_04_005
crossref_primary_10_1186_1475_2859_11_156
crossref_primary_10_1002_bit_26322
crossref_primary_10_1016_j_lwt_2022_114035
crossref_primary_10_1007_s00253_019_10226_1
crossref_primary_10_1007_s10295_018_2053_1
crossref_primary_10_1186_s12934_014_0145_9
crossref_primary_10_1007_s00253_022_11987_y
crossref_primary_10_1002_biot_201300553
crossref_primary_10_1016_j_biortech_2014_08_054
crossref_primary_10_1016_j_tibtech_2014_03_003
crossref_primary_10_1186_1756_0500_6_201
crossref_primary_10_1007_s12010_019_03187_8
crossref_primary_10_1016_j_copbio_2014_10_001
crossref_primary_10_1016_j_copbio_2014_12_012
crossref_primary_10_1016_j_febslet_2012_02_008
crossref_primary_10_1007_s10529_014_1581_7
crossref_primary_10_1016_j_biortech_2016_09_130
crossref_primary_10_1016_j_procbio_2012_05_004
crossref_primary_10_1016_j_procbio_2014_07_017
crossref_primary_10_1186_s13068_016_0583_1
crossref_primary_10_3389_fmicb_2018_00760
crossref_primary_10_1007_s12010_012_9920_4
crossref_primary_10_1016_j_biortech_2021_126071
crossref_primary_10_1021_jf305322t
crossref_primary_10_1007_s13399_019_00529_8
crossref_primary_10_1016_j_synbio_2020_01_001
crossref_primary_10_1016_j_copbio_2011_10_014
crossref_primary_10_1007_s12257_020_0020_y
crossref_primary_10_1007_s11306_014_0766_3
crossref_primary_10_3390_foods10102247
crossref_primary_10_1371_journal_pone_0069005
crossref_primary_10_1186_s12866_015_0373_0
crossref_primary_10_1038_nrmicro_2016_32
crossref_primary_10_1271_bbb_130093
crossref_primary_10_1002_biot_201500613
crossref_primary_10_1016_j_biortech_2012_01_161
crossref_primary_10_1016_j_jbiosc_2015_02_011
crossref_primary_10_1186_1475_2859_12_113
crossref_primary_10_1016_j_tim_2011_07_005
crossref_primary_10_1371_journal_pone_0135626
crossref_primary_10_1039_C4MT00275J
crossref_primary_10_1007_s00253_012_4597_8
crossref_primary_10_1016_j_jbiosc_2016_12_009
crossref_primary_10_1002_yea_3854
crossref_primary_10_1007_s10295_017_1969_1
crossref_primary_10_1016_j_jbiosc_2012_12_007
crossref_primary_10_1002_jsfa_11975
crossref_primary_10_1007_s00253_018_9216_x
crossref_primary_10_1016_j_procbio_2021_01_024
crossref_primary_10_1016_j_synbio_2022_11_001
crossref_primary_10_1093_jxb_ert134
crossref_primary_10_3390_metabo12030257
crossref_primary_10_1016_j_biortech_2020_123726
crossref_primary_10_1186_1475_2859_10_69
crossref_primary_10_1016_j_jbiotec_2012_05_021
crossref_primary_10_1007_s10295_014_1431_6
crossref_primary_10_1016_j_jbiosc_2014_09_004
crossref_primary_10_1271_kagakutoseibutsu_53_689
crossref_primary_10_1093_femsyr_fox061
crossref_primary_10_1186_s12934_021_01596_1
crossref_primary_10_1007_s10646_015_1543_4
crossref_primary_10_1186_s12934_015_0240_6
crossref_primary_10_1007_s10295_011_1076_7
crossref_primary_10_3389_fenrg_2022_884582
crossref_primary_10_4028_www_scientific_net_AMR_641_642_919
crossref_primary_10_1016_j_lwt_2015_12_046
crossref_primary_10_1186_1475_2859_13_64
crossref_primary_10_1007_s00253_012_3914_6
crossref_primary_10_1016_j_jbiosc_2013_05_027
crossref_primary_10_1186_s12934_018_0927_6
crossref_primary_10_1016_j_biortech_2016_02_124
crossref_primary_10_1007_s00253_019_09993_8
crossref_primary_10_1016_j_jbiosc_2011_12_013
crossref_primary_10_1002_bit_27560
crossref_primary_10_1186_s13068_019_1643_0
crossref_primary_10_1016_j_bjm_2016_11_011
crossref_primary_10_1002_biot_201100335
crossref_primary_10_1016_j_jbiosc_2021_09_015
crossref_primary_10_1002_biot_201900492
crossref_primary_10_1111_j_1567_1364_2011_00771_x
crossref_primary_10_2478_aoas_2020_0081
crossref_primary_10_1038_s41598_019_41863_1
crossref_primary_10_1038_s41598_022_26686_x
crossref_primary_10_1627_jpi_55_236
crossref_primary_10_3390_jof11030177
crossref_primary_10_1111_j_1567_1364_2011_00775_x
crossref_primary_10_1111_j_1567_1364_2011_00779_x
crossref_primary_10_1186_s13068_021_01935_9
crossref_primary_10_1186_s13568_015_0175_7
crossref_primary_10_1016_j_synbio_2024_04_006
crossref_primary_10_1016_j_biortech_2016_03_054
crossref_primary_10_1016_j_jbiosc_2013_07_007
crossref_primary_10_1002_aic_17750
crossref_primary_10_1002_wene_49
crossref_primary_10_1016_j_biortech_2012_08_104
crossref_primary_10_1016_j_copbio_2016_11_006
crossref_primary_10_1007_s12010_020_03324_8
crossref_primary_10_1016_j_ces_2020_115933
crossref_primary_10_1016_j_jbiotec_2011_06_025
crossref_primary_10_1016_j_ymben_2017_04_003
Cites_doi 10.1016/j.copbio.2006.05.008
10.1002/yea.320010108
10.1002/yea.1578
10.1007/s11306-008-0116-4
10.1007/s00253-009-2101-x
10.1007/s00253-004-1798-9
10.1128/AEM.71.12.8249-8256.2005
10.1016/j.biortech.2003.08.011
10.1016/S0141-0229(03)00214-X
10.1002/yea.1370
10.1021/ac0202684
10.1128/AEM.70.6.3681-3686.2004
10.1111/j.1365-2672.1992.tb04990.x
10.1007/s00438-009-0461-7
10.1111/j.1567-1364.2009.00487.x
10.1128/AEM.70.4.2307-2317.2004
10.1007/s10482-006-9085-7
10.1016/j.enzmictec.2008.03.001
10.1007/s00253-005-0142-3
10.1128/AEM.67.3.1163-1170.2001
10.1128/AEM.66.8.3381-3386.2000
10.1128/AEM.01781-07
10.1016/0032-9592(93)80041-E
10.1016/S0960-8524(99)00161-3
10.1007/BF02921515
10.1128/aem.61.12.4184-4190.1995
10.1016/j.tibtech.2006.10.004
10.1007/s002530100742
10.1007/s12010-007-9063-1
10.1016/S0141-0229(98)00101-X
10.1007/s00253-009-2198-y
10.1016/j.mib.2009.07.004
10.1021/jf062330u
10.1093/jb/mvp028
10.1128/AEM.69.2.740-746.2003
10.1385/ABAB:129:1:278
10.1016/j.biotechadv.2007.04.001
10.1002/jctb.1676
10.1007/s00253-007-1029-2
10.1021/ac900999t
10.1126/science.1114736
10.1016/j.jbiotec.2009.05.001
10.1016/j.mib.2008.04.002
10.1007/s00253-006-0575-3
10.1128/MMBR.00025-07
ContentType Journal Article
Copyright COPYRIGHT 2011 BioMed Central Ltd.
2011 Hasunuma et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright ©2011 Hasunuma et al; licensee BioMed Central Ltd. 2011 Hasunuma et al; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2011 BioMed Central Ltd.
– notice: 2011 Hasunuma et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright ©2011 Hasunuma et al; licensee BioMed Central Ltd. 2011 Hasunuma et al; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QL
7T7
7U9
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
7X8
7QO
7U7
M7N
5PM
DOA
DOI 10.1186/1475-2859-10-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
Biotechnology Research Abstracts
Toxicology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
Toxicology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
DatabaseTitleList MEDLINE




Publicly Available Content Database
MEDLINE - Academic
Biotechnology Research Abstracts

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1475-2859
EndPage 2
ExternalDocumentID oai_doaj_org_article_45d70739278046d98d2bb94020e5b6fb
PMC3025834
oai_biomedcentral_com_1475_2859_10_2
2503452461
A247568121
21219616
10_1186_1475_2859_10_2
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GroupedDBID ---
0R~
123
29M
2VQ
2WC
4.4
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
A8Z
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
IPNFZ
ISR
ITC
KQ8
LK8
M1P
M48
M7P
MM.
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RIG
RNS
ROL
RPM
RSV
SCM
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
3V.
7QL
7T7
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
7X8
7QO
7U7
M7N
-58
-5G
-A0
-BR
ABVAZ
ACRMQ
ADINQ
AFGXO
AFNRJ
C24
ESTFP
FRP
5PM
PUEGO
ID FETCH-LOGICAL-b739t-7f297c3a43e028fb3b41ed9def828ee1043db1c515cb20c1c672478774139cb23
IEDL.DBID RBZ
ISSN 1475-2859
IngestDate Wed Aug 27 01:31:29 EDT 2025
Thu Aug 21 18:30:18 EDT 2025
Wed May 22 07:17:23 EDT 2024
Thu Jul 10 23:41:29 EDT 2025
Thu Jul 10 23:01:10 EDT 2025
Fri Jul 25 19:25:33 EDT 2025
Tue Jun 17 21:09:53 EDT 2025
Tue Jun 10 20:28:52 EDT 2025
Fri Jun 27 04:34:50 EDT 2025
Mon Jul 21 05:48:41 EDT 2025
Thu Apr 24 22:55:45 EDT 2025
Tue Jul 01 02:30:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b739t-7f297c3a43e028fb3b41ed9def828ee1043db1c515cb20c1c672478774139cb23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink http://dx.doi.org/10.1186/1475-2859-10-2
PMID 21219616
PQID 902238648
PQPubID 42699
ParticipantIDs doaj_primary_oai_doaj_org_article_45d70739278046d98d2bb94020e5b6fb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3025834
biomedcentral_primary_oai_biomedcentral_com_1475_2859_10_2
proquest_miscellaneous_918045306
proquest_miscellaneous_847435501
proquest_journals_902238648
gale_infotracmisc_A247568121
gale_infotracacademiconefile_A247568121
gale_incontextgauss_ISR_A247568121
pubmed_primary_21219616
crossref_citationtrail_10_1186_1475_2859_10_2
crossref_primary_10_1186_1475_2859_10_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-01-10
PublicationDateYYYYMMDD 2011-01-10
PublicationDate_xml – month: 01
  year: 2011
  text: 2011-01-10
  day: 10
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Microbial cell factories
PublicationTitleAlternate Microb Cell Fact
PublicationYear 2011
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References AJA van Maris (494_CR8) 2007; 108
A Petersson (494_CR21) 2006; 23
E Nevoigt (494_CR4) 2008; 72
S Larsson (494_CR27) 1999; 24
494_CR43
R Yamada (494_CR50) 2010; 85
CF Wahlbom (494_CR34) 2003; 69
AJA van Maris (494_CR11) 2006; 90
TH Aarnio (494_CR35) 1991; 27
M Tajima (494_CR49) 1985; 1
R Baran (494_CR23) 2009; 12
S Katahira (494_CR42) 2008; 43
A Eliasson (494_CR6) 2000; 66
B Laadan (494_CR18) 2008; 25
DE Garcia (494_CR24) 2008; 11
JRM Almeida (494_CR10) 2007; 82
JB Russel (494_CR16) 1992; 73
TW Jeffries (494_CR7) 2006; 17
E Bellissimi (494_CR28) 2009; 9
MH Metzger (494_CR36) 1994; 42
BCH Chu (494_CR5) 2007; 25
K Karhumaa (494_CR26) 2007; 73
A Matsushika (494_CR9) 2009; 84
C Martin (494_CR14) 2007; 137
Y-S Jin (494_CR31) 2005; 71
B Hahn-Hägerdal (494_CR1) 2006; 24
XQ Zhao (494_CR38) 2009; 144
E Palmqvist (494_CR12) 2000; 74
J Ishii (494_CR41) 2009; 145
SS Helle (494_CR15) 2004; 92
L Olsson (494_CR3) 1993; 28
J-P Pitkänen (494_CR32) 2005; 67
S Helle (494_CR29) 2003; 33
M Sonderegger (494_CR30) 2004; 70
S Yoshida (494_CR25) 2008; 74
M Walfridsson (494_CR37) 1995; 61
AB Canelas (494_CR46) 2008; 4
S Larsson (494_CR19) 2001; 57
W Pongsuwan (494_CR48) 2007; 55
MP García-Aparicio (494_CR13) 2006; 129
SW Gorsich (494_CR17) 2006; 71
PM Bruinenberg (494_CR44) 1983; 129
MH Toivari (494_CR33) 2004; 70
ZL Liu (494_CR39) 2009; 282
M Oldiges (494_CR22) 2007; 76
J Sambrook (494_CR40) 1989
AB Canelas (494_CR45) 2009; 81
T Soga (494_CR47) 2002; 74
S Larsson (494_CR20) 2001; 67
AJ Ragauskas (494_CR2) 2006; 311
16439654 - Science. 2006 Jan 27;311(5760):484-9
19572128 - Appl Microbiol Biotechnol. 2009 Aug;84(1):37-53
16652391 - Yeast. 2006 Apr 30;23(6):455-64
17050014 - Trends Biotechnol. 2006 Dec;24(12):549-56
8534086 - Appl Environ Microbiol. 1995 Dec;61(12):4184-90
7765773 - Appl Microbiol Biotechnol. 1994 Nov;42(2-3):319-25
16915647 - Appl Biochem Biotechnol. 2006 Spring;129-132:278-88
19653633 - Anal Chem. 2009 Sep 1;81(17):7379-89
18302314 - Yeast. 2008 Mar;25(3):191-8
11229906 - Appl Environ Microbiol. 2001 Mar;67(3):1163-70
6684148 - J Gen Microbiol. 1983 Apr;129(4):965-71
10919795 - Appl Environ Microbiol. 2000 Aug;66(8):3381-6
18538626 - Curr Opin Microbiol. 2008 Jun;11(3):233-9
2851900 - Yeast. 1985 Sep;1(1):67-77
12510742 - Anal Chem. 2002 Dec 15;74(24):6224-9
16222531 - Appl Microbiol Biotechnol. 2006 Jul;71(3):339-49
17227047 - J Agric Food Chem. 2007 Jan 24;55(2):231-6
17846724 - Adv Biochem Eng Biotechnol. 2007;108:179-204
11693915 - Appl Microbiol Biotechnol. 2001 Oct;57(1-2):167-74
18478400 - Appl Biochem Biotechnol. 2007 Apr;137-140(1-12):339-52
18772282 - Microbiol Mol Biol Rev. 2008 Sep;72(3):379-412
19446584 - J Biotechnol. 2009 Oct 12;144(1):23-30
16713243 - Curr Opin Biotechnol. 2006 Jun;17(3):320-6
17033882 - Antonie Van Leeuwenhoek. 2006 Nov;90(4):391-418
17665194 - Appl Microbiol Biotechnol. 2007 Sep;76(3):495-511
16977466 - Appl Microbiol Biotechnol. 2007 Jan;73(5):1039-46
19695948 - Curr Opin Microbiol. 2009 Oct;12(5):547-52
14693449 - Bioresour Technol. 2004 Apr;92(2):163-71
17524590 - Biotechnol Adv. 2007 Sep-Oct;25(5):425-41
18310411 - Appl Environ Microbiol. 2008 May;74(9):2787-96
19707752 - Appl Microbiol Biotechnol. 2010 Feb;85(5):1491-8
15066826 - Appl Environ Microbiol. 2004 Apr;70(4):2307-17
19517136 - Mol Genet Genomics. 2009 Sep;282(3):233-44
19237442 - J Biochem. 2009 Jun;145(6):701-8
19416101 - FEMS Yeast Res. 2009 May;9(3):358-64
12570990 - Appl Environ Microbiol. 2003 Feb;69(2):740-6
15184173 - Appl Environ Microbiol. 2004 Jun;70(6):3681-6
15630585 - Appl Microbiol Biotechnol. 2005 Jun;67(6):827-37
16332810 - Appl Environ Microbiol. 2005 Dec;71(12):8249-56
References_xml – volume: 108
  start-page: 179
  year: 2007
  ident: 494_CR8
  publication-title: Adv Biochem Eng Biotechnol
– volume: 17
  start-page: 320
  year: 2006
  ident: 494_CR7
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2006.05.008
– volume: 1
  start-page: 67
  year: 1985
  ident: 494_CR49
  publication-title: Yeast
  doi: 10.1002/yea.320010108
– volume: 25
  start-page: 191
  year: 2008
  ident: 494_CR18
  publication-title: Yeast
  doi: 10.1002/yea.1578
– volume: 4
  start-page: 226
  year: 2008
  ident: 494_CR46
  publication-title: Metabolomics
  doi: 10.1007/s11306-008-0116-4
– volume: 84
  start-page: 37
  year: 2009
  ident: 494_CR9
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-009-2101-x
– volume: 67
  start-page: 827
  year: 2005
  ident: 494_CR32
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-004-1798-9
– volume: 71
  start-page: 8249
  year: 2005
  ident: 494_CR31
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.71.12.8249-8256.2005
– volume: 92
  start-page: 163
  year: 2004
  ident: 494_CR15
  publication-title: Bioresouce Technol
  doi: 10.1016/j.biortech.2003.08.011
– volume: 33
  start-page: 786
  year: 2003
  ident: 494_CR29
  publication-title: Enzyme Microb Tech
  doi: 10.1016/S0141-0229(03)00214-X
– volume-title: Molecular cloning: a laboratory manual
  year: 1989
  ident: 494_CR40
– volume: 23
  start-page: 455
  year: 2006
  ident: 494_CR21
  publication-title: Yeast
  doi: 10.1002/yea.1370
– volume: 74
  start-page: 6224
  year: 2002
  ident: 494_CR47
  publication-title: Anal Chem
  doi: 10.1021/ac0202684
– volume: 70
  start-page: 3681
  year: 2004
  ident: 494_CR33
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.70.6.3681-3686.2004
– volume: 73
  start-page: 363
  year: 1992
  ident: 494_CR16
  publication-title: J Appl Bacteriol
  doi: 10.1111/j.1365-2672.1992.tb04990.x
– volume: 129
  start-page: 965
  year: 1983
  ident: 494_CR44
  publication-title: J Gen Microbiol
– volume: 282
  start-page: 233
  year: 2009
  ident: 494_CR39
  publication-title: Mol Genet Genomics
  doi: 10.1007/s00438-009-0461-7
– volume: 9
  start-page: 358
  year: 2009
  ident: 494_CR28
  publication-title: FEMS Yeast Res
  doi: 10.1111/j.1567-1364.2009.00487.x
– volume: 70
  start-page: 2307
  year: 2004
  ident: 494_CR30
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.70.4.2307-2317.2004
– volume: 90
  start-page: 391
  year: 2006
  ident: 494_CR11
  publication-title: Antonie van Leeuwenhoek
  doi: 10.1007/s10482-006-9085-7
– volume: 43
  start-page: 115
  year: 2008
  ident: 494_CR42
  publication-title: Enzyme Microb Technol
  doi: 10.1016/j.enzmictec.2008.03.001
– volume: 71
  start-page: 339
  year: 2006
  ident: 494_CR17
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-005-0142-3
– volume: 67
  start-page: 1163
  year: 2001
  ident: 494_CR20
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.67.3.1163-1170.2001
– volume: 66
  start-page: 3381
  year: 2000
  ident: 494_CR6
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.66.8.3381-3386.2000
– volume: 74
  start-page: 2787
  year: 2008
  ident: 494_CR25
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01781-07
– volume: 28
  start-page: 249
  year: 1993
  ident: 494_CR3
  publication-title: Process Biochem
  doi: 10.1016/0032-9592(93)80041-E
– volume: 74
  start-page: 25
  year: 2000
  ident: 494_CR12
  publication-title: Bioresouce Technol
  doi: 10.1016/S0960-8524(99)00161-3
– volume: 27
  start-page: 55
  year: 1991
  ident: 494_CR35
  publication-title: Appl Biochem Biotechnol
  doi: 10.1007/BF02921515
– volume: 42
  start-page: 319
  issue: 2-3
  year: 1994
  ident: 494_CR36
  publication-title: Appl Microbial Biotechnol
– volume: 61
  start-page: 4184
  year: 1995
  ident: 494_CR37
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.61.12.4184-4190.1995
– volume: 24
  start-page: 549
  year: 2006
  ident: 494_CR1
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2006.10.004
– volume: 57
  start-page: 167
  year: 2001
  ident: 494_CR19
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s002530100742
– volume: 137
  start-page: 339
  year: 2007
  ident: 494_CR14
  publication-title: Appl Biochem Biotechnol
  doi: 10.1007/s12010-007-9063-1
– volume: 24
  start-page: 151
  year: 1999
  ident: 494_CR27
  publication-title: Enzyme Microb Technol
  doi: 10.1016/S0141-0229(98)00101-X
– volume: 85
  start-page: 1491
  year: 2010
  ident: 494_CR50
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-009-2198-y
– volume: 12
  start-page: 547
  year: 2009
  ident: 494_CR23
  publication-title: Curr Opin Microbiol
  doi: 10.1016/j.mib.2009.07.004
– volume: 55
  start-page: 231
  year: 2007
  ident: 494_CR48
  publication-title: J Agric Food Chem
  doi: 10.1021/jf062330u
– volume: 145
  start-page: 701
  year: 2009
  ident: 494_CR41
  publication-title: J Biochem
  doi: 10.1093/jb/mvp028
– volume: 69
  start-page: 740
  year: 2003
  ident: 494_CR34
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.69.2.740-746.2003
– volume: 129
  start-page: 278
  year: 2006
  ident: 494_CR13
  publication-title: Appl Biochem Biotechnol
  doi: 10.1385/ABAB:129:1:278
– volume: 25
  start-page: 425
  year: 2007
  ident: 494_CR5
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2007.04.001
– volume: 82
  start-page: 340
  year: 2007
  ident: 494_CR10
  publication-title: J Chem Technol Biotechnol
  doi: 10.1002/jctb.1676
– volume: 76
  start-page: 495
  year: 2007
  ident: 494_CR22
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-007-1029-2
– volume: 81
  start-page: 7379
  year: 2009
  ident: 494_CR45
  publication-title: Anal Chem
  doi: 10.1021/ac900999t
– volume: 311
  start-page: 484
  year: 2006
  ident: 494_CR2
  publication-title: Science
  doi: 10.1126/science.1114736
– volume: 144
  start-page: 23
  year: 2009
  ident: 494_CR38
  publication-title: J Biotechnol
  doi: 10.1016/j.jbiotec.2009.05.001
– volume: 11
  start-page: 233
  year: 2008
  ident: 494_CR24
  publication-title: Curr Opin Microbiol
  doi: 10.1016/j.mib.2008.04.002
– volume: 73
  start-page: 1039
  year: 2007
  ident: 494_CR26
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-006-0575-3
– ident: 494_CR43
– volume: 72
  start-page: 379
  year: 2008
  ident: 494_CR4
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.00025-07
– reference: 2851900 - Yeast. 1985 Sep;1(1):67-77
– reference: 16915647 - Appl Biochem Biotechnol. 2006 Spring;129-132:278-88
– reference: 16713243 - Curr Opin Biotechnol. 2006 Jun;17(3):320-6
– reference: 19707752 - Appl Microbiol Biotechnol. 2010 Feb;85(5):1491-8
– reference: 19237442 - J Biochem. 2009 Jun;145(6):701-8
– reference: 19517136 - Mol Genet Genomics. 2009 Sep;282(3):233-44
– reference: 16222531 - Appl Microbiol Biotechnol. 2006 Jul;71(3):339-49
– reference: 16977466 - Appl Microbiol Biotechnol. 2007 Jan;73(5):1039-46
– reference: 17846724 - Adv Biochem Eng Biotechnol. 2007;108:179-204
– reference: 19416101 - FEMS Yeast Res. 2009 May;9(3):358-64
– reference: 17050014 - Trends Biotechnol. 2006 Dec;24(12):549-56
– reference: 8534086 - Appl Environ Microbiol. 1995 Dec;61(12):4184-90
– reference: 18538626 - Curr Opin Microbiol. 2008 Jun;11(3):233-9
– reference: 11693915 - Appl Microbiol Biotechnol. 2001 Oct;57(1-2):167-74
– reference: 17524590 - Biotechnol Adv. 2007 Sep-Oct;25(5):425-41
– reference: 19572128 - Appl Microbiol Biotechnol. 2009 Aug;84(1):37-53
– reference: 19446584 - J Biotechnol. 2009 Oct 12;144(1):23-30
– reference: 18302314 - Yeast. 2008 Mar;25(3):191-8
– reference: 17033882 - Antonie Van Leeuwenhoek. 2006 Nov;90(4):391-418
– reference: 12570990 - Appl Environ Microbiol. 2003 Feb;69(2):740-6
– reference: 12510742 - Anal Chem. 2002 Dec 15;74(24):6224-9
– reference: 17665194 - Appl Microbiol Biotechnol. 2007 Sep;76(3):495-511
– reference: 16332810 - Appl Environ Microbiol. 2005 Dec;71(12):8249-56
– reference: 16652391 - Yeast. 2006 Apr 30;23(6):455-64
– reference: 18310411 - Appl Environ Microbiol. 2008 May;74(9):2787-96
– reference: 19695948 - Curr Opin Microbiol. 2009 Oct;12(5):547-52
– reference: 6684148 - J Gen Microbiol. 1983 Apr;129(4):965-71
– reference: 18772282 - Microbiol Mol Biol Rev. 2008 Sep;72(3):379-412
– reference: 15066826 - Appl Environ Microbiol. 2004 Apr;70(4):2307-17
– reference: 11229906 - Appl Environ Microbiol. 2001 Mar;67(3):1163-70
– reference: 10919795 - Appl Environ Microbiol. 2000 Aug;66(8):3381-6
– reference: 18478400 - Appl Biochem Biotechnol. 2007 Apr;137-140(1-12):339-52
– reference: 19653633 - Anal Chem. 2009 Sep 1;81(17):7379-89
– reference: 14693449 - Bioresour Technol. 2004 Apr;92(2):163-71
– reference: 17227047 - J Agric Food Chem. 2007 Jan 24;55(2):231-6
– reference: 15630585 - Appl Microbiol Biotechnol. 2005 Jun;67(6):827-37
– reference: 15184173 - Appl Environ Microbiol. 2004 Jun;70(6):3681-6
– reference: 16439654 - Science. 2006 Jan 27;311(5760):484-9
– reference: 7765773 - Appl Microbiol Biotechnol. 1994 Nov;42(2-3):319-25
SSID ssj0017873
Score 2.3998568
Snippet The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the production of...
Background The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the...
Abstract Background: The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for...
BACKGROUND: The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the...
Abstract Background The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for...
SourceID doaj
pubmedcentral
biomedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2
SubjectTerms Acetic acid
Acetic Acid - pharmacology
Acids
Biofuels
Brewer's yeast
Drug tolerance
Enzymes
Ethanol
Ethanol - metabolism
Fermentation
Formates - pharmacology
Formic acid
Genetic aspects
Genetic Engineering
Hydrolysates
Hydrolysis
lignocellulose
metabolic engineering
Metabolic Networks and Pathways
Metabolic pathways
Metabolites
Metabolome
Metabolomics
Microbiology
Organic acids
Pentose Phosphate Pathway
Physiological aspects
Saccharomyces cerevisiae
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Solubilization
Stress
Toxicity
Transaldolase
Transaldolase - genetics
Transaldolase - metabolism
Transketolase
Transketolase - genetics
Transketolase - metabolism
Xylose
Xylose - metabolism
Yeasts
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAvAktyEJInKyu49hJuBVEVZDKgVKpN8uvwEq7SUWyovt3-kuZcbLLmqriwi3yTBR7ZjKekWc-E_Km9KWpisoyL7ln4CUNs01wzMwC7DhW1ioW0Zx-USfnxecLebFz1RfWhI3wwKPgDgvpSzxNyhEpR_m68rm1NWY9QVrVWPS-sOdtkqnp_ADMMJbWF6VkCNE2wTXySh1ux9AD5X_1uS-S7Smi-N_01TubVVpIubMzHT8g96eQkh6NS3lI7oT2Ebm3AzT4mFyfhgG0vZg7ilcQ_zJrGv7QKW5lnnYtXY5s2KncUxebAXtqHDY6UtN6ihEuPrq5p0O3CHgrR4Anaihm1ksb62ro1XrR9YHB27EYCb7Qx6soaNfQM-Ow06tbrsFDURfLjPu5CU_I-fHHbx9O2HQ7A7OgjoGVTV6XTphCBIhRGitswYOvfWggiQsB0jzhLXcQLzmbzxx3qswRCQhCGFHDkHhK9tquDc8JNVbJCPvjIICUnlsTbK2kEcJZLpo6I-8SJenLEYlDIzZ2SoGlatSwRg1ryHDyjLCNRrWbcM9xzQsd859K3eB_u-XffOc2zvdoIMls4gDYr57sV__LfjPyGs1LIxZHi8U-382q7_Wns6_6COQV8eE4zGliajqYuzNT7wSID-G7Es6DhBOchUvI-xsr1pOz6nUNcZyoVFFlhG6p-CLW37WhW_UaYhiIq-WM385Sc1ighAw0I8_Gv2IrGAiPwNFzoJTJ_5JILqW08x8R61xATF6J4sX_EPU-uTueCGAR5wHZG36uwksIKQf7KnqP34fMdE4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeLO0IAshcbK6jvMyF1QQVUEqB0qlvVl-pV1pNylNVtC_wy9lxusNa6pyizITxfbY80hmviHkTeUqXee1Ya7gjoGW1Mw03jI99WBxTCHLkERz_LU8Os2_zIpZzM3pY1rlRicGRe06i9_I9yUYG1GXef3-4gfDplH4czV20LhN7iByGW7qajbGWxz2oog4jbwu93leFQzx2lD1ZP8UuC8SuxTg-68r6S0rlWZQbpmkwwfkfvQl6cFa-A_JLd8-Ive2EAYfk9_HfgAxL-aWYu_hn_qK-r90ijbM0a6lyzUblij31IYqwJ5qixWOVLeOomuLl3bu6NAtPLbj8HBFNcWQemlCQg39BeF_7xk8HbKQ4A196EFBu4aeaIslXt3yClQTtSG_uJ9r_4ScHn76_vGIxbYMzFRCDqxqMllZoXPhwTlpjDA5904630D05j3Ed8IZbsFRsiabWm7LKkMIIPBdhIRb4inZabvWPydUm7IIeD8WPMfCcaO9kWWhhbCGi0ZOyLtESOpiDcGhEBQ7pcBUFUpYoYQVhDbZhLCNRJWNgOc454UKgU9dXuN_O_Jv3nMT5wfcIMlowo3u8kzFE69gPhX-Bs0Q4ql0snaZMRLDdV-YsjET8hq3l0IQjhazfM70qu_V55Nv6gDWKwDDcRhTZGo6GLvVsWgClg9xuxLOvYQTtIRNyLubXayilurVeKYmhI5UfBAT71rfrXoFzgs41MWU38wiOUywgNBzQp6tT8W4MOAXgYbnQKmS85KsXEpp5-cB5FyAM16L_MV_x71L7q6_8WNa5h7ZGS5X_iU4iYN5FVTBH5DEaoM
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELbQcoED4k3ZBVkIiVOgjvMyEkILYrUglQNLpb1ZfmW3UppA04rt3-GXMuMkbU1ZiVuUGSuxx56HPPMNIS9zm6siKXRkU2Yj0JIq0qUzkRo7sDg6FZlPopl8zU6nyZfz9Hyb_9QvYPvP0A77SU0X1eurn-v3cODf-QNfZG9YkqcRArGhTgF1fBOsUo7dDCbJ9kYBNqZPth94ewDH_fF_Vb5XgcHyuP772nvHfIWplTu26uQuudM7mfS42xX3yA1X3ye3d6AHH5DfE7cE-VczQ7Ep8S-1pm5Lp2jcLG1qOu_YsHa5pcaXB7ZUGSx9pKq2FH1efDQzS5dN5bBPh4MnqijG2nPtM23o1bpqWhfBaJ-eBF9ofXMK2pT0TBms_Wrma9BZ1PjE43am3EMyPfn0_eNp1PdriHTOxTLKy1jkhquEO_BaSs11wpwV1pUQ1jkHgR-3mhnwoIyOx4aZLI8RGwicGi7gFX9EDuqmdk8IVTpLPRCQAZcytUwrp0WWKs6NZrwUI_I2EJL80WFzSETLDikwVYkSlihhCTFPPCLRIFFpeiR0nHMlfURUZHv8rzb8w3eu4_yAGyT4G_-iWVzIXhVImE-O96MxYj9lVhQ21lpgHO9SnZV6RF7g9pKIzlFj-s-FWrWt_Hz2TR7DennEOAb_1DOVDfy7UX01BSwfAnoFnEcBJ6gPE5APh10sh9MnBXh2vMiSYkTohooDMSOvds2qleDVgKedjtn1LILBBFOISUfkcXcqNgsDDhOofgaUPDgvwcqFlHp26dHPOXjpBU-e_rdQDsmt7iIAczePyMFysXLPwJNc6udeRfwBKTdxrA
  priority: 102
  providerName: Scholars Portal
Title Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae
URI https://www.ncbi.nlm.nih.gov/pubmed/21219616
https://www.proquest.com/docview/902238648
https://www.proquest.com/docview/847435501
https://www.proquest.com/docview/918045306
http://dx.doi.org/10.1186/1475-2859-10-2
https://pubmed.ncbi.nlm.nih.gov/PMC3025834
https://doaj.org/article/45d70739278046d98d2bb94020e5b6fb
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdge4EHxDdlo7IQEk8Rc5zEMW8t2jQqdUIrkypeLH8FKrUJIq1g_w5_KXdu2tWr9sRLG-XOiu07n-_s88-EvBNO6DIrTeJy5hKwkjoxlbeJPvEw45hcFiGJZnxRnF9lo2k-vVnvuLWDz8riA8tEniDMGloMMLaHaQbhHMblw2_b_QJQu5BKv-Ht4Bn3y9861z6PpqOA2r9vm3cmpzhxcmcmOntMHnUuJB2sZf6E3PP1U_JwB1jwGfk79kuQ7nxmKV45_FtfU39Dpzh1OdrUdLFmw5PJLbXh8F9LtcWDjVTXjqJHi4925uiymXu8hcPDE9UUI-mFCXk09A9E_a1PoHRIPoIvtOHqCdpUdKItnuxqFtdgkagNacXtTPvn5Ors9Oun86S7jSExgstlIqpUCst1xj34JJXhJmPeSecrCNq8h7COO8Ms-EfWpCeW2UKkiPwDLguX8Iq_IAd1U_tXhGpT5AHmx4LDmDtmtDeyyDXn1jBeyR75GAlJ_VwjbyjEwo4p0FSFElYoYQURTdojyUaiynY459jmuQrxTlns8b_f8m--cxfnEBUkqk14AeqquoGuoD0Cdz9TRHYqnCxdaozEKN3npqhMj7xF9VKIvVFjcs93vWpb9XlyqQbQXwEPjkGdOqaqgbpb3Z2VgO5DuK6I8zjiBONgI_LRRotVZ5xaJcFv42WRlT1Ct1QsiPl2tW9WrQKfBfzo_ITdzSIZNDCHiLNHXq5HxbZjwB0Cw86AIqLxEvVcTKlnPwK2OQcfvOTZ6__RgCPyYL3yj8max-Rg-Wvl34DruDR9cl9MRZ8cDgajyQj-h6cXXy77YSEGfsdZ2Q925R9TFHL_
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJulBSwE4hR1HedlJITKo9ql3R5oK_Xm-pWy0m5Sml2V_Tvc-Y_MOMmyoSq33qJ4ktgeex7xzDeEvE5tqrIo04GNmQ1ASqpA584Equ9A4-hYJD6IZrSfDI6ir8fx8Rr53ebCYFhlKxO9oLalwX_kWwKUDc-SKPtw9iPAolF4uNpW0KhXxa5bXIDHVr0ffgb2vgnDnS-HnwZBU1Qg0CkXsyDNQ5EariLuQLXmmuuIOSusy8H3cA68E241M6DmjQ77hpkkDRHABjQvF3CLw3tvkJugd_vo66XHS_-OARVvcCFZlmyxKI0DxIdDURf-k1A_6ehBXy7gslJY0YrdiM0VFbhzj9xtbFe6XS-2-2TNFQ_InRVEw4fk18jNYFlNxoZireMLtaDubztFnWlpWdBpTYYp0RU1PuuwospgRiVVhaVoSuOlGVs6KycOy384uKKKogs_1T6Ah_5cTMrKBfC0j3qCL1S-5gUtc3qgDKaUldMFiEJqfDxzNVbuETm6Fo49JutFWbinhCqdxB5fyIClGlumldMiiRXnRjOeix5512GSPKshPySCcHdbYKgSOSyRwxJcqbBHgpaj0jQA6zjmifSOVpZcon-7pG-_cxXlR1wgnd74G-X5qWwkjITxpHjsGiKkVGJFZkOtBf4ecLFOct0jr3B5SQT9KDCq6FTNq0oOD77JbZgvD0THoE8NUV5C341qkjRg-hAnrEO52aEEqWQ6zRvtKpaNVKzkcg_3CF224oMY6Fe4cl5JMJbAgI_77GoSwWCAMbi6PfKk3hXLiQE7DDQKg5a0s186M9dtKcbfPag6B-M_49Gz__b7Jbk1OBztyb3h_u4GuV2fL2BI6CZZn53P3XMwUGf6hRcLlJxctxz6A5v8psA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIiE4oPLetoCFkDhFXcdxnHBrgVULtIKWShUXy6-UFdmkanYF-3f4pcw42WXDqiduVjxWYns8j3jmG0JeSSd1lmQmcoK5CKSkjkzhbaSHHjSOEXkagmiOT9LD8-TDhbjYIF8WuTCTccAf0iX-t25LzqDHuJqLXgYBDg37Y-_KFe25z9I9lkgRIR4bihaQyrekEBKLGpwefFteLAB_hpj7BW2H47g-_p8E-LKntwK8_7oQX9Fi_QjLFZU12iL3OluT7rfMcZ9s-OoBubuCQPiQ_D72U2CDcmwp1ib-qefU_-2nqOMcrSs6ackwhbmhNmQJNlRbzICkunIUTV9s2rGj07r0WK7DQ4tqii73xISAG_prXtaNj2B0iFKCNzShRgWtC3qmLaaA1ZM5iC5qQ_xxM9b-ETkfvf_69jDqyjZERvJ8GskizqXlOuEejJfCcJMw73LnC_DuvAf_jzvDLBhS1sRDy2wqY4QIAtuG5_CIPyabVV35p4Rqk4qAB2TBshSOGe1NngrNuTWMF_mAvOltkrpqIToUgmb3e2CqCndY4Q4rcH3iAYkWO6psB4iOcy5VcIyydI3-9ZJ-8Z6bKA-QQXpfEx7U15eqkwgK5iPxmjRGCKjU5ZmLjcnRnffCpIUZkJfIXgpBOiqMArrUs6ZRR2enah_WKwDHMfimjqio8UToLqkClg9xvXqUuz1KkCK2172z4GLVSbFG5WDg8SxNsgGhy14ciIF5la9njQLjBgxuMWQ3k-QMJijANR2QJ-2pWC4M2E2gARj0yN556a1cv6cafw8g6ByM9Ywn2__DAS_I7c_vRurT0cnHHXKnvS3AAM9dsjm9nvlnYG5OzfMgQP4AvbKASw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolic+pathway+engineering+based+on+metabolomics+confers+acetic+and+formic+acid+tolerance+to+a+recombinant+xylose-fermenting+strain+of+Saccharomyces+cerevisiae&rft.jtitle=Microbial+cell+factories&rft.au=Hasunuma%2C+Tomohisa&rft.au=Sanda%2C+Tomoya&rft.au=Yamada%2C+Ryosuke&rft.au=Yoshimura%2C+Kazuya&rft.date=2011-01-10&rft.issn=1475-2859&rft.eissn=1475-2859&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1186%2F1475-2859-10-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_1475_2859_10_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-2859&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-2859&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-2859&client=summon