Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae
The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the production of bio-ethanol. Weak organic acids such as acetic and formic acids are necessarily released during the pretreatment (i.e. solubilization and hydrol...
Saved in:
Published in | Microbial cell factories Vol. 10; no. 1; p. 2 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
10.01.2011
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the production of bio-ethanol. Weak organic acids such as acetic and formic acids are necessarily released during the pretreatment (i.e. solubilization and hydrolysis) of lignocelluloses, which negatively affect microbial growth and ethanol production. However, since the mode of toxicity is complicated, genetic engineering strategies addressing yeast tolerance to weak organic acids have been rare. Thus, enhanced basic research is expected to identify target genes for improved weak acid tolerance.
In this study, the effect of acetic acid on xylose fermentation was analyzed by examining metabolite profiles in a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Metabolome analysis revealed that metabolites involved in the non-oxidative pentose phosphate pathway (PPP) [e.g. sedoheptulose-7-phosphate, ribulose-5-phosphate, ribose-5-phosphate and erythrose-4-phosphate] were significantly accumulated by the addition of acetate, indicating the possibility that acetic acid slows down the flux of the pathway. Accordingly, a gene encoding a PPP-related enzyme, transaldolase or transketolase, was overexpressed in the xylose-fermenting yeast, which successfully conferred increased ethanol productivity in the presence of acetic and formic acid.
Our metabolomic approach revealed one of the molecular events underlying the response to acetic acid and focuses attention on the non-oxidative PPP as a target for metabolic engineering. An important challenge for metabolic engineering is identification of gene targets that have material importance. This study has demonstrated that metabolomics is a powerful tool to develop rational strategies to confer tolerance to stress through genetic engineering. |
---|---|
AbstractList | The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the production of bio-ethanol. Weak organic acids such as acetic and formic acids are necessarily released during the pretreatment (i.e. solubilization and hydrolysis) of lignocelluloses, which negatively affect microbial growth and ethanol production. However, since the mode of toxicity is complicated, genetic engineering strategies addressing yeast tolerance to weak organic acids have been rare. Thus, enhanced basic research is expected to identify target genes for improved weak acid tolerance.
In this study, the effect of acetic acid on xylose fermentation was analyzed by examining metabolite profiles in a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Metabolome analysis revealed that metabolites involved in the non-oxidative pentose phosphate pathway (PPP) [e.g. sedoheptulose-7-phosphate, ribulose-5-phosphate, ribose-5-phosphate and erythrose-4-phosphate] were significantly accumulated by the addition of acetate, indicating the possibility that acetic acid slows down the flux of the pathway. Accordingly, a gene encoding a PPP-related enzyme, transaldolase or transketolase, was overexpressed in the xylose-fermenting yeast, which successfully conferred increased ethanol productivity in the presence of acetic and formic acid.
Our metabolomic approach revealed one of the molecular events underlying the response to acetic acid and focuses attention on the non-oxidative PPP as a target for metabolic engineering. An important challenge for metabolic engineering is identification of gene targets that have material importance. This study has demonstrated that metabolomics is a powerful tool to develop rational strategies to confer tolerance to stress through genetic engineering. The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the production of bio-ethanol. Weak organic acids such as acetic and formic acids are necessarily released during the pretreatment (i.e. solubilization and hydrolysis) of lignocelluloses, which negatively affect microbial growth and ethanol production. However, since the mode of toxicity is complicated, genetic engineering strategies addressing yeast tolerance to weak organic acids have been rare. Thus, enhanced basic research is expected to identify target genes for improved weak acid tolerance. In this study, the effect of acetic acid on xylose fermentation was analyzed by examining metabolite profiles in a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Metabolome analysis revealed that metabolites involved in the non-oxidative pentose phosphate pathway (PPP) [e.g. sedoheptulose-7-phosphate, ribulose-5-phosphate, ribose-5-phosphate and erythrose-4-phosphate] were significantly accumulated by the addition of acetate, indicating the possibility that acetic acid slows down the flux of the pathway. Accordingly, a gene encoding a PPP-related enzyme, transaldolase or transketolase, was overexpressed in the xylose-fermenting yeast, which successfully conferred increased ethanol productivity in the presence of acetic and formic acid. Our metabolomic approach revealed one of the molecular events underlying the response to acetic acid and focuses attention on the non-oxidative PPP as a target for metabolic engineering. An important challenge for metabolic engineering is identification of gene targets that have material importance. This study has demonstrated that metabolomics is a powerful tool to develop rational strategies to confer tolerance to stress through genetic engineering. BACKGROUND: The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the production of bio-ethanol. Weak organic acids such as acetic and formic acids are necessarily released during the pretreatment (i.e. solubilization and hydrolysis) of lignocelluloses, which negatively affect microbial growth and ethanol production. However, since the mode of toxicity is complicated, genetic engineering strategies addressing yeast tolerance to weak organic acids have been rare. Thus, enhanced basic research is expected to identify target genes for improved weak acid tolerance. RESULTS: In this study, the effect of acetic acid on xylose fermentation was analyzed by examining metabolite profiles in a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Metabolome analysis revealed that metabolites involved in the non-oxidative pentose phosphate pathway (PPP) [e.g. sedoheptulose-7-phosphate, ribulose-5-phosphate, ribose-5-phosphate and erythrose-4-phosphate] were significantly accumulated by the addition of acetate, indicating the possibility that acetic acid slows down the flux of the pathway. Accordingly, a gene encoding a PPP-related enzyme, transaldolase or transketolase, was overexpressed in the xylose-fermenting yeast, which successfully conferred increased ethanol productivity in the presence of acetic and formic acid. CONCLUSIONS: Our metabolomic approach revealed one of the molecular events underlying the response to acetic acid and focuses attention on the non-oxidative PPP as a target for metabolic engineering. An important challenge for metabolic engineering is identification of gene targets that have material importance. This study has demonstrated that metabolomics is a powerful tool to develop rational strategies to confer tolerance to stress through genetic engineering. Abstract Background The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the production of bio-ethanol. Weak organic acids such as acetic and formic acids are necessarily released during the pretreatment (i.e. solubilization and hydrolysis) of lignocelluloses, which negatively affect microbial growth and ethanol production. However, since the mode of toxicity is complicated, genetic engineering strategies addressing yeast tolerance to weak organic acids have been rare. Thus, enhanced basic research is expected to identify target genes for improved weak acid tolerance. Results In this study, the effect of acetic acid on xylose fermentation was analyzed by examining metabolite profiles in a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Metabolome analysis revealed that metabolites involved in the non-oxidative pentose phosphate pathway (PPP) [e.g. sedoheptulose-7-phosphate, ribulose-5-phosphate, ribose-5-phosphate and erythrose-4-phosphate] were significantly accumulated by the addition of acetate, indicating the possibility that acetic acid slows down the flux of the pathway. Accordingly, a gene encoding a PPP-related enzyme, transaldolase or transketolase, was overexpressed in the xylose-fermenting yeast, which successfully conferred increased ethanol productivity in the presence of acetic and formic acid. Conclusions Our metabolomic approach revealed one of the molecular events underlying the response to acetic acid and focuses attention on the non-oxidative PPP as a target for metabolic engineering. An important challenge for metabolic engineering is identification of gene targets that have material importance. This study has demonstrated that metabolomics is a powerful tool to develop rational strategies to confer tolerance to stress through genetic engineering. The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the production of bio-ethanol. Weak organic acids such as acetic and formic acids are necessarily released during the pretreatment (i.e. solubilization and hydrolysis) of lignocelluloses, which negatively affect microbial growth and ethanol production. However, since the mode of toxicity is complicated, genetic engineering strategies addressing yeast tolerance to weak organic acids have been rare. Thus, enhanced basic research is expected to identify target genes for improved weak acid tolerance.BACKGROUNDThe development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the production of bio-ethanol. Weak organic acids such as acetic and formic acids are necessarily released during the pretreatment (i.e. solubilization and hydrolysis) of lignocelluloses, which negatively affect microbial growth and ethanol production. However, since the mode of toxicity is complicated, genetic engineering strategies addressing yeast tolerance to weak organic acids have been rare. Thus, enhanced basic research is expected to identify target genes for improved weak acid tolerance.In this study, the effect of acetic acid on xylose fermentation was analyzed by examining metabolite profiles in a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Metabolome analysis revealed that metabolites involved in the non-oxidative pentose phosphate pathway (PPP) [e.g. sedoheptulose-7-phosphate, ribulose-5-phosphate, ribose-5-phosphate and erythrose-4-phosphate] were significantly accumulated by the addition of acetate, indicating the possibility that acetic acid slows down the flux of the pathway. Accordingly, a gene encoding a PPP-related enzyme, transaldolase or transketolase, was overexpressed in the xylose-fermenting yeast, which successfully conferred increased ethanol productivity in the presence of acetic and formic acid.RESULTSIn this study, the effect of acetic acid on xylose fermentation was analyzed by examining metabolite profiles in a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Metabolome analysis revealed that metabolites involved in the non-oxidative pentose phosphate pathway (PPP) [e.g. sedoheptulose-7-phosphate, ribulose-5-phosphate, ribose-5-phosphate and erythrose-4-phosphate] were significantly accumulated by the addition of acetate, indicating the possibility that acetic acid slows down the flux of the pathway. Accordingly, a gene encoding a PPP-related enzyme, transaldolase or transketolase, was overexpressed in the xylose-fermenting yeast, which successfully conferred increased ethanol productivity in the presence of acetic and formic acid.Our metabolomic approach revealed one of the molecular events underlying the response to acetic acid and focuses attention on the non-oxidative PPP as a target for metabolic engineering. An important challenge for metabolic engineering is identification of gene targets that have material importance. This study has demonstrated that metabolomics is a powerful tool to develop rational strategies to confer tolerance to stress through genetic engineering.CONCLUSIONSOur metabolomic approach revealed one of the molecular events underlying the response to acetic acid and focuses attention on the non-oxidative PPP as a target for metabolic engineering. An important challenge for metabolic engineering is identification of gene targets that have material importance. This study has demonstrated that metabolomics is a powerful tool to develop rational strategies to confer tolerance to stress through genetic engineering. |
ArticleNumber | 2 |
Audience | Academic |
Author | Ishii, Jun Sanda, Tomoya Kondo, Akihiko Hasunuma, Tomohisa Yoshimura, Kazuya Yamada, Ryosuke |
AuthorAffiliation | 2 Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan 1 Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan |
AuthorAffiliation_xml | – name: 2 Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan – name: 1 Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan |
Author_xml | – sequence: 1 givenname: Tomohisa surname: Hasunuma fullname: Hasunuma, Tomohisa – sequence: 2 givenname: Tomoya surname: Sanda fullname: Sanda, Tomoya – sequence: 3 givenname: Ryosuke surname: Yamada fullname: Yamada, Ryosuke – sequence: 4 givenname: Kazuya surname: Yoshimura fullname: Yoshimura, Kazuya – sequence: 5 givenname: Jun surname: Ishii fullname: Ishii, Jun – sequence: 6 givenname: Akihiko surname: Kondo fullname: Kondo, Akihiko |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21219616$$D View this record in MEDLINE/PubMed |
BookMark | eNqFU8luFDEQbaEgssCVI7LggDh08NbbBWkUsUQKQiJwtmx39cRRtx1sT8j8Dl9KNZNEmUCE-mCr_N6rqlfV-8WODx6K4jmjh4y19Vsmm6rkbdWVjJb8UbF3G9i5c98t9lM6p5Q1bSOeFLuccdbVrN4rfn2GrE0YnSUXOp_91GsCfuk8QHR-SYxO0JPgybSBhcnZRGzwA8REtIWMRO17MoQ4zVfrepLDCFF7C3gjmkSwYTLOa5_J1XoMCUpkT-DznCHlqJ0nYSCn2tozHcO0toA5IMKlS07D0-LxoMcEz67Pg-L7h_ffjj6VJ18-Hh8tTkrTiC6XzcC7xgotBVDeDkYYyaDvehha3gIwKkVvmK1YZQ2nltm64RL9aCQTHYbEQXG80e2DPlcX0U06rlXQTv0JhLhUOmK_IyhZ9Q3FrLxpqaz7ru25MZ2knEJlasx9ULzbaF2szAS9xWajHrdEt1-8O1PLcKkE5VUrJAosNgLGhQcEtl_QYzXPW83zVoyquaHX10XE8GMFKavJJQvjqD2EVVIdw-orQev_IlvZSFFVlCHy5T3keVhFj3NRHeVctLVsEfRqA1pqNMv5IWCJdpZUC_S8qlvcP0Qd_gOFXw-4Srjmg8P4FuHNFgExGa7yUq9SUsenX7exL-4O4Na4m81HgNwAbAwpRRiUdVlnF2Y73Tg7OP9gf3t6eI92o_wA4TenLSeG |
CitedBy_id | crossref_primary_10_1016_j_tibtech_2013_10_003 crossref_primary_10_1002_yea_3082 crossref_primary_10_1016_j_rser_2019_109353 crossref_primary_10_1016_j_jbiosc_2017_03_004 crossref_primary_10_1007_s00449_018_1967_3 crossref_primary_10_1016_j_jbiosc_2017_05_015 crossref_primary_10_1021_es201648g crossref_primary_10_1186_1754_6834_6_16 crossref_primary_10_3389_fgene_2019_00683 crossref_primary_10_1186_s13068_015_0329_5 crossref_primary_10_1007_s10295_013_1293_3 crossref_primary_10_1007_s00253_015_7094_z crossref_primary_10_1093_femsyr_foy011 crossref_primary_10_1002_biot_201800704 crossref_primary_10_1016_j_jprot_2015_09_001 crossref_primary_10_1021_acs_jafc_2c04160 crossref_primary_10_1371_journal_pone_0188385 crossref_primary_10_1016_j_biotechadv_2013_05_002 crossref_primary_10_1007_s11274_019_2775_x crossref_primary_10_5650_oleoscience_14_95 crossref_primary_10_1186_s13568_016_0210_3 crossref_primary_10_1186_s12934_014_0151_y crossref_primary_10_1002_bit_24992 crossref_primary_10_1039_C7RA04049K crossref_primary_10_1371_journal_pone_0161448 crossref_primary_10_1007_s00294_022_01237_z crossref_primary_10_1016_j_biortech_2015_01_097 crossref_primary_10_1186_s13068_020_01833_6 crossref_primary_10_1038_s41598_023_39661_x crossref_primary_10_1186_s12934_016_0465_z crossref_primary_10_3390_fermentation8120721 crossref_primary_10_1007_s00253_014_5902_5 crossref_primary_10_1016_j_biortech_2016_03_158 crossref_primary_10_1016_j_ymben_2017_08_002 crossref_primary_10_1016_j_biortech_2013_09_109 crossref_primary_10_3109_07388551_2015_1128877 crossref_primary_10_1071_CH16022 crossref_primary_10_1186_s12934_018_0998_4 crossref_primary_10_1186_s13068_017_0781_5 crossref_primary_10_1186_s12864_019_5959_8 crossref_primary_10_1016_j_biotechadv_2015_08_004 crossref_primary_10_1038_s41598_023_48408_7 crossref_primary_10_1007_s11306_018_1386_0 crossref_primary_10_1016_j_biortech_2018_04_010 crossref_primary_10_1007_s11274_017_2259_9 crossref_primary_10_1016_j_mimet_2013_04_006 crossref_primary_10_1016_j_biotechadv_2011_10_011 crossref_primary_10_1016_j_ymben_2012_03_004 crossref_primary_10_1093_nar_gkv358 crossref_primary_10_1007_s00253_015_6595_0 crossref_primary_10_1186_s12934_015_0242_4 crossref_primary_10_1371_journal_pone_0128417 crossref_primary_10_1002_bbb_2042 crossref_primary_10_1007_s00449_018_2015_z crossref_primary_10_1007_s10570_019_02402_3 crossref_primary_10_1016_j_ab_2017_12_005 crossref_primary_10_1016_j_jbiosc_2023_10_004 crossref_primary_10_1016_j_tibtech_2019_07_009 crossref_primary_10_1016_j_ymben_2014_02_008 crossref_primary_10_1016_j_jbiosc_2018_08_013 crossref_primary_10_3389_fbioe_2017_00081 crossref_primary_10_1016_j_biortech_2011_06_028 crossref_primary_10_1016_j_jbiotec_2012_10_017 crossref_primary_10_1016_j_cbpa_2015_06_004 crossref_primary_10_1016_j_ymben_2015_02_004 crossref_primary_10_1021_ac302881e crossref_primary_10_1080_1343943X_2017_1389614 crossref_primary_10_1089_ind_2013_0004 crossref_primary_10_1007_s00253_012_4376_6 crossref_primary_10_1002_advs_202100199 crossref_primary_10_1007_s00253_015_7167_z crossref_primary_10_1089_ind_2021_0029 crossref_primary_10_1186_s13068_015_0258_3 crossref_primary_10_1002_bit_27243 crossref_primary_10_1186_s13068_015_0421_x crossref_primary_10_1186_s40538_014_0022_0 crossref_primary_10_1016_j_biortech_2021_125200 crossref_primary_10_1186_1475_2859_10_5 crossref_primary_10_1007_s00253_014_6158_9 crossref_primary_10_1271_bbb_110482 crossref_primary_10_1371_journal_pone_0148635 crossref_primary_10_1016_j_jbiosc_2017_08_001 crossref_primary_10_1016_j_ymben_2015_04_005 crossref_primary_10_1007_s12010_013_0504_8 crossref_primary_10_3390_metabo13101052 crossref_primary_10_1016_j_jbiotec_2016_04_005 crossref_primary_10_1186_1475_2859_11_156 crossref_primary_10_1002_bit_26322 crossref_primary_10_1016_j_lwt_2022_114035 crossref_primary_10_1007_s00253_019_10226_1 crossref_primary_10_1007_s10295_018_2053_1 crossref_primary_10_1186_s12934_014_0145_9 crossref_primary_10_1007_s00253_022_11987_y crossref_primary_10_1002_biot_201300553 crossref_primary_10_1016_j_biortech_2014_08_054 crossref_primary_10_1016_j_tibtech_2014_03_003 crossref_primary_10_1186_1756_0500_6_201 crossref_primary_10_1007_s12010_019_03187_8 crossref_primary_10_1016_j_copbio_2014_10_001 crossref_primary_10_1016_j_copbio_2014_12_012 crossref_primary_10_1016_j_febslet_2012_02_008 crossref_primary_10_1007_s10529_014_1581_7 crossref_primary_10_1016_j_biortech_2016_09_130 crossref_primary_10_1016_j_procbio_2012_05_004 crossref_primary_10_1016_j_procbio_2014_07_017 crossref_primary_10_1186_s13068_016_0583_1 crossref_primary_10_3389_fmicb_2018_00760 crossref_primary_10_1007_s12010_012_9920_4 crossref_primary_10_1016_j_biortech_2021_126071 crossref_primary_10_1021_jf305322t crossref_primary_10_1007_s13399_019_00529_8 crossref_primary_10_1016_j_synbio_2020_01_001 crossref_primary_10_1016_j_copbio_2011_10_014 crossref_primary_10_1007_s12257_020_0020_y crossref_primary_10_1007_s11306_014_0766_3 crossref_primary_10_3390_foods10102247 crossref_primary_10_1371_journal_pone_0069005 crossref_primary_10_1186_s12866_015_0373_0 crossref_primary_10_1038_nrmicro_2016_32 crossref_primary_10_1271_bbb_130093 crossref_primary_10_1002_biot_201500613 crossref_primary_10_1016_j_biortech_2012_01_161 crossref_primary_10_1016_j_jbiosc_2015_02_011 crossref_primary_10_1186_1475_2859_12_113 crossref_primary_10_1016_j_tim_2011_07_005 crossref_primary_10_1371_journal_pone_0135626 crossref_primary_10_1039_C4MT00275J crossref_primary_10_1007_s00253_012_4597_8 crossref_primary_10_1016_j_jbiosc_2016_12_009 crossref_primary_10_1002_yea_3854 crossref_primary_10_1007_s10295_017_1969_1 crossref_primary_10_1016_j_jbiosc_2012_12_007 crossref_primary_10_1002_jsfa_11975 crossref_primary_10_1007_s00253_018_9216_x crossref_primary_10_1016_j_procbio_2021_01_024 crossref_primary_10_1016_j_synbio_2022_11_001 crossref_primary_10_1093_jxb_ert134 crossref_primary_10_3390_metabo12030257 crossref_primary_10_1016_j_biortech_2020_123726 crossref_primary_10_1186_1475_2859_10_69 crossref_primary_10_1016_j_jbiotec_2012_05_021 crossref_primary_10_1007_s10295_014_1431_6 crossref_primary_10_1016_j_jbiosc_2014_09_004 crossref_primary_10_1271_kagakutoseibutsu_53_689 crossref_primary_10_1093_femsyr_fox061 crossref_primary_10_1186_s12934_021_01596_1 crossref_primary_10_1007_s10646_015_1543_4 crossref_primary_10_1186_s12934_015_0240_6 crossref_primary_10_1007_s10295_011_1076_7 crossref_primary_10_3389_fenrg_2022_884582 crossref_primary_10_4028_www_scientific_net_AMR_641_642_919 crossref_primary_10_1016_j_lwt_2015_12_046 crossref_primary_10_1186_1475_2859_13_64 crossref_primary_10_1007_s00253_012_3914_6 crossref_primary_10_1016_j_jbiosc_2013_05_027 crossref_primary_10_1186_s12934_018_0927_6 crossref_primary_10_1016_j_biortech_2016_02_124 crossref_primary_10_1007_s00253_019_09993_8 crossref_primary_10_1016_j_jbiosc_2011_12_013 crossref_primary_10_1002_bit_27560 crossref_primary_10_1186_s13068_019_1643_0 crossref_primary_10_1016_j_bjm_2016_11_011 crossref_primary_10_1002_biot_201100335 crossref_primary_10_1016_j_jbiosc_2021_09_015 crossref_primary_10_1002_biot_201900492 crossref_primary_10_1111_j_1567_1364_2011_00771_x crossref_primary_10_2478_aoas_2020_0081 crossref_primary_10_1038_s41598_019_41863_1 crossref_primary_10_1038_s41598_022_26686_x crossref_primary_10_1627_jpi_55_236 crossref_primary_10_3390_jof11030177 crossref_primary_10_1111_j_1567_1364_2011_00775_x crossref_primary_10_1111_j_1567_1364_2011_00779_x crossref_primary_10_1186_s13068_021_01935_9 crossref_primary_10_1186_s13568_015_0175_7 crossref_primary_10_1016_j_synbio_2024_04_006 crossref_primary_10_1016_j_biortech_2016_03_054 crossref_primary_10_1016_j_jbiosc_2013_07_007 crossref_primary_10_1002_aic_17750 crossref_primary_10_1002_wene_49 crossref_primary_10_1016_j_biortech_2012_08_104 crossref_primary_10_1016_j_copbio_2016_11_006 crossref_primary_10_1007_s12010_020_03324_8 crossref_primary_10_1016_j_ces_2020_115933 crossref_primary_10_1016_j_jbiotec_2011_06_025 crossref_primary_10_1016_j_ymben_2017_04_003 |
Cites_doi | 10.1016/j.copbio.2006.05.008 10.1002/yea.320010108 10.1002/yea.1578 10.1007/s11306-008-0116-4 10.1007/s00253-009-2101-x 10.1007/s00253-004-1798-9 10.1128/AEM.71.12.8249-8256.2005 10.1016/j.biortech.2003.08.011 10.1016/S0141-0229(03)00214-X 10.1002/yea.1370 10.1021/ac0202684 10.1128/AEM.70.6.3681-3686.2004 10.1111/j.1365-2672.1992.tb04990.x 10.1007/s00438-009-0461-7 10.1111/j.1567-1364.2009.00487.x 10.1128/AEM.70.4.2307-2317.2004 10.1007/s10482-006-9085-7 10.1016/j.enzmictec.2008.03.001 10.1007/s00253-005-0142-3 10.1128/AEM.67.3.1163-1170.2001 10.1128/AEM.66.8.3381-3386.2000 10.1128/AEM.01781-07 10.1016/0032-9592(93)80041-E 10.1016/S0960-8524(99)00161-3 10.1007/BF02921515 10.1128/aem.61.12.4184-4190.1995 10.1016/j.tibtech.2006.10.004 10.1007/s002530100742 10.1007/s12010-007-9063-1 10.1016/S0141-0229(98)00101-X 10.1007/s00253-009-2198-y 10.1016/j.mib.2009.07.004 10.1021/jf062330u 10.1093/jb/mvp028 10.1128/AEM.69.2.740-746.2003 10.1385/ABAB:129:1:278 10.1016/j.biotechadv.2007.04.001 10.1002/jctb.1676 10.1007/s00253-007-1029-2 10.1021/ac900999t 10.1126/science.1114736 10.1016/j.jbiotec.2009.05.001 10.1016/j.mib.2008.04.002 10.1007/s00253-006-0575-3 10.1128/MMBR.00025-07 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2011 BioMed Central Ltd. 2011 Hasunuma et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright ©2011 Hasunuma et al; licensee BioMed Central Ltd. 2011 Hasunuma et al; licensee BioMed Central Ltd. |
Copyright_xml | – notice: COPYRIGHT 2011 BioMed Central Ltd. – notice: 2011 Hasunuma et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright ©2011 Hasunuma et al; licensee BioMed Central Ltd. 2011 Hasunuma et al; licensee BioMed Central Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QL 7T7 7U9 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI 7X8 7QO 7U7 M7N 5PM DOA |
DOI | 10.1186/1475-2859-10-2 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic Biotechnology Research Abstracts Toxicology Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts Toxicology Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic Biotechnology Research Abstracts |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1475-2859 |
EndPage | 2 |
ExternalDocumentID | oai_doaj_org_article_45d70739278046d98d2bb94020e5b6fb PMC3025834 oai_biomedcentral_com_1475_2859_10_2 2503452461 A247568121 21219616 10_1186_1475_2859_10_2 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Japan |
GeographicLocations_xml | – name: Japan |
GroupedDBID | --- 0R~ 123 29M 2VQ 2WC 4.4 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ A8Z AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C1A C6C CCPQU CITATION CS3 DIK DU5 E3Z EBD EBLON EBS EJD ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR INH INR IPNFZ ISR ITC KQ8 LK8 M1P M48 M7P MM. M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RIG RNS ROL RPM RSV SCM SOJ TR2 TUS UKHRP WOQ WOW XSB ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB PMFND 3V. 7QL 7T7 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI 7X8 7QO 7U7 M7N -58 -5G -A0 -BR ABVAZ ACRMQ ADINQ AFGXO AFNRJ C24 ESTFP FRP 5PM PUEGO |
ID | FETCH-LOGICAL-b739t-7f297c3a43e028fb3b41ed9def828ee1043db1c515cb20c1c672478774139cb23 |
IEDL.DBID | RBZ |
ISSN | 1475-2859 |
IngestDate | Wed Aug 27 01:31:29 EDT 2025 Thu Aug 21 18:30:18 EDT 2025 Wed May 22 07:17:23 EDT 2024 Thu Jul 10 23:41:29 EDT 2025 Thu Jul 10 23:01:10 EDT 2025 Fri Jul 25 19:25:33 EDT 2025 Tue Jun 17 21:09:53 EDT 2025 Tue Jun 10 20:28:52 EDT 2025 Fri Jun 27 04:34:50 EDT 2025 Mon Jul 21 05:48:41 EDT 2025 Thu Apr 24 22:55:45 EDT 2025 Tue Jul 01 02:30:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b739t-7f297c3a43e028fb3b41ed9def828ee1043db1c515cb20c1c672478774139cb23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | http://dx.doi.org/10.1186/1475-2859-10-2 |
PMID | 21219616 |
PQID | 902238648 |
PQPubID | 42699 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_45d70739278046d98d2bb94020e5b6fb pubmedcentral_primary_oai_pubmedcentral_nih_gov_3025834 biomedcentral_primary_oai_biomedcentral_com_1475_2859_10_2 proquest_miscellaneous_918045306 proquest_miscellaneous_847435501 proquest_journals_902238648 gale_infotracmisc_A247568121 gale_infotracacademiconefile_A247568121 gale_incontextgauss_ISR_A247568121 pubmed_primary_21219616 crossref_citationtrail_10_1186_1475_2859_10_2 crossref_primary_10_1186_1475_2859_10_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-01-10 |
PublicationDateYYYYMMDD | 2011-01-10 |
PublicationDate_xml | – month: 01 year: 2011 text: 2011-01-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Microbial cell factories |
PublicationTitleAlternate | Microb Cell Fact |
PublicationYear | 2011 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | AJA van Maris (494_CR8) 2007; 108 A Petersson (494_CR21) 2006; 23 E Nevoigt (494_CR4) 2008; 72 S Larsson (494_CR27) 1999; 24 494_CR43 R Yamada (494_CR50) 2010; 85 CF Wahlbom (494_CR34) 2003; 69 AJA van Maris (494_CR11) 2006; 90 TH Aarnio (494_CR35) 1991; 27 M Tajima (494_CR49) 1985; 1 R Baran (494_CR23) 2009; 12 S Katahira (494_CR42) 2008; 43 A Eliasson (494_CR6) 2000; 66 B Laadan (494_CR18) 2008; 25 DE Garcia (494_CR24) 2008; 11 JRM Almeida (494_CR10) 2007; 82 JB Russel (494_CR16) 1992; 73 TW Jeffries (494_CR7) 2006; 17 E Bellissimi (494_CR28) 2009; 9 MH Metzger (494_CR36) 1994; 42 BCH Chu (494_CR5) 2007; 25 K Karhumaa (494_CR26) 2007; 73 A Matsushika (494_CR9) 2009; 84 C Martin (494_CR14) 2007; 137 Y-S Jin (494_CR31) 2005; 71 B Hahn-Hägerdal (494_CR1) 2006; 24 XQ Zhao (494_CR38) 2009; 144 E Palmqvist (494_CR12) 2000; 74 J Ishii (494_CR41) 2009; 145 SS Helle (494_CR15) 2004; 92 L Olsson (494_CR3) 1993; 28 J-P Pitkänen (494_CR32) 2005; 67 S Helle (494_CR29) 2003; 33 M Sonderegger (494_CR30) 2004; 70 S Yoshida (494_CR25) 2008; 74 M Walfridsson (494_CR37) 1995; 61 AB Canelas (494_CR46) 2008; 4 S Larsson (494_CR19) 2001; 57 W Pongsuwan (494_CR48) 2007; 55 MP García-Aparicio (494_CR13) 2006; 129 SW Gorsich (494_CR17) 2006; 71 PM Bruinenberg (494_CR44) 1983; 129 MH Toivari (494_CR33) 2004; 70 ZL Liu (494_CR39) 2009; 282 M Oldiges (494_CR22) 2007; 76 J Sambrook (494_CR40) 1989 AB Canelas (494_CR45) 2009; 81 T Soga (494_CR47) 2002; 74 S Larsson (494_CR20) 2001; 67 AJ Ragauskas (494_CR2) 2006; 311 16439654 - Science. 2006 Jan 27;311(5760):484-9 19572128 - Appl Microbiol Biotechnol. 2009 Aug;84(1):37-53 16652391 - Yeast. 2006 Apr 30;23(6):455-64 17050014 - Trends Biotechnol. 2006 Dec;24(12):549-56 8534086 - Appl Environ Microbiol. 1995 Dec;61(12):4184-90 7765773 - Appl Microbiol Biotechnol. 1994 Nov;42(2-3):319-25 16915647 - Appl Biochem Biotechnol. 2006 Spring;129-132:278-88 19653633 - Anal Chem. 2009 Sep 1;81(17):7379-89 18302314 - Yeast. 2008 Mar;25(3):191-8 11229906 - Appl Environ Microbiol. 2001 Mar;67(3):1163-70 6684148 - J Gen Microbiol. 1983 Apr;129(4):965-71 10919795 - Appl Environ Microbiol. 2000 Aug;66(8):3381-6 18538626 - Curr Opin Microbiol. 2008 Jun;11(3):233-9 2851900 - Yeast. 1985 Sep;1(1):67-77 12510742 - Anal Chem. 2002 Dec 15;74(24):6224-9 16222531 - Appl Microbiol Biotechnol. 2006 Jul;71(3):339-49 17227047 - J Agric Food Chem. 2007 Jan 24;55(2):231-6 17846724 - Adv Biochem Eng Biotechnol. 2007;108:179-204 11693915 - Appl Microbiol Biotechnol. 2001 Oct;57(1-2):167-74 18478400 - Appl Biochem Biotechnol. 2007 Apr;137-140(1-12):339-52 18772282 - Microbiol Mol Biol Rev. 2008 Sep;72(3):379-412 19446584 - J Biotechnol. 2009 Oct 12;144(1):23-30 16713243 - Curr Opin Biotechnol. 2006 Jun;17(3):320-6 17033882 - Antonie Van Leeuwenhoek. 2006 Nov;90(4):391-418 17665194 - Appl Microbiol Biotechnol. 2007 Sep;76(3):495-511 16977466 - Appl Microbiol Biotechnol. 2007 Jan;73(5):1039-46 19695948 - Curr Opin Microbiol. 2009 Oct;12(5):547-52 14693449 - Bioresour Technol. 2004 Apr;92(2):163-71 17524590 - Biotechnol Adv. 2007 Sep-Oct;25(5):425-41 18310411 - Appl Environ Microbiol. 2008 May;74(9):2787-96 19707752 - Appl Microbiol Biotechnol. 2010 Feb;85(5):1491-8 15066826 - Appl Environ Microbiol. 2004 Apr;70(4):2307-17 19517136 - Mol Genet Genomics. 2009 Sep;282(3):233-44 19237442 - J Biochem. 2009 Jun;145(6):701-8 19416101 - FEMS Yeast Res. 2009 May;9(3):358-64 12570990 - Appl Environ Microbiol. 2003 Feb;69(2):740-6 15184173 - Appl Environ Microbiol. 2004 Jun;70(6):3681-6 15630585 - Appl Microbiol Biotechnol. 2005 Jun;67(6):827-37 16332810 - Appl Environ Microbiol. 2005 Dec;71(12):8249-56 |
References_xml | – volume: 108 start-page: 179 year: 2007 ident: 494_CR8 publication-title: Adv Biochem Eng Biotechnol – volume: 17 start-page: 320 year: 2006 ident: 494_CR7 publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2006.05.008 – volume: 1 start-page: 67 year: 1985 ident: 494_CR49 publication-title: Yeast doi: 10.1002/yea.320010108 – volume: 25 start-page: 191 year: 2008 ident: 494_CR18 publication-title: Yeast doi: 10.1002/yea.1578 – volume: 4 start-page: 226 year: 2008 ident: 494_CR46 publication-title: Metabolomics doi: 10.1007/s11306-008-0116-4 – volume: 84 start-page: 37 year: 2009 ident: 494_CR9 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-009-2101-x – volume: 67 start-page: 827 year: 2005 ident: 494_CR32 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-004-1798-9 – volume: 71 start-page: 8249 year: 2005 ident: 494_CR31 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.71.12.8249-8256.2005 – volume: 92 start-page: 163 year: 2004 ident: 494_CR15 publication-title: Bioresouce Technol doi: 10.1016/j.biortech.2003.08.011 – volume: 33 start-page: 786 year: 2003 ident: 494_CR29 publication-title: Enzyme Microb Tech doi: 10.1016/S0141-0229(03)00214-X – volume-title: Molecular cloning: a laboratory manual year: 1989 ident: 494_CR40 – volume: 23 start-page: 455 year: 2006 ident: 494_CR21 publication-title: Yeast doi: 10.1002/yea.1370 – volume: 74 start-page: 6224 year: 2002 ident: 494_CR47 publication-title: Anal Chem doi: 10.1021/ac0202684 – volume: 70 start-page: 3681 year: 2004 ident: 494_CR33 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.70.6.3681-3686.2004 – volume: 73 start-page: 363 year: 1992 ident: 494_CR16 publication-title: J Appl Bacteriol doi: 10.1111/j.1365-2672.1992.tb04990.x – volume: 129 start-page: 965 year: 1983 ident: 494_CR44 publication-title: J Gen Microbiol – volume: 282 start-page: 233 year: 2009 ident: 494_CR39 publication-title: Mol Genet Genomics doi: 10.1007/s00438-009-0461-7 – volume: 9 start-page: 358 year: 2009 ident: 494_CR28 publication-title: FEMS Yeast Res doi: 10.1111/j.1567-1364.2009.00487.x – volume: 70 start-page: 2307 year: 2004 ident: 494_CR30 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.70.4.2307-2317.2004 – volume: 90 start-page: 391 year: 2006 ident: 494_CR11 publication-title: Antonie van Leeuwenhoek doi: 10.1007/s10482-006-9085-7 – volume: 43 start-page: 115 year: 2008 ident: 494_CR42 publication-title: Enzyme Microb Technol doi: 10.1016/j.enzmictec.2008.03.001 – volume: 71 start-page: 339 year: 2006 ident: 494_CR17 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-005-0142-3 – volume: 67 start-page: 1163 year: 2001 ident: 494_CR20 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.67.3.1163-1170.2001 – volume: 66 start-page: 3381 year: 2000 ident: 494_CR6 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.66.8.3381-3386.2000 – volume: 74 start-page: 2787 year: 2008 ident: 494_CR25 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01781-07 – volume: 28 start-page: 249 year: 1993 ident: 494_CR3 publication-title: Process Biochem doi: 10.1016/0032-9592(93)80041-E – volume: 74 start-page: 25 year: 2000 ident: 494_CR12 publication-title: Bioresouce Technol doi: 10.1016/S0960-8524(99)00161-3 – volume: 27 start-page: 55 year: 1991 ident: 494_CR35 publication-title: Appl Biochem Biotechnol doi: 10.1007/BF02921515 – volume: 42 start-page: 319 issue: 2-3 year: 1994 ident: 494_CR36 publication-title: Appl Microbial Biotechnol – volume: 61 start-page: 4184 year: 1995 ident: 494_CR37 publication-title: Appl Environ Microbiol doi: 10.1128/aem.61.12.4184-4190.1995 – volume: 24 start-page: 549 year: 2006 ident: 494_CR1 publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2006.10.004 – volume: 57 start-page: 167 year: 2001 ident: 494_CR19 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s002530100742 – volume: 137 start-page: 339 year: 2007 ident: 494_CR14 publication-title: Appl Biochem Biotechnol doi: 10.1007/s12010-007-9063-1 – volume: 24 start-page: 151 year: 1999 ident: 494_CR27 publication-title: Enzyme Microb Technol doi: 10.1016/S0141-0229(98)00101-X – volume: 85 start-page: 1491 year: 2010 ident: 494_CR50 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-009-2198-y – volume: 12 start-page: 547 year: 2009 ident: 494_CR23 publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2009.07.004 – volume: 55 start-page: 231 year: 2007 ident: 494_CR48 publication-title: J Agric Food Chem doi: 10.1021/jf062330u – volume: 145 start-page: 701 year: 2009 ident: 494_CR41 publication-title: J Biochem doi: 10.1093/jb/mvp028 – volume: 69 start-page: 740 year: 2003 ident: 494_CR34 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.69.2.740-746.2003 – volume: 129 start-page: 278 year: 2006 ident: 494_CR13 publication-title: Appl Biochem Biotechnol doi: 10.1385/ABAB:129:1:278 – volume: 25 start-page: 425 year: 2007 ident: 494_CR5 publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2007.04.001 – volume: 82 start-page: 340 year: 2007 ident: 494_CR10 publication-title: J Chem Technol Biotechnol doi: 10.1002/jctb.1676 – volume: 76 start-page: 495 year: 2007 ident: 494_CR22 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-007-1029-2 – volume: 81 start-page: 7379 year: 2009 ident: 494_CR45 publication-title: Anal Chem doi: 10.1021/ac900999t – volume: 311 start-page: 484 year: 2006 ident: 494_CR2 publication-title: Science doi: 10.1126/science.1114736 – volume: 144 start-page: 23 year: 2009 ident: 494_CR38 publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2009.05.001 – volume: 11 start-page: 233 year: 2008 ident: 494_CR24 publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2008.04.002 – volume: 73 start-page: 1039 year: 2007 ident: 494_CR26 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-006-0575-3 – ident: 494_CR43 – volume: 72 start-page: 379 year: 2008 ident: 494_CR4 publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.00025-07 – reference: 2851900 - Yeast. 1985 Sep;1(1):67-77 – reference: 16915647 - Appl Biochem Biotechnol. 2006 Spring;129-132:278-88 – reference: 16713243 - Curr Opin Biotechnol. 2006 Jun;17(3):320-6 – reference: 19707752 - Appl Microbiol Biotechnol. 2010 Feb;85(5):1491-8 – reference: 19237442 - J Biochem. 2009 Jun;145(6):701-8 – reference: 19517136 - Mol Genet Genomics. 2009 Sep;282(3):233-44 – reference: 16222531 - Appl Microbiol Biotechnol. 2006 Jul;71(3):339-49 – reference: 16977466 - Appl Microbiol Biotechnol. 2007 Jan;73(5):1039-46 – reference: 17846724 - Adv Biochem Eng Biotechnol. 2007;108:179-204 – reference: 19416101 - FEMS Yeast Res. 2009 May;9(3):358-64 – reference: 17050014 - Trends Biotechnol. 2006 Dec;24(12):549-56 – reference: 8534086 - Appl Environ Microbiol. 1995 Dec;61(12):4184-90 – reference: 18538626 - Curr Opin Microbiol. 2008 Jun;11(3):233-9 – reference: 11693915 - Appl Microbiol Biotechnol. 2001 Oct;57(1-2):167-74 – reference: 17524590 - Biotechnol Adv. 2007 Sep-Oct;25(5):425-41 – reference: 19572128 - Appl Microbiol Biotechnol. 2009 Aug;84(1):37-53 – reference: 19446584 - J Biotechnol. 2009 Oct 12;144(1):23-30 – reference: 18302314 - Yeast. 2008 Mar;25(3):191-8 – reference: 17033882 - Antonie Van Leeuwenhoek. 2006 Nov;90(4):391-418 – reference: 12570990 - Appl Environ Microbiol. 2003 Feb;69(2):740-6 – reference: 12510742 - Anal Chem. 2002 Dec 15;74(24):6224-9 – reference: 17665194 - Appl Microbiol Biotechnol. 2007 Sep;76(3):495-511 – reference: 16332810 - Appl Environ Microbiol. 2005 Dec;71(12):8249-56 – reference: 16652391 - Yeast. 2006 Apr 30;23(6):455-64 – reference: 18310411 - Appl Environ Microbiol. 2008 May;74(9):2787-96 – reference: 19695948 - Curr Opin Microbiol. 2009 Oct;12(5):547-52 – reference: 6684148 - J Gen Microbiol. 1983 Apr;129(4):965-71 – reference: 18772282 - Microbiol Mol Biol Rev. 2008 Sep;72(3):379-412 – reference: 15066826 - Appl Environ Microbiol. 2004 Apr;70(4):2307-17 – reference: 11229906 - Appl Environ Microbiol. 2001 Mar;67(3):1163-70 – reference: 10919795 - Appl Environ Microbiol. 2000 Aug;66(8):3381-6 – reference: 18478400 - Appl Biochem Biotechnol. 2007 Apr;137-140(1-12):339-52 – reference: 19653633 - Anal Chem. 2009 Sep 1;81(17):7379-89 – reference: 14693449 - Bioresour Technol. 2004 Apr;92(2):163-71 – reference: 17227047 - J Agric Food Chem. 2007 Jan 24;55(2):231-6 – reference: 15630585 - Appl Microbiol Biotechnol. 2005 Jun;67(6):827-37 – reference: 15184173 - Appl Environ Microbiol. 2004 Jun;70(6):3681-6 – reference: 16439654 - Science. 2006 Jan 27;311(5760):484-9 – reference: 7765773 - Appl Microbiol Biotechnol. 1994 Nov;42(2-3):319-25 |
SSID | ssj0017873 |
Score | 2.3998568 |
Snippet | The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the production of... Background The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the... Abstract Background: The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for... BACKGROUND: The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the... Abstract Background The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for... |
SourceID | doaj pubmedcentral biomedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2 |
SubjectTerms | Acetic acid Acetic Acid - pharmacology Acids Biofuels Brewer's yeast Drug tolerance Enzymes Ethanol Ethanol - metabolism Fermentation Formates - pharmacology Formic acid Genetic aspects Genetic Engineering Hydrolysates Hydrolysis lignocellulose metabolic engineering Metabolic Networks and Pathways Metabolic pathways Metabolites Metabolome Metabolomics Microbiology Organic acids Pentose Phosphate Pathway Physiological aspects Saccharomyces cerevisiae Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Solubilization Stress Toxicity Transaldolase Transaldolase - genetics Transaldolase - metabolism Transketolase Transketolase - genetics Transketolase - metabolism Xylose Xylose - metabolism Yeasts |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAvAktyEJInKyu49hJuBVEVZDKgVKpN8uvwEq7SUWyovt3-kuZcbLLmqriwi3yTBR7ZjKekWc-E_Km9KWpisoyL7ln4CUNs01wzMwC7DhW1ioW0Zx-USfnxecLebFz1RfWhI3wwKPgDgvpSzxNyhEpR_m68rm1NWY9QVrVWPS-sOdtkqnp_ADMMJbWF6VkCNE2wTXySh1ux9AD5X_1uS-S7Smi-N_01TubVVpIubMzHT8g96eQkh6NS3lI7oT2Ebm3AzT4mFyfhgG0vZg7ilcQ_zJrGv7QKW5lnnYtXY5s2KncUxebAXtqHDY6UtN6ihEuPrq5p0O3CHgrR4Anaihm1ksb62ro1XrR9YHB27EYCb7Qx6soaNfQM-Ow06tbrsFDURfLjPu5CU_I-fHHbx9O2HQ7A7OgjoGVTV6XTphCBIhRGitswYOvfWggiQsB0jzhLXcQLzmbzxx3qswRCQhCGFHDkHhK9tquDc8JNVbJCPvjIICUnlsTbK2kEcJZLpo6I-8SJenLEYlDIzZ2SoGlatSwRg1ryHDyjLCNRrWbcM9xzQsd859K3eB_u-XffOc2zvdoIMls4gDYr57sV__LfjPyGs1LIxZHi8U-382q7_Wns6_6COQV8eE4zGliajqYuzNT7wSID-G7Es6DhBOchUvI-xsr1pOz6nUNcZyoVFFlhG6p-CLW37WhW_UaYhiIq-WM385Sc1ighAw0I8_Gv2IrGAiPwNFzoJTJ_5JILqW08x8R61xATF6J4sX_EPU-uTueCGAR5wHZG36uwksIKQf7KnqP34fMdE4 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeLO0IAshcbK6jvMyF1QQVUEqB0qlvVl-pV1pNylNVtC_wy9lxusNa6pyizITxfbY80hmviHkTeUqXee1Ya7gjoGW1Mw03jI99WBxTCHLkERz_LU8Os2_zIpZzM3pY1rlRicGRe06i9_I9yUYG1GXef3-4gfDplH4czV20LhN7iByGW7qajbGWxz2oog4jbwu93leFQzx2lD1ZP8UuC8SuxTg-68r6S0rlWZQbpmkwwfkfvQl6cFa-A_JLd8-Ive2EAYfk9_HfgAxL-aWYu_hn_qK-r90ijbM0a6lyzUblij31IYqwJ5qixWOVLeOomuLl3bu6NAtPLbj8HBFNcWQemlCQg39BeF_7xk8HbKQ4A196EFBu4aeaIslXt3yClQTtSG_uJ9r_4ScHn76_vGIxbYMzFRCDqxqMllZoXPhwTlpjDA5904630D05j3Ed8IZbsFRsiabWm7LKkMIIPBdhIRb4inZabvWPydUm7IIeD8WPMfCcaO9kWWhhbCGi0ZOyLtESOpiDcGhEBQ7pcBUFUpYoYQVhDbZhLCNRJWNgOc454UKgU9dXuN_O_Jv3nMT5wfcIMlowo3u8kzFE69gPhX-Bs0Q4ql0snaZMRLDdV-YsjET8hq3l0IQjhazfM70qu_V55Nv6gDWKwDDcRhTZGo6GLvVsWgClg9xuxLOvYQTtIRNyLubXayilurVeKYmhI5UfBAT71rfrXoFzgs41MWU38wiOUywgNBzQp6tT8W4MOAXgYbnQKmS85KsXEpp5-cB5FyAM16L_MV_x71L7q6_8WNa5h7ZGS5X_iU4iYN5FVTBH5DEaoM priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELbQcoED4k3ZBVkIiVOgjvMyEkILYrUglQNLpb1ZfmW3UppA04rt3-GXMuMkbU1ZiVuUGSuxx56HPPMNIS9zm6siKXRkU2Yj0JIq0qUzkRo7sDg6FZlPopl8zU6nyZfz9Hyb_9QvYPvP0A77SU0X1eurn-v3cODf-QNfZG9YkqcRArGhTgF1fBOsUo7dDCbJ9kYBNqZPth94ewDH_fF_Vb5XgcHyuP772nvHfIWplTu26uQuudM7mfS42xX3yA1X3ye3d6AHH5DfE7cE-VczQ7Ep8S-1pm5Lp2jcLG1qOu_YsHa5pcaXB7ZUGSx9pKq2FH1efDQzS5dN5bBPh4MnqijG2nPtM23o1bpqWhfBaJ-eBF9ofXMK2pT0TBms_Wrma9BZ1PjE43am3EMyPfn0_eNp1PdriHTOxTLKy1jkhquEO_BaSs11wpwV1pUQ1jkHgR-3mhnwoIyOx4aZLI8RGwicGi7gFX9EDuqmdk8IVTpLPRCQAZcytUwrp0WWKs6NZrwUI_I2EJL80WFzSETLDikwVYkSlihhCTFPPCLRIFFpeiR0nHMlfURUZHv8rzb8w3eu4_yAGyT4G_-iWVzIXhVImE-O96MxYj9lVhQ21lpgHO9SnZV6RF7g9pKIzlFj-s-FWrWt_Hz2TR7DennEOAb_1DOVDfy7UX01BSwfAnoFnEcBJ6gPE5APh10sh9MnBXh2vMiSYkTohooDMSOvds2qleDVgKedjtn1LILBBFOISUfkcXcqNgsDDhOofgaUPDgvwcqFlHp26dHPOXjpBU-e_rdQDsmt7iIAczePyMFysXLPwJNc6udeRfwBKTdxrA priority: 102 providerName: Scholars Portal |
Title | Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21219616 https://www.proquest.com/docview/902238648 https://www.proquest.com/docview/847435501 https://www.proquest.com/docview/918045306 http://dx.doi.org/10.1186/1475-2859-10-2 https://pubmed.ncbi.nlm.nih.gov/PMC3025834 https://doaj.org/article/45d70739278046d98d2bb94020e5b6fb |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdge4EHxDdlo7IQEk8Rc5zEMW8t2jQqdUIrkypeLH8FKrUJIq1g_w5_KXdu2tWr9sRLG-XOiu07n-_s88-EvBNO6DIrTeJy5hKwkjoxlbeJPvEw45hcFiGJZnxRnF9lo2k-vVnvuLWDz8riA8tEniDMGloMMLaHaQbhHMblw2_b_QJQu5BKv-Ht4Bn3y9861z6PpqOA2r9vm3cmpzhxcmcmOntMHnUuJB2sZf6E3PP1U_JwB1jwGfk79kuQ7nxmKV45_FtfU39Dpzh1OdrUdLFmw5PJLbXh8F9LtcWDjVTXjqJHi4925uiymXu8hcPDE9UUI-mFCXk09A9E_a1PoHRIPoIvtOHqCdpUdKItnuxqFtdgkagNacXtTPvn5Ors9Oun86S7jSExgstlIqpUCst1xj34JJXhJmPeSecrCNq8h7COO8Ms-EfWpCeW2UKkiPwDLguX8Iq_IAd1U_tXhGpT5AHmx4LDmDtmtDeyyDXn1jBeyR75GAlJ_VwjbyjEwo4p0FSFElYoYQURTdojyUaiynY459jmuQrxTlns8b_f8m--cxfnEBUkqk14AeqquoGuoD0Cdz9TRHYqnCxdaozEKN3npqhMj7xF9VKIvVFjcs93vWpb9XlyqQbQXwEPjkGdOqaqgbpb3Z2VgO5DuK6I8zjiBONgI_LRRotVZ5xaJcFv42WRlT1Ct1QsiPl2tW9WrQKfBfzo_ITdzSIZNDCHiLNHXq5HxbZjwB0Cw86AIqLxEvVcTKlnPwK2OQcfvOTZ6__RgCPyYL3yj8max-Rg-Wvl34DruDR9cl9MRZ8cDgajyQj-h6cXXy77YSEGfsdZ2Q925R9TFHL_ |
linkProvider | BioMedCentral |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJulBSwE4hR1HedlJITKo9ql3R5oK_Xm-pWy0m5Sml2V_Tvc-Y_MOMmyoSq33qJ4ktgeex7xzDeEvE5tqrIo04GNmQ1ASqpA584Equ9A4-hYJD6IZrSfDI6ir8fx8Rr53ebCYFhlKxO9oLalwX_kWwKUDc-SKPtw9iPAolF4uNpW0KhXxa5bXIDHVr0ffgb2vgnDnS-HnwZBU1Qg0CkXsyDNQ5EariLuQLXmmuuIOSusy8H3cA68E241M6DmjQ77hpkkDRHABjQvF3CLw3tvkJugd_vo66XHS_-OARVvcCFZlmyxKI0DxIdDURf-k1A_6ehBXy7gslJY0YrdiM0VFbhzj9xtbFe6XS-2-2TNFQ_InRVEw4fk18jNYFlNxoZireMLtaDubztFnWlpWdBpTYYp0RU1PuuwospgRiVVhaVoSuOlGVs6KycOy384uKKKogs_1T6Ah_5cTMrKBfC0j3qCL1S-5gUtc3qgDKaUldMFiEJqfDxzNVbuETm6Fo49JutFWbinhCqdxB5fyIClGlumldMiiRXnRjOeix5512GSPKshPySCcHdbYKgSOSyRwxJcqbBHgpaj0jQA6zjmifSOVpZcon-7pG-_cxXlR1wgnd74G-X5qWwkjITxpHjsGiKkVGJFZkOtBf4ecLFOct0jr3B5SQT9KDCq6FTNq0oOD77JbZgvD0THoE8NUV5C341qkjRg-hAnrEO52aEEqWQ6zRvtKpaNVKzkcg_3CF224oMY6Fe4cl5JMJbAgI_77GoSwWCAMbi6PfKk3hXLiQE7DDQKg5a0s186M9dtKcbfPag6B-M_49Gz__b7Jbk1OBztyb3h_u4GuV2fL2BI6CZZn53P3XMwUGf6hRcLlJxctxz6A5v8psA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIiE4oPLetoCFkDhFXcdxnHBrgVULtIKWShUXy6-UFdmkanYF-3f4pcw42WXDqiduVjxWYns8j3jmG0JeSSd1lmQmcoK5CKSkjkzhbaSHHjSOEXkagmiOT9LD8-TDhbjYIF8WuTCTccAf0iX-t25LzqDHuJqLXgYBDg37Y-_KFe25z9I9lkgRIR4bihaQyrekEBKLGpwefFteLAB_hpj7BW2H47g-_p8E-LKntwK8_7oQX9Fi_QjLFZU12iL3OluT7rfMcZ9s-OoBubuCQPiQ_D72U2CDcmwp1ib-qefU_-2nqOMcrSs6ackwhbmhNmQJNlRbzICkunIUTV9s2rGj07r0WK7DQ4tqii73xISAG_prXtaNj2B0iFKCNzShRgWtC3qmLaaA1ZM5iC5qQ_xxM9b-ETkfvf_69jDqyjZERvJ8GskizqXlOuEejJfCcJMw73LnC_DuvAf_jzvDLBhS1sRDy2wqY4QIAtuG5_CIPyabVV35p4Rqk4qAB2TBshSOGe1NngrNuTWMF_mAvOltkrpqIToUgmb3e2CqCndY4Q4rcH3iAYkWO6psB4iOcy5VcIyydI3-9ZJ-8Z6bKA-QQXpfEx7U15eqkwgK5iPxmjRGCKjU5ZmLjcnRnffCpIUZkJfIXgpBOiqMArrUs6ZRR2enah_WKwDHMfimjqio8UToLqkClg9xvXqUuz1KkCK2172z4GLVSbFG5WDg8SxNsgGhy14ciIF5la9njQLjBgxuMWQ3k-QMJijANR2QJ-2pWC4M2E2gARj0yN556a1cv6cafw8g6ByM9Ywn2__DAS_I7c_vRurT0cnHHXKnvS3AAM9dsjm9nvlnYG5OzfMgQP4AvbKASw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolic+pathway+engineering+based+on+metabolomics+confers+acetic+and+formic+acid+tolerance+to+a+recombinant+xylose-fermenting+strain+of+Saccharomyces+cerevisiae&rft.jtitle=Microbial+cell+factories&rft.au=Hasunuma%2C+Tomohisa&rft.au=Sanda%2C+Tomoya&rft.au=Yamada%2C+Ryosuke&rft.au=Yoshimura%2C+Kazuya&rft.date=2011-01-10&rft.issn=1475-2859&rft.eissn=1475-2859&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1186%2F1475-2859-10-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_1475_2859_10_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-2859&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-2859&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-2859&client=summon |