Dynamic evolution of V1R putative pheromone receptors between Mus musculus and Mus spretus

Background The mammalian vomeronasal organ (VNO) expresses two G-protein coupled receptor gene families that mediate pheromone responses, the V1R and V2R receptor genes. In rodents, there are ~150 V1R genes comprising 12 subfamilies organized in gene clusters at multiple chromosomal locations. Previ...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 10; no. 1; p. 74
Main Authors Kurzweil, Vanessa C, Getman, Mike, Green, Eric D, Lane, Robert P
Format Journal Article
LanguageEnglish
Published London BioMed Central 09.02.2009
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1471-2164
1471-2164
DOI10.1186/1471-2164-10-74

Cover

Loading…
Abstract Background The mammalian vomeronasal organ (VNO) expresses two G-protein coupled receptor gene families that mediate pheromone responses, the V1R and V2R receptor genes. In rodents, there are ~150 V1R genes comprising 12 subfamilies organized in gene clusters at multiple chromosomal locations. Previously, we showed that several of these subfamilies had been extensively modulated by gene duplications, deletions, and gene conversions around the time of the evolutionary split of the mouse and rat lineages, consistent with the hypothesis that V1R repertoires might be involved in reinforcing speciation events. Here, we generated genome sequence for one large cluster containing two V1R subfamilies in Mus spretus, a closely related and sympatric species to Mus musculus, and investigated evolutionary change in these repertoires along the two mouse lineages. Results We describe a comparison of spretus and musculus with respect to genome organization and synteny, as well as V1R gene content and phylogeny, with reference to previous observations made between mouse and rat. Unlike the mouse-rat comparisons, synteny seems to be largely conserved between the two mouse species. Disruption of local synteny is generally associated with differences in repeat content, although these differences appear to arise more from deletion than new integrations. Even though unambiguous V1R orthology is evident, we observe dynamic modulation of the functional repertoires, with two of seven V1Rb and one of eleven V1Ra genes lost in spretus, two V1Ra genes becoming pseudogenes in musculus, two additional orthologous pairs apparently subject to strong adaptive selection, and another divergent orthologous pair that apparently was subjected to gene conversion. Conclusion Therefore, eight of the 18 (~44%) presumptive V1Ra/V1Rb genes in the musculus-spretus ancestor appear to have undergone functional modulation since these two species diverged. As compared to the rat-mouse split, where modulation is evident by independent expansions of these two V1R subfamilies, divergence between musculus and spretus has arisen more by mutations within coding sequences. These results support the hypothesis that adaptive changes in functional V1R repertoires contribute to the delineation of very closely related species.
AbstractList BACKGROUNDThe mammalian vomeronasal organ (VNO) expresses two G-protein coupled receptor gene families that mediate pheromone responses, the V1R and V2R receptor genes. In rodents, there are ~150 V1R genes comprising 12 subfamilies organized in gene clusters at multiple chromosomal locations. Previously, we showed that several of these subfamilies had been extensively modulated by gene duplications, deletions, and gene conversions around the time of the evolutionary split of the mouse and rat lineages, consistent with the hypothesis that V1R repertoires might be involved in reinforcing speciation events. Here, we generated genome sequence for one large cluster containing two V1R subfamilies in Mus spretus, a closely related and sympatric species to Mus musculus, and investigated evolutionary change in these repertoires along the two mouse lineages.RESULTSWe describe a comparison of spretus and musculus with respect to genome organization and synteny, as well as V1R gene content and phylogeny, with reference to previous observations made between mouse and rat. Unlike the mouse-rat comparisons, synteny seems to be largely conserved between the two mouse species. Disruption of local synteny is generally associated with differences in repeat content, although these differences appear to arise more from deletion than new integrations. Even though unambiguous V1R orthology is evident, we observe dynamic modulation of the functional repertoires, with two of seven V1Rb and one of eleven V1Ra genes lost in spretus, two V1Ra genes becoming pseudogenes in musculus, two additional orthologous pairs apparently subject to strong adaptive selection, and another divergent orthologous pair that apparently was subjected to gene conversion.CONCLUSIONTherefore, eight of the 18 (~44%) presumptive V1Ra/V1Rb genes in the musculus-spretus ancestor appear to have undergone functional modulation since these two species diverged. As compared to the rat-mouse split, where modulation is evident by independent expansions of these two V1R subfamilies, divergence between musculus and spretus has arisen more by mutations within coding sequences. These results support the hypothesis that adaptive changes in functional V1R repertoires contribute to the delineation of very closely related species.
Abstract Background The mammalian vomeronasal organ (VNO) expresses two G-protein coupled receptor gene families that mediate pheromone responses, the V1R and V2R receptor genes. In rodents, there are ~150 V1R genes comprising 12 subfamilies organized in gene clusters at multiple chromosomal locations. Previously, we showed that several of these subfamilies had been extensively modulated by gene duplications, deletions, and gene conversions around the time of the evolutionary split of the mouse and rat lineages, consistent with the hypothesis that V1R repertoires might be involved in reinforcing speciation events. Here, we generated genome sequence for one large cluster containing two V1R subfamilies in Mus spretus, a closely related and sympatric species to Mus musculus, and investigated evolutionary change in these repertoires along the two mouse lineages. Results We describe a comparison of spretus and musculus with respect to genome organization and synteny, as well as V1R gene content and phylogeny, with reference to previous observations made between mouse and rat. Unlike the mouse-rat comparisons, synteny seems to be largely conserved between the two mouse species. Disruption of local synteny is generally associated with differences in repeat content, although these differences appear to arise more from deletion than new integrations. Even though unambiguous V1R orthology is evident, we observe dynamic modulation of the functional repertoires, with two of seven V1Rb and one of eleven V1Ra genes lost in spretus, two V1Ra genes becoming pseudogenes in musculus, two additional orthologous pairs apparently subject to strong adaptive selection, and another divergent orthologous pair that apparently was subjected to gene conversion. Conclusion Therefore, eight of the 18 (~44%) presumptive V1Ra/V1Rb genes in the musculus-spretus ancestor appear to have undergone functional modulation since these two species diverged. As compared to the rat-mouse split, where modulation is evident by independent expansions of these two V1R subfamilies, divergence between musculus and spretus has arisen more by mutations within coding sequences. These results support the hypothesis that adaptive changes in functional V1R repertoires contribute to the delineation of very closely related species.
BACKGROUND: The mammalian vomeronasal organ (VNO) expresses two G-protein coupled receptor gene families that mediate pheromone responses, the V1R and V2R receptor genes. In rodents, there are ~150 V1R genes comprising 12 subfamilies organized in gene clusters at multiple chromosomal locations. Previously, we showed that several of these subfamilies had been extensively modulated by gene duplications, deletions, and gene conversions around the time of the evolutionary split of the mouse and rat lineages, consistent with the hypothesis that V1R repertoires might be involved in reinforcing speciation events. Here, we generated genome sequence for one large cluster containing two V1R subfamilies in Mus spretus, a closely related and sympatric species to Mus musculus, and investigated evolutionary change in these repertoires along the two mouse lineages. RESULTS: We describe a comparison of spretus and musculus with respect to genome organization and synteny, as well as V1R gene content and phylogeny, with reference to previous observations made between mouse and rat. Unlike the mouse-rat comparisons, synteny seems to be largely conserved between the two mouse species. Disruption of local synteny is generally associated with differences in repeat content, although these differences appear to arise more from deletion than new integrations. Even though unambiguous V1R orthology is evident, we observe dynamic modulation of the functional repertoires, with two of seven V1Rb and one of eleven V1Ra genes lost in spretus, two V1Ra genes becoming pseudogenes in musculus, two additional orthologous pairs apparently subject to strong adaptive selection, and another divergent orthologous pair that apparently was subjected to gene conversion. CONCLUSION: Therefore, eight of the 18 (~44%) presumptive V1Ra/V1Rb genes in the musculus-spretus ancestor appear to have undergone functional modulation since these two species diverged. As compared to the rat-mouse split, where modulation is evident by independent expansions of these two V1R subfamilies, divergence between musculus and spretus has arisen more by mutations within coding sequences. These results support the hypothesis that adaptive changes in functional V1R repertoires contribute to the delineation of very closely related species.
Background The mammalian vomeronasal organ (VNO) expresses two G-protein coupled receptor gene families that mediate pheromone responses, the V1R and V2R receptor genes. In rodents, there are ~150 V1R genes comprising 12 subfamilies organized in gene clusters at multiple chromosomal locations. Previously, we showed that several of these subfamilies had been extensively modulated by gene duplications, deletions, and gene conversions around the time of the evolutionary split of the mouse and rat lineages, consistent with the hypothesis that V1R repertoires might be involved in reinforcing speciation events. Here, we generated genome sequence for one large cluster containing two V1R subfamilies in Mus spretus, a closely related and sympatric species to Mus musculus, and investigated evolutionary change in these repertoires along the two mouse lineages. Results We describe a comparison of spretus and musculus with respect to genome organization and synteny, as well as V1R gene content and phylogeny, with reference to previous observations made between mouse and rat. Unlike the mouse-rat comparisons, synteny seems to be largely conserved between the two mouse species. Disruption of local synteny is generally associated with differences in repeat content, although these differences appear to arise more from deletion than new integrations. Even though unambiguous V1R orthology is evident, we observe dynamic modulation of the functional repertoires, with two of seven V1Rb and one of eleven V1Ra genes lost in spretus, two V1Ra genes becoming pseudogenes in musculus, two additional orthologous pairs apparently subject to strong adaptive selection, and another divergent orthologous pair that apparently was subjected to gene conversion. Conclusion Therefore, eight of the 18 (~44%) presumptive V1Ra/V1Rb genes in the musculus-spretus ancestor appear to have undergone functional modulation since these two species diverged. As compared to the rat-mouse split, where modulation is evident by independent expansions of these two V1R subfamilies, divergence between musculus and spretus has arisen more by mutations within coding sequences. These results support the hypothesis that adaptive changes in functional V1R repertoires contribute to the delineation of very closely related species.
The mammalian vomeronasal organ (VNO) expresses two G-protein coupled receptor gene families that mediate pheromone responses, the V1R and V2R receptor genes. In rodents, there are ~150 V1R genes comprising 12 subfamilies organized in gene clusters at multiple chromosomal locations. Previously, we showed that several of these subfamilies had been extensively modulated by gene duplications, deletions, and gene conversions around the time of the evolutionary split of the mouse and rat lineages, consistent with the hypothesis that V1R repertoires might be involved in reinforcing speciation events. Here, we generated genome sequence for one large cluster containing two V1R subfamilies in Mus spretus, a closely related and sympatric species to Mus musculus, and investigated evolutionary change in these repertoires along the two mouse lineages. We describe a comparison of spretus and musculus with respect to genome organization and synteny, as well as V1R gene content and phylogeny, with reference to previous observations made between mouse and rat. Unlike the mouse-rat comparisons, synteny seems to be largely conserved between the two mouse species. Disruption of local synteny is generally associated with differences in repeat content, although these differences appear to arise more from deletion than new integrations. Even though unambiguous V1R orthology is evident, we observe dynamic modulation of the functional repertoires, with two of seven V1Rb and one of eleven V1Ra genes lost in spretus, two V1Ra genes becoming pseudogenes in musculus, two additional orthologous pairs apparently subject to strong adaptive selection, and another divergent orthologous pair that apparently was subjected to gene conversion. Therefore, eight of the 18 (~44%) presumptive V1Ra/V1Rb genes in the musculus-spretus ancestor appear to have undergone functional modulation since these two species diverged. As compared to the rat-mouse split, where modulation is evident by independent expansions of these two V1R subfamilies, divergence between musculus and spretus has arisen more by mutations within coding sequences. These results support the hypothesis that adaptive changes in functional V1R repertoires contribute to the delineation of very closely related species.
ArticleNumber 74
Audience Academic
Author Kurzweil, Vanessa C
Getman, Mike
Lane, Robert P
Green, Eric D
AuthorAffiliation 1 Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06457, USA
2 Genome Technology Branch and NIH Intramural Sequencing Center (NISC), National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
AuthorAffiliation_xml – name: 1 Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06457, USA
– name: 2 Genome Technology Branch and NIH Intramural Sequencing Center (NISC), National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
Author_xml – sequence: 1
  givenname: Vanessa C
  surname: Kurzweil
  fullname: Kurzweil, Vanessa C
  organization: Department of Molecular Biology and Biochemistry, Wesleyan University
– sequence: 2
  givenname: Mike
  surname: Getman
  fullname: Getman, Mike
  organization: Department of Molecular Biology and Biochemistry, Wesleyan University
– sequence: 4
  givenname: Eric D
  surname: Green
  fullname: Green, Eric D
  organization: Genome Technology Branch and NIH Intramural Sequencing Center (NISC), National Human Genome Research Institute, National Institutes of Health
– sequence: 5
  givenname: Robert P
  surname: Lane
  fullname: Lane, Robert P
  email: rlane@wesleyan.edu
  organization: Department of Molecular Biology and Biochemistry, Wesleyan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19203383$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1TAQhSNURB-wZociISGxSOtX7GSDVMrrSkVI5bFgYznJ-NZVYgfbudB_j9NbSoNalEWs8XdOMjNnP9uxzkKWPcXoEOOKH2EmcEEwZwVGhWAPsr2bys6t8262H8IFQlhUpHyU7eKaIEorupd9f3Np1WDaHDaun6JxNnc6_4bP8nGKKpoN5OM5eDek7-YeWhij8yFvIP4EsPnHKeTDFNqpTwdlu6tCGD3EKTzOHmrVB3hy_T7Ivr57--XkQ3H66f3q5Pi0aARhsRCkKnndKILrsqYNQagUqiRMK9oxqnmpKWM1oQ1UBCnOsNBdCZRRAQqasqMH2Wrr2zl1IUdvBuUvpVNGXhWcX0vlo2l7kBp3uNZCE9URVjW0oUQJzolSvOKNUMnr1dZrnJoBuhZs9KpfmC5vrDmXa7eRhLM07DIZvN4aNMbdY7C8ad0g5z3JeU8SIylYMnlx_Rfe_ZggRDmY0ELfKwtuCpLzmtYYVQl8vgXXKnVnrHbJs51heYxnphQ1TtThHVR6OkibT4vVJtUXgpcLQWIi_IprNYUgV5_Pluyz2xO76fRPxBJwtAVa70LwoP8iSM4hvqP98h9Fa-Ysunlipv-PDm11KYDGrsHLCzd5m7J3r-Q3nD0CqQ
CitedBy_id crossref_primary_10_1016_j_brainres_2009_10_012
crossref_primary_10_1186_1471_2164_13_415
crossref_primary_10_1002_ar_22617
crossref_primary_10_7554_eLife_97356
crossref_primary_10_1146_annurev_neuro_080317_061916
crossref_primary_10_1266_ggs_19_00009
crossref_primary_10_1093_gbe_evz200
crossref_primary_10_1186_s12862_020_01662_z
crossref_primary_10_7554_eLife_97356_3
crossref_primary_10_1007_s00441_020_03376_6
crossref_primary_10_1016_j_cub_2024_10_077
crossref_primary_10_1186_s12864_018_5355_9
crossref_primary_10_1093_gbe_evu006
crossref_primary_10_1134_S2079086422010091
crossref_primary_10_1093_gbe_evr039
crossref_primary_10_1002_0471142905_hg0924s79
crossref_primary_10_1186_s12862_019_1502_4
crossref_primary_10_1523_JNEUROSCI_2488_17_2018
Cites_doi 10.1038/nn795
10.1073/pnas.88.14.5974
10.1101/gr.2648404
10.1016/S0092-8674(00)80537-1
10.1101/gr.3339905
10.1080/10635150290069878
10.1186/1471-2164-8-338
10.1038/nature00955
10.1126/science.1069259
10.1111/j.1753-4887.2004.tb00097.x
10.1530/jrf.0.0860135
10.1007/BF02603118
10.1101/gr.2117004
10.1016/S0092-8674(00)80536-X
10.1111/j.1095-8312.1990.tb00823.x
10.1016/0092-8674(95)90161-2
10.1073/pnas.0501589102
10.1038/230289a0
10.1016/j.ygeno.2007.03.021
10.1038/35015572
10.1093/chemse/24.2.127
10.1007/BF01922917
10.1159/000112981
10.1093/oxfordjournals.molbev.a003860
10.1016/S0896-6273(00)80946-0
10.1101/gr.1940604
10.1007/s00239-004-0172-y
10.1016/j.cub.2003.12.052
ContentType Journal Article
Copyright Kurzweil et al; licensee BioMed Central Ltd. 2009 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
COPYRIGHT 2009 BioMed Central Ltd.
Copyright © 2009 Kurzweil et al; licensee BioMed Central Ltd. 2009 Kurzweil et al; licensee BioMed Central Ltd.
Copyright_xml – notice: Kurzweil et al; licensee BioMed Central Ltd. 2009 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: COPYRIGHT 2009 BioMed Central Ltd.
– notice: Copyright © 2009 Kurzweil et al; licensee BioMed Central Ltd. 2009 Kurzweil et al; licensee BioMed Central Ltd.
CorporateAuthor NISC Comparative Sequencing Program
CorporateAuthor_xml – name: NISC Comparative Sequencing Program
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
DOA
DOI 10.1186/1471-2164-10-74
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage 74
ExternalDocumentID oai_doaj_org_article_f1d19f7f2ad248b3b32a7662aa686b7a
PMC2644715
oai_biomedcentral_com_1471_2164_10_74
A193915791
19203383
10_1186_1471_2164_10_74
Genre Comparative Study
Research Support, N.I.H., Intramural
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: Intramural NIH HHS
– fundername: NIDCD NIH HHS
  grantid: R01-DC006267
– fundername: NIDCD NIH HHS
  grantid: R01 DC006267
GroupedDBID ---
0R~
23N
2VQ
2WC
2XV
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
IPNFZ
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7X8
-A0
3V.
ABVAZ
ACRMQ
ADINQ
AFGXO
AFNRJ
AIXEN
C24
5PM
ID FETCH-LOGICAL-b724t-728569ba219593b20057a524fa3d43f65f344923be820a6417fd5e3437eaeb5d3
IEDL.DBID M48
ISSN 1471-2164
IngestDate Wed Aug 27 01:31:31 EDT 2025
Thu Aug 21 18:10:01 EDT 2025
Wed May 22 07:12:44 EDT 2024
Fri Sep 05 12:16:57 EDT 2025
Tue Jun 17 22:20:02 EDT 2025
Tue Jun 10 21:28:48 EDT 2025
Fri Jun 27 05:29:40 EDT 2025
Mon Jul 21 06:04:38 EDT 2025
Tue Jul 01 02:21:44 EDT 2025
Thu Apr 24 23:04:16 EDT 2025
Sat Sep 06 07:28:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Synonymous Substitution Rate
Main Olfactory System
Local Synteny
Orthologous Pair
Putative Orthologs
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b724t-728569ba219593b20057a524fa3d43f65f344923be820a6417fd5e3437eaeb5d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2164-10-74
PMID 19203383
PQID 66939108
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_f1d19f7f2ad248b3b32a7662aa686b7a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2644715
biomedcentral_primary_oai_biomedcentral_com_1471_2164_10_74
proquest_miscellaneous_66939108
gale_infotracmisc_A193915791
gale_infotracacademiconefile_A193915791
gale_incontextgauss_ISR_A193915791
pubmed_primary_19203383
crossref_primary_10_1186_1471_2164_10_74
crossref_citationtrail_10_1186_1471_2164_10_74
springer_journals_10_1186_1471_2164_10_74
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-02-09
PublicationDateYYYYMMDD 2009-02-09
PublicationDate_xml – month: 02
  year: 2009
  text: 2009-02-09
  day: 09
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC genomics
PublicationTitleAbbrev BMC Genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2009
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References L Horth (1958_CR18) 2007; 90
KM Dorries (1958_CR10) 1997; 49
P Shi (1958_CR27) 2005; 60
JM Young (1958_CR8) 2005; 15
RM Adkins (1958_CR23) 2001; 18
PA Brennan (1958_CR1) 2004; 14
G Herrada (1958_CR3) 1997; 90
NJ Ryba (1958_CR5) 1997; 19
M Bulmer (1958_CR24) 1991; 88
BL Lundrigan (1958_CR21) 2002; 51
WE Grus (1958_CR9) 2005; 102
T Leinders-Zufall (1958_CR15) 2000; 405
LB Buck (1958_CR14) 2004; 62
JX She (1958_CR22) 1990; 41
DE Gloriam (1958_CR6) 2007; 8
T Dobzhansky (1958_CR19) 1971; 230
E Weiler (1958_CR12) 1999; 24
H Matsunami (1958_CR4) 1997; 90
K Del Punta (1958_CR16) 2002; 419
F Bonhomme (1958_CR20) 1978; 34
C Dulac (1958_CR2) 1995; 83
RW Blakesley (1958_CR26) 2004; 14
RP Lane (1958_CR13) 2004; 14
RD Emes (1958_CR28) 2004; 14
L Stowers (1958_CR17) 2002; 295
J Cohen-Tannoudji (1958_CR11) 1989; 86
WH Li (1958_CR25) 1987; 25
I Rodriguez (1958_CR7) 2002; 5
14738757 - Curr Biol. 2004 Jan 20;14(2):R81-9
17892602 - BMC Genomics. 2007;8:338
11823606 - Science. 2002 Feb 22;295(5559):1493-500
15630933 - Nutr Rev. 2004 Nov;62(11 Pt 2):S184-8; discussion S224-41
17544617 - Genomics. 2007 Aug;90(2):159-75
2068073 - Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):5974-8
10321813 - Chem Senses. 1999 Apr;24(2):127-36
10866200 - Nature. 2000 Jun 15;405(6788):792-6
9292726 - Neuron. 1997 Aug;19(2):371-9
12214233 - Nature. 2002 Sep 5;419(6902):70-4
11319262 - Mol Biol Evol. 2001 May;18(5):777-91
15653832 - Genome Res. 2005 Feb;15(2):231-40
8980852 - Brain Behav Evol. 1997;49(1):53-62
12079642 - Syst Biol. 2002 Jun;51(3):410-31
9288756 - Cell. 1997 Aug 22;90(4):775-84
15790682 - Proc Natl Acad Sci U S A. 2005 Apr 19;102(16):5767-72
11802169 - Nat Neurosci. 2002 Feb;5(2):134-40
15060000 - Genome Res. 2004 Apr;14(4):591-602
5549403 - Nature. 1971 Apr 2;230(5292):289-92
7585937 - Cell. 1995 Oct 20;83(2):195-206
3118047 - J Mol Evol. 1987;25(4):330-42
2754634 - J Reprod Fertil. 1989 May;86(1):135-44
720505 - Experientia. 1978 Sep 15;34(9):1140-1
9288755 - Cell. 1997 Aug 22;90(4):763-73
15060001 - Genome Res. 2004 Apr;14(4):603-8
15479945 - Genome Res. 2004 Nov;14(11):2235-44
15983866 - J Mol Evol. 2005 May;60(5):566-76
References_xml – volume: 5
  start-page: 134
  issue: 2
  year: 2002
  ident: 1958_CR7
  publication-title: Nat Neurosci
  doi: 10.1038/nn795
– volume: 88
  start-page: 5974
  issue: 14
  year: 1991
  ident: 1958_CR24
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.88.14.5974
– volume: 14
  start-page: 2235
  issue: 11
  year: 2004
  ident: 1958_CR26
  publication-title: Genome Res
  doi: 10.1101/gr.2648404
– volume: 90
  start-page: 775
  issue: 4
  year: 1997
  ident: 1958_CR4
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80537-1
– volume: 15
  start-page: 231
  issue: 2
  year: 2005
  ident: 1958_CR8
  publication-title: Genome Res
  doi: 10.1101/gr.3339905
– volume: 51
  start-page: 410
  issue: 3
  year: 2002
  ident: 1958_CR21
  publication-title: Syst Biol
  doi: 10.1080/10635150290069878
– volume: 8
  start-page: 338
  year: 2007
  ident: 1958_CR6
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-8-338
– volume: 419
  start-page: 70
  issue: 6902
  year: 2002
  ident: 1958_CR16
  publication-title: Nature
  doi: 10.1038/nature00955
– volume: 295
  start-page: 1493
  issue: 5559
  year: 2002
  ident: 1958_CR17
  publication-title: Science
  doi: 10.1126/science.1069259
– volume: 62
  start-page: S184
  issue: 11 Pt 2
  year: 2004
  ident: 1958_CR14
  publication-title: Nutr Rev
  doi: 10.1111/j.1753-4887.2004.tb00097.x
– volume: 86
  start-page: 135
  issue: 1
  year: 1989
  ident: 1958_CR11
  publication-title: J Reprod Fertil
  doi: 10.1530/jrf.0.0860135
– volume: 25
  start-page: 330
  issue: 4
  year: 1987
  ident: 1958_CR25
  publication-title: J Mol Evol
  doi: 10.1007/BF02603118
– volume: 14
  start-page: 603
  issue: 4
  year: 2004
  ident: 1958_CR13
  publication-title: Genome Res
  doi: 10.1101/gr.2117004
– volume: 90
  start-page: 763
  issue: 4
  year: 1997
  ident: 1958_CR3
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80536-X
– volume: 41
  start-page: 83
  year: 1990
  ident: 1958_CR22
  publication-title: Biol J Linn Soc
  doi: 10.1111/j.1095-8312.1990.tb00823.x
– volume: 83
  start-page: 195
  issue: 2
  year: 1995
  ident: 1958_CR2
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90161-2
– volume: 102
  start-page: 5767
  issue: 16
  year: 2005
  ident: 1958_CR9
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0501589102
– volume: 230
  start-page: 289
  issue: 5292
  year: 1971
  ident: 1958_CR19
  publication-title: Nature
  doi: 10.1038/230289a0
– volume: 90
  start-page: 159
  issue: 2
  year: 2007
  ident: 1958_CR18
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2007.03.021
– volume: 405
  start-page: 792
  issue: 6788
  year: 2000
  ident: 1958_CR15
  publication-title: Nature
  doi: 10.1038/35015572
– volume: 24
  start-page: 127
  issue: 2
  year: 1999
  ident: 1958_CR12
  publication-title: Chem Senses
  doi: 10.1093/chemse/24.2.127
– volume: 34
  start-page: 1140
  issue: 9
  year: 1978
  ident: 1958_CR20
  publication-title: Experientia
  doi: 10.1007/BF01922917
– volume: 49
  start-page: 53
  issue: 1
  year: 1997
  ident: 1958_CR10
  publication-title: Brain Behav Evol
  doi: 10.1159/000112981
– volume: 18
  start-page: 777
  issue: 5
  year: 2001
  ident: 1958_CR23
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a003860
– volume: 19
  start-page: 371
  issue: 2
  year: 1997
  ident: 1958_CR5
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80946-0
– volume: 14
  start-page: 591
  issue: 4
  year: 2004
  ident: 1958_CR28
  publication-title: Genome Res
  doi: 10.1101/gr.1940604
– volume: 60
  start-page: 566
  issue: 5
  year: 2005
  ident: 1958_CR27
  publication-title: J Mol Evol
  doi: 10.1007/s00239-004-0172-y
– volume: 14
  start-page: R81
  issue: 2
  year: 2004
  ident: 1958_CR1
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2003.12.052
– reference: 7585937 - Cell. 1995 Oct 20;83(2):195-206
– reference: 12079642 - Syst Biol. 2002 Jun;51(3):410-31
– reference: 9292726 - Neuron. 1997 Aug;19(2):371-9
– reference: 15653832 - Genome Res. 2005 Feb;15(2):231-40
– reference: 17892602 - BMC Genomics. 2007;8:338
– reference: 15790682 - Proc Natl Acad Sci U S A. 2005 Apr 19;102(16):5767-72
– reference: 10866200 - Nature. 2000 Jun 15;405(6788):792-6
– reference: 14738757 - Curr Biol. 2004 Jan 20;14(2):R81-9
– reference: 15630933 - Nutr Rev. 2004 Nov;62(11 Pt 2):S184-8; discussion S224-41
– reference: 11802169 - Nat Neurosci. 2002 Feb;5(2):134-40
– reference: 15479945 - Genome Res. 2004 Nov;14(11):2235-44
– reference: 15060000 - Genome Res. 2004 Apr;14(4):591-602
– reference: 15983866 - J Mol Evol. 2005 May;60(5):566-76
– reference: 720505 - Experientia. 1978 Sep 15;34(9):1140-1
– reference: 3118047 - J Mol Evol. 1987;25(4):330-42
– reference: 15060001 - Genome Res. 2004 Apr;14(4):603-8
– reference: 5549403 - Nature. 1971 Apr 2;230(5292):289-92
– reference: 12214233 - Nature. 2002 Sep 5;419(6902):70-4
– reference: 10321813 - Chem Senses. 1999 Apr;24(2):127-36
– reference: 11319262 - Mol Biol Evol. 2001 May;18(5):777-91
– reference: 11823606 - Science. 2002 Feb 22;295(5559):1493-500
– reference: 9288756 - Cell. 1997 Aug 22;90(4):775-84
– reference: 9288755 - Cell. 1997 Aug 22;90(4):763-73
– reference: 17544617 - Genomics. 2007 Aug;90(2):159-75
– reference: 8980852 - Brain Behav Evol. 1997;49(1):53-62
– reference: 2754634 - J Reprod Fertil. 1989 May;86(1):135-44
– reference: 2068073 - Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):5974-8
SSID ssj0017825
Score 1.9905862
Snippet Background The mammalian vomeronasal organ (VNO) expresses two G-protein coupled receptor gene families that mediate pheromone responses, the V1R and V2R...
The mammalian vomeronasal organ (VNO) expresses two G-protein coupled receptor gene families that mediate pheromone responses, the V1R and V2R receptor genes....
BACKGROUNDThe mammalian vomeronasal organ (VNO) expresses two G-protein coupled receptor gene families that mediate pheromone responses, the V1R and V2R...
BACKGROUND: The mammalian vomeronasal organ (VNO) expresses two G-protein coupled receptor gene families that mediate pheromone responses, the V1R and V2R...
Abstract Background The mammalian vomeronasal organ (VNO) expresses two G-protein coupled receptor gene families that mediate pheromone responses, the V1R and...
SourceID doaj
pubmedcentral
biomedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 74
SubjectTerms Animal Genetics and Genomics
Animals
Biomedical and Life Sciences
Chemotactic Factors - genetics
Chromosome Mapping
Chromosomes, Artificial, Bacterial
Chromosomes, Mammalian
Evolution, Molecular
Gene mutations
Genetic aspects
Genetic Speciation
Genome
Hormone receptors
Life Sciences
Long Interspersed Nucleotide Elements
Mice
Mice - genetics
Microarrays
Microbial Genetics and Genomics
Multigene Family
Physiological aspects
Plant Genetics and Genomics
Proteomics
Receptors, Pheromone - genetics
Research Article
Selection, Genetic
Sequence Analysis, DNA
Species Specificity
Synteny
Vomeronasal Organ - physiology
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SELyI365WDSKoh7Wb71081Y9ShXqoVoqXkGwSFeq-h_tW8L83k82rzSvFi7clM8smk1-SyWbyG4SeWOAoI57XwfZ9zXsTatvztm6M49a7IHy64X3wQe4f8ffH4vhMqi-ICZvpgWfD7QTiSBdUoMZR3lpmGTVKSmqMbKVVyTVquma9mcrnB3HdE-lekSI1jTuCTOpDWrlzWgYzkNq86H5SrE-Jxv_8ZH1mtdqMpNw4Tk2r1N41dDW7l3h3btZ1dMkPN9DlOeHk75voy5s5AT32vzLk8CLgz-QQL6dVogDHQDOwiNj0OM6FfgnJeHAO5sIH04h_TBC6Gh_M4FLBCCGL03gLHe29_fR6v87ZFWqrKF_VirZCdtZQoJdhFv4uKSMoD4Y5zoIUgXFgb7M-OglGcqKCE55xprzxVjh2G20NsTZ3Ee6F7S1rG2FtlHsB2Ty8ijOH463rWVOhl4WN9XJm0tDAbV1K4jDT0EMaekjHHYriFXqx7hHdZ-JyyJ9xotMGppXnX3h2-sL6SxeqvoIuLiqUCiIEdYag_hcEK_QYAKKBTmOAeJ2vZhpH_e7jod6N_nFHhOpIhZ5mpbCIte9Nvv4QLQgMXIXmdqEZx3tfiB-tcahBBEFyg19Mo5YSdJq2QndmVP5tfUcb-BdRIVXgtWh3KRm-f0tk4-AwKyIq9HyNbJ1nufEio977H0a9j67MB3e0brpttLX6OfkH0f9b2YdpqP8BX6lVVw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKERIXxJtAAQshAYfQ-J2I0_KoClI5FBZVXCw7sQtSSVbNBol_j8dJCt7SA7coM1Ycz8Nje_wNQk8tYJQRx3Nv6zrntfG5rXmZF6bh1jVeuHjD--Cj3F_yD0fiaAuR-S5MzHafjySjp45mXcpdEtxoTkN0D55D8UvosggLd7DFJV2cHRyECU9MCD7_aLRxq_0kmYwiZv95z_zX1LSZNrlxdhqnpL3r6NoUS-LFKPwbaMu1N9GVsbrkr1vo69ux2jx2Pyf9wp3HX8ghXg3riPeNAVOgC4rocHB8bgWVd_CUuYUPhh7_GCBPNTyYtokveshPHPrbaLn37vOb_XwqpZBbRfk6V7QUsrKGApYMs7CVpIyg3BvWcOal8IwDVJt1ISIwkhPlG-EYZ8oZZ0XD7qDtNvTmHsK1sLVlZSGsDXQnoHSHU8FNNLxsalZk6FUyxno1wmZoALJOKUG8GiSkQUI6LEcUz9DLWSK6nlDKoVjGiY6rlVKeb_D8rMH8pQtZX4OIkw7FF93psZ4MVXvSkMorT01DeWmZZdQoKakxspRWmQw9AQXRgJ3RQnLOsRn6Xr__dKgXIRiuiFAVydCzicl3ofe1me46hBEEuK2EcyfhDMZdJ-THsx5qIEFGXOu6oddSAk9RZujuqJV__r6iBWw8ZEgl-pr8d0ppv3-LyOIQHSsiMvRi1mw9ubT-okG9_x-8D9DV8TCO5kW1g7bXp4N7GGK6tX0Urfg3j4NFyg
  priority: 102
  providerName: Springer Nature
Title Dynamic evolution of V1R putative pheromone receptors between Mus musculus and Mus spretus
URI https://link.springer.com/article/10.1186/1471-2164-10-74
https://www.ncbi.nlm.nih.gov/pubmed/19203383
https://www.proquest.com/docview/66939108
http://dx.doi.org/10.1186/1471-2164-10-74
https://pubmed.ncbi.nlm.nih.gov/PMC2644715
https://doaj.org/article/f1d19f7f2ad248b3b32a7662aa686b7a
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfYJiReEN9kjGIhJOAhI3H8kQgh1JVNA6kTKhRVe7HsxB6TSlqaBrH_Hp-TUtJt4qVqc2fVse_L9vl3CL3QgFEWGxpanechzZUNdU7TMFIF1aawzPgb3sMTfjymnyZssi4H1A5gdeXSDupJjRfT_d8_L947hX_nFT7lb2JnYEPi4n6wKYJuoR3nljisxIZ0faTgXCFrsX2uaLRx333acVMezf-yzf7HaW0mVG6cqnpndXQH3W6jTNxvxOIuumHKe-hmU3fy4j46_dDUocfmVyt5eGbxt3iE5_XSI4FjQBuYORE12JlEM4eaPLjN6cLDusI_ashgdV9UWfgHFWQu1tUDND46_Do4DtsiC6EWhC5DQVLGM60IoMwkGjaZhGKEWpUUNLGc2YQCiJs2LlZQnMbCFswkNBFGGc2K5CHaLl1vHiOcM53rJI2Y1o5uGBT1MMIZkIKmRZ5EAXrbGWM5bwA1JEBcdylO2yTMkIQZkm6hImiA9lczIvMWvxzKaEylX8ek_HKDV38brP7pWtYDmOJOh_yD2eJMtiosbVzEmRWWqILQVCc6IUpwTpTiKddCBeg5CIgEVI0S0nbOVF1V8uOXkey7MDmLmcjiAL1smezM9T5X7S0IN4IAxNXh3OtwOrXPO-RnKzmUQIJcudLM6kpyDjxRGqBHjVSu3z4jEWxJBEh05LXz3l1Kef7dY45D3CxiFqDXK8mWK129blB3_9vDJ-hWczhHwijbQ9vLRW2euhhvqXtoS0xED-0cHJ58HrlfAz7o-f2Sntdq9zkm_T_g1FPH
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKVgguiDeBQiOEBBwCiZ-JOC2Part0e-gDVVwsO7ELUklWzQaJf4_HcQrZ0gO3yDNWbM94PLbH3yD0QgNGWWZoYnVZJrRUNtElzZNUVVSbyjLjX3gv9vnsmM5P2MkGyoa3MD7afbiS9JbaT-ucv82cGU2w8-7Bcgh6DW3mzhWhE7Q5nc4P5xdXB27JYwHD5x_V1t61n42WI4_af9k2_7U4rQdOrt2e-kVp5za6FbzJeNqL_w7aMPVddL3PL_nrHvr6sc83H5ufQcPixsZfsoN42a084ncMqAKNU0UTO9NnlpB7Jw6xW_Gia-MfHUSqug9VV76ghQjFrr2Pjnc-HX2YJSGZQqIFpqtEYDdchVYY0GSIhsMkoRimVpGKEsuZJRTA2rRxPoHiNBO2YoZQIowymlXkAZrUrjWPUFwyXWqSp0xrRzcMkncY4QxFRfOqJGmE3o3GWC574AwJUNZjihOwBAlJkJB0GxJBI_RmkIgsA045pMs4k36_kvPLFV5dVBj-dCXrexDxqEG-oDk_lWGqSptVWWGFxarCNNdEE6wE51gpnnMtVISeg4JIQM-oITznVHVtK3cPD-TUucNFxkSRRehlYLKNa32pwmsHN4IAuDXi3Bpxuuldjsjbgx5KIEFMXG2arpWcA0-aR-hhr5V_el_gFI4eIiRG-jrq95hSf__mscXBPxYZi9DrQbNlMGrtVYP6-D94t9GN2dFiT-7t7n9-gm72V3M4SYstNFmdd-ap8_BW-lmY078BfxZKDQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDI9gCMQF8U1hsAghAYeyNp-tOI2Npw3YhAZDE5coaZIxaWuf1lck_nviNh30jR24VbWjprFju7XzM0IvDGCU5Y6l3lRVyirtU1OxIs20ZcZZz11_wnt3T2wfsA-H_DDW5rRjtfuYkhzONABKU71Yn1s_bPFCrOfBpKYkRPpgRSS7iq4x8HuQqxWb50mE4Px4RPP5x6ClE-4nE8fU4_dftNJ_uanlEsqlPGrvnma30a0YV-KNQRHuoCuuvouuD50mf91D37eGzvPY_Yy6hhuPv-X7eN4teuxvDPgCTVBKh4MRdHPowoNjFRfe7Vp82kHNarjQte1vtFCr2LX30cHs_dfN7TS2VUiNJGyRSlJwURpNAFeGGvitJDUnzGtqGfWCe8oAts24EB1owXLpLXeUUem0M9zSB2ilDrN5hHDFTWVokXFjAt1xaOPhZDAZlhW2olmC3k7WWM0HCA0FoNZTShC1AgkpkJAKnyaSJejNKBFVRcRyaJxxovovl0JcHPDqfMD4pEtZ34GIJxPqbzRnRypuWuVzm5deeqItYYWhhhIthSBai0IYqRP0HBREAY5GDYU6R7prW7XzZV9thMC4zLks8wS9jEy-CbOvdDz3EFYQoLcmnKsTzrDRqwl5bdRDBSSojqtd07VKCODJigQ9HLTyz9uXJIOfEAmSE32dvPeUUh__6FHGIVKWOU_Q61GzVTRv7WWL-vg_eNfQjc9bM_VpZ-_jE3RzyNGRNCtX0crirHNPQ6i3MM_6Df0bEttM4w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+evolution+of+V1R+putative+pheromone+receptors+between+Mus+musculus+and+Mus+spretus&rft.jtitle=BMC+genomics&rft.au=Kurzweil%2C+Vanessa+C&rft.au=Getman%2C+Mike&rft.au=Green%2C+Eric+D&rft.au=Lane%2C+Robert+P&rft.date=2009-02-09&rft.eissn=1471-2164&rft.volume=10&rft.spage=74&rft.epage=74&rft_id=info:doi/10.1186%2F1471-2164-10-74&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon