Whole-genome analysis of 5-hydroxymethylcytosine and 5-methylcytosine at base resolution in the human brain
5-methylcytosine (mC) can be oxidized by the tet methylcytosine dioxygenase (Tet) family of enzymes to 5-hydroxymethylcytosine (hmC), which is an intermediate of mC demethylation and may also be a stable epigenetic modification that influences chromatin structure. hmC is particularly abundant in mam...
Saved in:
Published in | Genome biology Vol. 15; no. 3; p. R49 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
04.03.2014
BioMed Central |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 5-methylcytosine (mC) can be oxidized by the tet methylcytosine dioxygenase (Tet) family of enzymes to 5-hydroxymethylcytosine (hmC), which is an intermediate of mC demethylation and may also be a stable epigenetic modification that influences chromatin structure. hmC is particularly abundant in mammalian brains but its function is currently unknown. A high-resolution hydroxymethylome map is required to fully understand the function of hmC in the human brain.
We present genome-wide and single-base resolution maps of hmC and mC in the human brain by combined application of Tet-assisted bisulfite sequencing and bisulfite sequencing. We demonstrate that hmCs increase markedly from the fetal to the adult stage, and in the adult brain, 13% of all CpGs are highly hydroxymethylated with strong enrichment at genic regions and distal regulatory elements. Notably, hmC peaks are identified at the 5'splicing sites at the exon-intron boundary, suggesting a mechanistic link between hmC and splicing. We report a surprising transcription-correlated hmC bias toward the sense strand and an mC bias toward the antisense strand of gene bodies. Furthermore, hmC is negatively correlated with H3K27me3-marked and H3K9me3-marked repressive genomic regions, and is more enriched at poised enhancers than active enhancers.
We provide single-base resolution hmC and mC maps in the human brain and our data imply novel roles of hmC in regulating splicing and gene expression. Hydroxymethylation is the main modification status for a large portion of CpGs situated at poised enhancers and actively transcribed regions, suggesting its roles in epigenetic tuning at these regions. |
---|---|
AbstractList | BACKGROUND: 5-methylcytosine (mC) can be oxidized by the tet methylcytosine dioxygenase (Tet) family of enzymes to 5-hydroxymethylcytosine (hmC), which is an intermediate of mC demethylation and may also be a stable epigenetic modification that influences chromatin structure. hmC is particularly abundant in mammalian brains but its function is currently unknown. A high-resolution hydroxymethylome map is required to fully understand the function of hmC in the human brain. RESULTS: We present genome-wide and single-base resolution maps of hmC and mC in the human brain by combined application of Tet-assisted bisulfite sequencing and bisulfite sequencing. We demonstrate that hmCs increase markedly from the fetal to the adult stage, and in the adult brain, 13% of all CpGs are highly hydroxymethylated with strong enrichment at genic regions and distal regulatory elements. Notably, hmC peaks are identified at the 5′splicing sites at the exon-intron boundary, suggesting a mechanistic link between hmC and splicing. We report a surprising transcription-correlated hmC bias toward the sense strand and an mC bias toward the antisense strand of gene bodies. Furthermore, hmC is negatively correlated with H3K27me3-marked and H3K9me3-marked repressive genomic regions, and is more enriched at poised enhancers than active enhancers. CONCLUSIONS: We provide single-base resolution hmC and mC maps in the human brain and our data imply novel roles of hmC in regulating splicing and gene expression. Hydroxymethylation is the main modification status for a large portion of CpGs situated at poised enhancers and actively transcribed regions, suggesting its roles in epigenetic tuning at these regions. 5-methylcytosine (mC) can be oxidized by the tet methylcytosine dioxygenase (Tet) family of enzymes to 5-hydroxymethylcytosine (hmC), which is an intermediate of mC demethylation and may also be a stable epigenetic modification that influences chromatin structure. hmC is particularly abundant in mammalian brains but its function is currently unknown. A high-resolution hydroxymethylome map is required to fully understand the function of hmC in the human brain. We present genome-wide and single-base resolution maps of hmC and mC in the human brain by combined application of Tet-assisted bisulfite sequencing and bisulfite sequencing. We demonstrate that hmCs increase markedly from the fetal to the adult stage, and in the adult brain, 13% of all CpGs are highly hydroxymethylated with strong enrichment at genic regions and distal regulatory elements. Notably, hmC peaks are identified at the 5'splicing sites at the exon-intron boundary, suggesting a mechanistic link between hmC and splicing. We report a surprising transcription-correlated hmC bias toward the sense strand and an mC bias toward the antisense strand of gene bodies. Furthermore, hmC is negatively correlated with H3K27me3-marked and H3K9me3-marked repressive genomic regions, and is more enriched at poised enhancers than active enhancers. We provide single-base resolution hmC and mC maps in the human brain and our data imply novel roles of hmC in regulating splicing and gene expression. Hydroxymethylation is the main modification status for a large portion of CpGs situated at poised enhancers and actively transcribed regions, suggesting its roles in epigenetic tuning at these regions. 5-methylcytosine (mC) can be oxidized by the tet methylcytosine dioxygenase (Tet) family of enzymes to 5-hydroxymethylcytosine (hmC), which is an intermediate of mC demethylation and may also be a stable epigenetic modification that influences chromatin structure. hmC is particularly abundant in mammalian brains but its function is currently unknown. A high-resolution hydroxymethylome map is required to fully understand the function of hmC in the human brain.BACKGROUND5-methylcytosine (mC) can be oxidized by the tet methylcytosine dioxygenase (Tet) family of enzymes to 5-hydroxymethylcytosine (hmC), which is an intermediate of mC demethylation and may also be a stable epigenetic modification that influences chromatin structure. hmC is particularly abundant in mammalian brains but its function is currently unknown. A high-resolution hydroxymethylome map is required to fully understand the function of hmC in the human brain.We present genome-wide and single-base resolution maps of hmC and mC in the human brain by combined application of Tet-assisted bisulfite sequencing and bisulfite sequencing. We demonstrate that hmCs increase markedly from the fetal to the adult stage, and in the adult brain, 13% of all CpGs are highly hydroxymethylated with strong enrichment at genic regions and distal regulatory elements. Notably, hmC peaks are identified at the 5'splicing sites at the exon-intron boundary, suggesting a mechanistic link between hmC and splicing. We report a surprising transcription-correlated hmC bias toward the sense strand and an mC bias toward the antisense strand of gene bodies. Furthermore, hmC is negatively correlated with H3K27me3-marked and H3K9me3-marked repressive genomic regions, and is more enriched at poised enhancers than active enhancers.RESULTSWe present genome-wide and single-base resolution maps of hmC and mC in the human brain by combined application of Tet-assisted bisulfite sequencing and bisulfite sequencing. We demonstrate that hmCs increase markedly from the fetal to the adult stage, and in the adult brain, 13% of all CpGs are highly hydroxymethylated with strong enrichment at genic regions and distal regulatory elements. Notably, hmC peaks are identified at the 5'splicing sites at the exon-intron boundary, suggesting a mechanistic link between hmC and splicing. We report a surprising transcription-correlated hmC bias toward the sense strand and an mC bias toward the antisense strand of gene bodies. Furthermore, hmC is negatively correlated with H3K27me3-marked and H3K9me3-marked repressive genomic regions, and is more enriched at poised enhancers than active enhancers.We provide single-base resolution hmC and mC maps in the human brain and our data imply novel roles of hmC in regulating splicing and gene expression. Hydroxymethylation is the main modification status for a large portion of CpGs situated at poised enhancers and actively transcribed regions, suggesting its roles in epigenetic tuning at these regions.CONCLUSIONSWe provide single-base resolution hmC and mC maps in the human brain and our data imply novel roles of hmC in regulating splicing and gene expression. Hydroxymethylation is the main modification status for a large portion of CpGs situated at poised enhancers and actively transcribed regions, suggesting its roles in epigenetic tuning at these regions. |
ArticleNumber | R49 |
Author | Li, Rong Tang, Fuchou Wu, Xinglong Song, Chunxiao Yu, Miao Wen, Lu He, Chuan Qiao, Jie Yan, Liying Li, Ruiqiang Guo, Hongshan Zhao, Yangyu Zhu, Ping Wang, Yan Hou, Yu Li, Xiaoyu Tan, Yuexi Zhang, Yan Liu, Xiaomeng Li, Xianlong Xie, Jingcheng |
AuthorAffiliation | 1 Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, P. R. China 6 Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, P. R. China 2 Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, P. R. China 4 Department of Chemistry & Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA 3 Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, China 5 Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, P. R. China |
AuthorAffiliation_xml | – name: 4 Department of Chemistry & Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA – name: 1 Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, P. R. China – name: 5 Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, P. R. China – name: 6 Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, P. R. China – name: 2 Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, P. R. China – name: 3 Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, China |
Author_xml | – sequence: 1 givenname: Lu surname: Wen fullname: Wen, Lu – sequence: 2 givenname: Xianlong surname: Li fullname: Li, Xianlong – sequence: 3 givenname: Liying surname: Yan fullname: Yan, Liying – sequence: 4 givenname: Yuexi surname: Tan fullname: Tan, Yuexi – sequence: 5 givenname: Rong surname: Li fullname: Li, Rong – sequence: 6 givenname: Yangyu surname: Zhao fullname: Zhao, Yangyu – sequence: 7 givenname: Yan surname: Wang fullname: Wang, Yan – sequence: 8 givenname: Jingcheng surname: Xie fullname: Xie, Jingcheng – sequence: 9 givenname: Yan surname: Zhang fullname: Zhang, Yan – sequence: 10 givenname: Chunxiao surname: Song fullname: Song, Chunxiao – sequence: 11 givenname: Miao surname: Yu fullname: Yu, Miao – sequence: 12 givenname: Xiaomeng surname: Liu fullname: Liu, Xiaomeng – sequence: 13 givenname: Ping surname: Zhu fullname: Zhu, Ping – sequence: 14 givenname: Xiaoyu surname: Li fullname: Li, Xiaoyu – sequence: 15 givenname: Yu surname: Hou fullname: Hou, Yu – sequence: 16 givenname: Hongshan surname: Guo fullname: Guo, Hongshan – sequence: 17 givenname: Xinglong surname: Wu fullname: Wu, Xinglong – sequence: 18 givenname: Chuan surname: He fullname: He, Chuan – sequence: 19 givenname: Ruiqiang surname: Li fullname: Li, Ruiqiang – sequence: 20 givenname: Fuchou surname: Tang fullname: Tang, Fuchou – sequence: 21 givenname: Jie surname: Qiao fullname: Qiao, Jie |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24594098$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1vFSEUxYmpsR-6d2VYuqECA8zMxsS8qDVp4kajOwK8O2_QGajAGOe_l5dXm7ax0RWE87sn997DKToKMQBCzxk9Z6xTr3aWcMoEYZI0JIn-ETphohWkVfTr0a37MTrN-RulrBdcPUHHXMhe0L47Qd-_jHECsoMQZ8AmmGnNPuM4YEnGdZvir3WGMq6TW0vMPuyZbdXuPxZsTQacIMdpKT4G7AMuI-BxmU3ANhkfnqLHg5kyPLs-z9Dnd28_bS7I5cf3HzZvLolteVPIANwpSluroBuoaJ3lYugGDq2TYAZnpAWlLOupcW3PQW0b0_UNG3rKe2dEc4ZeH3yvFjvD1kEoyUz6KvnZpFVH4_VdJfhR7-JPLahsOtpVg83BwPr4gMFdxcVZ76zeZ6GZ1I2uWVSXl9dtpPhjgVz07LODaTIB4pIrXQMRkkr-T5RJKVXl2_Y_UC4E7ThtKvri9h5u-v-TfgXoAXAp5pxguEEY1fsP9reh1L0S54vZB14X4aeHC38DoFPZjA |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2023_123373 crossref_primary_10_3389_fnmol_2024_1463437 crossref_primary_10_1111_jnc_13912 crossref_primary_10_1101_gr_211854_116 crossref_primary_10_1016_j_molmed_2016_06_008 crossref_primary_10_1016_j_gpb_2019_05_005 crossref_primary_10_1093_jxb_erad144 crossref_primary_10_7554_eLife_17082 crossref_primary_10_1016_j_neuint_2019_104587 crossref_primary_10_1371_journal_pbio_3000684 crossref_primary_10_1111_cge_13421 crossref_primary_10_1126_sciadv_aau6190 crossref_primary_10_3389_fmed_2018_00192 crossref_primary_10_1038_s41598_019_57214_z crossref_primary_10_3390_ijms252111780 crossref_primary_10_1186_s12864_015_1875_8 crossref_primary_10_1126_sciadv_aba0521 crossref_primary_10_1177_1094342019840792 crossref_primary_10_1080_15592294_2019_1666651 crossref_primary_10_1124_mol_118_113415 crossref_primary_10_1080_15592294_2018_1507198 crossref_primary_10_1186_s12993_016_0101_4 crossref_primary_10_3389_fgene_2021_620859 crossref_primary_10_3390_genes8060148 crossref_primary_10_2217_epi_2016_0184 crossref_primary_10_1186_s12967_016_0966_x crossref_primary_10_3390_genes8070181 crossref_primary_10_1038_ncomms10068 crossref_primary_10_20935_AcadBiol7285 crossref_primary_10_1002_anie_201502722 crossref_primary_10_1021_jacs_3c01663 crossref_primary_10_1080_15592294_2017_1356958 crossref_primary_10_1093_hmg_ddw076 crossref_primary_10_1016_j_celrep_2020_108155 crossref_primary_10_3389_fgene_2022_971298 crossref_primary_10_1021_jacs_6b06428 crossref_primary_10_1096_fj_201600310R crossref_primary_10_1016_j_freeradbiomed_2024_03_025 crossref_primary_10_3390_genes11070742 crossref_primary_10_2217_epi_2016_0072 crossref_primary_10_1186_s13059_016_1001_5 crossref_primary_10_3390_jmse3020175 crossref_primary_10_1093_nar_gkx143 crossref_primary_10_1080_15592294_2019_1638701 crossref_primary_10_1007_s40473_016_0083_4 crossref_primary_10_2217_epi_2016_0076 crossref_primary_10_1111_gbb_12269 crossref_primary_10_1038_s41380_018_0125_2 crossref_primary_10_1016_j_semcancer_2018_01_010 crossref_primary_10_1007_s00438_024_02148_z crossref_primary_10_1186_s13059_019_1747_7 crossref_primary_10_1016_j_ijdevneu_2017_02_003 crossref_primary_10_1007_s12031_017_0969_y crossref_primary_10_1038_s42003_020_01418_x crossref_primary_10_1186_s12864_021_08247_0 crossref_primary_10_3390_genes7010001 crossref_primary_10_1016_j_celrep_2021_109042 crossref_primary_10_1038_nrn_2016_41 crossref_primary_10_1016_j_neuropharm_2016_08_001 crossref_primary_10_3390_ijms19051333 crossref_primary_10_3390_molecules24193619 crossref_primary_10_1186_s13148_021_01156_9 crossref_primary_10_1038_s42003_022_04269_w crossref_primary_10_1093_nar_gkw316 crossref_primary_10_1007_s12031_018_1101_7 crossref_primary_10_1042_EBC20190037 crossref_primary_10_1016_j_mito_2016_01_003 crossref_primary_10_1038_nmeth_f_377 crossref_primary_10_1021_acsnano_8b03023 crossref_primary_10_1021_acs_biochem_6b00796 crossref_primary_10_1093_molbev_msv053 crossref_primary_10_1038_tp_2017_93 crossref_primary_10_1186_s13059_021_02335_w crossref_primary_10_3389_fgene_2022_806685 crossref_primary_10_1039_C6IB00079G crossref_primary_10_3892_mmr_2016_5375 crossref_primary_10_1093_nar_gkz1144 crossref_primary_10_1093_hmg_ddv198 crossref_primary_10_3390_ijms18040790 crossref_primary_10_1016_j_neuint_2019_104642 crossref_primary_10_1038_tp_2015_191 crossref_primary_10_1007_s11357_019_00090_2 crossref_primary_10_1371_journal_pone_0107905 crossref_primary_10_1186_s13148_020_00938_x crossref_primary_10_1016_j_arr_2019_01_011 crossref_primary_10_1016_j_rmclc_2022_07_001 crossref_primary_10_1002_glia_24016 crossref_primary_10_1080_15592294_2019_1700004 crossref_primary_10_1093_hmg_ddy214 crossref_primary_10_1038_srep29119 crossref_primary_10_1186_1471_2164_16_S12_S14 crossref_primary_10_3390_genes7120104 crossref_primary_10_1371_journal_pgen_1005661 crossref_primary_10_2217_epi_15_92 crossref_primary_10_1093_nar_gkz001 crossref_primary_10_1016_j_biopsych_2017_07_012 crossref_primary_10_1016_j_chembiol_2023_12_003 crossref_primary_10_1073_pnas_1411269112 crossref_primary_10_1016_j_neures_2023_05_001 crossref_primary_10_1186_s13072_018_0211_3 crossref_primary_10_1093_hmg_ddac122 crossref_primary_10_1186_s13072_016_0080_6 crossref_primary_10_1080_15592294_2016_1265713 crossref_primary_10_1016_j_schres_2016_01_039 crossref_primary_10_1016_j_semcdb_2021_01_003 crossref_primary_10_1038_s41587_019_0041_2 crossref_primary_10_1186_s12864_017_4091_x crossref_primary_10_1039_C7OB02574B crossref_primary_10_3389_fcimb_2016_00149 crossref_primary_10_1093_nar_gkv1304 crossref_primary_10_1038_nprot_2015_039 crossref_primary_10_1080_15592294_2017_1344803 crossref_primary_10_1186_s12864_016_2653_y crossref_primary_10_1002_ange_201502722 crossref_primary_10_1007_s13311_014_0302_1 crossref_primary_10_1186_s12859_023_05163_w crossref_primary_10_1038_s41440_019_0248_0 crossref_primary_10_3109_10408363_2015_1113496 crossref_primary_10_3390_biom14111346 crossref_primary_10_1146_annurev_psych_122414_033653 crossref_primary_10_1080_15592294_2019_1568807 crossref_primary_10_1016_S2215_0366_14_00022_4 crossref_primary_10_1038_s41588_024_01945_x crossref_primary_10_1289_EHP3441 crossref_primary_10_1016_j_pharmthera_2015_05_002 crossref_primary_10_1093_cercor_bhx181 crossref_primary_10_3233_BPL_160034 crossref_primary_10_1038_s41598_019_46875_5 crossref_primary_10_1093_toxsci_kfz069 crossref_primary_10_1093_biomethods_bpw002 crossref_primary_10_1007_s40572_020_00268_3 crossref_primary_10_1038_s41598_017_11800_1 crossref_primary_10_1093_nar_gkv244 crossref_primary_10_1021_acs_analchem_8b02832 crossref_primary_10_1038_ncomms12418 crossref_primary_10_1038_tp_2014_87 crossref_primary_10_1038_nrg_2017_33 crossref_primary_10_1371_journal_pone_0170779 crossref_primary_10_1080_15592294_2018_1445900 crossref_primary_10_1111_acel_13080 crossref_primary_10_1093_jxb_erad102 crossref_primary_10_1080_19491034_2017_1330238 crossref_primary_10_1016_j_blre_2016_02_002 crossref_primary_10_3389_fnbeh_2015_00347 crossref_primary_10_1016_j_celrep_2015_12_044 crossref_primary_10_1177_0271678X20912965 crossref_primary_10_1080_15592294_2019_1695332 crossref_primary_10_1186_s13148_018_0458_3 crossref_primary_10_3389_fgene_2019_00801 crossref_primary_10_1016_j_tips_2017_05_007 crossref_primary_10_1016_j_jmb_2019_12_018 crossref_primary_10_2217_epi_2016_0003 crossref_primary_10_1186_s13072_018_0248_3 crossref_primary_10_2217_epi_14_39 crossref_primary_10_1186_s13072_015_0011_y crossref_primary_10_1016_j_ygeno_2014_08_023 crossref_primary_10_1126_science_aaa1356 crossref_primary_10_1177_1073858417705840 crossref_primary_10_1016_j_gene_2015_06_052 crossref_primary_10_1002_hipo_22733 crossref_primary_10_1016_j_ygeno_2014_08_020 crossref_primary_10_1111_pcn_12426 crossref_primary_10_1016_j_yexmp_2016_10_004 crossref_primary_10_3389_fgene_2016_00120 crossref_primary_10_1016_j_trim_2024_102097 crossref_primary_10_1080_28361512_2024_2427955 crossref_primary_10_3389_fnins_2018_00005 crossref_primary_10_1002_mrd_23559 crossref_primary_10_3389_fgene_2018_00257 crossref_primary_10_1016_j_tig_2018_04_005 crossref_primary_10_1016_j_ygeno_2014_08_015 crossref_primary_10_1016_j_ygeno_2014_08_018 crossref_primary_10_2217_epi_2017_0029 crossref_primary_10_3389_fpsyt_2023_1077415 crossref_primary_10_1021_acs_analchem_4c05147 crossref_primary_10_1021_acs_jafc_2c00863 crossref_primary_10_3390_genes8050137 crossref_primary_10_1039_D3CS00858D crossref_primary_10_1038_nn_3985 crossref_primary_10_1021_acs_biochem_6b00801 crossref_primary_10_1111_imr_12242 crossref_primary_10_1038_s41557_018_0149_x crossref_primary_10_5483_BMBRep_2014_47_11_223 crossref_primary_10_1080_15592294_2020_1737355 crossref_primary_10_1038_s41467_021_21917_7 crossref_primary_10_1016_j_fob_2015_09_003 crossref_primary_10_1016_j_molcel_2016_12_012 crossref_primary_10_1007_s00401_018_1821_3 crossref_primary_10_1038_s41598_022_20682_x crossref_primary_10_3390_genes8050141 crossref_primary_10_1186_s12864_018_4752_4 crossref_primary_10_2217_epi_14_48 crossref_primary_10_1016_j_dnarep_2017_11_005 crossref_primary_10_2217_epi_15_12 crossref_primary_10_1371_journal_pone_0097785 crossref_primary_10_2217_epi_15_11 crossref_primary_10_37349_eemd_2024_00006 crossref_primary_10_1371_journal_pone_0154949 |
Cites_doi | 10.1016/j.neuron.2013.08.003 10.1101/gr.101907.109 10.1038/nsmb.2372 10.1038/nature10102 10.1038/nprot.2012.137 10.1038/nn.2959 10.1371/journal.pone.0015367 10.1038/nature10532 10.1016/j.cell.2006.08.003 10.1126/science.1220671 10.1038/cr.2013.110 10.1101/gr.143503.112 10.1038/nprot.2010.190 10.1038/nature10066 10.1016/j.cell.2012.12.033 10.1038/nature10008 10.1016/j.cell.2013.02.004 10.1126/science.1136352 10.1101/gad.2036011 10.1016/j.cell.2012.11.022 10.1016/j.stem.2013.05.006 10.1016/S0168-9525(00)89009-5 10.1038/nbt.1533 10.1126/science.1170116 10.1073/pnas.0812399106 10.1126/science.1210944 10.1016/j.tig.2013.05.010 10.1016/j.cell.2013.02.034 10.1523/JNEUROSCI.4178-07.2008 10.1038/nature10716 10.1016/j.molcel.2011.04.005 10.1038/ncomms2995 10.1186/gb-2011-12-6-r54 10.1126/science.1169786 10.1093/nar/gkr120 10.1126/science.1186366 10.1126/science.1237905 10.1016/j.celrep.2013.01.001 10.1038/nature09147 10.1186/1471-2202-9-42 10.1126/science.1210597 10.1016/j.cell.2012.04.027 10.1038/nature08514 10.1038/nbt.1732 10.1016/j.cell.2011.03.022 10.1038/nrg3230 10.1073/pnas.1016071107 10.1111/j.2517-6161.1995.tb02031.x |
ContentType | Journal Article |
Copyright | Copyright © 2014 Wen et al.; licensee BioMed Central Ltd. 2014 Wen et al.; licensee BioMed Central Ltd. |
Copyright_xml | – notice: Copyright © 2014 Wen et al.; licensee BioMed Central Ltd. 2014 Wen et al.; licensee BioMed Central Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM 8FD FR3 P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1186/gb-2014-15-3-r49 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1474-760X 1465-6914 |
EndPage | R49 |
ExternalDocumentID | PMC4053808 oai_biomedcentral_com_gb_2014_15_3_r49 24594098 10_1186_gb_2014_15_3_r49 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 29H 4.4 53G 5GY 5VS 7X7 AAFWJ AAHBH AAJSJ AASML AAYXX ACGFO ACGFS ACJQM ACPRK ADBBV ADUKV AEGXH AFPKN AHBYD AHSBF AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIAM AOIJS BAPOH BAWUL BCNDV BFQNJ BMC C6C CITATION EBD EBLON EBS EMOBN GROUPED_DOAJ GX1 HYE IAO IGS IHR ISR ITC KPI ROL RPM RSV SJN SOJ SV3 ACRMQ ADINQ C24 CGR CUY CVF ECM EIF NPM 2WC 7TM 8FD AENEX CS3 E3Z EJD F5P FR3 HZ~ KQ8 O5R O5S O9- OK1 P64 RBZ RC3 SBL TR2 WOQ 7X8 7S9 L.6 AHYZX C1A DIK ZA5 5PM |
ID | FETCH-LOGICAL-b723t-fe2c6007b6e8f047cb24f8f2e7c5eafca5be66b190ac792e6d3a8931f9029ca43 |
IEDL.DBID | RBZ |
ISSN | 1474-760X 1465-6906 |
IngestDate | Thu Aug 21 14:00:44 EDT 2025 Tue Apr 16 22:42:36 EDT 2024 Fri Jul 11 13:28:57 EDT 2025 Fri Jul 11 04:50:13 EDT 2025 Fri Jul 11 15:47:57 EDT 2025 Thu Jan 02 22:19:04 EST 2025 Tue Jul 01 03:10:36 EDT 2025 Thu Apr 24 23:10:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b723t-fe2c6007b6e8f047cb24f8f2e7c5eafca5be66b190ac792e6d3a8931f9029ca43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1186/gb-2014-15-3-r49 |
PMID | 24594098 |
PQID | 1524408203 |
PQPubID | 23462 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4053808 biomedcentral_primary_oai_biomedcentral_com_gb_2014_15_3_r49 proquest_miscellaneous_2000145052 proquest_miscellaneous_1555620077 proquest_miscellaneous_1524408203 pubmed_primary_24594098 crossref_primary_10_1186_gb_2014_15_3_r49 crossref_citationtrail_10_1186_gb_2014_15_3_r49 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-03-04 |
PublicationDateYYYYMMDD | 2014-03-04 |
PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Genome biology |
PublicationTitleAlternate | Genome Biol |
PublicationYear | 2014 |
Publisher | BioMed Central Ltd BioMed Central |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central |
References | CG Spruijt (3353_CR22) 2013; 152 PA Jones (3353_CR40) 2012; 13 H Gu (3353_CR45) 2011; 6 H Gu (3353_CR46) 2008; 9 H Stroud (3353_CR11) 2011; 12 Y Xu (3353_CR12) 2011; 42 L Laurent (3353_CR30) 2009; 20 A Rudenko (3353_CR24) 2013; 79 A Zemach (3353_CR39) 2010; 328 D Brawand (3353_CR48) 2011; 478 H Wu (3353_CR5) 2011; 25 E Eisenberg (3353_CR35) 2013; 29 S Ito (3353_CR4) 2011; 333 R Lister (3353_CR25) 2013; 341 M Mellén (3353_CR21) 2012; 151 S Kriaucionis (3353_CR2) 2009; 324 T Khare (3353_CR14) 2012; 19 AP Bird (3353_CR43) 1995; 11 Z Sun (3353_CR15) 2013; 3 X Zhang (3353_CR38) 2006; 126 YF He (3353_CR3) 2011; 333 D Globisch (3353_CR19) 2010; 5 CX Song (3353_CR8) 2011; 29 R Lister (3353_CR29) 2009; 462 M Yu (3353_CR17) 2012; 149 MP Creyghton (3353_CR28) 2010; 107 A Hellman (3353_CR37) 2007; 315 RR Zhang (3353_CR23) 2013; 13 S Gelfman (3353_CR32) 2013; 23 KE Szulwach (3353_CR9) 2011; 14 RK Chodavarapu (3353_CR31) 2010; 466 AK Maunakea (3353_CR33) 2013; 23 3353_CR49 MB Stadler (3353_CR26) 2011; 480 Y Benjamini (3353_CR47) 1995; 57 M Tahiliani (3353_CR1) 2009; 324 WA Pastor (3353_CR7) 2011; 473 JD Cahoy (3353_CR34) 2008; 28 M Yu (3353_CR44) 2012; 7 H Gan (3353_CR16) 2013; 4 SG Jin (3353_CR13) 2011; 39 G Ficz (3353_CR10) 2011; 473 JU Guo (3353_CR20) 2011; 145 J Zhu (3353_CR27) 2013; 152 MJ Booth (3353_CR18) 2012; 336 U Braunschweig (3353_CR36) 2013; 152 K Williams (3353_CR6) 2011; 473 MP Ball (3353_CR41) 2009; 27 TA Rauch (3353_CR42) 2009; 106 23810203 - Trends Genet. 2013 Oct;29(10):569-74 19372391 - Science. 2009 May 15;324(5929):930-5 21460036 - Genes Dev. 2011 Apr 1;25(7):679-84 16949657 - Cell. 2006 Sep 22;126(6):1189-201 22539555 - Science. 2012 May 18;336(6083):934-7 20395474 - Science. 2010 May 14;328(5980):916-9 19329998 - Nat Biotechnol. 2009 Apr;27(4):361-8 18171944 - J Neurosci. 2008 Jan 2;28(1):264-78 7732579 - Trends Genet. 1995 Mar;11(3):94-100 17322062 - Science. 2007 Feb 23;315(5815):1141-3 21689397 - Genome Biol. 2011;12(6):R54 20133333 - Genome Res. 2010 Mar;20(3):320-31 19139413 - Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):671-8 21106759 - Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21931-6 21552279 - Nature. 2011 May 19;473(7347):394-7 21151123 - Nat Biotechnol. 2011 Jan;29(1):68-72 21496894 - Cell. 2011 Apr 29;145(3):423-34 23502848 - Genome Res. 2013 May;23(5):789-99 22961382 - Nat Struct Mol Biol. 2012 Oct;19(10):1037-43 21378125 - Nucleic Acids Res. 2011 Jul;39(12):5015-24 23260135 - Cell. 2012 Dec 21;151(7):1417-30 23938295 - Cell Res. 2013 Nov;23(11):1256-69 22170606 - Nature. 2011 Dec 22;480(7378):490-5 21203455 - PLoS One. 2010;5(12):e15367 21817016 - Science. 2011 Sep 2;333(6047):1303-7 23352666 - Cell Rep. 2013 Feb 21;3(2):567-76 23196972 - Nat Protoc. 2012 Dec;7(12):2159-70 23770080 - Cell Stem Cell. 2013 Aug 1;13(2):237-45 20512117 - Nature. 2010 Jul 15;466(7304):388-92 22037496 - Nat Neurosci. 2011 Dec;14(12):1607-16 18442397 - BMC Neurosci. 2008;9:42 21514197 - Mol Cell. 2011 May 20;42(4):451-64 22608086 - Cell. 2012 Jun 8;149(6):1368-80 21490601 - Nature. 2011 May 19;473(7347):343-8 24050401 - Neuron. 2013 Sep 18;79(6):1109-22 21412275 - Nat Protoc. 2011 Apr;6(4):468-81 23498935 - Cell. 2013 Mar 14;152(6):1252-69 21460836 - Nature. 2011 May 19;473(7347):398-402 23333102 - Cell. 2013 Jan 31;152(3):642-54 21778364 - Science. 2011 Sep 2;333(6047):1300-3 23828890 - Science. 2013 Aug 9;341(6146):1237905 19829295 - Nature. 2009 Nov 19;462(7271):315-22 22641018 - Nat Rev Genet. 2012 Jul;13(7):484-92 23434322 - Cell. 2013 Feb 28;152(5):1146-59 22012392 - Nature. 2011 Oct 20;478(7369):343-8 19372393 - Science. 2009 May 15;324(5929):929-30 23759713 - Nat Commun. 2013;4:1995 |
References_xml | – volume: 79 start-page: 1109 year: 2013 ident: 3353_CR24 publication-title: Neuron doi: 10.1016/j.neuron.2013.08.003 – volume: 20 start-page: 320 year: 2009 ident: 3353_CR30 publication-title: Genome Res doi: 10.1101/gr.101907.109 – volume: 19 start-page: 1037 year: 2012 ident: 3353_CR14 publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.2372 – volume: 473 start-page: 394 year: 2011 ident: 3353_CR7 publication-title: Nature doi: 10.1038/nature10102 – volume: 7 start-page: 2159 year: 2012 ident: 3353_CR44 publication-title: Nat Protoc doi: 10.1038/nprot.2012.137 – ident: 3353_CR49 – volume: 14 start-page: 1607 year: 2011 ident: 3353_CR9 publication-title: Nat. Neurosci doi: 10.1038/nn.2959 – volume: 5 start-page: e15367 year: 2010 ident: 3353_CR19 publication-title: PLoS ONE doi: 10.1371/journal.pone.0015367 – volume: 478 start-page: 343 year: 2011 ident: 3353_CR48 publication-title: Nature doi: 10.1038/nature10532 – volume: 126 start-page: 1189 year: 2006 ident: 3353_CR38 publication-title: Cell doi: 10.1016/j.cell.2006.08.003 – volume: 336 start-page: 934 year: 2012 ident: 3353_CR18 publication-title: Science doi: 10.1126/science.1220671 – volume: 23 start-page: 1256 year: 2013 ident: 3353_CR33 publication-title: Cell Res doi: 10.1038/cr.2013.110 – volume: 23 start-page: 789 year: 2013 ident: 3353_CR32 publication-title: Genome Res doi: 10.1101/gr.143503.112 – volume: 6 start-page: 468 year: 2011 ident: 3353_CR45 publication-title: Nat Protoc doi: 10.1038/nprot.2010.190 – volume: 473 start-page: 343 year: 2011 ident: 3353_CR6 publication-title: Nature doi: 10.1038/nature10066 – volume: 152 start-page: 642 year: 2013 ident: 3353_CR27 publication-title: Cell doi: 10.1016/j.cell.2012.12.033 – volume: 473 start-page: 398 year: 2011 ident: 3353_CR10 publication-title: Nature doi: 10.1038/nature10008 – volume: 152 start-page: 1146 year: 2013 ident: 3353_CR22 publication-title: Cell doi: 10.1016/j.cell.2013.02.004 – volume: 315 start-page: 1141 year: 2007 ident: 3353_CR37 publication-title: Science doi: 10.1126/science.1136352 – volume: 25 start-page: 679 year: 2011 ident: 3353_CR5 publication-title: Genes Dev doi: 10.1101/gad.2036011 – volume: 151 start-page: 1417 year: 2012 ident: 3353_CR21 publication-title: Cell doi: 10.1016/j.cell.2012.11.022 – volume: 13 start-page: 237 year: 2013 ident: 3353_CR23 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.05.006 – volume: 11 start-page: 94 year: 1995 ident: 3353_CR43 publication-title: Trends Genet doi: 10.1016/S0168-9525(00)89009-5 – volume: 27 start-page: 361 year: 2009 ident: 3353_CR41 publication-title: Nat Biotechnol doi: 10.1038/nbt.1533 – volume: 324 start-page: 930 year: 2009 ident: 3353_CR1 publication-title: Science doi: 10.1126/science.1170116 – volume: 106 start-page: 671 year: 2009 ident: 3353_CR42 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0812399106 – volume: 333 start-page: 1303 year: 2011 ident: 3353_CR3 publication-title: Science doi: 10.1126/science.1210944 – volume: 29 start-page: 569 year: 2013 ident: 3353_CR35 publication-title: Trends Genet doi: 10.1016/j.tig.2013.05.010 – volume: 152 start-page: 1252 year: 2013 ident: 3353_CR36 publication-title: Cell doi: 10.1016/j.cell.2013.02.034 – volume: 28 start-page: 264 year: 2008 ident: 3353_CR34 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4178-07.2008 – volume: 480 start-page: 490 year: 2011 ident: 3353_CR26 publication-title: Nature doi: 10.1038/nature10716 – volume: 42 start-page: 451 year: 2011 ident: 3353_CR12 publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.04.005 – volume: 4 start-page: 1995 year: 2013 ident: 3353_CR16 publication-title: Nat Commun doi: 10.1038/ncomms2995 – volume: 12 start-page: R54 year: 2011 ident: 3353_CR11 publication-title: Genome Biol doi: 10.1186/gb-2011-12-6-r54 – volume: 324 start-page: 929 year: 2009 ident: 3353_CR2 publication-title: Science doi: 10.1126/science.1169786 – volume: 39 start-page: 5015 year: 2011 ident: 3353_CR13 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr120 – volume: 328 start-page: 916 year: 2010 ident: 3353_CR39 publication-title: Science doi: 10.1126/science.1186366 – volume: 341 start-page: 1237905 year: 2013 ident: 3353_CR25 publication-title: Science doi: 10.1126/science.1237905 – volume: 3 start-page: 567 year: 2013 ident: 3353_CR15 publication-title: Cell Rep doi: 10.1016/j.celrep.2013.01.001 – volume: 466 start-page: 388 year: 2010 ident: 3353_CR31 publication-title: Nature doi: 10.1038/nature09147 – volume: 9 start-page: 42 year: 2008 ident: 3353_CR46 publication-title: BMC Neurosci doi: 10.1186/1471-2202-9-42 – volume: 333 start-page: 1300 year: 2011 ident: 3353_CR4 publication-title: Science doi: 10.1126/science.1210597 – volume: 149 start-page: 1368 year: 2012 ident: 3353_CR17 publication-title: Cell doi: 10.1016/j.cell.2012.04.027 – volume: 462 start-page: 315 year: 2009 ident: 3353_CR29 publication-title: Nature doi: 10.1038/nature08514 – volume: 29 start-page: 68 year: 2011 ident: 3353_CR8 publication-title: Nat. Biotechnol doi: 10.1038/nbt.1732 – volume: 145 start-page: 423 year: 2011 ident: 3353_CR20 publication-title: Cell doi: 10.1016/j.cell.2011.03.022 – volume: 13 start-page: 484 year: 2012 ident: 3353_CR40 publication-title: Nat Rev Genet doi: 10.1038/nrg3230 – volume: 107 start-page: 21931 year: 2010 ident: 3353_CR28 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1016071107 – volume: 57 start-page: 289 year: 1995 ident: 3353_CR47 publication-title: J Roy Stat Soc B Met doi: 10.1111/j.2517-6161.1995.tb02031.x – reference: 21203455 - PLoS One. 2010;5(12):e15367 – reference: 23434322 - Cell. 2013 Feb 28;152(5):1146-59 – reference: 21412275 - Nat Protoc. 2011 Apr;6(4):468-81 – reference: 18442397 - BMC Neurosci. 2008;9:42 – reference: 22012392 - Nature. 2011 Oct 20;478(7369):343-8 – reference: 23352666 - Cell Rep. 2013 Feb 21;3(2):567-76 – reference: 20512117 - Nature. 2010 Jul 15;466(7304):388-92 – reference: 19329998 - Nat Biotechnol. 2009 Apr;27(4):361-8 – reference: 23759713 - Nat Commun. 2013;4:1995 – reference: 24050401 - Neuron. 2013 Sep 18;79(6):1109-22 – reference: 21778364 - Science. 2011 Sep 2;333(6047):1300-3 – reference: 21490601 - Nature. 2011 May 19;473(7347):343-8 – reference: 19139413 - Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):671-8 – reference: 22608086 - Cell. 2012 Jun 8;149(6):1368-80 – reference: 21514197 - Mol Cell. 2011 May 20;42(4):451-64 – reference: 18171944 - J Neurosci. 2008 Jan 2;28(1):264-78 – reference: 7732579 - Trends Genet. 1995 Mar;11(3):94-100 – reference: 23502848 - Genome Res. 2013 May;23(5):789-99 – reference: 21151123 - Nat Biotechnol. 2011 Jan;29(1):68-72 – reference: 17322062 - Science. 2007 Feb 23;315(5815):1141-3 – reference: 19829295 - Nature. 2009 Nov 19;462(7271):315-22 – reference: 19372391 - Science. 2009 May 15;324(5929):930-5 – reference: 21552279 - Nature. 2011 May 19;473(7347):394-7 – reference: 23828890 - Science. 2013 Aug 9;341(6146):1237905 – reference: 23498935 - Cell. 2013 Mar 14;152(6):1252-69 – reference: 21496894 - Cell. 2011 Apr 29;145(3):423-34 – reference: 22170606 - Nature. 2011 Dec 22;480(7378):490-5 – reference: 16949657 - Cell. 2006 Sep 22;126(6):1189-201 – reference: 21817016 - Science. 2011 Sep 2;333(6047):1303-7 – reference: 20133333 - Genome Res. 2010 Mar;20(3):320-31 – reference: 21378125 - Nucleic Acids Res. 2011 Jul;39(12):5015-24 – reference: 22961382 - Nat Struct Mol Biol. 2012 Oct;19(10):1037-43 – reference: 19372393 - Science. 2009 May 15;324(5929):929-30 – reference: 23196972 - Nat Protoc. 2012 Dec;7(12):2159-70 – reference: 23810203 - Trends Genet. 2013 Oct;29(10):569-74 – reference: 22641018 - Nat Rev Genet. 2012 Jul;13(7):484-92 – reference: 21460836 - Nature. 2011 May 19;473(7347):398-402 – reference: 20395474 - Science. 2010 May 14;328(5980):916-9 – reference: 21689397 - Genome Biol. 2011;12(6):R54 – reference: 22037496 - Nat Neurosci. 2011 Dec;14(12):1607-16 – reference: 23260135 - Cell. 2012 Dec 21;151(7):1417-30 – reference: 21460036 - Genes Dev. 2011 Apr 1;25(7):679-84 – reference: 23333102 - Cell. 2013 Jan 31;152(3):642-54 – reference: 21106759 - Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21931-6 – reference: 23938295 - Cell Res. 2013 Nov;23(11):1256-69 – reference: 22539555 - Science. 2012 May 18;336(6083):934-7 – reference: 23770080 - Cell Stem Cell. 2013 Aug 1;13(2):237-45 |
SSID | ssj0019426 ssj0017866 |
Score | 2.5428689 |
Snippet | 5-methylcytosine (mC) can be oxidized by the tet methylcytosine dioxygenase (Tet) family of enzymes to 5-hydroxymethylcytosine (hmC), which is an intermediate... Background: 5-methylcytosine (mC) can be oxidized by the tet methylcytosine dioxygenase (Tet) family of enzymes to 5-hydroxymethylcytosine (hmC), which is an... BACKGROUND: 5-methylcytosine (mC) can be oxidized by the tet methylcytosine dioxygenase (Tet) family of enzymes to 5-hydroxymethylcytosine (hmC), which is an... |
SourceID | pubmedcentral biomedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | R49 |
SubjectTerms | 5-Methylcytosine - metabolism Adult adults brain Brain - embryology Brain - growth & development Brain - metabolism chromatin CpG Islands Cytosine - analogs & derivatives Cytosine - metabolism DNA Methylation DNA, Antisense - metabolism enzymes epigenetics Exons Female gene expression Gene Expression Regulation, Developmental genes Genome, Human Histones - genetics Humans Introns Male regulatory sequences transcription (genetics) Transcription, Genetic |
Title | Whole-genome analysis of 5-hydroxymethylcytosine and 5-methylcytosine at base resolution in the human brain |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24594098 https://www.proquest.com/docview/1524408203 https://www.proquest.com/docview/1555620077 https://www.proquest.com/docview/2000145052 http://dx.doi.org/10.1186/gb-2014-15-3-r49 https://pubmed.ncbi.nlm.nih.gov/PMC4053808 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCIkLKu9toTISFw5WE8dPiUuLKBUSnKhYcbFsx26rLlnUpof998x4swtZWi5ccognD3k8mhnP-PsIeZOtAMduPBMmGiZErphvpWRVBv8kk866bLh9_qKOT8SnqZz-hsnZqODXRu2fBtBkLVgtWcMuhb1L7nEBCR1m5off1xUDbdRwkkgyBN9dlSRveMPG2fbZ2CX9FWdutkv-4X-OtsnDIXCkB0tNPyJ3UveY3F9SSS6ekItvSHTLEHL1R6J-gBqh80wlO1u02KyCZNGLWVz0c-x1B5kWxjZv9hT9GoUkfFiT9LyjECTSQuZHAzJKPCUnRx--vj9mA5ECC5o3PcuJR8ShDyqZXAkdAxfZZJ50lMnn6GVISgWIDXzUlifVNh7imDrbitvoRfOMbHXzLr0g1FsL-uOtV60Vvgne6FzlEHVW3oq6npB3o7l1P5egGQ5hrMcjYFHuNDhUjaulaxyoZkL2V6pwcQApR66MmSvJilE3PPF2_cTqW7fLvl5p14EVYWnEd2l-fQUSvFBvV82_ZCQEi4h_dLsMLzknkgNOyPPlqln_FRcSDMOaCdGj9TSaovFId35WEL8hqm5MZXb-b3J3yYNiB9hBJ16Srf7yOr2CkKoPe2UrAq4fp_Vesatf5mAlAw |
linkProvider | BioMedCentral |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4s3yNBIcOJgmjh3bEhx4VVv6OLWi4uLajt1WLFm03Qrlp_HvGDvJqllaLqjXePKa8WTG8cz3IfQyKAaBXRrCpJOEsZARU3FOsgDxiXsRRPrhtr1TjvfYl32-v4J-970wEZn0h-8AiN6cbUGfpO92Xy7Werss1w4tGDpnJOekIDOmuvrKTd_8gtXbybuNT2DqV5Suf979OCYdwQCxghZzEjx1EZ_dll6GjAlnKQsyUC8c9yY4w60vSwsx0zihqC-rwkB8z4PKqHKGFXDdK-gqvJRIrWMfvi02MIQsu8YmTiIWcL9Des4TL7XaT4YR8q-0d7l680w4XL-FbnZ5LH7fKuo2WvH1HXStZbZs7qLvXyPvLmn1jE2HfIKnAXNy1FSxdiZyVzcT18ynsfQeZCoYWz44xzHM4pnvXQQf1xhyVpy4BbGNBBf30N6lqP0-Wq2ntX-IsFEKphOtTFkpZgprpAhZsE6E0iiW5yP0dqBb_bPF8NARVXs4ArNLH1odTaNzrgsNphmhtd4U2nWY6ZG6Y6LT2kmW55zxenFGf6-LZV_01tXg1HGnxtR-enoCEjQxgWfFv2Q45K4RjuliGZqWwJGrcIQetLNm8VSUcfBTJUdIDObTQEXDkfr4KAGQQ5JfyEw--j_lPkfXx7vbW3prY2fzMbqRfCIW97EnaHU-O_VPIdub22fJrzA6uGxH_gN2vG4z |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4s3yNBIcOJhNHL8iwQEoq5ZChRAVVS_Gduy26pKttqlQ_hq_jnEeq2ZpuaDeovVk453Hzjgefx9Cz0POILErQ5hyijAWEmIKzkkSID9xL4NsXrh93hLr2-zjDt9ZQb_7szARmfSn7wCIXp0-gj5t_rfhwh2Oj4rQhrsS4z0Llk4ZSTnJyJzlXYPlpq9_wfLt-M3GGtj6BaWTD9_er5OOYYBYSbOKBE9dBGi3wquQMOksZUEF6qXj3gRnuPVCWEiaxsmcelFkBhJ8GvKE5s6wDL73EroMv0pG9oSv73YXOxhSie5kEycRDLjfIj1jxktn7afDFPlX3bvcvnkqH05uoOtdIYvftp53E6348ha60lJb1rfR4fdIvEtaRWPTQZ_gWcCc7NdFbJ6J5NX11NXVLPbeg0wBY8sfVjjmWTz3fYzggxJD0YobckFsI8PFHbR9IWq_i1bLWenvI2zyHPyJFkYUOTOZNUqGJFgngzA5S9MRej3QrT5qQTx0hNUejoB76T2ro2l0ynWmwTQjNO5NoV0Hmh65O6a6WTwpccYdLxd39M86X_ZZb10NUR23akzpZyfHIEEbKvAk-5cMh-I14jGdL0ObNXAkKxyhe63XLGZFGYdAzdUIyYE_DVQ0HCkP9hsEcqjyM5WoB_-n3Kfo6pe1if60sbX5EF1rQiI297FHaLWan_jHUO1V9kkTVhj9uOg4_gPCQ23- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Whole-genome+analysis+of+5-hydroxymethylcytosine+and+5-methylcytosine+at+base+resolution+in+the+human+brain&rft.jtitle=Genome+biology&rft.au=Wen%2C+Lu&rft.au=Li%2C+Xianlong&rft.au=Yan%2C+Liying&rft.au=Tan%2C+Yuexi&rft.date=2014-03-04&rft.eissn=1474-760X&rft.volume=15&rft.issue=3&rft.spage=R49&rft_id=info:doi/10.1186%2Fgb-2014-15-3-r49&rft_id=info%3Apmid%2F24594098&rft.externalDocID=24594098 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon |