Whole-genome analysis of 5-hydroxymethylcytosine and 5-methylcytosine at base resolution in the human brain

5-methylcytosine (mC) can be oxidized by the tet methylcytosine dioxygenase (Tet) family of enzymes to 5-hydroxymethylcytosine (hmC), which is an intermediate of mC demethylation and may also be a stable epigenetic modification that influences chromatin structure. hmC is particularly abundant in mam...

Full description

Saved in:
Bibliographic Details
Published inGenome biology Vol. 15; no. 3; p. R49
Main Authors Wen, Lu, Li, Xianlong, Yan, Liying, Tan, Yuexi, Li, Rong, Zhao, Yangyu, Wang, Yan, Xie, Jingcheng, Zhang, Yan, Song, Chunxiao, Yu, Miao, Liu, Xiaomeng, Zhu, Ping, Li, Xiaoyu, Hou, Yu, Guo, Hongshan, Wu, Xinglong, He, Chuan, Li, Ruiqiang, Tang, Fuchou, Qiao, Jie
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 04.03.2014
BioMed Central
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 5-methylcytosine (mC) can be oxidized by the tet methylcytosine dioxygenase (Tet) family of enzymes to 5-hydroxymethylcytosine (hmC), which is an intermediate of mC demethylation and may also be a stable epigenetic modification that influences chromatin structure. hmC is particularly abundant in mammalian brains but its function is currently unknown. A high-resolution hydroxymethylome map is required to fully understand the function of hmC in the human brain. We present genome-wide and single-base resolution maps of hmC and mC in the human brain by combined application of Tet-assisted bisulfite sequencing and bisulfite sequencing. We demonstrate that hmCs increase markedly from the fetal to the adult stage, and in the adult brain, 13% of all CpGs are highly hydroxymethylated with strong enrichment at genic regions and distal regulatory elements. Notably, hmC peaks are identified at the 5'splicing sites at the exon-intron boundary, suggesting a mechanistic link between hmC and splicing. We report a surprising transcription-correlated hmC bias toward the sense strand and an mC bias toward the antisense strand of gene bodies. Furthermore, hmC is negatively correlated with H3K27me3-marked and H3K9me3-marked repressive genomic regions, and is more enriched at poised enhancers than active enhancers. We provide single-base resolution hmC and mC maps in the human brain and our data imply novel roles of hmC in regulating splicing and gene expression. Hydroxymethylation is the main modification status for a large portion of CpGs situated at poised enhancers and actively transcribed regions, suggesting its roles in epigenetic tuning at these regions.
AbstractList BACKGROUND: 5-methylcytosine (mC) can be oxidized by the tet methylcytosine dioxygenase (Tet) family of enzymes to 5-hydroxymethylcytosine (hmC), which is an intermediate of mC demethylation and may also be a stable epigenetic modification that influences chromatin structure. hmC is particularly abundant in mammalian brains but its function is currently unknown. A high-resolution hydroxymethylome map is required to fully understand the function of hmC in the human brain. RESULTS: We present genome-wide and single-base resolution maps of hmC and mC in the human brain by combined application of Tet-assisted bisulfite sequencing and bisulfite sequencing. We demonstrate that hmCs increase markedly from the fetal to the adult stage, and in the adult brain, 13% of all CpGs are highly hydroxymethylated with strong enrichment at genic regions and distal regulatory elements. Notably, hmC peaks are identified at the 5′splicing sites at the exon-intron boundary, suggesting a mechanistic link between hmC and splicing. We report a surprising transcription-correlated hmC bias toward the sense strand and an mC bias toward the antisense strand of gene bodies. Furthermore, hmC is negatively correlated with H3K27me3-marked and H3K9me3-marked repressive genomic regions, and is more enriched at poised enhancers than active enhancers. CONCLUSIONS: We provide single-base resolution hmC and mC maps in the human brain and our data imply novel roles of hmC in regulating splicing and gene expression. Hydroxymethylation is the main modification status for a large portion of CpGs situated at poised enhancers and actively transcribed regions, suggesting its roles in epigenetic tuning at these regions.
5-methylcytosine (mC) can be oxidized by the tet methylcytosine dioxygenase (Tet) family of enzymes to 5-hydroxymethylcytosine (hmC), which is an intermediate of mC demethylation and may also be a stable epigenetic modification that influences chromatin structure. hmC is particularly abundant in mammalian brains but its function is currently unknown. A high-resolution hydroxymethylome map is required to fully understand the function of hmC in the human brain. We present genome-wide and single-base resolution maps of hmC and mC in the human brain by combined application of Tet-assisted bisulfite sequencing and bisulfite sequencing. We demonstrate that hmCs increase markedly from the fetal to the adult stage, and in the adult brain, 13% of all CpGs are highly hydroxymethylated with strong enrichment at genic regions and distal regulatory elements. Notably, hmC peaks are identified at the 5'splicing sites at the exon-intron boundary, suggesting a mechanistic link between hmC and splicing. We report a surprising transcription-correlated hmC bias toward the sense strand and an mC bias toward the antisense strand of gene bodies. Furthermore, hmC is negatively correlated with H3K27me3-marked and H3K9me3-marked repressive genomic regions, and is more enriched at poised enhancers than active enhancers. We provide single-base resolution hmC and mC maps in the human brain and our data imply novel roles of hmC in regulating splicing and gene expression. Hydroxymethylation is the main modification status for a large portion of CpGs situated at poised enhancers and actively transcribed regions, suggesting its roles in epigenetic tuning at these regions.
5-methylcytosine (mC) can be oxidized by the tet methylcytosine dioxygenase (Tet) family of enzymes to 5-hydroxymethylcytosine (hmC), which is an intermediate of mC demethylation and may also be a stable epigenetic modification that influences chromatin structure. hmC is particularly abundant in mammalian brains but its function is currently unknown. A high-resolution hydroxymethylome map is required to fully understand the function of hmC in the human brain.BACKGROUND5-methylcytosine (mC) can be oxidized by the tet methylcytosine dioxygenase (Tet) family of enzymes to 5-hydroxymethylcytosine (hmC), which is an intermediate of mC demethylation and may also be a stable epigenetic modification that influences chromatin structure. hmC is particularly abundant in mammalian brains but its function is currently unknown. A high-resolution hydroxymethylome map is required to fully understand the function of hmC in the human brain.We present genome-wide and single-base resolution maps of hmC and mC in the human brain by combined application of Tet-assisted bisulfite sequencing and bisulfite sequencing. We demonstrate that hmCs increase markedly from the fetal to the adult stage, and in the adult brain, 13% of all CpGs are highly hydroxymethylated with strong enrichment at genic regions and distal regulatory elements. Notably, hmC peaks are identified at the 5'splicing sites at the exon-intron boundary, suggesting a mechanistic link between hmC and splicing. We report a surprising transcription-correlated hmC bias toward the sense strand and an mC bias toward the antisense strand of gene bodies. Furthermore, hmC is negatively correlated with H3K27me3-marked and H3K9me3-marked repressive genomic regions, and is more enriched at poised enhancers than active enhancers.RESULTSWe present genome-wide and single-base resolution maps of hmC and mC in the human brain by combined application of Tet-assisted bisulfite sequencing and bisulfite sequencing. We demonstrate that hmCs increase markedly from the fetal to the adult stage, and in the adult brain, 13% of all CpGs are highly hydroxymethylated with strong enrichment at genic regions and distal regulatory elements. Notably, hmC peaks are identified at the 5'splicing sites at the exon-intron boundary, suggesting a mechanistic link between hmC and splicing. We report a surprising transcription-correlated hmC bias toward the sense strand and an mC bias toward the antisense strand of gene bodies. Furthermore, hmC is negatively correlated with H3K27me3-marked and H3K9me3-marked repressive genomic regions, and is more enriched at poised enhancers than active enhancers.We provide single-base resolution hmC and mC maps in the human brain and our data imply novel roles of hmC in regulating splicing and gene expression. Hydroxymethylation is the main modification status for a large portion of CpGs situated at poised enhancers and actively transcribed regions, suggesting its roles in epigenetic tuning at these regions.CONCLUSIONSWe provide single-base resolution hmC and mC maps in the human brain and our data imply novel roles of hmC in regulating splicing and gene expression. Hydroxymethylation is the main modification status for a large portion of CpGs situated at poised enhancers and actively transcribed regions, suggesting its roles in epigenetic tuning at these regions.
ArticleNumber R49
Author Li, Rong
Tang, Fuchou
Wu, Xinglong
Song, Chunxiao
Yu, Miao
Wen, Lu
He, Chuan
Qiao, Jie
Yan, Liying
Li, Ruiqiang
Guo, Hongshan
Zhao, Yangyu
Zhu, Ping
Wang, Yan
Hou, Yu
Li, Xiaoyu
Tan, Yuexi
Zhang, Yan
Liu, Xiaomeng
Li, Xianlong
Xie, Jingcheng
AuthorAffiliation 1 Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, P. R. China
6 Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, P. R. China
2 Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, P. R. China
4 Department of Chemistry & Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
3 Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, China
5 Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, P. R. China
AuthorAffiliation_xml – name: 4 Department of Chemistry & Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
– name: 1 Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, P. R. China
– name: 5 Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, P. R. China
– name: 6 Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, P. R. China
– name: 2 Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, P. R. China
– name: 3 Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, China
Author_xml – sequence: 1
  givenname: Lu
  surname: Wen
  fullname: Wen, Lu
– sequence: 2
  givenname: Xianlong
  surname: Li
  fullname: Li, Xianlong
– sequence: 3
  givenname: Liying
  surname: Yan
  fullname: Yan, Liying
– sequence: 4
  givenname: Yuexi
  surname: Tan
  fullname: Tan, Yuexi
– sequence: 5
  givenname: Rong
  surname: Li
  fullname: Li, Rong
– sequence: 6
  givenname: Yangyu
  surname: Zhao
  fullname: Zhao, Yangyu
– sequence: 7
  givenname: Yan
  surname: Wang
  fullname: Wang, Yan
– sequence: 8
  givenname: Jingcheng
  surname: Xie
  fullname: Xie, Jingcheng
– sequence: 9
  givenname: Yan
  surname: Zhang
  fullname: Zhang, Yan
– sequence: 10
  givenname: Chunxiao
  surname: Song
  fullname: Song, Chunxiao
– sequence: 11
  givenname: Miao
  surname: Yu
  fullname: Yu, Miao
– sequence: 12
  givenname: Xiaomeng
  surname: Liu
  fullname: Liu, Xiaomeng
– sequence: 13
  givenname: Ping
  surname: Zhu
  fullname: Zhu, Ping
– sequence: 14
  givenname: Xiaoyu
  surname: Li
  fullname: Li, Xiaoyu
– sequence: 15
  givenname: Yu
  surname: Hou
  fullname: Hou, Yu
– sequence: 16
  givenname: Hongshan
  surname: Guo
  fullname: Guo, Hongshan
– sequence: 17
  givenname: Xinglong
  surname: Wu
  fullname: Wu, Xinglong
– sequence: 18
  givenname: Chuan
  surname: He
  fullname: He, Chuan
– sequence: 19
  givenname: Ruiqiang
  surname: Li
  fullname: Li, Ruiqiang
– sequence: 20
  givenname: Fuchou
  surname: Tang
  fullname: Tang, Fuchou
– sequence: 21
  givenname: Jie
  surname: Qiao
  fullname: Qiao, Jie
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24594098$$D View this record in MEDLINE/PubMed
BookMark eNqNks1vFSEUxYmpsR-6d2VYuqECA8zMxsS8qDVp4kajOwK8O2_QGajAGOe_l5dXm7ax0RWE87sn997DKToKMQBCzxk9Z6xTr3aWcMoEYZI0JIn-ETphohWkVfTr0a37MTrN-RulrBdcPUHHXMhe0L47Qd-_jHECsoMQZ8AmmGnNPuM4YEnGdZvir3WGMq6TW0vMPuyZbdXuPxZsTQacIMdpKT4G7AMuI-BxmU3ANhkfnqLHg5kyPLs-z9Dnd28_bS7I5cf3HzZvLolteVPIANwpSluroBuoaJ3lYugGDq2TYAZnpAWlLOupcW3PQW0b0_UNG3rKe2dEc4ZeH3yvFjvD1kEoyUz6KvnZpFVH4_VdJfhR7-JPLahsOtpVg83BwPr4gMFdxcVZ76zeZ6GZ1I2uWVSXl9dtpPhjgVz07LODaTIB4pIrXQMRkkr-T5RJKVXl2_Y_UC4E7ThtKvri9h5u-v-TfgXoAXAp5pxguEEY1fsP9reh1L0S54vZB14X4aeHC38DoFPZjA
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2023_123373
crossref_primary_10_3389_fnmol_2024_1463437
crossref_primary_10_1111_jnc_13912
crossref_primary_10_1101_gr_211854_116
crossref_primary_10_1016_j_molmed_2016_06_008
crossref_primary_10_1016_j_gpb_2019_05_005
crossref_primary_10_1093_jxb_erad144
crossref_primary_10_7554_eLife_17082
crossref_primary_10_1016_j_neuint_2019_104587
crossref_primary_10_1371_journal_pbio_3000684
crossref_primary_10_1111_cge_13421
crossref_primary_10_1126_sciadv_aau6190
crossref_primary_10_3389_fmed_2018_00192
crossref_primary_10_1038_s41598_019_57214_z
crossref_primary_10_3390_ijms252111780
crossref_primary_10_1186_s12864_015_1875_8
crossref_primary_10_1126_sciadv_aba0521
crossref_primary_10_1177_1094342019840792
crossref_primary_10_1080_15592294_2019_1666651
crossref_primary_10_1124_mol_118_113415
crossref_primary_10_1080_15592294_2018_1507198
crossref_primary_10_1186_s12993_016_0101_4
crossref_primary_10_3389_fgene_2021_620859
crossref_primary_10_3390_genes8060148
crossref_primary_10_2217_epi_2016_0184
crossref_primary_10_1186_s12967_016_0966_x
crossref_primary_10_3390_genes8070181
crossref_primary_10_1038_ncomms10068
crossref_primary_10_20935_AcadBiol7285
crossref_primary_10_1002_anie_201502722
crossref_primary_10_1021_jacs_3c01663
crossref_primary_10_1080_15592294_2017_1356958
crossref_primary_10_1093_hmg_ddw076
crossref_primary_10_1016_j_celrep_2020_108155
crossref_primary_10_3389_fgene_2022_971298
crossref_primary_10_1021_jacs_6b06428
crossref_primary_10_1096_fj_201600310R
crossref_primary_10_1016_j_freeradbiomed_2024_03_025
crossref_primary_10_3390_genes11070742
crossref_primary_10_2217_epi_2016_0072
crossref_primary_10_1186_s13059_016_1001_5
crossref_primary_10_3390_jmse3020175
crossref_primary_10_1093_nar_gkx143
crossref_primary_10_1080_15592294_2019_1638701
crossref_primary_10_1007_s40473_016_0083_4
crossref_primary_10_2217_epi_2016_0076
crossref_primary_10_1111_gbb_12269
crossref_primary_10_1038_s41380_018_0125_2
crossref_primary_10_1016_j_semcancer_2018_01_010
crossref_primary_10_1007_s00438_024_02148_z
crossref_primary_10_1186_s13059_019_1747_7
crossref_primary_10_1016_j_ijdevneu_2017_02_003
crossref_primary_10_1007_s12031_017_0969_y
crossref_primary_10_1038_s42003_020_01418_x
crossref_primary_10_1186_s12864_021_08247_0
crossref_primary_10_3390_genes7010001
crossref_primary_10_1016_j_celrep_2021_109042
crossref_primary_10_1038_nrn_2016_41
crossref_primary_10_1016_j_neuropharm_2016_08_001
crossref_primary_10_3390_ijms19051333
crossref_primary_10_3390_molecules24193619
crossref_primary_10_1186_s13148_021_01156_9
crossref_primary_10_1038_s42003_022_04269_w
crossref_primary_10_1093_nar_gkw316
crossref_primary_10_1007_s12031_018_1101_7
crossref_primary_10_1042_EBC20190037
crossref_primary_10_1016_j_mito_2016_01_003
crossref_primary_10_1038_nmeth_f_377
crossref_primary_10_1021_acsnano_8b03023
crossref_primary_10_1021_acs_biochem_6b00796
crossref_primary_10_1093_molbev_msv053
crossref_primary_10_1038_tp_2017_93
crossref_primary_10_1186_s13059_021_02335_w
crossref_primary_10_3389_fgene_2022_806685
crossref_primary_10_1039_C6IB00079G
crossref_primary_10_3892_mmr_2016_5375
crossref_primary_10_1093_nar_gkz1144
crossref_primary_10_1093_hmg_ddv198
crossref_primary_10_3390_ijms18040790
crossref_primary_10_1016_j_neuint_2019_104642
crossref_primary_10_1038_tp_2015_191
crossref_primary_10_1007_s11357_019_00090_2
crossref_primary_10_1371_journal_pone_0107905
crossref_primary_10_1186_s13148_020_00938_x
crossref_primary_10_1016_j_arr_2019_01_011
crossref_primary_10_1016_j_rmclc_2022_07_001
crossref_primary_10_1002_glia_24016
crossref_primary_10_1080_15592294_2019_1700004
crossref_primary_10_1093_hmg_ddy214
crossref_primary_10_1038_srep29119
crossref_primary_10_1186_1471_2164_16_S12_S14
crossref_primary_10_3390_genes7120104
crossref_primary_10_1371_journal_pgen_1005661
crossref_primary_10_2217_epi_15_92
crossref_primary_10_1093_nar_gkz001
crossref_primary_10_1016_j_biopsych_2017_07_012
crossref_primary_10_1016_j_chembiol_2023_12_003
crossref_primary_10_1073_pnas_1411269112
crossref_primary_10_1016_j_neures_2023_05_001
crossref_primary_10_1186_s13072_018_0211_3
crossref_primary_10_1093_hmg_ddac122
crossref_primary_10_1186_s13072_016_0080_6
crossref_primary_10_1080_15592294_2016_1265713
crossref_primary_10_1016_j_schres_2016_01_039
crossref_primary_10_1016_j_semcdb_2021_01_003
crossref_primary_10_1038_s41587_019_0041_2
crossref_primary_10_1186_s12864_017_4091_x
crossref_primary_10_1039_C7OB02574B
crossref_primary_10_3389_fcimb_2016_00149
crossref_primary_10_1093_nar_gkv1304
crossref_primary_10_1038_nprot_2015_039
crossref_primary_10_1080_15592294_2017_1344803
crossref_primary_10_1186_s12864_016_2653_y
crossref_primary_10_1002_ange_201502722
crossref_primary_10_1007_s13311_014_0302_1
crossref_primary_10_1186_s12859_023_05163_w
crossref_primary_10_1038_s41440_019_0248_0
crossref_primary_10_3109_10408363_2015_1113496
crossref_primary_10_3390_biom14111346
crossref_primary_10_1146_annurev_psych_122414_033653
crossref_primary_10_1080_15592294_2019_1568807
crossref_primary_10_1016_S2215_0366_14_00022_4
crossref_primary_10_1038_s41588_024_01945_x
crossref_primary_10_1289_EHP3441
crossref_primary_10_1016_j_pharmthera_2015_05_002
crossref_primary_10_1093_cercor_bhx181
crossref_primary_10_3233_BPL_160034
crossref_primary_10_1038_s41598_019_46875_5
crossref_primary_10_1093_toxsci_kfz069
crossref_primary_10_1093_biomethods_bpw002
crossref_primary_10_1007_s40572_020_00268_3
crossref_primary_10_1038_s41598_017_11800_1
crossref_primary_10_1093_nar_gkv244
crossref_primary_10_1021_acs_analchem_8b02832
crossref_primary_10_1038_ncomms12418
crossref_primary_10_1038_tp_2014_87
crossref_primary_10_1038_nrg_2017_33
crossref_primary_10_1371_journal_pone_0170779
crossref_primary_10_1080_15592294_2018_1445900
crossref_primary_10_1111_acel_13080
crossref_primary_10_1093_jxb_erad102
crossref_primary_10_1080_19491034_2017_1330238
crossref_primary_10_1016_j_blre_2016_02_002
crossref_primary_10_3389_fnbeh_2015_00347
crossref_primary_10_1016_j_celrep_2015_12_044
crossref_primary_10_1177_0271678X20912965
crossref_primary_10_1080_15592294_2019_1695332
crossref_primary_10_1186_s13148_018_0458_3
crossref_primary_10_3389_fgene_2019_00801
crossref_primary_10_1016_j_tips_2017_05_007
crossref_primary_10_1016_j_jmb_2019_12_018
crossref_primary_10_2217_epi_2016_0003
crossref_primary_10_1186_s13072_018_0248_3
crossref_primary_10_2217_epi_14_39
crossref_primary_10_1186_s13072_015_0011_y
crossref_primary_10_1016_j_ygeno_2014_08_023
crossref_primary_10_1126_science_aaa1356
crossref_primary_10_1177_1073858417705840
crossref_primary_10_1016_j_gene_2015_06_052
crossref_primary_10_1002_hipo_22733
crossref_primary_10_1016_j_ygeno_2014_08_020
crossref_primary_10_1111_pcn_12426
crossref_primary_10_1016_j_yexmp_2016_10_004
crossref_primary_10_3389_fgene_2016_00120
crossref_primary_10_1016_j_trim_2024_102097
crossref_primary_10_1080_28361512_2024_2427955
crossref_primary_10_3389_fnins_2018_00005
crossref_primary_10_1002_mrd_23559
crossref_primary_10_3389_fgene_2018_00257
crossref_primary_10_1016_j_tig_2018_04_005
crossref_primary_10_1016_j_ygeno_2014_08_015
crossref_primary_10_1016_j_ygeno_2014_08_018
crossref_primary_10_2217_epi_2017_0029
crossref_primary_10_3389_fpsyt_2023_1077415
crossref_primary_10_1021_acs_analchem_4c05147
crossref_primary_10_1021_acs_jafc_2c00863
crossref_primary_10_3390_genes8050137
crossref_primary_10_1039_D3CS00858D
crossref_primary_10_1038_nn_3985
crossref_primary_10_1021_acs_biochem_6b00801
crossref_primary_10_1111_imr_12242
crossref_primary_10_1038_s41557_018_0149_x
crossref_primary_10_5483_BMBRep_2014_47_11_223
crossref_primary_10_1080_15592294_2020_1737355
crossref_primary_10_1038_s41467_021_21917_7
crossref_primary_10_1016_j_fob_2015_09_003
crossref_primary_10_1016_j_molcel_2016_12_012
crossref_primary_10_1007_s00401_018_1821_3
crossref_primary_10_1038_s41598_022_20682_x
crossref_primary_10_3390_genes8050141
crossref_primary_10_1186_s12864_018_4752_4
crossref_primary_10_2217_epi_14_48
crossref_primary_10_1016_j_dnarep_2017_11_005
crossref_primary_10_2217_epi_15_12
crossref_primary_10_1371_journal_pone_0097785
crossref_primary_10_2217_epi_15_11
crossref_primary_10_37349_eemd_2024_00006
crossref_primary_10_1371_journal_pone_0154949
Cites_doi 10.1016/j.neuron.2013.08.003
10.1101/gr.101907.109
10.1038/nsmb.2372
10.1038/nature10102
10.1038/nprot.2012.137
10.1038/nn.2959
10.1371/journal.pone.0015367
10.1038/nature10532
10.1016/j.cell.2006.08.003
10.1126/science.1220671
10.1038/cr.2013.110
10.1101/gr.143503.112
10.1038/nprot.2010.190
10.1038/nature10066
10.1016/j.cell.2012.12.033
10.1038/nature10008
10.1016/j.cell.2013.02.004
10.1126/science.1136352
10.1101/gad.2036011
10.1016/j.cell.2012.11.022
10.1016/j.stem.2013.05.006
10.1016/S0168-9525(00)89009-5
10.1038/nbt.1533
10.1126/science.1170116
10.1073/pnas.0812399106
10.1126/science.1210944
10.1016/j.tig.2013.05.010
10.1016/j.cell.2013.02.034
10.1523/JNEUROSCI.4178-07.2008
10.1038/nature10716
10.1016/j.molcel.2011.04.005
10.1038/ncomms2995
10.1186/gb-2011-12-6-r54
10.1126/science.1169786
10.1093/nar/gkr120
10.1126/science.1186366
10.1126/science.1237905
10.1016/j.celrep.2013.01.001
10.1038/nature09147
10.1186/1471-2202-9-42
10.1126/science.1210597
10.1016/j.cell.2012.04.027
10.1038/nature08514
10.1038/nbt.1732
10.1016/j.cell.2011.03.022
10.1038/nrg3230
10.1073/pnas.1016071107
10.1111/j.2517-6161.1995.tb02031.x
ContentType Journal Article
Copyright Copyright © 2014 Wen et al.; licensee BioMed Central Ltd. 2014 Wen et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: Copyright © 2014 Wen et al.; licensee BioMed Central Ltd. 2014 Wen et al.; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
8FD
FR3
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1186/gb-2014-15-3-r49
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE

MEDLINE - Academic
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1474-760X
1465-6914
EndPage R49
ExternalDocumentID PMC4053808
oai_biomedcentral_com_gb_2014_15_3_r49
24594098
10_1186_gb_2014_15_3_r49
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
29H
4.4
53G
5GY
5VS
7X7
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ACGFO
ACGFS
ACJQM
ACPRK
ADBBV
ADUKV
AEGXH
AFPKN
AHBYD
AHSBF
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BCNDV
BFQNJ
BMC
C6C
CITATION
EBD
EBLON
EBS
EMOBN
GROUPED_DOAJ
GX1
HYE
IAO
IGS
IHR
ISR
ITC
KPI
ROL
RPM
RSV
SJN
SOJ
SV3
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
NPM
2WC
7TM
8FD
AENEX
CS3
E3Z
EJD
F5P
FR3
HZ~
KQ8
O5R
O5S
O9-
OK1
P64
RBZ
RC3
SBL
TR2
WOQ
7X8
7S9
L.6
AHYZX
C1A
DIK
ZA5
5PM
ID FETCH-LOGICAL-b723t-fe2c6007b6e8f047cb24f8f2e7c5eafca5be66b190ac792e6d3a8931f9029ca43
IEDL.DBID RBZ
ISSN 1474-760X
1465-6906
IngestDate Thu Aug 21 14:00:44 EDT 2025
Tue Apr 16 22:42:36 EDT 2024
Fri Jul 11 13:28:57 EDT 2025
Fri Jul 11 04:50:13 EDT 2025
Fri Jul 11 15:47:57 EDT 2025
Thu Jan 02 22:19:04 EST 2025
Tue Jul 01 03:10:36 EDT 2025
Thu Apr 24 23:10:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b723t-fe2c6007b6e8f047cb24f8f2e7c5eafca5be66b190ac792e6d3a8931f9029ca43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1186/gb-2014-15-3-r49
PMID 24594098
PQID 1524408203
PQPubID 23462
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4053808
biomedcentral_primary_oai_biomedcentral_com_gb_2014_15_3_r49
proquest_miscellaneous_2000145052
proquest_miscellaneous_1555620077
proquest_miscellaneous_1524408203
pubmed_primary_24594098
crossref_primary_10_1186_gb_2014_15_3_r49
crossref_citationtrail_10_1186_gb_2014_15_3_r49
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-03-04
PublicationDateYYYYMMDD 2014-03-04
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-04
  day: 04
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Genome biology
PublicationTitleAlternate Genome Biol
PublicationYear 2014
Publisher BioMed Central Ltd
BioMed Central
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
References CG Spruijt (3353_CR22) 2013; 152
PA Jones (3353_CR40) 2012; 13
H Gu (3353_CR45) 2011; 6
H Gu (3353_CR46) 2008; 9
H Stroud (3353_CR11) 2011; 12
Y Xu (3353_CR12) 2011; 42
L Laurent (3353_CR30) 2009; 20
A Rudenko (3353_CR24) 2013; 79
A Zemach (3353_CR39) 2010; 328
D Brawand (3353_CR48) 2011; 478
H Wu (3353_CR5) 2011; 25
E Eisenberg (3353_CR35) 2013; 29
S Ito (3353_CR4) 2011; 333
R Lister (3353_CR25) 2013; 341
M Mellén (3353_CR21) 2012; 151
S Kriaucionis (3353_CR2) 2009; 324
T Khare (3353_CR14) 2012; 19
AP Bird (3353_CR43) 1995; 11
Z Sun (3353_CR15) 2013; 3
X Zhang (3353_CR38) 2006; 126
YF He (3353_CR3) 2011; 333
D Globisch (3353_CR19) 2010; 5
CX Song (3353_CR8) 2011; 29
R Lister (3353_CR29) 2009; 462
M Yu (3353_CR17) 2012; 149
MP Creyghton (3353_CR28) 2010; 107
A Hellman (3353_CR37) 2007; 315
RR Zhang (3353_CR23) 2013; 13
S Gelfman (3353_CR32) 2013; 23
KE Szulwach (3353_CR9) 2011; 14
RK Chodavarapu (3353_CR31) 2010; 466
AK Maunakea (3353_CR33) 2013; 23
3353_CR49
MB Stadler (3353_CR26) 2011; 480
Y Benjamini (3353_CR47) 1995; 57
M Tahiliani (3353_CR1) 2009; 324
WA Pastor (3353_CR7) 2011; 473
JD Cahoy (3353_CR34) 2008; 28
M Yu (3353_CR44) 2012; 7
H Gan (3353_CR16) 2013; 4
SG Jin (3353_CR13) 2011; 39
G Ficz (3353_CR10) 2011; 473
JU Guo (3353_CR20) 2011; 145
J Zhu (3353_CR27) 2013; 152
MJ Booth (3353_CR18) 2012; 336
U Braunschweig (3353_CR36) 2013; 152
K Williams (3353_CR6) 2011; 473
MP Ball (3353_CR41) 2009; 27
TA Rauch (3353_CR42) 2009; 106
23810203 - Trends Genet. 2013 Oct;29(10):569-74
19372391 - Science. 2009 May 15;324(5929):930-5
21460036 - Genes Dev. 2011 Apr 1;25(7):679-84
16949657 - Cell. 2006 Sep 22;126(6):1189-201
22539555 - Science. 2012 May 18;336(6083):934-7
20395474 - Science. 2010 May 14;328(5980):916-9
19329998 - Nat Biotechnol. 2009 Apr;27(4):361-8
18171944 - J Neurosci. 2008 Jan 2;28(1):264-78
7732579 - Trends Genet. 1995 Mar;11(3):94-100
17322062 - Science. 2007 Feb 23;315(5815):1141-3
21689397 - Genome Biol. 2011;12(6):R54
20133333 - Genome Res. 2010 Mar;20(3):320-31
19139413 - Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):671-8
21106759 - Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21931-6
21552279 - Nature. 2011 May 19;473(7347):394-7
21151123 - Nat Biotechnol. 2011 Jan;29(1):68-72
21496894 - Cell. 2011 Apr 29;145(3):423-34
23502848 - Genome Res. 2013 May;23(5):789-99
22961382 - Nat Struct Mol Biol. 2012 Oct;19(10):1037-43
21378125 - Nucleic Acids Res. 2011 Jul;39(12):5015-24
23260135 - Cell. 2012 Dec 21;151(7):1417-30
23938295 - Cell Res. 2013 Nov;23(11):1256-69
22170606 - Nature. 2011 Dec 22;480(7378):490-5
21203455 - PLoS One. 2010;5(12):e15367
21817016 - Science. 2011 Sep 2;333(6047):1303-7
23352666 - Cell Rep. 2013 Feb 21;3(2):567-76
23196972 - Nat Protoc. 2012 Dec;7(12):2159-70
23770080 - Cell Stem Cell. 2013 Aug 1;13(2):237-45
20512117 - Nature. 2010 Jul 15;466(7304):388-92
22037496 - Nat Neurosci. 2011 Dec;14(12):1607-16
18442397 - BMC Neurosci. 2008;9:42
21514197 - Mol Cell. 2011 May 20;42(4):451-64
22608086 - Cell. 2012 Jun 8;149(6):1368-80
21490601 - Nature. 2011 May 19;473(7347):343-8
24050401 - Neuron. 2013 Sep 18;79(6):1109-22
21412275 - Nat Protoc. 2011 Apr;6(4):468-81
23498935 - Cell. 2013 Mar 14;152(6):1252-69
21460836 - Nature. 2011 May 19;473(7347):398-402
23333102 - Cell. 2013 Jan 31;152(3):642-54
21778364 - Science. 2011 Sep 2;333(6047):1300-3
23828890 - Science. 2013 Aug 9;341(6146):1237905
19829295 - Nature. 2009 Nov 19;462(7271):315-22
22641018 - Nat Rev Genet. 2012 Jul;13(7):484-92
23434322 - Cell. 2013 Feb 28;152(5):1146-59
22012392 - Nature. 2011 Oct 20;478(7369):343-8
19372393 - Science. 2009 May 15;324(5929):929-30
23759713 - Nat Commun. 2013;4:1995
References_xml – volume: 79
  start-page: 1109
  year: 2013
  ident: 3353_CR24
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.08.003
– volume: 20
  start-page: 320
  year: 2009
  ident: 3353_CR30
  publication-title: Genome Res
  doi: 10.1101/gr.101907.109
– volume: 19
  start-page: 1037
  year: 2012
  ident: 3353_CR14
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.2372
– volume: 473
  start-page: 394
  year: 2011
  ident: 3353_CR7
  publication-title: Nature
  doi: 10.1038/nature10102
– volume: 7
  start-page: 2159
  year: 2012
  ident: 3353_CR44
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2012.137
– ident: 3353_CR49
– volume: 14
  start-page: 1607
  year: 2011
  ident: 3353_CR9
  publication-title: Nat. Neurosci
  doi: 10.1038/nn.2959
– volume: 5
  start-page: e15367
  year: 2010
  ident: 3353_CR19
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0015367
– volume: 478
  start-page: 343
  year: 2011
  ident: 3353_CR48
  publication-title: Nature
  doi: 10.1038/nature10532
– volume: 126
  start-page: 1189
  year: 2006
  ident: 3353_CR38
  publication-title: Cell
  doi: 10.1016/j.cell.2006.08.003
– volume: 336
  start-page: 934
  year: 2012
  ident: 3353_CR18
  publication-title: Science
  doi: 10.1126/science.1220671
– volume: 23
  start-page: 1256
  year: 2013
  ident: 3353_CR33
  publication-title: Cell Res
  doi: 10.1038/cr.2013.110
– volume: 23
  start-page: 789
  year: 2013
  ident: 3353_CR32
  publication-title: Genome Res
  doi: 10.1101/gr.143503.112
– volume: 6
  start-page: 468
  year: 2011
  ident: 3353_CR45
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2010.190
– volume: 473
  start-page: 343
  year: 2011
  ident: 3353_CR6
  publication-title: Nature
  doi: 10.1038/nature10066
– volume: 152
  start-page: 642
  year: 2013
  ident: 3353_CR27
  publication-title: Cell
  doi: 10.1016/j.cell.2012.12.033
– volume: 473
  start-page: 398
  year: 2011
  ident: 3353_CR10
  publication-title: Nature
  doi: 10.1038/nature10008
– volume: 152
  start-page: 1146
  year: 2013
  ident: 3353_CR22
  publication-title: Cell
  doi: 10.1016/j.cell.2013.02.004
– volume: 315
  start-page: 1141
  year: 2007
  ident: 3353_CR37
  publication-title: Science
  doi: 10.1126/science.1136352
– volume: 25
  start-page: 679
  year: 2011
  ident: 3353_CR5
  publication-title: Genes Dev
  doi: 10.1101/gad.2036011
– volume: 151
  start-page: 1417
  year: 2012
  ident: 3353_CR21
  publication-title: Cell
  doi: 10.1016/j.cell.2012.11.022
– volume: 13
  start-page: 237
  year: 2013
  ident: 3353_CR23
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.05.006
– volume: 11
  start-page: 94
  year: 1995
  ident: 3353_CR43
  publication-title: Trends Genet
  doi: 10.1016/S0168-9525(00)89009-5
– volume: 27
  start-page: 361
  year: 2009
  ident: 3353_CR41
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1533
– volume: 324
  start-page: 930
  year: 2009
  ident: 3353_CR1
  publication-title: Science
  doi: 10.1126/science.1170116
– volume: 106
  start-page: 671
  year: 2009
  ident: 3353_CR42
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0812399106
– volume: 333
  start-page: 1303
  year: 2011
  ident: 3353_CR3
  publication-title: Science
  doi: 10.1126/science.1210944
– volume: 29
  start-page: 569
  year: 2013
  ident: 3353_CR35
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2013.05.010
– volume: 152
  start-page: 1252
  year: 2013
  ident: 3353_CR36
  publication-title: Cell
  doi: 10.1016/j.cell.2013.02.034
– volume: 28
  start-page: 264
  year: 2008
  ident: 3353_CR34
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4178-07.2008
– volume: 480
  start-page: 490
  year: 2011
  ident: 3353_CR26
  publication-title: Nature
  doi: 10.1038/nature10716
– volume: 42
  start-page: 451
  year: 2011
  ident: 3353_CR12
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.04.005
– volume: 4
  start-page: 1995
  year: 2013
  ident: 3353_CR16
  publication-title: Nat Commun
  doi: 10.1038/ncomms2995
– volume: 12
  start-page: R54
  year: 2011
  ident: 3353_CR11
  publication-title: Genome Biol
  doi: 10.1186/gb-2011-12-6-r54
– volume: 324
  start-page: 929
  year: 2009
  ident: 3353_CR2
  publication-title: Science
  doi: 10.1126/science.1169786
– volume: 39
  start-page: 5015
  year: 2011
  ident: 3353_CR13
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr120
– volume: 328
  start-page: 916
  year: 2010
  ident: 3353_CR39
  publication-title: Science
  doi: 10.1126/science.1186366
– volume: 341
  start-page: 1237905
  year: 2013
  ident: 3353_CR25
  publication-title: Science
  doi: 10.1126/science.1237905
– volume: 3
  start-page: 567
  year: 2013
  ident: 3353_CR15
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2013.01.001
– volume: 466
  start-page: 388
  year: 2010
  ident: 3353_CR31
  publication-title: Nature
  doi: 10.1038/nature09147
– volume: 9
  start-page: 42
  year: 2008
  ident: 3353_CR46
  publication-title: BMC Neurosci
  doi: 10.1186/1471-2202-9-42
– volume: 333
  start-page: 1300
  year: 2011
  ident: 3353_CR4
  publication-title: Science
  doi: 10.1126/science.1210597
– volume: 149
  start-page: 1368
  year: 2012
  ident: 3353_CR17
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.027
– volume: 462
  start-page: 315
  year: 2009
  ident: 3353_CR29
  publication-title: Nature
  doi: 10.1038/nature08514
– volume: 29
  start-page: 68
  year: 2011
  ident: 3353_CR8
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt.1732
– volume: 145
  start-page: 423
  year: 2011
  ident: 3353_CR20
  publication-title: Cell
  doi: 10.1016/j.cell.2011.03.022
– volume: 13
  start-page: 484
  year: 2012
  ident: 3353_CR40
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3230
– volume: 107
  start-page: 21931
  year: 2010
  ident: 3353_CR28
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1016071107
– volume: 57
  start-page: 289
  year: 1995
  ident: 3353_CR47
  publication-title: J Roy Stat Soc B Met
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– reference: 21203455 - PLoS One. 2010;5(12):e15367
– reference: 23434322 - Cell. 2013 Feb 28;152(5):1146-59
– reference: 21412275 - Nat Protoc. 2011 Apr;6(4):468-81
– reference: 18442397 - BMC Neurosci. 2008;9:42
– reference: 22012392 - Nature. 2011 Oct 20;478(7369):343-8
– reference: 23352666 - Cell Rep. 2013 Feb 21;3(2):567-76
– reference: 20512117 - Nature. 2010 Jul 15;466(7304):388-92
– reference: 19329998 - Nat Biotechnol. 2009 Apr;27(4):361-8
– reference: 23759713 - Nat Commun. 2013;4:1995
– reference: 24050401 - Neuron. 2013 Sep 18;79(6):1109-22
– reference: 21778364 - Science. 2011 Sep 2;333(6047):1300-3
– reference: 21490601 - Nature. 2011 May 19;473(7347):343-8
– reference: 19139413 - Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):671-8
– reference: 22608086 - Cell. 2012 Jun 8;149(6):1368-80
– reference: 21514197 - Mol Cell. 2011 May 20;42(4):451-64
– reference: 18171944 - J Neurosci. 2008 Jan 2;28(1):264-78
– reference: 7732579 - Trends Genet. 1995 Mar;11(3):94-100
– reference: 23502848 - Genome Res. 2013 May;23(5):789-99
– reference: 21151123 - Nat Biotechnol. 2011 Jan;29(1):68-72
– reference: 17322062 - Science. 2007 Feb 23;315(5815):1141-3
– reference: 19829295 - Nature. 2009 Nov 19;462(7271):315-22
– reference: 19372391 - Science. 2009 May 15;324(5929):930-5
– reference: 21552279 - Nature. 2011 May 19;473(7347):394-7
– reference: 23828890 - Science. 2013 Aug 9;341(6146):1237905
– reference: 23498935 - Cell. 2013 Mar 14;152(6):1252-69
– reference: 21496894 - Cell. 2011 Apr 29;145(3):423-34
– reference: 22170606 - Nature. 2011 Dec 22;480(7378):490-5
– reference: 16949657 - Cell. 2006 Sep 22;126(6):1189-201
– reference: 21817016 - Science. 2011 Sep 2;333(6047):1303-7
– reference: 20133333 - Genome Res. 2010 Mar;20(3):320-31
– reference: 21378125 - Nucleic Acids Res. 2011 Jul;39(12):5015-24
– reference: 22961382 - Nat Struct Mol Biol. 2012 Oct;19(10):1037-43
– reference: 19372393 - Science. 2009 May 15;324(5929):929-30
– reference: 23196972 - Nat Protoc. 2012 Dec;7(12):2159-70
– reference: 23810203 - Trends Genet. 2013 Oct;29(10):569-74
– reference: 22641018 - Nat Rev Genet. 2012 Jul;13(7):484-92
– reference: 21460836 - Nature. 2011 May 19;473(7347):398-402
– reference: 20395474 - Science. 2010 May 14;328(5980):916-9
– reference: 21689397 - Genome Biol. 2011;12(6):R54
– reference: 22037496 - Nat Neurosci. 2011 Dec;14(12):1607-16
– reference: 23260135 - Cell. 2012 Dec 21;151(7):1417-30
– reference: 21460036 - Genes Dev. 2011 Apr 1;25(7):679-84
– reference: 23333102 - Cell. 2013 Jan 31;152(3):642-54
– reference: 21106759 - Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21931-6
– reference: 23938295 - Cell Res. 2013 Nov;23(11):1256-69
– reference: 22539555 - Science. 2012 May 18;336(6083):934-7
– reference: 23770080 - Cell Stem Cell. 2013 Aug 1;13(2):237-45
SSID ssj0019426
ssj0017866
Score 2.5428689
Snippet 5-methylcytosine (mC) can be oxidized by the tet methylcytosine dioxygenase (Tet) family of enzymes to 5-hydroxymethylcytosine (hmC), which is an intermediate...
Background: 5-methylcytosine (mC) can be oxidized by the tet methylcytosine dioxygenase (Tet) family of enzymes to 5-hydroxymethylcytosine (hmC), which is an...
BACKGROUND: 5-methylcytosine (mC) can be oxidized by the tet methylcytosine dioxygenase (Tet) family of enzymes to 5-hydroxymethylcytosine (hmC), which is an...
SourceID pubmedcentral
biomedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage R49
SubjectTerms 5-Methylcytosine - metabolism
Adult
adults
brain
Brain - embryology
Brain - growth & development
Brain - metabolism
chromatin
CpG Islands
Cytosine - analogs & derivatives
Cytosine - metabolism
DNA Methylation
DNA, Antisense - metabolism
enzymes
epigenetics
Exons
Female
gene expression
Gene Expression Regulation, Developmental
genes
Genome, Human
Histones - genetics
Humans
Introns
Male
regulatory sequences
transcription (genetics)
Transcription, Genetic
Title Whole-genome analysis of 5-hydroxymethylcytosine and 5-methylcytosine at base resolution in the human brain
URI https://www.ncbi.nlm.nih.gov/pubmed/24594098
https://www.proquest.com/docview/1524408203
https://www.proquest.com/docview/1555620077
https://www.proquest.com/docview/2000145052
http://dx.doi.org/10.1186/gb-2014-15-3-r49
https://pubmed.ncbi.nlm.nih.gov/PMC4053808
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCIkLKu9toTISFw5WE8dPiUuLKBUSnKhYcbFsx26rLlnUpof998x4swtZWi5ccognD3k8mhnP-PsIeZOtAMduPBMmGiZErphvpWRVBv8kk866bLh9_qKOT8SnqZz-hsnZqODXRu2fBtBkLVgtWcMuhb1L7nEBCR1m5off1xUDbdRwkkgyBN9dlSRveMPG2fbZ2CX9FWdutkv-4X-OtsnDIXCkB0tNPyJ3UveY3F9SSS6ekItvSHTLEHL1R6J-gBqh80wlO1u02KyCZNGLWVz0c-x1B5kWxjZv9hT9GoUkfFiT9LyjECTSQuZHAzJKPCUnRx--vj9mA5ECC5o3PcuJR8ShDyqZXAkdAxfZZJ50lMnn6GVISgWIDXzUlifVNh7imDrbitvoRfOMbHXzLr0g1FsL-uOtV60Vvgne6FzlEHVW3oq6npB3o7l1P5egGQ5hrMcjYFHuNDhUjaulaxyoZkL2V6pwcQApR66MmSvJilE3PPF2_cTqW7fLvl5p14EVYWnEd2l-fQUSvFBvV82_ZCQEi4h_dLsMLzknkgNOyPPlqln_FRcSDMOaCdGj9TSaovFId35WEL8hqm5MZXb-b3J3yYNiB9hBJ16Srf7yOr2CkKoPe2UrAq4fp_Vesatf5mAlAw
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4s3yNBIcOJgmjh3bEhx4VVv6OLWi4uLajt1WLFm03Qrlp_HvGDvJqllaLqjXePKa8WTG8cz3IfQyKAaBXRrCpJOEsZARU3FOsgDxiXsRRPrhtr1TjvfYl32-v4J-970wEZn0h-8AiN6cbUGfpO92Xy7Werss1w4tGDpnJOekIDOmuvrKTd_8gtXbybuNT2DqV5Suf979OCYdwQCxghZzEjx1EZ_dll6GjAlnKQsyUC8c9yY4w60vSwsx0zihqC-rwkB8z4PKqHKGFXDdK-gqvJRIrWMfvi02MIQsu8YmTiIWcL9Des4TL7XaT4YR8q-0d7l680w4XL-FbnZ5LH7fKuo2WvH1HXStZbZs7qLvXyPvLmn1jE2HfIKnAXNy1FSxdiZyVzcT18ynsfQeZCoYWz44xzHM4pnvXQQf1xhyVpy4BbGNBBf30N6lqP0-Wq2ntX-IsFEKphOtTFkpZgprpAhZsE6E0iiW5yP0dqBb_bPF8NARVXs4ArNLH1odTaNzrgsNphmhtd4U2nWY6ZG6Y6LT2kmW55zxenFGf6-LZV_01tXg1HGnxtR-enoCEjQxgWfFv2Q45K4RjuliGZqWwJGrcIQetLNm8VSUcfBTJUdIDObTQEXDkfr4KAGQQ5JfyEw--j_lPkfXx7vbW3prY2fzMbqRfCIW97EnaHU-O_VPIdub22fJrzA6uGxH_gN2vG4z
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4s3yNBIcOJhNHL8iwQEoq5ZChRAVVS_Gduy26pKttqlQ_hq_jnEeq2ZpuaDeovVk453Hzjgefx9Cz0POILErQ5hyijAWEmIKzkkSID9xL4NsXrh93hLr2-zjDt9ZQb_7szARmfSn7wCIXp0-gj5t_rfhwh2Oj4rQhrsS4z0Llk4ZSTnJyJzlXYPlpq9_wfLt-M3GGtj6BaWTD9_er5OOYYBYSbOKBE9dBGi3wquQMOksZUEF6qXj3gRnuPVCWEiaxsmcelFkBhJ8GvKE5s6wDL73EroMv0pG9oSv73YXOxhSie5kEycRDLjfIj1jxktn7afDFPlX3bvcvnkqH05uoOtdIYvftp53E6348ha60lJb1rfR4fdIvEtaRWPTQZ_gWcCc7NdFbJ6J5NX11NXVLPbeg0wBY8sfVjjmWTz3fYzggxJD0YobckFsI8PFHbR9IWq_i1bLWenvI2zyHPyJFkYUOTOZNUqGJFgngzA5S9MRej3QrT5qQTx0hNUejoB76T2ro2l0ynWmwTQjNO5NoV0Hmh65O6a6WTwpccYdLxd39M86X_ZZb10NUR23akzpZyfHIEEbKvAk-5cMh-I14jGdL0ObNXAkKxyhe63XLGZFGYdAzdUIyYE_DVQ0HCkP9hsEcqjyM5WoB_-n3Kfo6pe1if60sbX5EF1rQiI297FHaLWan_jHUO1V9kkTVhj9uOg4_gPCQ23-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Whole-genome+analysis+of+5-hydroxymethylcytosine+and+5-methylcytosine+at+base+resolution+in+the+human+brain&rft.jtitle=Genome+biology&rft.au=Wen%2C+Lu&rft.au=Li%2C+Xianlong&rft.au=Yan%2C+Liying&rft.au=Tan%2C+Yuexi&rft.date=2014-03-04&rft.eissn=1474-760X&rft.volume=15&rft.issue=3&rft.spage=R49&rft_id=info:doi/10.1186%2Fgb-2014-15-3-r49&rft_id=info%3Apmid%2F24594098&rft.externalDocID=24594098
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon