Global parameter estimation methods for stochastic biochemical systems

Background The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models such as chemical master equation. As in other modelling frameworks, the accompanying rate constants are important for the end-applications like analyzi...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 11; no. 1; p. 414
Main Authors Poovathingal, Suresh Kumar, Gunawan, Rudiyanto
Format Journal Article
LanguageEnglish
Published London BioMed Central 06.08.2010
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/1471-2105-11-414

Cover

Abstract Background The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models such as chemical master equation. As in other modelling frameworks, the accompanying rate constants are important for the end-applications like analyzing system properties (e.g. robustness) or predicting the effects of genetic perturbations. Prior knowledge of kinetic constants is usually limited and the model identification routine typically includes parameter estimation from experimental data. Although the subject of parameter estimation is well-established for deterministic models, it is not yet routine for the chemical master equation. In addition, recent advances in measurement technology have made the quantification of genetic substrates possible to single molecular levels. Thus, the purpose of this work is to develop practical and effective methods for estimating kinetic model parameters in the chemical master equation and other stochastic models from single cell and cell population experimental data. Results Three parameter estimation methods are proposed based on the maximum likelihood and density function distance, including probability and cumulative density functions. Since stochastic models such as chemical master equations are typically solved using a Monte Carlo approach in which only a finite number of Monte Carlo realizations are computationally practical, specific considerations are given to account for the effect of finite sampling in the histogram binning of the state density functions. Applications to three practical case studies showed that while maximum likelihood method can effectively handle low replicate measurements, the density function distance methods, particularly the cumulative density function distance estimation, are more robust in estimating the parameters with consistently higher accuracy, even for systems showing multimodality. Conclusions The parameter estimation methodologies described in this work have provided an effective and practical approach in the estimation of kinetic parameters of stochastic systems from either sparse or dense cell population data. Nevertheless, similar to kinetic parameter estimation in other modelling frameworks, not all parameters can be estimated accurately, which is a common problem arising from the lack of complete parameter identifiability from the available data.
AbstractList Background The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models such as chemical master equation. As in other modelling frameworks, the accompanying rate constants are important for the end-applications like analyzing system properties (e.g. robustness) or predicting the effects of genetic perturbations. Prior knowledge of kinetic constants is usually limited and the model identification routine typically includes parameter estimation from experimental data. Although the subject of parameter estimation is well-established for deterministic models, it is not yet routine for the chemical master equation. In addition, recent advances in measurement technology have made the quantification of genetic substrates possible to single molecular levels. Thus, the purpose of this work is to develop practical and effective methods for estimating kinetic model parameters in the chemical master equation and other stochastic models from single cell and cell population experimental data. Results Three parameter estimation methods are proposed based on the maximum likelihood and density function distance, including probability and cumulative density functions. Since stochastic models such as chemical master equations are typically solved using a Monte Carlo approach in which only a finite number of Monte Carlo realizations are computationally practical, specific considerations are given to account for the effect of finite sampling in the histogram binning of the state density functions. Applications to three practical case studies showed that while maximum likelihood method can effectively handle low replicate measurements, the density function distance methods, particularly the cumulative density function distance estimation, are more robust in estimating the parameters with consistently higher accuracy, even for systems showing multimodality. Conclusions The parameter estimation methodologies described in this work have provided an effective and practical approach in the estimation of kinetic parameters of stochastic systems from either sparse or dense cell population data. Nevertheless, similar to kinetic parameter estimation in other modelling frameworks, not all parameters can be estimated accurately, which is a common problem arising from the lack of complete parameter identifiability from the available data.
The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models such as chemical master equation. As in other modelling frameworks, the accompanying rate constants are important for the end-applications like analyzing system properties (e.g. robustness) or predicting the effects of genetic perturbations. Prior knowledge of kinetic constants is usually limited and the model identification routine typically includes parameter estimation from experimental data. Although the subject of parameter estimation is well-established for deterministic models, it is not yet routine for the chemical master equation. In addition, recent advances in measurement technology have made the quantification of genetic substrates possible to single molecular levels. Thus, the purpose of this work is to develop practical and effective methods for estimating kinetic model parameters in the chemical master equation and other stochastic models from single cell and cell population experimental data. Three parameter estimation methods are proposed based on the maximum likelihood and density function distance, including probability and cumulative density functions. Since stochastic models such as chemical master equations are typically solved using a Monte Carlo approach in which only a finite number of Monte Carlo realizations are computationally practical, specific considerations are given to account for the effect of finite sampling in the histogram binning of the state density functions. Applications to three practical case studies showed that while maximum likelihood method can effectively handle low replicate measurements, the density function distance methods, particularly the cumulative density function distance estimation, are more robust in estimating the parameters with consistently higher accuracy, even for systems showing multimodality. The parameter estimation methodologies described in this work have provided an effective and practical approach in the estimation of kinetic parameters of stochastic systems from either sparse or dense cell population data. Nevertheless, similar to kinetic parameter estimation in other modelling frameworks, not all parameters can be estimated accurately, which is a common problem arising from the lack of complete parameter identifiability from the available data.
The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models such as chemical master equation. As in other modelling frameworks, the accompanying rate constants are important for the end-applications like analyzing system properties (e.g. robustness) or predicting the effects of genetic perturbations. Prior knowledge of kinetic constants is usually limited and the model identification routine typically includes parameter estimation from experimental data. Although the subject of parameter estimation is well-established for deterministic models, it is not yet routine for the chemical master equation. In addition, recent advances in measurement technology have made the quantification of genetic substrates possible to single molecular levels. Thus, the purpose of this work is to develop practical and effective methods for estimating kinetic model parameters in the chemical master equation and other stochastic models from single cell and cell population experimental data.BACKGROUNDThe importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models such as chemical master equation. As in other modelling frameworks, the accompanying rate constants are important for the end-applications like analyzing system properties (e.g. robustness) or predicting the effects of genetic perturbations. Prior knowledge of kinetic constants is usually limited and the model identification routine typically includes parameter estimation from experimental data. Although the subject of parameter estimation is well-established for deterministic models, it is not yet routine for the chemical master equation. In addition, recent advances in measurement technology have made the quantification of genetic substrates possible to single molecular levels. Thus, the purpose of this work is to develop practical and effective methods for estimating kinetic model parameters in the chemical master equation and other stochastic models from single cell and cell population experimental data.Three parameter estimation methods are proposed based on the maximum likelihood and density function distance, including probability and cumulative density functions. Since stochastic models such as chemical master equations are typically solved using a Monte Carlo approach in which only a finite number of Monte Carlo realizations are computationally practical, specific considerations are given to account for the effect of finite sampling in the histogram binning of the state density functions. Applications to three practical case studies showed that while maximum likelihood method can effectively handle low replicate measurements, the density function distance methods, particularly the cumulative density function distance estimation, are more robust in estimating the parameters with consistently higher accuracy, even for systems showing multimodality.RESULTSThree parameter estimation methods are proposed based on the maximum likelihood and density function distance, including probability and cumulative density functions. Since stochastic models such as chemical master equations are typically solved using a Monte Carlo approach in which only a finite number of Monte Carlo realizations are computationally practical, specific considerations are given to account for the effect of finite sampling in the histogram binning of the state density functions. Applications to three practical case studies showed that while maximum likelihood method can effectively handle low replicate measurements, the density function distance methods, particularly the cumulative density function distance estimation, are more robust in estimating the parameters with consistently higher accuracy, even for systems showing multimodality.The parameter estimation methodologies described in this work have provided an effective and practical approach in the estimation of kinetic parameters of stochastic systems from either sparse or dense cell population data. Nevertheless, similar to kinetic parameter estimation in other modelling frameworks, not all parameters can be estimated accurately, which is a common problem arising from the lack of complete parameter identifiability from the available data.CONCLUSIONSThe parameter estimation methodologies described in this work have provided an effective and practical approach in the estimation of kinetic parameters of stochastic systems from either sparse or dense cell population data. Nevertheless, similar to kinetic parameter estimation in other modelling frameworks, not all parameters can be estimated accurately, which is a common problem arising from the lack of complete parameter identifiability from the available data.
The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models such as chemical master equation. As in other modelling frameworks, the accompanying rate constants are important for the end-applications like analyzing system properties (e.g. robustness) or predicting the effects of genetic perturbations. Prior knowledge of kinetic constants is usually limited and the model identification routine typically includes parameter estimation from experimental data. Although the subject of parameter estimation is well-established for deterministic models, it is not yet routine for the chemical master equation. In addition, recent advances in measurement technology have made the quantification of genetic substrates possible to single molecular levels. Thus, the purpose of this work is to develop practical and effective methods for estimating kinetic model parameters in the chemical master equation and other stochastic models from single cell and cell population experimental data. Three parameter estimation methods are proposed based on the maximum likelihood and density function distance, including probability and cumulative density functions. Since stochastic models such as chemical master equations are typically solved using a Monte Carlo approach in which only a finite number of Monte Carlo realizations are computationally practical, specific considerations are given to account for the effect of finite sampling in the histogram binning of the state density functions. Applications to three practical case studies showed that while maximum likelihood method can effectively handle low replicate measurements, the density function distance methods, particularly the cumulative density function distance estimation, are more robust in estimating the parameters with consistently higher accuracy, even for systems showing multimodality. The parameter estimation methodologies described in this work have provided an effective and practical approach in the estimation of kinetic parameters of stochastic systems from either sparse or dense cell population data. Nevertheless, similar to kinetic parameter estimation in other modelling frameworks, not all parameters can be estimated accurately, which is a common problem arising from the lack of complete parameter identifiability from the available data.
Background The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models such as chemical master equation. As in other modelling frameworks, the accompanying rate constants are important for the end-applications like analyzing system properties (e.g. robustness) or predicting the effects of genetic perturbations. Prior knowledge of kinetic constants is usually limited and the model identification routine typically includes parameter estimation from experimental data. Although the subject of parameter estimation is well-established for deterministic models, it is not yet routine for the chemical master equation. In addition, recent advances in measurement technology have made the quantification of genetic substrates possible to single molecular levels. Thus, the purpose of this work is to develop practical and effective methods for estimating kinetic model parameters in the chemical master equation and other stochastic models from single cell and cell population experimental data. Results Three parameter estimation methods are proposed based on the maximum likelihood and density function distance, including probability and cumulative density functions. Since stochastic models such as chemical master equations are typically solved using a Monte Carlo approach in which only a finite number of Monte Carlo realizations are computationally practical, specific considerations are given to account for the effect of finite sampling in the histogram binning of the state density functions. Applications to three practical case studies showed that while maximum likelihood method can effectively handle low replicate measurements, the density function distance methods, particularly the cumulative density function distance estimation, are more robust in estimating the parameters with consistently higher accuracy, even for systems showing multimodality. Conclusions The parameter estimation methodologies described in this work have provided an effective and practical approach in the estimation of kinetic parameters of stochastic systems from either sparse or dense cell population data. Nevertheless, similar to kinetic parameter estimation in other modelling frameworks, not all parameters can be estimated accurately, which is a common problem arising from the lack of complete parameter identifiability from the available data.
Abstract Background: The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models such as chemical master equation. As in other modelling frameworks, the accompanying rate constants are important for the end-applications like analyzing system properties (e.g. robustness) or predicting the effects of genetic perturbations. Prior knowledge of kinetic constants is usually limited and the model identification routine typically includes parameter estimation from experimental data. Although the subject of parameter estimation is well-established for deterministic models, it is not yet routine for the chemical master equation. In addition, recent advances in measurement technology have made the quantification of genetic substrates possible to single molecular levels. Thus, the purpose of this work is to develop practical and effective methods for estimating kinetic model parameters in the chemical master equation and other stochastic models from single cell and cell population experimental data. Results: Three parameter estimation methods are proposed based on the maximum likelihood and density function distance, including probability and cumulative density functions. Since stochastic models such as chemical master equations are typically solved using a Monte Carlo approach in which only a finite number of Monte Carlo realizations are computationally practical, specific considerations are given to account for the effect of finite sampling in the histogram binning of the state density functions. Applications to three practical case studies showed that while maximum likelihood method can effectively handle low replicate measurements, the density function distance methods, particularly the cumulative density function distance estimation, are more robust in estimating the parameters with consistently higher accuracy, even for systems showing multimodality. Conclusions: The parameter estimation methodologies described in this work have provided an effective and practical approach in the estimation of kinetic parameters of stochastic systems from either sparse or dense cell population data. Nevertheless, similar to kinetic parameter estimation in other modelling frameworks, not all parameters can be estimated accurately, which is a common problem arising from the lack of complete parameter identifiability from the available data.
ArticleNumber 414
Audience Academic
Author Poovathingal, Suresh Kumar
Gunawan, Rudiyanto
AuthorAffiliation 1 Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117576, Singapore
AuthorAffiliation_xml – name: 1 Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117576, Singapore
Author_xml – sequence: 1
  givenname: Suresh Kumar
  surname: Poovathingal
  fullname: Poovathingal, Suresh Kumar
  organization: Department of Chemical and Biomolecular Engineering, National University of Singapore
– sequence: 2
  givenname: Rudiyanto
  surname: Gunawan
  fullname: Gunawan, Rudiyanto
  email: chegr@nus.edu.sg
  organization: Department of Chemical and Biomolecular Engineering, National University of Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20691037$$D View this record in MEDLINE/PubMed
BookMark eNqFk81r3DAQxU1JaT7ae0_FtIfSg9MZ2ZbkSyAsTboQKPTjLGRZ2vViW6nkLc1_39k4SeOQtPggMfq9x_BmfJjsDX6wSfIa4RhR8o9YCMwYQpkhZgUWz5KDu9Levft-chjjBgCFhPJFss-AVwi5OEjOzjtf6y691EH3drQhtXFsez22fkipsPZNTJ0PaRy9WWt6M2nd0tX2rSFdvIqj7ePL5LnTXbSvbs6j5MfZp--Lz9nFl_Pl4vQiqwXLx4xpA9qVNRiusRalkzVvKmlYZQWilS6XSDdbM1M2QiDjmkuh0TZVjlXp8qNkOfk2Xm_UZaBOw5XyulXXBR9WSgfqsbMqLxhYURcA0BROu1oaJ4oGoKpANLkkr5PJ63Jb97YxdhiD7mam85ehXauV_6VYxaSEnAwWkwEF8oTB_MX4Xu1monYzUYiKRkYu72_aCP7nltJXfRuN7To9WL-NSgrBgXH-f1IUFVBkwIl8-4Dc-G0YaDKKEFkiVDu7dxO00hRXOzhPTZqdpTpleclLUWJJ1PEjFH3NbgNoHV1L9Zngw0xAzGh_jyu9jVEtv32ds2_uj-Auutv9JIBPgAk-xmCdMu14vZzURdspBLX7ER5LFR4Ib73_IcFJEgkdVjb8De1JzR_g1xYx
CitedBy_id crossref_primary_10_1016_j_mbs_2014_01_011
crossref_primary_10_1186_s12918_014_0126_y
crossref_primary_10_3389_fenvs_2015_00042
crossref_primary_10_1177_0037549715585569
crossref_primary_10_1021_acs_macromol_4c00037
crossref_primary_10_1038_s41598_021_87694_x
crossref_primary_10_1371_journal_pone_0230736
crossref_primary_10_1093_bioinformatics_btz574
crossref_primary_10_1002_cjce_20607
crossref_primary_10_1109_TCBB_2022_3225675
crossref_primary_10_1016_j_dsp_2014_01_012
crossref_primary_10_1088_1361_6633_aaae2c
crossref_primary_10_1093_bioinformatics_btx253
crossref_primary_10_1371_journal_pone_0096726
crossref_primary_10_1186_1471_2105_13_68
crossref_primary_10_1371_journal_pcbi_1006368
crossref_primary_10_1016_j_physrep_2013_03_004
crossref_primary_10_1016_j_jhydrol_2024_132364
crossref_primary_10_1038_nmeth_1546
crossref_primary_10_1155_2012_390694
crossref_primary_10_1016_j_mbs_2015_08_015
crossref_primary_10_1371_journal_pone_0226861
crossref_primary_10_3389_fams_2024_1355373
crossref_primary_10_1016_j_biosystems_2015_08_003
crossref_primary_10_1088_1478_3975_aba1d2
crossref_primary_10_1098_rsif_2020_0652
crossref_primary_10_1007_s11571_015_9346_0
crossref_primary_10_1186_s12918_017_0406_4
crossref_primary_10_3182_20140824_6_ZA_1003_01125
crossref_primary_10_1145_3183624_3183627
crossref_primary_10_1002_aic_14409
crossref_primary_10_1016_j_compchemeng_2014_01_006
crossref_primary_10_1016_j_compchemeng_2016_03_018
crossref_primary_10_1016_j_compbiolchem_2015_10_003
crossref_primary_10_1073_pnas_1423947112
crossref_primary_10_1103_PhysRevE_102_022409
crossref_primary_10_1145_2688906
crossref_primary_10_1111_2041_210X_14452
crossref_primary_10_1002_aic_15577
crossref_primary_10_1088_1478_3975_aa868a
crossref_primary_10_1371_journal_pone_0056310
Cites_doi 10.1038/35002125
10.1038/nature02298
10.1137/060678154
10.1063/1.2971036
10.1038/nature03998
10.1186/1471-2105-6-155
10.1016/S0168-9525(98)01659-X
10.1287/opre.50.6.1073.358
10.1016/j.cell.2005.09.031
10.1145/272991.272995
10.1021/jp993732q
10.1529/biophysj.104.053405
10.1063/1.2159468
10.1021/j100540a008
10.1016/0378-4371(92)90283-V
10.1063/1.1833357
10.1093/genetics/149.4.1633
10.1063/1.1505860
10.1073/pnas.0406841102
10.1002/9780470316849
10.1038/35002131
10.1023/A:1008202821328
10.1126/science.1119623
10.1214/aoms/1177729694
10.1063/1.1810475
10.1016/j.mbs.2009.03.002
10.1089/cmb.2006.13.838
10.1093/bioinformatics/btl552
10.1016/j.ymben.2008.07.004
10.1101/gr.997703
10.1049/ip-syb:20050105
10.1126/science.283.5400.381
10.1063/1.2145882
10.1371/journal.pcbi.0020080
10.1038/nature01546
10.1038/ncb954
10.1016/j.jcp.2006.06.047
10.1038/nbt1162
ContentType Journal Article
Copyright Poovathingal and Gunawan; licensee BioMed Central Ltd. 2010
COPYRIGHT 2010 BioMed Central Ltd.
2010 Poovathingal and Gunawan; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright ©2010 Poovathingal and Gunawan; licensee BioMed Central Ltd. 2010 Poovathingal and Gunawan; licensee BioMed Central Ltd.
Copyright_xml – notice: Poovathingal and Gunawan; licensee BioMed Central Ltd. 2010
– notice: COPYRIGHT 2010 BioMed Central Ltd.
– notice: 2010 Poovathingal and Gunawan; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright ©2010 Poovathingal and Gunawan; licensee BioMed Central Ltd. 2010 Poovathingal and Gunawan; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/1471-2105-11-414
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic



Publicly Available Content Database

Engineering Research Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 414
ExternalDocumentID oai_doaj_org_article_3420e7b4000d4fafb8cf74d009907d38
PMC2928803
oai_biomedcentral_com_1471_2105_11_414
2501696711
A235657515
20691037
10_1186_1471_2105_11_414
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Singapore
GeographicLocations_xml – name: Singapore
GroupedDBID ---
0R~
23N
2VQ
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
IPNFZ
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
-A0
ABVAZ
ACRMQ
ADINQ
AFGXO
AFNRJ
C24
5PM
ID FETCH-LOGICAL-b723t-2ac0af5b0c6a1b75f8b6d98c29e711e8f381e71eb2c5d77126a687a1ed93195f3
IEDL.DBID C6C
ISSN 1471-2105
IngestDate Wed Aug 27 01:27:03 EDT 2025
Thu Aug 21 13:51:17 EDT 2025
Wed May 22 07:10:43 EDT 2024
Fri Sep 05 14:41:22 EDT 2025
Thu Sep 04 18:32:01 EDT 2025
Fri Jul 25 10:53:47 EDT 2025
Tue Jun 17 21:48:12 EDT 2025
Tue Jun 10 20:36:40 EDT 2025
Fri Jun 27 03:57:21 EDT 2025
Thu Apr 03 07:04:21 EDT 2025
Tue Jul 01 03:38:11 EDT 2025
Thu Apr 24 22:59:48 EDT 2025
Sat Sep 06 07:27:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Probability Density Function
Cumulative Density Function
Differential Evolution
Parameter Estimation Method
Population Member
Language English
License http://creativecommons.org/licenses/by/2.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b723t-2ac0af5b0c6a1b75f8b6d98c29e711e8f381e71eb2c5d77126a687a1ed93195f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doi.org/10.1186/1471-2105-11-414
PMID 20691037
PQID 901851094
PQPubID 44065
ParticipantIDs doaj_primary_oai_doaj_org_article_3420e7b4000d4fafb8cf74d009907d38
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2928803
biomedcentral_primary_oai_biomedcentral_com_1471_2105_11_414
proquest_miscellaneous_877602664
proquest_miscellaneous_749012606
proquest_journals_901851094
gale_infotracmisc_A235657515
gale_infotracacademiconefile_A235657515
gale_incontextgauss_ISR_A235657515
pubmed_primary_20691037
crossref_citationtrail_10_1186_1471_2105_11_414
crossref_primary_10_1186_1471_2105_11_414
springer_journals_10_1186_1471_2105_11_414
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-08-06
PublicationDateYYYYMMDD 2010-08-06
PublicationDate_xml – month: 08
  year: 2010
  text: 2010-08-06
  day: 06
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2010
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References TS Gardner (3871_CR8) 2000; 403
MT Chen (3871_CR30) 2005; 23
HH McAdams (3871_CR1) 1999; 15
DT Gillespie (3871_CR15) 1991
Y Cao (3871_CR39) 2006; 124
DW Scott (3871_CR18) 1992
DC Montgomery (3871_CR19) 2006
IE Nikerel (3871_CR36) 2009; 11
A Arkin (3871_CR31) 1998; 149
E Yang (3871_CR4) 2003; 13
A Golightly (3871_CR13) 2008
S Kullback (3871_CR24) 1951; 22
M Matsumoto (3871_CR27) 1998; 8
S Plyasunov (3871_CR38) 2006; 221
R Storn (3871_CR25) 1997; 4
DT Gillespie (3871_CR16) 1977; 81
S Reinker (3871_CR14) 2006; 153
K Zielinski (3871_CR26) 2005
B Munsky (3871_CR22) 2006; 124
J Yu (3871_CR7) 2006; 311
M Samoilov (3871_CR10) 2005; 102
S Macnamara (3871_CR21) 2008; 6
P LeCuyer (3871_CR28) 2002; 50
T Tian (3871_CR42) 2004; 121
R Gunawan (3871_CR35) 2005; 88
EM Ozbudak (3871_CR32) 2004; 427
EL Haseltine (3871_CR41) 2002; 117
WJ Blake (3871_CR29) 2003; 422
KG Gadkar (3871_CR37) 2005; 6
JR Pomerening (3871_CR33) 2003; 5
US Bhalla (3871_CR34) 1999; 283
DT Gillespie (3871_CR17) 1992; 188
MB Elowitz (3871_CR2) 2000; 403
IC Chou (3871_CR5) 2009; 219
T Tian (3871_CR11) 2007; 23
A Colman-Lerner (3871_CR3) 2005; 437
I Golding (3871_CR6) 2005; 123
MA Gibson (3871_CR23) 2000; 104
A Chatterjee (3871_CR40) 2005; 122
D Fange (3871_CR9) 2006; 2
A Golightly (3871_CR12) 2006; 13
S Macnamara (3871_CR20) 2008; 129
9691025 - Genetics. 1998 Aug;149(4):1633-48
14973486 - Nature. 2004 Feb 19;427(6976):737-40
19044893 - J Chem Phys. 2008 Sep 7;129(9):095105
9888852 - Science. 1999 Jan 15;283(5400):381-7
12629549 - Nat Cell Biol. 2003 Apr;5(4):346-51
16460146 - J Chem Phys. 2006 Jan 28;124(4):044104
10659856 - Nature. 2000 Jan 20;403(6767):335-8
16543458 - Science. 2006 Mar 17;311(5767):1600-3
19327372 - Math Biosci. 2009 Jun;219(2):57-83
16846247 - PLoS Comput Biol. 2006 Jun 30;2(6):e80
18718548 - Metab Eng. 2009 Jan;11(1):20-30
15549913 - J Chem Phys. 2004 Dec 1;121(21):10356-64
15638577 - J Chem Phys. 2005 Jan 8;122(2):024112
16460151 - J Chem Phys. 2006 Jan 28;124(4):044109
16706729 - J Comput Biol. 2006 Apr;13(3):838-51
15695639 - Biophys J. 2005 Apr;88(4):2530-40
10659857 - Nature. 2000 Jan 20;403(6767):339-42
10098409 - Trends Genet. 1999 Feb;15(2):65-9
15967022 - BMC Bioinformatics. 2005;6:155
16360033 - Cell. 2005 Dec 16;123(6):1025-36
12902380 - Genome Res. 2003 Aug;13(8):1863-72
16170311 - Nature. 2005 Sep 29;437(7059):699-706
16986618 - Syst Biol (Stevenage). 2006 Jul;153(4):168-78
15701703 - Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2310-5
17068087 - Bioinformatics. 2007 Jan 1;23(1):84-91
16299520 - Nat Biotechnol. 2005 Dec;23(12):1551-5
12687005 - Nature. 2003 Apr 10;422(6932):633-7
References_xml – volume: 403
  start-page: 335
  year: 2000
  ident: 3871_CR2
  publication-title: Nature
  doi: 10.1038/35002125
– volume: 427
  start-page: 737
  year: 2004
  ident: 3871_CR32
  publication-title: Nature
  doi: 10.1038/nature02298
– volume: 6
  start-page: 1146
  year: 2008
  ident: 3871_CR21
  publication-title: SIAM J; Multiscale Modeling & Simulation
  doi: 10.1137/060678154
– volume: 129
  start-page: 095105
  year: 2008
  ident: 3871_CR20
  publication-title: J Chem Phys
  doi: 10.1063/1.2971036
– volume: 437
  start-page: 699
  year: 2005
  ident: 3871_CR3
  publication-title: Nature
  doi: 10.1038/nature03998
– volume: 6
  start-page: 155
  year: 2005
  ident: 3871_CR37
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-155
– volume: 15
  start-page: 65
  year: 1999
  ident: 3871_CR1
  publication-title: Trends Genet
  doi: 10.1016/S0168-9525(98)01659-X
– volume: 50
  start-page: 1073
  year: 2002
  ident: 3871_CR28
  publication-title: Oper Res
  doi: 10.1287/opre.50.6.1073.358
– volume: 123
  start-page: 1025
  year: 2005
  ident: 3871_CR6
  publication-title: Cell
  doi: 10.1016/j.cell.2005.09.031
– volume: 8
  start-page: 3
  year: 1998
  ident: 3871_CR27
  publication-title: ACM Trans Model Comput Simul
  doi: 10.1145/272991.272995
– volume: 104
  start-page: 1876
  year: 2000
  ident: 3871_CR23
  publication-title: J Phys Chem A
  doi: 10.1021/jp993732q
– volume: 88
  start-page: 2530
  year: 2005
  ident: 3871_CR35
  publication-title: Biophys J
  doi: 10.1529/biophysj.104.053405
– volume: 124
  start-page: 044109
  year: 2006
  ident: 3871_CR39
  publication-title: J Chem Phys
  doi: 10.1063/1.2159468
– volume: 81
  start-page: 2340
  year: 1977
  ident: 3871_CR16
  publication-title: J Phys Chem
  doi: 10.1021/j100540a008
– volume: 188
  start-page: 404
  year: 1992
  ident: 3871_CR17
  publication-title: Physica A
  doi: 10.1016/0378-4371(92)90283-V
– volume: 122
  start-page: 024112
  year: 2005
  ident: 3871_CR40
  publication-title: J Chem Phys
  doi: 10.1063/1.1833357
– volume-title: Applied Statistics and Probability for Engineers
  year: 2006
  ident: 3871_CR19
– volume: 149
  start-page: 1633
  year: 1998
  ident: 3871_CR31
  publication-title: Genetics
  doi: 10.1093/genetics/149.4.1633
– volume: 117
  start-page: 6959
  year: 2002
  ident: 3871_CR41
  publication-title: J Chem Phys
  doi: 10.1063/1.1505860
– volume: 102
  start-page: 2310
  year: 2005
  ident: 3871_CR10
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0406841102
– volume-title: Multivariate Density Estimation: Theory, Practice, and Visualization (Wiley Series in Probability and Statistics)
  year: 1992
  ident: 3871_CR18
  doi: 10.1002/9780470316849
– volume: 403
  start-page: 339
  year: 2000
  ident: 3871_CR8
  publication-title: Nature
  doi: 10.1038/35002131
– volume: 4
  start-page: 341
  year: 1997
  ident: 3871_CR25
  publication-title: J Global Optim
  doi: 10.1023/A:1008202821328
– volume: 311
  start-page: 1600
  year: 2006
  ident: 3871_CR7
  publication-title: Science
  doi: 10.1126/science.1119623
– volume: 22
  start-page: 79
  year: 1951
  ident: 3871_CR24
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177729694
– volume: 121
  start-page: 10356
  year: 2004
  ident: 3871_CR42
  publication-title: J Chem Phys
  doi: 10.1063/1.1810475
– volume: 219
  start-page: 57
  year: 2009
  ident: 3871_CR5
  publication-title: Math Biosci
  doi: 10.1016/j.mbs.2009.03.002
– volume: 13
  start-page: 838
  year: 2006
  ident: 3871_CR12
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2006.13.838
– volume: 23
  start-page: 84
  year: 2007
  ident: 3871_CR11
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl552
– volume: 11
  start-page: 20
  year: 2009
  ident: 3871_CR36
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2008.07.004
– start-page: 125
  volume-title: Stat Comput
  year: 2008
  ident: 3871_CR13
– volume: 13
  start-page: 1863
  year: 2003
  ident: 3871_CR4
  publication-title: Genome Res
  doi: 10.1101/gr.997703
– volume-title: Markov Processes: An Introduction for Physical Scientists
  year: 1991
  ident: 3871_CR15
– volume-title: Proceedings of the Third International Conference on Computational Intelligence, Robotics and Autonomous Systems; Singapore
  year: 2005
  ident: 3871_CR26
– volume: 153
  start-page: 168
  year: 2006
  ident: 3871_CR14
  publication-title: Syst Biol (Stevenage)
  doi: 10.1049/ip-syb:20050105
– volume: 283
  start-page: 381
  year: 1999
  ident: 3871_CR34
  publication-title: Science
  doi: 10.1126/science.283.5400.381
– volume: 124
  start-page: 044104
  year: 2006
  ident: 3871_CR22
  publication-title: J Chem Phys
  doi: 10.1063/1.2145882
– volume: 2
  start-page: e80
  year: 2006
  ident: 3871_CR9
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.0020080
– volume: 422
  start-page: 633
  year: 2003
  ident: 3871_CR29
  publication-title: Nature
  doi: 10.1038/nature01546
– volume: 5
  start-page: 346
  year: 2003
  ident: 3871_CR33
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb954
– volume: 221
  start-page: 724
  year: 2006
  ident: 3871_CR38
  publication-title: J Comp Phys
  doi: 10.1016/j.jcp.2006.06.047
– volume: 23
  start-page: 1551
  year: 2005
  ident: 3871_CR30
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1162
– reference: 10098409 - Trends Genet. 1999 Feb;15(2):65-9
– reference: 16460151 - J Chem Phys. 2006 Jan 28;124(4):044109
– reference: 10659856 - Nature. 2000 Jan 20;403(6767):335-8
– reference: 15967022 - BMC Bioinformatics. 2005;6:155
– reference: 15695639 - Biophys J. 2005 Apr;88(4):2530-40
– reference: 16360033 - Cell. 2005 Dec 16;123(6):1025-36
– reference: 16846247 - PLoS Comput Biol. 2006 Jun 30;2(6):e80
– reference: 15549913 - J Chem Phys. 2004 Dec 1;121(21):10356-64
– reference: 19044893 - J Chem Phys. 2008 Sep 7;129(9):095105
– reference: 12687005 - Nature. 2003 Apr 10;422(6932):633-7
– reference: 19327372 - Math Biosci. 2009 Jun;219(2):57-83
– reference: 18718548 - Metab Eng. 2009 Jan;11(1):20-30
– reference: 14973486 - Nature. 2004 Feb 19;427(6976):737-40
– reference: 12902380 - Genome Res. 2003 Aug;13(8):1863-72
– reference: 15701703 - Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2310-5
– reference: 12629549 - Nat Cell Biol. 2003 Apr;5(4):346-51
– reference: 16986618 - Syst Biol (Stevenage). 2006 Jul;153(4):168-78
– reference: 10659857 - Nature. 2000 Jan 20;403(6767):339-42
– reference: 9691025 - Genetics. 1998 Aug;149(4):1633-48
– reference: 16299520 - Nat Biotechnol. 2005 Dec;23(12):1551-5
– reference: 16460146 - J Chem Phys. 2006 Jan 28;124(4):044104
– reference: 9888852 - Science. 1999 Jan 15;283(5400):381-7
– reference: 17068087 - Bioinformatics. 2007 Jan 1;23(1):84-91
– reference: 16706729 - J Comput Biol. 2006 Apr;13(3):838-51
– reference: 16543458 - Science. 2006 Mar 17;311(5767):1600-3
– reference: 15638577 - J Chem Phys. 2005 Jan 8;122(2):024112
– reference: 16170311 - Nature. 2005 Sep 29;437(7059):699-706
SSID ssj0017805
Score 2.2295907
Snippet Background The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models such as...
The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models such as chemical...
Background The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models such as...
Abstract Background: The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models...
BACKGROUND: The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models such as...
Abstract Background The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models...
SourceID doaj
pubmedcentral
biomedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 414
SubjectTerms Algorithms
Bioinformatics
Biomedical and Life Sciences
Computational biology
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Escherichia coli - metabolism
Experimental data
Galactose - metabolism
Life Sciences
Mathematical models
Methodology
Methodology Article
Microarrays
Models, Biological
Monte Carlo Method
Parameter estimation
RNA, Bacterial - metabolism
RNA, Messenger - metabolism
Saccharomyces cerevisiae - metabolism
Stochastic models
Studies
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIPgiflvvlCCCKJRN0-aj4MspLqegD-rBvYUmTbyDsyt298H_3pmkXS-riy--lWaym52PZGYz8xtCngnv6177qkTw8rKpmQab65rSelDmCDgX_8z58FGenDbvz8TZlVZfmBOW4IET4xYwgXllQdVY34QuWO2Canr0bJjq61jmy1o2B1PT_QEi9ce6IlWVENSI-YJSy8X2HVaUNdVupftldkBFHP8_d-srx9VuKuXOfWo8ppa3yM3Jv6TH6XfdJtf8cIdcTx0nf94ly4TxTxHx-xtmwlBE2UjlizR1kx4p-LEUfEJ33iGIM4V1uwlWgCbg5_EeOV2-_fLmpJxaKZRW8Xpd8s6xLgjLnOwqq0TQVvatdrz1qqq8DnBwwxOE2U70SlVcdhJkVvm-BRsVob5PDobV4B8S2jQuNJw7V4HnKGxtQx1q4Rk8ul5YXZBXGT_N9wSbYRDIOh8BmzIoDoPigFjEgDgKspjZb9wEU47dMi5NDFe0_MuMF9sZ83ftp32NEs3WFF-AyplJ5cy_VK4gT1EfDMJnDJif87XbjKN59_mTOea1iFdZoiDPJ6KwgvW7bip3ACYi4lZGeZRRgn27bPhwVjsz7S-jAS8OXGUIzQtCt6M4EVPmBr_ajEY1QATRqtxPopXCDmQSPuVBUuMtYziTLZaQFkRlCp5xLh8ZLs4jPDlvORwKdUFezqbwe9375PLof8jlkNxIuR26ZPKIHKx_bPxjcBnX9kncHX4B2f9jFA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF-0IvgifjdtlUUEUQiXZD8DglTxrII-qIW-LdnNbivUpDZ3D_3vnUk20ZyebyE7udvsfGdnf0PIM-E9q7XPUwQvTznLNOhcxVPrQZh7wLn-Y86nz_LomH88ESexNqeLZZWjTewNdd06_Ea-AL8FwQEkI68vfqbYNAo3V2MHjevkRg6OBsVcL99PmwgI1z_uTGq5yMEOp5DhCDxKxvPNI-7nM8_UA_j_bab_8FObNZQbG6m9f1reIbdjYEkPB0m4S6755h65ObSavLpPlgO4P0Wo7x9YAkMRXmM4t0iHNtIdhQCWQjDozipEb6YwbxfxBOiA-Nw9IMfLd9_eHqWxh0JqVcFWaVG5rArCZk5WuVUiaCvrUrui9CrPvQ7gseEK8msnaqVgGSsJzMp9XYJyisAekp2mbfwuoZy7wIvCuRxCRmGZDSww4TO4dLWwOiGvZutpLga8DIMI1vMRYKxBdhhkByQhBtiRkMW4_MZFfHJsk3Fu-jxFy3888WJ6Yvyv7bRvkKOzOfU32stTE5XUgHBmXlkwa1nNQxWsdkHxGqPoTNUM3vApyoNB3IwGC3NOq3XXmQ9fv5jDgol-D0sk5HkkCi3M31XxnAMsIkJtzSgPZpSg2G42vD-KnYmGpTOTGiSETqP4INbKNb5dd0ZxIII0VW4n0Uph6zEJv_JoEONpYYpMlnh2NCFqJuCzlZuPNN_PelzyoizAG7CEvBxV4fe8t_Fl778vuU9uDdUaOs3kAdlZXa79YwgCV_ZJr-q_APASWKs
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9NAEF_kRPBFzu94pywiiEK8JPtZUOQUyymcD2rh3pbsZvfuoKZn04L33zuzSVpT2wffQne23c7Hzkx25zeEvBDes0r7PEXw8pSzTIPNlTy1HpQ5As7FlzmnX-XJhH85E2fr8uiOgc3W1A77SU3m0ze_f12_B4N_Fw1ey6McNtgUUheBNWKxq_VN8EsSU7FTvj5TQPT-_qByy6yNivfpwFFFPP9_d-2_3NbmlcqNc9Xorsb75E4XZ9LjVjHukhu-vkdutZ0nr--TcYv1TxH5-yfeiKGIttGWMdK2q3RDIZ6lEBu6ixLBnCms23XwArQFgG4ekMn404-PJ2nXUiG1qmCLtChdVgZhMyfL3CoRtJXVSLti5FWeex3AgcMTpNtOVErlhSwlyC731QhsVQT2kOzVs9o_JpRzF3hROJdDBCkss4EFJnwGj64SVifk7YCf5qqFzzAIaD0cAdsyKA6D4oCcxIA4EnLUs9-4Dq4cu2ZMTUxbtNwy49VqRv9bu2k_oEQHa4ofzObnprNZA7qaeWVhl8sqHspgtQuKVxhUZ6pi8A-foz4YhNGo8Z7OeblsGvP5-zdzXDARj7REQl52RGEG63dlV_YATETkrQHl4YAS7NwNhg96tTO9mRiI5iBkhhQ9IXQ1ihPx6lztZ8vGKA5EkLXK3SRaKexEJuFbHrVqvGJMkckRlpImRA0UfMC54Uh9eRFhyotRAc6BJeR1bwrrde-Sy5P_IT4gt9u7HDrN5CHZW8yX_imEiAv7LFr-H8BGXyA
  priority: 102
  providerName: Scholars Portal
Title Global parameter estimation methods for stochastic biochemical systems
URI https://link.springer.com/article/10.1186/1471-2105-11-414
https://www.ncbi.nlm.nih.gov/pubmed/20691037
https://www.proquest.com/docview/901851094
https://www.proquest.com/docview/749012606
https://www.proquest.com/docview/877602664
http://dx.doi.org/10.1186/1471-2105-11-414
https://pubmed.ncbi.nlm.nih.gov/PMC2928803
https://doaj.org/article/3420e7b4000d4fafb8cf74d009907d38
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBdby2AvY9_z2gUzBmMDU1uyPgx7aUuzbtAyuhXyJixZagedU-rkYf_97mQ7q7LmYS_GRKdE0d1Jdzrd7wh5x51jjXJFhuDlWclyBTpXl5lxIMwBcC4c5pyciuPz8uuMz4bzDsyFuR2_L5TYK2DxzMAt4Zj_FSpWb_OCiRCWFYereAEi849ByDt6rWWzX0WbUMDq_3dFvrUlrV-XXIuZhq1o-pg8GmzIdL9n-hNyz7VPyYO-quTvZ2Ta4_iniOr9C2-7pIik0acopn3F6C4FWzUFu89e1gjUnMK47QAdkPbgzt1zcj49-nF4nA3lEjIjKVtktLZ57bnJragLI7lXRjSVsrRysiic8rA5wxu40pY3UhZU1AL4UrimAj3knr0gW-28da9IWpbWl5RaW4B1yA0znnnGXQ6vtuFGJeRTNJ_6uofG0AhWHbeA3mhkh0Z2gL-hgR0J2RunX9sBihwrYlzp4JIocUePD6se429tpj1AjkZjCh-AXOlBHzXIYe6kgRUsb0pfe6Osl2WDBnMuGwb_8C3Kg0aIjBbv4FzUy67TX76f6X3KeAhX8YS8H4j8HMZv6yGlASYRUbUiyt2IEnTYRs07o9jpYQ3pNFhqYA6D-52QdNWKHfFaXOvmy07LEojAIxWbSZSUWGVMwLe87MV4NTE0FxWmiSZERgIezVzc0v68DBDktKKw8LOEfBxV4e-4N_Hl9f8Q75CH_T0NleVil2wtbpbuDZh_CzMh9-VMwlNNP0_I9sHR6bezSVgNJuFABZ4npfoDdJFVxw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELZKEYIXxE1oAQuBEEjRJo6vlUCoHNUuPR6glfbNxI7dIpVsaXaF-qP4j8zkWMjC8ta3aD3OOuPxHPb4G0KeCu-zQvs0RvDymGeJhjWX89h6EOYacK7ezNnbl6ND_nEiJmvkZ3cXBtMqO51YK-pi6nCPfAB2C5wDCEbenH6PsWgUHq52FTQaqdjx5z8gYqtej9_D9D5jbPvDwbtR3BYViK1i2SxmuUvyIGziZJ5aJYK2shhqx4ZepanXAUwYPEHA6UShVMpkLmH0qS-GIK0iZPDeS-Qyx41xWD5qsojvUiwP0J2EajlIQe_HEFEJvLrG0-Ur9Sc9S1gXDPjbLPxhF5dzNpcObmt7uH2DXG8dWbrVSN5NsubLW-RKU9ry_DbZbooJUIQW_4YpNxThPJp7krQpW11RcJgpOJ_uOEe0aArjdi1-AW0Qpqs75PBC2HuXrJfT0t8nlHMXOGPOpeCiCpvZkIVM-AQeXSGsjsirHj_NaYPPYRAxu98CgmRwOgxOBwQ9BqYjIoOO_ca1eOhYluPE1HGRlv_o8WLRo_uv1bRvcUZ7Y6p_mJ4dmVYpGFgMiVcW1GhS8JAHq11QvECvPVFFBl_4BOXBIE5HiYlAR_m8qsz48yezxTJRn5mJiDxvicIUxu_y9l4FMBGhvXqUmz1KUCSu17zRiZ1pFVllFssuInTRih0xN6_003llFAciCIvlahKtFJY6k_CWe40YLxjDEjnEu6oRUT0B73Gu31J-Pa5x0NmQgfXJIvKyWwq_x71qXh789yMfk6ujg71dszve39kg15pMER0ncpOsz87m_iE4oDP7qF72lHy5aD3zC8Qblbw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQEIgXxPfCBlgICYEUNXH8VYmXMag2PiYETNqbFTv2hjTSaWkf-O-5s5NCyvrAW1SfW9d35zvn7n5HyAvhfdVoX-YIXp7zqtCgczXPrQdhjoBz8WXO5yN5cMw_nIiT_oVbN2S7DyHJVNOAKE3tYnLRhKTiWk5KOFJzuKwIrAqLfayvczR8GKyV-6soAuL1D6HJK2at1bifj0xTRPD_95z-y1CtJ1GuRVKjgZrdIbd7z5LuJVG4S6759h65kXpN_rpPZgndnyLW90_MgaGIr5EKF2nqI91R8GApeIPurEb4Zgrrdj2gAE2Qz90Dcjx7_33_IO-bKORWsWqRs9oVdRC2cLIurRJBW9lMtWNTr8rS6wAmG57ggu1Eo1TJZC2BW6VvpqCdIlQPyVY7b_02oZy7wBlzrgSfUdjKhipUwhfw6BphdUbejPbTXCTADIMQ1uMRYKxBdhhkB9xCDLAjI5Nh-43rAcqxT8a5iRcVLa-Y8Wo1Y_itzbRvkaOjNcUP5penptdSA9JZeGXhXCsaHupgtQuKN-hGF6qp4B8-R3kwCJzRYmbOab3sOnP47avZY5WIQSyRkZc9UZjD-l3dFzrAJiLW1ohyd0QJmu1GwzuD2Jn-ZOkM-G_gJMOlPCN0NYoTMVmu9fNlZxQHIrinys0kWinsPSbhWx4lMV5tDCvkFItHM6JGAj7aufFI--MsApOzKQNzUGXk9aAKf9a9iS-P_4f4Gbn55d3MfDo8-rhDbqVEDp0XcpdsLS6X_gn4hwv7NB4CvwGZG1vF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+parameter+estimation+methods+for+stochastic+biochemical+systems&rft.jtitle=BMC+bioinformatics&rft.au=Poovathingal%2C+Suresh+Kumar&rft.au=Gunawan%2C+Rudiyanto&rft.date=2010-08-06&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1186%2F1471-2105-11-414&rft.externalDocID=10_1186_1471_2105_11_414
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon