Global parameter estimation methods for stochastic biochemical systems
Background The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models such as chemical master equation. As in other modelling frameworks, the accompanying rate constants are important for the end-applications like analyzi...
Saved in:
Published in | BMC bioinformatics Vol. 11; no. 1; p. 414 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
06.08.2010
BioMed Central Ltd BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1471-2105 1471-2105 |
DOI | 10.1186/1471-2105-11-414 |
Cover
Abstract | Background
The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models such as chemical master equation. As in other modelling frameworks, the accompanying rate constants are important for the end-applications like analyzing system properties (e.g. robustness) or predicting the effects of genetic perturbations. Prior knowledge of kinetic constants is usually limited and the model identification routine typically includes parameter estimation from experimental data. Although the subject of parameter estimation is well-established for deterministic models, it is not yet routine for the chemical master equation. In addition, recent advances in measurement technology have made the quantification of genetic substrates possible to single molecular levels. Thus, the purpose of this work is to develop practical and effective methods for estimating kinetic model parameters in the chemical master equation and other stochastic models from single cell and cell population experimental data.
Results
Three parameter estimation methods are proposed based on the maximum likelihood and density function distance, including probability and cumulative density functions. Since stochastic models such as chemical master equations are typically solved using a Monte Carlo approach in which only a finite number of Monte Carlo realizations are computationally practical, specific considerations are given to account for the effect of finite sampling in the histogram binning of the state density functions. Applications to three practical case studies showed that while maximum likelihood method can effectively handle low replicate measurements, the density function distance methods, particularly the cumulative density function distance estimation, are more robust in estimating the parameters with consistently higher accuracy, even for systems showing multimodality.
Conclusions
The parameter estimation methodologies described in this work have provided an effective and practical approach in the estimation of kinetic parameters of stochastic systems from either sparse or dense cell population data. Nevertheless, similar to kinetic parameter estimation in other modelling frameworks, not all parameters can be estimated accurately, which is a common problem arising from the lack of complete parameter identifiability from the available data. |
---|---|
AbstractList | Background
The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models such as chemical master equation. As in other modelling frameworks, the accompanying rate constants are important for the end-applications like analyzing system properties (e.g. robustness) or predicting the effects of genetic perturbations. Prior knowledge of kinetic constants is usually limited and the model identification routine typically includes parameter estimation from experimental data. Although the subject of parameter estimation is well-established for deterministic models, it is not yet routine for the chemical master equation. In addition, recent advances in measurement technology have made the quantification of genetic substrates possible to single molecular levels. Thus, the purpose of this work is to develop practical and effective methods for estimating kinetic model parameters in the chemical master equation and other stochastic models from single cell and cell population experimental data.
Results
Three parameter estimation methods are proposed based on the maximum likelihood and density function distance, including probability and cumulative density functions. Since stochastic models such as chemical master equations are typically solved using a Monte Carlo approach in which only a finite number of Monte Carlo realizations are computationally practical, specific considerations are given to account for the effect of finite sampling in the histogram binning of the state density functions. Applications to three practical case studies showed that while maximum likelihood method can effectively handle low replicate measurements, the density function distance methods, particularly the cumulative density function distance estimation, are more robust in estimating the parameters with consistently higher accuracy, even for systems showing multimodality.
Conclusions
The parameter estimation methodologies described in this work have provided an effective and practical approach in the estimation of kinetic parameters of stochastic systems from either sparse or dense cell population data. Nevertheless, similar to kinetic parameter estimation in other modelling frameworks, not all parameters can be estimated accurately, which is a common problem arising from the lack of complete parameter identifiability from the available data. The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models such as chemical master equation. As in other modelling frameworks, the accompanying rate constants are important for the end-applications like analyzing system properties (e.g. robustness) or predicting the effects of genetic perturbations. Prior knowledge of kinetic constants is usually limited and the model identification routine typically includes parameter estimation from experimental data. Although the subject of parameter estimation is well-established for deterministic models, it is not yet routine for the chemical master equation. In addition, recent advances in measurement technology have made the quantification of genetic substrates possible to single molecular levels. Thus, the purpose of this work is to develop practical and effective methods for estimating kinetic model parameters in the chemical master equation and other stochastic models from single cell and cell population experimental data. Three parameter estimation methods are proposed based on the maximum likelihood and density function distance, including probability and cumulative density functions. Since stochastic models such as chemical master equations are typically solved using a Monte Carlo approach in which only a finite number of Monte Carlo realizations are computationally practical, specific considerations are given to account for the effect of finite sampling in the histogram binning of the state density functions. Applications to three practical case studies showed that while maximum likelihood method can effectively handle low replicate measurements, the density function distance methods, particularly the cumulative density function distance estimation, are more robust in estimating the parameters with consistently higher accuracy, even for systems showing multimodality. The parameter estimation methodologies described in this work have provided an effective and practical approach in the estimation of kinetic parameters of stochastic systems from either sparse or dense cell population data. Nevertheless, similar to kinetic parameter estimation in other modelling frameworks, not all parameters can be estimated accurately, which is a common problem arising from the lack of complete parameter identifiability from the available data. The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models such as chemical master equation. As in other modelling frameworks, the accompanying rate constants are important for the end-applications like analyzing system properties (e.g. robustness) or predicting the effects of genetic perturbations. Prior knowledge of kinetic constants is usually limited and the model identification routine typically includes parameter estimation from experimental data. Although the subject of parameter estimation is well-established for deterministic models, it is not yet routine for the chemical master equation. In addition, recent advances in measurement technology have made the quantification of genetic substrates possible to single molecular levels. Thus, the purpose of this work is to develop practical and effective methods for estimating kinetic model parameters in the chemical master equation and other stochastic models from single cell and cell population experimental data.BACKGROUNDThe importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models such as chemical master equation. As in other modelling frameworks, the accompanying rate constants are important for the end-applications like analyzing system properties (e.g. robustness) or predicting the effects of genetic perturbations. Prior knowledge of kinetic constants is usually limited and the model identification routine typically includes parameter estimation from experimental data. Although the subject of parameter estimation is well-established for deterministic models, it is not yet routine for the chemical master equation. In addition, recent advances in measurement technology have made the quantification of genetic substrates possible to single molecular levels. Thus, the purpose of this work is to develop practical and effective methods for estimating kinetic model parameters in the chemical master equation and other stochastic models from single cell and cell population experimental data.Three parameter estimation methods are proposed based on the maximum likelihood and density function distance, including probability and cumulative density functions. Since stochastic models such as chemical master equations are typically solved using a Monte Carlo approach in which only a finite number of Monte Carlo realizations are computationally practical, specific considerations are given to account for the effect of finite sampling in the histogram binning of the state density functions. Applications to three practical case studies showed that while maximum likelihood method can effectively handle low replicate measurements, the density function distance methods, particularly the cumulative density function distance estimation, are more robust in estimating the parameters with consistently higher accuracy, even for systems showing multimodality.RESULTSThree parameter estimation methods are proposed based on the maximum likelihood and density function distance, including probability and cumulative density functions. Since stochastic models such as chemical master equations are typically solved using a Monte Carlo approach in which only a finite number of Monte Carlo realizations are computationally practical, specific considerations are given to account for the effect of finite sampling in the histogram binning of the state density functions. Applications to three practical case studies showed that while maximum likelihood method can effectively handle low replicate measurements, the density function distance methods, particularly the cumulative density function distance estimation, are more robust in estimating the parameters with consistently higher accuracy, even for systems showing multimodality.The parameter estimation methodologies described in this work have provided an effective and practical approach in the estimation of kinetic parameters of stochastic systems from either sparse or dense cell population data. Nevertheless, similar to kinetic parameter estimation in other modelling frameworks, not all parameters can be estimated accurately, which is a common problem arising from the lack of complete parameter identifiability from the available data.CONCLUSIONSThe parameter estimation methodologies described in this work have provided an effective and practical approach in the estimation of kinetic parameters of stochastic systems from either sparse or dense cell population data. Nevertheless, similar to kinetic parameter estimation in other modelling frameworks, not all parameters can be estimated accurately, which is a common problem arising from the lack of complete parameter identifiability from the available data. The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models such as chemical master equation. As in other modelling frameworks, the accompanying rate constants are important for the end-applications like analyzing system properties (e.g. robustness) or predicting the effects of genetic perturbations. Prior knowledge of kinetic constants is usually limited and the model identification routine typically includes parameter estimation from experimental data. Although the subject of parameter estimation is well-established for deterministic models, it is not yet routine for the chemical master equation. In addition, recent advances in measurement technology have made the quantification of genetic substrates possible to single molecular levels. Thus, the purpose of this work is to develop practical and effective methods for estimating kinetic model parameters in the chemical master equation and other stochastic models from single cell and cell population experimental data. Three parameter estimation methods are proposed based on the maximum likelihood and density function distance, including probability and cumulative density functions. Since stochastic models such as chemical master equations are typically solved using a Monte Carlo approach in which only a finite number of Monte Carlo realizations are computationally practical, specific considerations are given to account for the effect of finite sampling in the histogram binning of the state density functions. Applications to three practical case studies showed that while maximum likelihood method can effectively handle low replicate measurements, the density function distance methods, particularly the cumulative density function distance estimation, are more robust in estimating the parameters with consistently higher accuracy, even for systems showing multimodality. The parameter estimation methodologies described in this work have provided an effective and practical approach in the estimation of kinetic parameters of stochastic systems from either sparse or dense cell population data. Nevertheless, similar to kinetic parameter estimation in other modelling frameworks, not all parameters can be estimated accurately, which is a common problem arising from the lack of complete parameter identifiability from the available data. Background The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models such as chemical master equation. As in other modelling frameworks, the accompanying rate constants are important for the end-applications like analyzing system properties (e.g. robustness) or predicting the effects of genetic perturbations. Prior knowledge of kinetic constants is usually limited and the model identification routine typically includes parameter estimation from experimental data. Although the subject of parameter estimation is well-established for deterministic models, it is not yet routine for the chemical master equation. In addition, recent advances in measurement technology have made the quantification of genetic substrates possible to single molecular levels. Thus, the purpose of this work is to develop practical and effective methods for estimating kinetic model parameters in the chemical master equation and other stochastic models from single cell and cell population experimental data. Results Three parameter estimation methods are proposed based on the maximum likelihood and density function distance, including probability and cumulative density functions. Since stochastic models such as chemical master equations are typically solved using a Monte Carlo approach in which only a finite number of Monte Carlo realizations are computationally practical, specific considerations are given to account for the effect of finite sampling in the histogram binning of the state density functions. Applications to three practical case studies showed that while maximum likelihood method can effectively handle low replicate measurements, the density function distance methods, particularly the cumulative density function distance estimation, are more robust in estimating the parameters with consistently higher accuracy, even for systems showing multimodality. Conclusions The parameter estimation methodologies described in this work have provided an effective and practical approach in the estimation of kinetic parameters of stochastic systems from either sparse or dense cell population data. Nevertheless, similar to kinetic parameter estimation in other modelling frameworks, not all parameters can be estimated accurately, which is a common problem arising from the lack of complete parameter identifiability from the available data. Abstract Background: The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models such as chemical master equation. As in other modelling frameworks, the accompanying rate constants are important for the end-applications like analyzing system properties (e.g. robustness) or predicting the effects of genetic perturbations. Prior knowledge of kinetic constants is usually limited and the model identification routine typically includes parameter estimation from experimental data. Although the subject of parameter estimation is well-established for deterministic models, it is not yet routine for the chemical master equation. In addition, recent advances in measurement technology have made the quantification of genetic substrates possible to single molecular levels. Thus, the purpose of this work is to develop practical and effective methods for estimating kinetic model parameters in the chemical master equation and other stochastic models from single cell and cell population experimental data. Results: Three parameter estimation methods are proposed based on the maximum likelihood and density function distance, including probability and cumulative density functions. Since stochastic models such as chemical master equations are typically solved using a Monte Carlo approach in which only a finite number of Monte Carlo realizations are computationally practical, specific considerations are given to account for the effect of finite sampling in the histogram binning of the state density functions. Applications to three practical case studies showed that while maximum likelihood method can effectively handle low replicate measurements, the density function distance methods, particularly the cumulative density function distance estimation, are more robust in estimating the parameters with consistently higher accuracy, even for systems showing multimodality. Conclusions: The parameter estimation methodologies described in this work have provided an effective and practical approach in the estimation of kinetic parameters of stochastic systems from either sparse or dense cell population data. Nevertheless, similar to kinetic parameter estimation in other modelling frameworks, not all parameters can be estimated accurately, which is a common problem arising from the lack of complete parameter identifiability from the available data. |
ArticleNumber | 414 |
Audience | Academic |
Author | Poovathingal, Suresh Kumar Gunawan, Rudiyanto |
AuthorAffiliation | 1 Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117576, Singapore |
AuthorAffiliation_xml | – name: 1 Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117576, Singapore |
Author_xml | – sequence: 1 givenname: Suresh Kumar surname: Poovathingal fullname: Poovathingal, Suresh Kumar organization: Department of Chemical and Biomolecular Engineering, National University of Singapore – sequence: 2 givenname: Rudiyanto surname: Gunawan fullname: Gunawan, Rudiyanto email: chegr@nus.edu.sg organization: Department of Chemical and Biomolecular Engineering, National University of Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20691037$$D View this record in MEDLINE/PubMed |
BookMark | eNqFk81r3DAQxU1JaT7ae0_FtIfSg9MZ2ZbkSyAsTboQKPTjLGRZ2vViW6nkLc1_39k4SeOQtPggMfq9x_BmfJjsDX6wSfIa4RhR8o9YCMwYQpkhZgUWz5KDu9Levft-chjjBgCFhPJFss-AVwi5OEjOzjtf6y691EH3drQhtXFsez22fkipsPZNTJ0PaRy9WWt6M2nd0tX2rSFdvIqj7ePL5LnTXbSvbs6j5MfZp--Lz9nFl_Pl4vQiqwXLx4xpA9qVNRiusRalkzVvKmlYZQWilS6XSDdbM1M2QiDjmkuh0TZVjlXp8qNkOfk2Xm_UZaBOw5XyulXXBR9WSgfqsbMqLxhYURcA0BROu1oaJ4oGoKpANLkkr5PJ63Jb97YxdhiD7mam85ehXauV_6VYxaSEnAwWkwEF8oTB_MX4Xu1monYzUYiKRkYu72_aCP7nltJXfRuN7To9WL-NSgrBgXH-f1IUFVBkwIl8-4Dc-G0YaDKKEFkiVDu7dxO00hRXOzhPTZqdpTpleclLUWJJ1PEjFH3NbgNoHV1L9Zngw0xAzGh_jyu9jVEtv32ds2_uj-Auutv9JIBPgAk-xmCdMu14vZzURdspBLX7ER5LFR4Ib73_IcFJEgkdVjb8De1JzR_g1xYx |
CitedBy_id | crossref_primary_10_1016_j_mbs_2014_01_011 crossref_primary_10_1186_s12918_014_0126_y crossref_primary_10_3389_fenvs_2015_00042 crossref_primary_10_1177_0037549715585569 crossref_primary_10_1021_acs_macromol_4c00037 crossref_primary_10_1038_s41598_021_87694_x crossref_primary_10_1371_journal_pone_0230736 crossref_primary_10_1093_bioinformatics_btz574 crossref_primary_10_1002_cjce_20607 crossref_primary_10_1109_TCBB_2022_3225675 crossref_primary_10_1016_j_dsp_2014_01_012 crossref_primary_10_1088_1361_6633_aaae2c crossref_primary_10_1093_bioinformatics_btx253 crossref_primary_10_1371_journal_pone_0096726 crossref_primary_10_1186_1471_2105_13_68 crossref_primary_10_1371_journal_pcbi_1006368 crossref_primary_10_1016_j_physrep_2013_03_004 crossref_primary_10_1016_j_jhydrol_2024_132364 crossref_primary_10_1038_nmeth_1546 crossref_primary_10_1155_2012_390694 crossref_primary_10_1016_j_mbs_2015_08_015 crossref_primary_10_1371_journal_pone_0226861 crossref_primary_10_3389_fams_2024_1355373 crossref_primary_10_1016_j_biosystems_2015_08_003 crossref_primary_10_1088_1478_3975_aba1d2 crossref_primary_10_1098_rsif_2020_0652 crossref_primary_10_1007_s11571_015_9346_0 crossref_primary_10_1186_s12918_017_0406_4 crossref_primary_10_3182_20140824_6_ZA_1003_01125 crossref_primary_10_1145_3183624_3183627 crossref_primary_10_1002_aic_14409 crossref_primary_10_1016_j_compchemeng_2014_01_006 crossref_primary_10_1016_j_compchemeng_2016_03_018 crossref_primary_10_1016_j_compbiolchem_2015_10_003 crossref_primary_10_1073_pnas_1423947112 crossref_primary_10_1103_PhysRevE_102_022409 crossref_primary_10_1145_2688906 crossref_primary_10_1111_2041_210X_14452 crossref_primary_10_1002_aic_15577 crossref_primary_10_1088_1478_3975_aa868a crossref_primary_10_1371_journal_pone_0056310 |
Cites_doi | 10.1038/35002125 10.1038/nature02298 10.1137/060678154 10.1063/1.2971036 10.1038/nature03998 10.1186/1471-2105-6-155 10.1016/S0168-9525(98)01659-X 10.1287/opre.50.6.1073.358 10.1016/j.cell.2005.09.031 10.1145/272991.272995 10.1021/jp993732q 10.1529/biophysj.104.053405 10.1063/1.2159468 10.1021/j100540a008 10.1016/0378-4371(92)90283-V 10.1063/1.1833357 10.1093/genetics/149.4.1633 10.1063/1.1505860 10.1073/pnas.0406841102 10.1002/9780470316849 10.1038/35002131 10.1023/A:1008202821328 10.1126/science.1119623 10.1214/aoms/1177729694 10.1063/1.1810475 10.1016/j.mbs.2009.03.002 10.1089/cmb.2006.13.838 10.1093/bioinformatics/btl552 10.1016/j.ymben.2008.07.004 10.1101/gr.997703 10.1049/ip-syb:20050105 10.1126/science.283.5400.381 10.1063/1.2145882 10.1371/journal.pcbi.0020080 10.1038/nature01546 10.1038/ncb954 10.1016/j.jcp.2006.06.047 10.1038/nbt1162 |
ContentType | Journal Article |
Copyright | Poovathingal and Gunawan; licensee BioMed Central Ltd. 2010 COPYRIGHT 2010 BioMed Central Ltd. 2010 Poovathingal and Gunawan; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright ©2010 Poovathingal and Gunawan; licensee BioMed Central Ltd. 2010 Poovathingal and Gunawan; licensee BioMed Central Ltd. |
Copyright_xml | – notice: Poovathingal and Gunawan; licensee BioMed Central Ltd. 2010 – notice: COPYRIGHT 2010 BioMed Central Ltd. – notice: 2010 Poovathingal and Gunawan; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright ©2010 Poovathingal and Gunawan; licensee BioMed Central Ltd. 2010 Poovathingal and Gunawan; licensee BioMed Central Ltd. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1186/1471-2105-11-414 |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database Engineering Research Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2105 |
EndPage | 414 |
ExternalDocumentID | oai_doaj_org_article_3420e7b4000d4fafb8cf74d009907d38 PMC2928803 oai_biomedcentral_com_1471_2105_11_414 2501696711 A235657515 20691037 10_1186_1471_2105_11_414 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Singapore |
GeographicLocations_xml | – name: Singapore |
GroupedDBID | --- 0R~ 23N 2VQ 2WC 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C1A C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR IPNFZ ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX ALIPV CITATION CGR CUY CVF ECM EIF NPM PMFND 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 -A0 ABVAZ ACRMQ ADINQ AFGXO AFNRJ C24 5PM |
ID | FETCH-LOGICAL-b723t-2ac0af5b0c6a1b75f8b6d98c29e711e8f381e71eb2c5d77126a687a1ed93195f3 |
IEDL.DBID | C6C |
ISSN | 1471-2105 |
IngestDate | Wed Aug 27 01:27:03 EDT 2025 Thu Aug 21 13:51:17 EDT 2025 Wed May 22 07:10:43 EDT 2024 Fri Sep 05 14:41:22 EDT 2025 Thu Sep 04 18:32:01 EDT 2025 Fri Jul 25 10:53:47 EDT 2025 Tue Jun 17 21:48:12 EDT 2025 Tue Jun 10 20:36:40 EDT 2025 Fri Jun 27 03:57:21 EDT 2025 Thu Apr 03 07:04:21 EDT 2025 Tue Jul 01 03:38:11 EDT 2025 Thu Apr 24 22:59:48 EDT 2025 Sat Sep 06 07:27:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Probability Density Function Cumulative Density Function Differential Evolution Parameter Estimation Method Population Member |
Language | English |
License | http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b723t-2ac0af5b0c6a1b75f8b6d98c29e711e8f381e71eb2c5d77126a687a1ed93195f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doi.org/10.1186/1471-2105-11-414 |
PMID | 20691037 |
PQID | 901851094 |
PQPubID | 44065 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3420e7b4000d4fafb8cf74d009907d38 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2928803 biomedcentral_primary_oai_biomedcentral_com_1471_2105_11_414 proquest_miscellaneous_877602664 proquest_miscellaneous_749012606 proquest_journals_901851094 gale_infotracmisc_A235657515 gale_infotracacademiconefile_A235657515 gale_incontextgauss_ISR_A235657515 pubmed_primary_20691037 crossref_citationtrail_10_1186_1471_2105_11_414 crossref_primary_10_1186_1471_2105_11_414 springer_journals_10_1186_1471_2105_11_414 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-08-06 |
PublicationDateYYYYMMDD | 2010-08-06 |
PublicationDate_xml | – month: 08 year: 2010 text: 2010-08-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | BMC bioinformatics |
PublicationTitleAbbrev | BMC Bioinformatics |
PublicationTitleAlternate | BMC Bioinformatics |
PublicationYear | 2010 |
Publisher | BioMed Central BioMed Central Ltd BMC |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
References | TS Gardner (3871_CR8) 2000; 403 MT Chen (3871_CR30) 2005; 23 HH McAdams (3871_CR1) 1999; 15 DT Gillespie (3871_CR15) 1991 Y Cao (3871_CR39) 2006; 124 DW Scott (3871_CR18) 1992 DC Montgomery (3871_CR19) 2006 IE Nikerel (3871_CR36) 2009; 11 A Arkin (3871_CR31) 1998; 149 E Yang (3871_CR4) 2003; 13 A Golightly (3871_CR13) 2008 S Kullback (3871_CR24) 1951; 22 M Matsumoto (3871_CR27) 1998; 8 S Plyasunov (3871_CR38) 2006; 221 R Storn (3871_CR25) 1997; 4 DT Gillespie (3871_CR16) 1977; 81 S Reinker (3871_CR14) 2006; 153 K Zielinski (3871_CR26) 2005 B Munsky (3871_CR22) 2006; 124 J Yu (3871_CR7) 2006; 311 M Samoilov (3871_CR10) 2005; 102 S Macnamara (3871_CR21) 2008; 6 P LeCuyer (3871_CR28) 2002; 50 T Tian (3871_CR42) 2004; 121 R Gunawan (3871_CR35) 2005; 88 EM Ozbudak (3871_CR32) 2004; 427 EL Haseltine (3871_CR41) 2002; 117 WJ Blake (3871_CR29) 2003; 422 KG Gadkar (3871_CR37) 2005; 6 JR Pomerening (3871_CR33) 2003; 5 US Bhalla (3871_CR34) 1999; 283 DT Gillespie (3871_CR17) 1992; 188 MB Elowitz (3871_CR2) 2000; 403 IC Chou (3871_CR5) 2009; 219 T Tian (3871_CR11) 2007; 23 A Colman-Lerner (3871_CR3) 2005; 437 I Golding (3871_CR6) 2005; 123 MA Gibson (3871_CR23) 2000; 104 A Chatterjee (3871_CR40) 2005; 122 D Fange (3871_CR9) 2006; 2 A Golightly (3871_CR12) 2006; 13 S Macnamara (3871_CR20) 2008; 129 9691025 - Genetics. 1998 Aug;149(4):1633-48 14973486 - Nature. 2004 Feb 19;427(6976):737-40 19044893 - J Chem Phys. 2008 Sep 7;129(9):095105 9888852 - Science. 1999 Jan 15;283(5400):381-7 12629549 - Nat Cell Biol. 2003 Apr;5(4):346-51 16460146 - J Chem Phys. 2006 Jan 28;124(4):044104 10659856 - Nature. 2000 Jan 20;403(6767):335-8 16543458 - Science. 2006 Mar 17;311(5767):1600-3 19327372 - Math Biosci. 2009 Jun;219(2):57-83 16846247 - PLoS Comput Biol. 2006 Jun 30;2(6):e80 18718548 - Metab Eng. 2009 Jan;11(1):20-30 15549913 - J Chem Phys. 2004 Dec 1;121(21):10356-64 15638577 - J Chem Phys. 2005 Jan 8;122(2):024112 16460151 - J Chem Phys. 2006 Jan 28;124(4):044109 16706729 - J Comput Biol. 2006 Apr;13(3):838-51 15695639 - Biophys J. 2005 Apr;88(4):2530-40 10659857 - Nature. 2000 Jan 20;403(6767):339-42 10098409 - Trends Genet. 1999 Feb;15(2):65-9 15967022 - BMC Bioinformatics. 2005;6:155 16360033 - Cell. 2005 Dec 16;123(6):1025-36 12902380 - Genome Res. 2003 Aug;13(8):1863-72 16170311 - Nature. 2005 Sep 29;437(7059):699-706 16986618 - Syst Biol (Stevenage). 2006 Jul;153(4):168-78 15701703 - Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2310-5 17068087 - Bioinformatics. 2007 Jan 1;23(1):84-91 16299520 - Nat Biotechnol. 2005 Dec;23(12):1551-5 12687005 - Nature. 2003 Apr 10;422(6932):633-7 |
References_xml | – volume: 403 start-page: 335 year: 2000 ident: 3871_CR2 publication-title: Nature doi: 10.1038/35002125 – volume: 427 start-page: 737 year: 2004 ident: 3871_CR32 publication-title: Nature doi: 10.1038/nature02298 – volume: 6 start-page: 1146 year: 2008 ident: 3871_CR21 publication-title: SIAM J; Multiscale Modeling & Simulation doi: 10.1137/060678154 – volume: 129 start-page: 095105 year: 2008 ident: 3871_CR20 publication-title: J Chem Phys doi: 10.1063/1.2971036 – volume: 437 start-page: 699 year: 2005 ident: 3871_CR3 publication-title: Nature doi: 10.1038/nature03998 – volume: 6 start-page: 155 year: 2005 ident: 3871_CR37 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-6-155 – volume: 15 start-page: 65 year: 1999 ident: 3871_CR1 publication-title: Trends Genet doi: 10.1016/S0168-9525(98)01659-X – volume: 50 start-page: 1073 year: 2002 ident: 3871_CR28 publication-title: Oper Res doi: 10.1287/opre.50.6.1073.358 – volume: 123 start-page: 1025 year: 2005 ident: 3871_CR6 publication-title: Cell doi: 10.1016/j.cell.2005.09.031 – volume: 8 start-page: 3 year: 1998 ident: 3871_CR27 publication-title: ACM Trans Model Comput Simul doi: 10.1145/272991.272995 – volume: 104 start-page: 1876 year: 2000 ident: 3871_CR23 publication-title: J Phys Chem A doi: 10.1021/jp993732q – volume: 88 start-page: 2530 year: 2005 ident: 3871_CR35 publication-title: Biophys J doi: 10.1529/biophysj.104.053405 – volume: 124 start-page: 044109 year: 2006 ident: 3871_CR39 publication-title: J Chem Phys doi: 10.1063/1.2159468 – volume: 81 start-page: 2340 year: 1977 ident: 3871_CR16 publication-title: J Phys Chem doi: 10.1021/j100540a008 – volume: 188 start-page: 404 year: 1992 ident: 3871_CR17 publication-title: Physica A doi: 10.1016/0378-4371(92)90283-V – volume: 122 start-page: 024112 year: 2005 ident: 3871_CR40 publication-title: J Chem Phys doi: 10.1063/1.1833357 – volume-title: Applied Statistics and Probability for Engineers year: 2006 ident: 3871_CR19 – volume: 149 start-page: 1633 year: 1998 ident: 3871_CR31 publication-title: Genetics doi: 10.1093/genetics/149.4.1633 – volume: 117 start-page: 6959 year: 2002 ident: 3871_CR41 publication-title: J Chem Phys doi: 10.1063/1.1505860 – volume: 102 start-page: 2310 year: 2005 ident: 3871_CR10 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0406841102 – volume-title: Multivariate Density Estimation: Theory, Practice, and Visualization (Wiley Series in Probability and Statistics) year: 1992 ident: 3871_CR18 doi: 10.1002/9780470316849 – volume: 403 start-page: 339 year: 2000 ident: 3871_CR8 publication-title: Nature doi: 10.1038/35002131 – volume: 4 start-page: 341 year: 1997 ident: 3871_CR25 publication-title: J Global Optim doi: 10.1023/A:1008202821328 – volume: 311 start-page: 1600 year: 2006 ident: 3871_CR7 publication-title: Science doi: 10.1126/science.1119623 – volume: 22 start-page: 79 year: 1951 ident: 3871_CR24 publication-title: Ann Math Stat doi: 10.1214/aoms/1177729694 – volume: 121 start-page: 10356 year: 2004 ident: 3871_CR42 publication-title: J Chem Phys doi: 10.1063/1.1810475 – volume: 219 start-page: 57 year: 2009 ident: 3871_CR5 publication-title: Math Biosci doi: 10.1016/j.mbs.2009.03.002 – volume: 13 start-page: 838 year: 2006 ident: 3871_CR12 publication-title: J Comput Biol doi: 10.1089/cmb.2006.13.838 – volume: 23 start-page: 84 year: 2007 ident: 3871_CR11 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl552 – volume: 11 start-page: 20 year: 2009 ident: 3871_CR36 publication-title: Metab Eng doi: 10.1016/j.ymben.2008.07.004 – start-page: 125 volume-title: Stat Comput year: 2008 ident: 3871_CR13 – volume: 13 start-page: 1863 year: 2003 ident: 3871_CR4 publication-title: Genome Res doi: 10.1101/gr.997703 – volume-title: Markov Processes: An Introduction for Physical Scientists year: 1991 ident: 3871_CR15 – volume-title: Proceedings of the Third International Conference on Computational Intelligence, Robotics and Autonomous Systems; Singapore year: 2005 ident: 3871_CR26 – volume: 153 start-page: 168 year: 2006 ident: 3871_CR14 publication-title: Syst Biol (Stevenage) doi: 10.1049/ip-syb:20050105 – volume: 283 start-page: 381 year: 1999 ident: 3871_CR34 publication-title: Science doi: 10.1126/science.283.5400.381 – volume: 124 start-page: 044104 year: 2006 ident: 3871_CR22 publication-title: J Chem Phys doi: 10.1063/1.2145882 – volume: 2 start-page: e80 year: 2006 ident: 3871_CR9 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.0020080 – volume: 422 start-page: 633 year: 2003 ident: 3871_CR29 publication-title: Nature doi: 10.1038/nature01546 – volume: 5 start-page: 346 year: 2003 ident: 3871_CR33 publication-title: Nat Cell Biol doi: 10.1038/ncb954 – volume: 221 start-page: 724 year: 2006 ident: 3871_CR38 publication-title: J Comp Phys doi: 10.1016/j.jcp.2006.06.047 – volume: 23 start-page: 1551 year: 2005 ident: 3871_CR30 publication-title: Nat Biotechnol doi: 10.1038/nbt1162 – reference: 10098409 - Trends Genet. 1999 Feb;15(2):65-9 – reference: 16460151 - J Chem Phys. 2006 Jan 28;124(4):044109 – reference: 10659856 - Nature. 2000 Jan 20;403(6767):335-8 – reference: 15967022 - BMC Bioinformatics. 2005;6:155 – reference: 15695639 - Biophys J. 2005 Apr;88(4):2530-40 – reference: 16360033 - Cell. 2005 Dec 16;123(6):1025-36 – reference: 16846247 - PLoS Comput Biol. 2006 Jun 30;2(6):e80 – reference: 15549913 - J Chem Phys. 2004 Dec 1;121(21):10356-64 – reference: 19044893 - J Chem Phys. 2008 Sep 7;129(9):095105 – reference: 12687005 - Nature. 2003 Apr 10;422(6932):633-7 – reference: 19327372 - Math Biosci. 2009 Jun;219(2):57-83 – reference: 18718548 - Metab Eng. 2009 Jan;11(1):20-30 – reference: 14973486 - Nature. 2004 Feb 19;427(6976):737-40 – reference: 12902380 - Genome Res. 2003 Aug;13(8):1863-72 – reference: 15701703 - Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2310-5 – reference: 12629549 - Nat Cell Biol. 2003 Apr;5(4):346-51 – reference: 16986618 - Syst Biol (Stevenage). 2006 Jul;153(4):168-78 – reference: 10659857 - Nature. 2000 Jan 20;403(6767):339-42 – reference: 9691025 - Genetics. 1998 Aug;149(4):1633-48 – reference: 16299520 - Nat Biotechnol. 2005 Dec;23(12):1551-5 – reference: 16460146 - J Chem Phys. 2006 Jan 28;124(4):044104 – reference: 9888852 - Science. 1999 Jan 15;283(5400):381-7 – reference: 17068087 - Bioinformatics. 2007 Jan 1;23(1):84-91 – reference: 16706729 - J Comput Biol. 2006 Apr;13(3):838-51 – reference: 16543458 - Science. 2006 Mar 17;311(5767):1600-3 – reference: 15638577 - J Chem Phys. 2005 Jan 8;122(2):024112 – reference: 16170311 - Nature. 2005 Sep 29;437(7059):699-706 |
SSID | ssj0017805 |
Score | 2.2295907 |
Snippet | Background
The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models such as... The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models such as chemical... Background The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models such as... Abstract Background: The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models... BACKGROUND: The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models such as... Abstract Background The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models... |
SourceID | doaj pubmedcentral biomedcentral proquest gale pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 414 |
SubjectTerms | Algorithms Bioinformatics Biomedical and Life Sciences Computational biology Computational Biology/Bioinformatics Computer Appl. in Life Sciences Escherichia coli - metabolism Experimental data Galactose - metabolism Life Sciences Mathematical models Methodology Methodology Article Microarrays Models, Biological Monte Carlo Method Parameter estimation RNA, Bacterial - metabolism RNA, Messenger - metabolism Saccharomyces cerevisiae - metabolism Stochastic models Studies |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIPgiflvvlCCCKJRN0-aj4MspLqegD-rBvYUmTbyDsyt298H_3pmkXS-riy--lWaym52PZGYz8xtCngnv6177qkTw8rKpmQab65rSelDmCDgX_8z58FGenDbvz8TZlVZfmBOW4IET4xYwgXllQdVY34QuWO2Canr0bJjq61jmy1o2B1PT_QEi9ce6IlWVENSI-YJSy8X2HVaUNdVupftldkBFHP8_d-srx9VuKuXOfWo8ppa3yM3Jv6TH6XfdJtf8cIdcTx0nf94ly4TxTxHx-xtmwlBE2UjlizR1kx4p-LEUfEJ33iGIM4V1uwlWgCbg5_EeOV2-_fLmpJxaKZRW8Xpd8s6xLgjLnOwqq0TQVvatdrz1qqq8DnBwwxOE2U70SlVcdhJkVvm-BRsVob5PDobV4B8S2jQuNJw7V4HnKGxtQx1q4Rk8ul5YXZBXGT_N9wSbYRDIOh8BmzIoDoPigFjEgDgKspjZb9wEU47dMi5NDFe0_MuMF9sZ83ftp32NEs3WFF-AyplJ5cy_VK4gT1EfDMJnDJif87XbjKN59_mTOea1iFdZoiDPJ6KwgvW7bip3ACYi4lZGeZRRgn27bPhwVjsz7S-jAS8OXGUIzQtCt6M4EVPmBr_ajEY1QATRqtxPopXCDmQSPuVBUuMtYziTLZaQFkRlCp5xLh8ZLs4jPDlvORwKdUFezqbwe9375PLof8jlkNxIuR26ZPKIHKx_bPxjcBnX9kncHX4B2f9jFA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF-0IvgifjdtlUUEUQiXZD8DglTxrII-qIW-LdnNbivUpDZ3D_3vnUk20ZyebyE7udvsfGdnf0PIM-E9q7XPUwQvTznLNOhcxVPrQZh7wLn-Y86nz_LomH88ESexNqeLZZWjTewNdd06_Ea-AL8FwQEkI68vfqbYNAo3V2MHjevkRg6OBsVcL99PmwgI1z_uTGq5yMEOp5DhCDxKxvPNI-7nM8_UA_j_bab_8FObNZQbG6m9f1reIbdjYEkPB0m4S6755h65ObSavLpPlgO4P0Wo7x9YAkMRXmM4t0iHNtIdhQCWQjDozipEb6YwbxfxBOiA-Nw9IMfLd9_eHqWxh0JqVcFWaVG5rArCZk5WuVUiaCvrUrui9CrPvQ7gseEK8msnaqVgGSsJzMp9XYJyisAekp2mbfwuoZy7wIvCuRxCRmGZDSww4TO4dLWwOiGvZutpLga8DIMI1vMRYKxBdhhkByQhBtiRkMW4_MZFfHJsk3Fu-jxFy3888WJ6Yvyv7bRvkKOzOfU32stTE5XUgHBmXlkwa1nNQxWsdkHxGqPoTNUM3vApyoNB3IwGC3NOq3XXmQ9fv5jDgol-D0sk5HkkCi3M31XxnAMsIkJtzSgPZpSg2G42vD-KnYmGpTOTGiSETqP4INbKNb5dd0ZxIII0VW4n0Uph6zEJv_JoEONpYYpMlnh2NCFqJuCzlZuPNN_PelzyoizAG7CEvBxV4fe8t_Fl778vuU9uDdUaOs3kAdlZXa79YwgCV_ZJr-q_APASWKs priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9NAEF_kRPBFzu94pywiiEK8JPtZUOQUyymcD2rh3pbsZvfuoKZn04L33zuzSVpT2wffQne23c7Hzkx25zeEvBDes0r7PEXw8pSzTIPNlTy1HpQ5As7FlzmnX-XJhH85E2fr8uiOgc3W1A77SU3m0ze_f12_B4N_Fw1ey6McNtgUUheBNWKxq_VN8EsSU7FTvj5TQPT-_qByy6yNivfpwFFFPP9_d-2_3NbmlcqNc9Xorsb75E4XZ9LjVjHukhu-vkdutZ0nr--TcYv1TxH5-yfeiKGIttGWMdK2q3RDIZ6lEBu6ixLBnCms23XwArQFgG4ekMn404-PJ2nXUiG1qmCLtChdVgZhMyfL3CoRtJXVSLti5FWeex3AgcMTpNtOVErlhSwlyC731QhsVQT2kOzVs9o_JpRzF3hROJdDBCkss4EFJnwGj64SVifk7YCf5qqFzzAIaD0cAdsyKA6D4oCcxIA4EnLUs9-4Dq4cu2ZMTUxbtNwy49VqRv9bu2k_oEQHa4ofzObnprNZA7qaeWVhl8sqHspgtQuKVxhUZ6pi8A-foz4YhNGo8Z7OeblsGvP5-zdzXDARj7REQl52RGEG63dlV_YATETkrQHl4YAS7NwNhg96tTO9mRiI5iBkhhQ9IXQ1ihPx6lztZ8vGKA5EkLXK3SRaKexEJuFbHrVqvGJMkckRlpImRA0UfMC54Uh9eRFhyotRAc6BJeR1bwrrde-Sy5P_IT4gt9u7HDrN5CHZW8yX_imEiAv7LFr-H8BGXyA priority: 102 providerName: Scholars Portal |
Title | Global parameter estimation methods for stochastic biochemical systems |
URI | https://link.springer.com/article/10.1186/1471-2105-11-414 https://www.ncbi.nlm.nih.gov/pubmed/20691037 https://www.proquest.com/docview/901851094 https://www.proquest.com/docview/749012606 https://www.proquest.com/docview/877602664 http://dx.doi.org/10.1186/1471-2105-11-414 https://pubmed.ncbi.nlm.nih.gov/PMC2928803 https://doaj.org/article/3420e7b4000d4fafb8cf74d009907d38 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBdby2AvY9_z2gUzBmMDU1uyPgx7aUuzbtAyuhXyJixZagedU-rkYf_97mQ7q7LmYS_GRKdE0d1Jdzrd7wh5x51jjXJFhuDlWclyBTpXl5lxIMwBcC4c5pyciuPz8uuMz4bzDsyFuR2_L5TYK2DxzMAt4Zj_FSpWb_OCiRCWFYereAEi849ByDt6rWWzX0WbUMDq_3dFvrUlrV-XXIuZhq1o-pg8GmzIdL9n-hNyz7VPyYO-quTvZ2Ta4_iniOr9C2-7pIik0acopn3F6C4FWzUFu89e1gjUnMK47QAdkPbgzt1zcj49-nF4nA3lEjIjKVtktLZ57bnJragLI7lXRjSVsrRysiic8rA5wxu40pY3UhZU1AL4UrimAj3knr0gW-28da9IWpbWl5RaW4B1yA0znnnGXQ6vtuFGJeRTNJ_6uofG0AhWHbeA3mhkh0Z2gL-hgR0J2RunX9sBihwrYlzp4JIocUePD6se429tpj1AjkZjCh-AXOlBHzXIYe6kgRUsb0pfe6Osl2WDBnMuGwb_8C3Kg0aIjBbv4FzUy67TX76f6X3KeAhX8YS8H4j8HMZv6yGlASYRUbUiyt2IEnTYRs07o9jpYQ3pNFhqYA6D-52QdNWKHfFaXOvmy07LEojAIxWbSZSUWGVMwLe87MV4NTE0FxWmiSZERgIezVzc0v68DBDktKKw8LOEfBxV4e-4N_Hl9f8Q75CH_T0NleVil2wtbpbuDZh_CzMh9-VMwlNNP0_I9sHR6bezSVgNJuFABZ4npfoDdJFVxw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELZKEYIXxE1oAQuBEEjRJo6vlUCoHNUuPR6glfbNxI7dIpVsaXaF-qP4j8zkWMjC8ta3aD3OOuPxHPb4G0KeCu-zQvs0RvDymGeJhjWX89h6EOYacK7ezNnbl6ND_nEiJmvkZ3cXBtMqO51YK-pi6nCPfAB2C5wDCEbenH6PsWgUHq52FTQaqdjx5z8gYqtej9_D9D5jbPvDwbtR3BYViK1i2SxmuUvyIGziZJ5aJYK2shhqx4ZepanXAUwYPEHA6UShVMpkLmH0qS-GIK0iZPDeS-Qyx41xWD5qsojvUiwP0J2EajlIQe_HEFEJvLrG0-Ur9Sc9S1gXDPjbLPxhF5dzNpcObmt7uH2DXG8dWbrVSN5NsubLW-RKU9ry_DbZbooJUIQW_4YpNxThPJp7krQpW11RcJgpOJ_uOEe0aArjdi1-AW0Qpqs75PBC2HuXrJfT0t8nlHMXOGPOpeCiCpvZkIVM-AQeXSGsjsirHj_NaYPPYRAxu98CgmRwOgxOBwQ9BqYjIoOO_ca1eOhYluPE1HGRlv_o8WLRo_uv1bRvcUZ7Y6p_mJ4dmVYpGFgMiVcW1GhS8JAHq11QvECvPVFFBl_4BOXBIE5HiYlAR_m8qsz48yezxTJRn5mJiDxvicIUxu_y9l4FMBGhvXqUmz1KUCSu17zRiZ1pFVllFssuInTRih0xN6_003llFAciCIvlahKtFJY6k_CWe40YLxjDEjnEu6oRUT0B73Gu31J-Pa5x0NmQgfXJIvKyWwq_x71qXh789yMfk6ujg71dszve39kg15pMER0ncpOsz87m_iE4oDP7qF72lHy5aD3zC8Qblbw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQEIgXxPfCBlgICYEUNXH8VYmXMag2PiYETNqbFTv2hjTSaWkf-O-5s5NCyvrAW1SfW9d35zvn7n5HyAvhfdVoX-YIXp7zqtCgczXPrQdhjoBz8WXO5yN5cMw_nIiT_oVbN2S7DyHJVNOAKE3tYnLRhKTiWk5KOFJzuKwIrAqLfayvczR8GKyV-6soAuL1D6HJK2at1bifj0xTRPD_95z-y1CtJ1GuRVKjgZrdIbd7z5LuJVG4S6759h65kXpN_rpPZgndnyLW90_MgaGIr5EKF2nqI91R8GApeIPurEb4Zgrrdj2gAE2Qz90Dcjx7_33_IO-bKORWsWqRs9oVdRC2cLIurRJBW9lMtWNTr8rS6wAmG57ggu1Eo1TJZC2BW6VvpqCdIlQPyVY7b_02oZy7wBlzrgSfUdjKhipUwhfw6BphdUbejPbTXCTADIMQ1uMRYKxBdhhkB9xCDLAjI5Nh-43rAcqxT8a5iRcVLa-Y8Wo1Y_itzbRvkaOjNcUP5penptdSA9JZeGXhXCsaHupgtQuKN-hGF6qp4B8-R3kwCJzRYmbOab3sOnP47avZY5WIQSyRkZc9UZjD-l3dFzrAJiLW1ohyd0QJmu1GwzuD2Jn-ZOkM-G_gJMOlPCN0NYoTMVmu9fNlZxQHIrinys0kWinsPSbhWx4lMV5tDCvkFItHM6JGAj7aufFI--MsApOzKQNzUGXk9aAKf9a9iS-P_4f4Gbn55d3MfDo8-rhDbqVEDp0XcpdsLS6X_gn4hwv7NB4CvwGZG1vF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+parameter+estimation+methods+for+stochastic+biochemical+systems&rft.jtitle=BMC+bioinformatics&rft.au=Poovathingal%2C+Suresh+Kumar&rft.au=Gunawan%2C+Rudiyanto&rft.date=2010-08-06&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1186%2F1471-2105-11-414&rft.externalDocID=10_1186_1471_2105_11_414 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |