Integrating genome annotation and QTL position to identify candidate genes for productivity, architecture and water-use efficiency in Populus spp
Hybrid poplars species are candidates for biomass production but breeding efforts are needed to combine productivity and water use efficiency in improved cultivars. The understanding of the genetic architecture of growth in poplar by a Quantitative Trait Loci (QTL) approach can help us to elucidate...
Saved in:
Published in | BMC plant biology Vol. 12; no. 1; p. 173 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
26.09.2012
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hybrid poplars species are candidates for biomass production but breeding efforts are needed to combine productivity and water use efficiency in improved cultivars. The understanding of the genetic architecture of growth in poplar by a Quantitative Trait Loci (QTL) approach can help us to elucidate the molecular basis of such integrative traits but identifying candidate genes underlying these QTLs remains difficult. Nevertheless, the increase of genomic information together with the accessibility to a reference genome sequence (Populus trichocarpa Nisqually-1) allow to bridge QTL information on genetic maps and physical location of candidate genes on the genome. The objective of the study is to identify QTLs controlling productivity, architecture and leaf traits in a P. deltoides x P. trichocarpa F1 progeny and to identify candidate genes underlying QTLs based on the anchoring of genetic maps on the genome and the gene ontology information linked to genome annotation. The strategy to explore genome annotation was to use Gene Ontology enrichment tools to test if some functional categories are statistically over-represented in QTL regions.
Four leaf traits and 7 growth traits were measured on 330 F1 P. deltoides x P. trichocarpa progeny. A total of 77 QTLs controlling 11 traits were identified explaining from 1.8 to 17.2% of the variation of traits. For 58 QTLs, confidence intervals could be projected on the genome. An extended functional annotation was built based on data retrieved from the plant genome database Phytozome and from an inference of function using homology between Populus and the model plant Arabidopsis. Genes located within QTL confidence intervals were retrieved and enrichments in gene ontology (GO) terms were determined using different methods. Significant enrichments were found for all traits. Particularly relevant biological processes GO terms were identified for QTLs controlling number of sylleptic branches: intervals were enriched in GO terms of biological process like 'ripening' and 'adventitious roots development'.
Beyond the simple identification of QTLs, this study is the first to use a global approach of GO terms enrichment analysis to fully explore gene function under QTLs confidence intervals in plants. This global approach may lead to identification of new candidate genes for traits of interest. |
---|---|
AbstractList | Doc number: 173 Abstract Background: Hybrid poplars species are candidates for biomass production but breeding efforts are needed to combine productivity and water use efficiency in improved cultivars. The understanding of the genetic architecture of growth in poplar by a Quantitative Trait Loci (QTL) approach can help us to elucidate the molecular basis of such integrative traits but identifying candidate genes underlying these QTLs remains difficult. Nevertheless, the increase of genomic information together with the accessibility to a reference genome sequence (Populus trichocarpa Nisqually-1) allow to bridge QTL information on genetic maps and physical location of candidate genes on the genome. The objective of the study is to identify QTLs controlling productivity, architecture and leaf traits in a P. deltoides x P. trichocarpa F1 progeny and to identify candidate genes underlying QTLs based on the anchoring of genetic maps on the genome and the gene ontology information linked to genome annotation. The strategy to explore genome annotation was to use Gene Ontology enrichment tools to test if some functional categories are statistically over-represented in QTL regions. Results: Four leaf traits and 7 growth traits were measured on 330 F1 P. deltoides x P. trichocarpa progeny. A total of 77 QTLs controlling 11 traits were identified explaining from 1.8 to 17.2% of the variation of traits. For 58 QTLs, confidence intervals could be projected on the genome. An extended functional annotation was built based on data retrieved from the plant genome database Phytozome and from an inference of function using homology between Populus and the model plant Arabidopsis . Genes located within QTL confidence intervals were retrieved and enrichments in gene ontology (GO) terms were determined using different methods. Significant enrichments were found for all traits. Particularly relevant biological processes GO terms were identified for QTLs controlling number of sylleptic branches: intervals were enriched in GO terms of biological process like 'ripening' and 'adventitious roots development'. Conclusion: Beyond the simple identification of QTLs, this study is the first to use a global approach of GO terms enrichment analysis to fully explore gene function under QTLs confidence intervals in plants. This global approach may lead to identification of new candidate genes for traits of interest. Background: Hybrid poplars species are candidates for biomass production but breeding efforts are needed to combine productivity and water use efficiency in improved cultivars. The understanding of the genetic architecture of growth in poplar by a Quantitative Trait Loci (QTL) approach can help us to elucidate the molecular basis of such integrative traits but identifying candidate genes underlying these QTLs remains difficult. Nevertheless, the increase of genomic information together with the accessibility to a reference genome sequence (Populus trichocarpa Nisqually-1) allow to bridge QTL information on genetic maps and physical location of candidate genes on the genome. The objective of the study is to identify QTLs controlling productivity, architecture and leaf traits in a P. deltoides x P. trichocarpa F1 progeny and to identify candidate genes underlying QTLs based on the anchoring of genetic maps on the genome and the gene ontology information linked to genome annotation. The strategy to explore genome annotation was to use Gene Ontology enrichment tools to test if some functional categories are statistically over-represented in QTL regions. Results: Four leaf traits and 7 growth traits were measured on 330 F1 P. deltoides x P. trichocarpa progeny. A total of 77 QTLs controlling 11 traits were identified explaining from 1.8 to 17.2% of the variation of traits. For 58 QTLs, confidence intervals could be projected on the genome. An extended functional annotation was built based on data retrieved from the plant genome database Phytozome and from an inference of function using homology between Populus and the model plant Arabidopsis. Genes located within QTL confidence intervals were retrieved and enrichments in gene ontology (GO) terms were determined using different methods. Significant enrichments were found for all traits. Particularly relevant biological processes GO terms were identified for QTLs controlling number of sylleptic branches: intervals were enriched in GO terms of biological process like 'ripening' and 'adventitious roots development'. Conclusion: Beyond the simple identification of QTLs, this study is the first to use a global approach of GO terms enrichment analysis to fully explore gene function under QTLs confidence intervals in plants. This global approach may lead to identification of new candidate genes for traits of interest. Hybrid poplars species are candidates for biomass production but breeding efforts are needed to combine productivity and water use efficiency in improved cultivars. The understanding of the genetic architecture of growth in poplar by a Quantitative Trait Loci (QTL) approach can help us to elucidate the molecular basis of such integrative traits but identifying candidate genes underlying these QTLs remains difficult. Nevertheless, the increase of genomic information together with the accessibility to a reference genome sequence (Populus trichocarpa Nisqually-1) allow to bridge QTL information on genetic maps and physical location of candidate genes on the genome. The objective of the study is to identify QTLs controlling productivity, architecture and leaf traits in a P. deltoides x P. trichocarpa F1 progeny and to identify candidate genes underlying QTLs based on the anchoring of genetic maps on the genome and the gene ontology information linked to genome annotation. The strategy to explore genome annotation was to use Gene Ontology enrichment tools to test if some functional categories are statistically over-represented in QTL regions. Four leaf traits and 7 growth traits were measured on 330 F1 P. deltoides x P. trichocarpa progeny. A total of 77 QTLs controlling 11 traits were identified explaining from 1.8 to 17.2% of the variation of traits. For 58 QTLs, confidence intervals could be projected on the genome. An extended functional annotation was built based on data retrieved from the plant genome database Phytozome and from an inference of function using homology between Populus and the model plant Arabidopsis. Genes located within QTL confidence intervals were retrieved and enrichments in gene ontology (GO) terms were determined using different methods. Significant enrichments were found for all traits. Particularly relevant biological processes GO terms were identified for QTLs controlling number of sylleptic branches: intervals were enriched in GO terms of biological process like 'ripening' and 'adventitious roots development'. Beyond the simple identification of QTLs, this study is the first to use a global approach of GO terms enrichment analysis to fully explore gene function under QTLs confidence intervals in plants. This global approach may lead to identification of new candidate genes for traits of interest. Abstract Background Hybrid poplars species are candidates for biomass production but breeding efforts are needed to combine productivity and water use efficiency in improved cultivars. The understanding of the genetic architecture of growth in poplar by a Quantitative Trait Loci (QTL) approach can help us to elucidate the molecular basis of such integrative traits but identifying candidate genes underlying these QTLs remains difficult. Nevertheless, the increase of genomic information together with the accessibility to a reference genome sequence (Populus trichocarpa Nisqually-1) allow to bridge QTL information on genetic maps and physical location of candidate genes on the genome. The objective of the study is to identify QTLs controlling productivity, architecture and leaf traits in a P. deltoides x P. trichocarpa F1 progeny and to identify candidate genes underlying QTLs based on the anchoring of genetic maps on the genome and the gene ontology information linked to genome annotation. The strategy to explore genome annotation was to use Gene Ontology enrichment tools to test if some functional categories are statistically over-represented in QTL regions. Results Four leaf traits and 7 growth traits were measured on 330 F1 P. deltoides x P. trichocarpa progeny. A total of 77 QTLs controlling 11 traits were identified explaining from 1.8 to 17.2% of the variation of traits. For 58 QTLs, confidence intervals could be projected on the genome. An extended functional annotation was built based on data retrieved from the plant genome database Phytozome and from an inference of function using homology between Populus and the model plant Arabidopsis. Genes located within QTL confidence intervals were retrieved and enrichments in gene ontology (GO) terms were determined using different methods. Significant enrichments were found for all traits. Particularly relevant biological processes GO terms were identified for QTLs controlling number of sylleptic branches: intervals were enriched in GO terms of biological process like ‘ripening’ and ‘adventitious roots development’. Conclusion Beyond the simple identification of QTLs, this study is the first to use a global approach of GO terms enrichment analysis to fully explore gene function under QTLs confidence intervals in plants. This global approach may lead to identification of new candidate genes for traits of interest. Hybrid poplars species are candidates for biomass production but breeding efforts are needed to combine productivity and water use efficiency in improved cultivars. The understanding of the genetic architecture of growth in poplar by a Quantitative Trait Loci (QTL) approach can help us to elucidate the molecular basis of such integrative traits but identifying candidate genes underlying these QTLs remains difficult. Nevertheless, the increase of genomic information together with the accessibility to a reference genome sequence (Populus trichocarpa Nisqually-1) allow to bridge QTL information on genetic maps and physical location of candidate genes on the genome. The objective of the study is to identify QTLs controlling productivity, architecture and leaf traits in a P. deltoides x P. trichocarpa F1 progeny and to identify candidate genes underlying QTLs based on the anchoring of genetic maps on the genome and the gene ontology information linked to genome annotation. The strategy to explore genome annotation was to use Gene Ontology enrichment tools to test if some functional categories are statistically over-represented in QTL regions. Four leaf traits and 7 growth traits were measured on 330 F1 P. deltoides x P. trichocarpa progeny. A total of 77 QTLs controlling 11 traits were identified explaining from 1.8 to 17.2% of the variation of traits. For 58 QTLs, confidence intervals could be projected on the genome. An extended functional annotation was built based on data retrieved from the plant genome database Phytozome and from an inference of function using homology between Populus and the model plant Arabidopsis. Genes located within QTL confidence intervals were retrieved and enrichments in gene ontology (GO) terms were determined using different methods. Significant enrichments were found for all traits. Particularly relevant biological processes GO terms were identified for QTLs controlling number of sylleptic branches: intervals were enriched in GO terms of biological process like 'ripening' and 'adventitious roots development'. Beyond the simple identification of QTLs, this study is the first to use a global approach of GO terms enrichment analysis to fully explore gene function under QTLs confidence intervals in plants. This global approach may lead to identification of new candidate genes for traits of interest. Hybrid poplars species are candidates for biomass production but breeding efforts are needed to combine productivity and water use efficiency in improved cultivars. The understanding of the genetic architecture of growth in poplar by a Quantitative Trait Loci (QTL) approach can help us to elucidate the molecular basis of such integrative traits but identifying candidate genes underlying these QTLs remains difficult. Nevertheless, the increase of genomic information together with the accessibility to a reference genome sequence (Populus trichocarpa Nisqually-1) allow to bridge QTL information on genetic maps and physical location of candidate genes on the genome. The objective of the study is to identify QTLs controlling productivity, architecture and leaf traits in a P. deltoides x P. trichocarpa F1 progeny and to identify candidate genes underlying QTLs based on the anchoring of genetic maps on the genome and the gene ontology information linked to genome annotation. The strategy to explore genome annotation was to use Gene Ontology enrichment tools to test if some functional categories are statistically over-represented in QTL regions.BACKGROUNDHybrid poplars species are candidates for biomass production but breeding efforts are needed to combine productivity and water use efficiency in improved cultivars. The understanding of the genetic architecture of growth in poplar by a Quantitative Trait Loci (QTL) approach can help us to elucidate the molecular basis of such integrative traits but identifying candidate genes underlying these QTLs remains difficult. Nevertheless, the increase of genomic information together with the accessibility to a reference genome sequence (Populus trichocarpa Nisqually-1) allow to bridge QTL information on genetic maps and physical location of candidate genes on the genome. The objective of the study is to identify QTLs controlling productivity, architecture and leaf traits in a P. deltoides x P. trichocarpa F1 progeny and to identify candidate genes underlying QTLs based on the anchoring of genetic maps on the genome and the gene ontology information linked to genome annotation. The strategy to explore genome annotation was to use Gene Ontology enrichment tools to test if some functional categories are statistically over-represented in QTL regions.Four leaf traits and 7 growth traits were measured on 330 F1 P. deltoides x P. trichocarpa progeny. A total of 77 QTLs controlling 11 traits were identified explaining from 1.8 to 17.2% of the variation of traits. For 58 QTLs, confidence intervals could be projected on the genome. An extended functional annotation was built based on data retrieved from the plant genome database Phytozome and from an inference of function using homology between Populus and the model plant Arabidopsis. Genes located within QTL confidence intervals were retrieved and enrichments in gene ontology (GO) terms were determined using different methods. Significant enrichments were found for all traits. Particularly relevant biological processes GO terms were identified for QTLs controlling number of sylleptic branches: intervals were enriched in GO terms of biological process like 'ripening' and 'adventitious roots development'.RESULTSFour leaf traits and 7 growth traits were measured on 330 F1 P. deltoides x P. trichocarpa progeny. A total of 77 QTLs controlling 11 traits were identified explaining from 1.8 to 17.2% of the variation of traits. For 58 QTLs, confidence intervals could be projected on the genome. An extended functional annotation was built based on data retrieved from the plant genome database Phytozome and from an inference of function using homology between Populus and the model plant Arabidopsis. Genes located within QTL confidence intervals were retrieved and enrichments in gene ontology (GO) terms were determined using different methods. Significant enrichments were found for all traits. Particularly relevant biological processes GO terms were identified for QTLs controlling number of sylleptic branches: intervals were enriched in GO terms of biological process like 'ripening' and 'adventitious roots development'.Beyond the simple identification of QTLs, this study is the first to use a global approach of GO terms enrichment analysis to fully explore gene function under QTLs confidence intervals in plants. This global approach may lead to identification of new candidate genes for traits of interest.CONCLUSIONBeyond the simple identification of QTLs, this study is the first to use a global approach of GO terms enrichment analysis to fully explore gene function under QTLs confidence intervals in plants. This global approach may lead to identification of new candidate genes for traits of interest. |
ArticleNumber | 173 |
Audience | Academic |
Author | Bert, Pierre-François Monclus, Romain Villar, Marc Marron, Nicolas Bastien, Catherine Brignolas, Franck Leplé, Jean-Charles Jorge, Véronique |
AuthorAffiliation | 2 UFR-Faculté des Sciences, UPRES EA 1207 Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d'Orléans, F-45067, Orléans, France 3 INRA, USC1328 Arbres et Réponses aux Contraintes Hydriques et Environnementales (ARCHE), F-45067, Orléans, France 6 Present address: INRA, UMR1287 Ecophysiologie et Génomique Fonctionnelle de la Vigne, F-33882, Villenave d'Ornon, France 4 INRA, UMR1137 Écologie et Écophysiologie Forestières (EEF), F-54280, Champenoux, France 5 Université de Lorraine, UMR 1137, Ecologie et Ecophysiologie Forestières (EEF), Faculté des Sciences, F-54500, Vandœuvre-lès-Nancy, France 1 INRA, UR0588 Amélioration Génétique et Physiologie Forestières (AGPF), F-45075, Orléans, France |
AuthorAffiliation_xml | – name: 5 Université de Lorraine, UMR 1137, Ecologie et Ecophysiologie Forestières (EEF), Faculté des Sciences, F-54500, Vandœuvre-lès-Nancy, France – name: 1 INRA, UR0588 Amélioration Génétique et Physiologie Forestières (AGPF), F-45075, Orléans, France – name: 2 UFR-Faculté des Sciences, UPRES EA 1207 Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d'Orléans, F-45067, Orléans, France – name: 4 INRA, UMR1137 Écologie et Écophysiologie Forestières (EEF), F-54280, Champenoux, France – name: 6 Present address: INRA, UMR1287 Ecophysiologie et Génomique Fonctionnelle de la Vigne, F-33882, Villenave d'Ornon, France – name: 3 INRA, USC1328 Arbres et Réponses aux Contraintes Hydriques et Environnementales (ARCHE), F-45067, Orléans, France |
Author_xml | – sequence: 1 givenname: Romain surname: Monclus fullname: Monclus, Romain – sequence: 2 givenname: Jean-Charles surname: Leplé fullname: Leplé, Jean-Charles – sequence: 3 givenname: Catherine surname: Bastien fullname: Bastien, Catherine – sequence: 4 givenname: Pierre-François surname: Bert fullname: Bert, Pierre-François – sequence: 5 givenname: Marc surname: Villar fullname: Villar, Marc – sequence: 6 givenname: Nicolas surname: Marron fullname: Marron, Nicolas – sequence: 7 givenname: Franck surname: Brignolas fullname: Brignolas, Franck – sequence: 8 givenname: Véronique surname: Jorge fullname: Jorge, Véronique |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23013168$$D View this record in MEDLINE/PubMed https://hal.inrae.fr/hal-02647348$$DView record in HAL |
BookMark | eNqFk01v1DAQhiNURD_gzglZ4kIlUjx2EmcvSFUFdKWV-Cpny3Hs1FXWTm2nsD-Df4zTLUt31QrlEHvmed9Mxp7DbM86q7LsJeATgLp6BwWDnBAyy4HkwOiT7GAT2ru33s8OQ7jCGFhdzJ5l-4RioFDVB9nvuY2q8yIa26FOWbdUSFjrYoo4m5Yt-nqxQIML5jYQHTKtstHoFZIpa1oR1SRUAWnn0eBdO8pobkxcvUXCy0sTlYyjV7dePxPt8zEopLQ20igrV8hY9MUNYz8GFIbhefZUiz6oF3fvo-zHxw8XZ-f54vOn-dnpIm8Y1DHXCkOli7IpZ6oG3YCgrJEFEVIIQkmdtgmh0Da4kqrVmFUEt23ZsooJCYQeZfO1b-vEFR-8WQq_4k4YfhtwvuPCRyN7xStoKtlqKZWuikbOap38StzUCgBoI5LX-7XXMDZL1crUIC_6LdPtjDWXvHM3nJYE15glg-O1weWO7Px0wacYJlXBaFHfQGLP1mxj3CMf285It-TTVeDTVeBAeLopyeXNXcneXY8qRL40Qaq-F1a5MSSmrEmBKSn_jxI6w-WMkek_Xu-gV270Np3jRDGoSgblP6oTqbvGapfqlJMpPy1pkWrFUCfq5AEqPa1aGpkGQZsU3xIcbwkSE9Wv2IkxBD7__m2bfXX_xDbd-zsZCcBrQHoXgld6gwDm0_A91NJqRyLNeo5S4aZ_XPgHD0gypQ |
CitedBy_id | crossref_primary_10_1016_j_scienta_2023_112800 crossref_primary_10_1093_bfgp_elae035 crossref_primary_10_1139_cjb_2016_0247 crossref_primary_10_1093_jxb_eru226 crossref_primary_10_1186_s12870_014_0330_3 crossref_primary_10_1186_s13068_016_0603_1 crossref_primary_10_12737_23441 crossref_primary_10_1111_1755_0998_12513 crossref_primary_10_1186_s12864_016_2605_6 crossref_primary_10_1007_s10725_025_01301_x crossref_primary_10_1016_j_cpb_2014_07_001 crossref_primary_10_3389_fpls_2018_00769 crossref_primary_10_1186_s13068_017_0795_z crossref_primary_10_1016_j_biombioe_2013_05_017 crossref_primary_10_1016_j_foreco_2013_05_017 crossref_primary_10_1111_nph_13301 crossref_primary_10_1002_fes3_39 crossref_primary_10_1007_s00122_017_2852_1 crossref_primary_10_1093_treephys_tpu012 crossref_primary_10_1093_treephys_tpw017 crossref_primary_10_1186_1471_2164_15_464 crossref_primary_10_1093_jhered_esaa039 crossref_primary_10_1186_s12859_017_1908_1 crossref_primary_10_1016_j_scienta_2024_113863 crossref_primary_10_1093_treephys_tpab138 crossref_primary_10_1007_s00425_018_2958_y crossref_primary_10_1111_nph_16544 crossref_primary_10_1007_s10142_023_01033_z crossref_primary_10_1007_s00122_014_2286_y crossref_primary_10_3390_plants14030330 crossref_primary_10_1111_gcbb_12526 crossref_primary_10_1007_s12298_025_01566_6 crossref_primary_10_1371_journal_pone_0145144 crossref_primary_10_3389_fgene_2021_634554 crossref_primary_10_1093_treephys_tpv056 crossref_primary_10_3390_plants8090331 crossref_primary_10_1007_s10535_016_0651_1 crossref_primary_10_1080_07352689_2014_870417 crossref_primary_10_3389_fpls_2020_629970 crossref_primary_10_1007_s00468_015_1281_5 crossref_primary_10_1093_g3journal_jkaa053 |
Cites_doi | 10.1016/j.tplants.2006.03.006 10.1093/bioinformatics/bth040 10.1105/tpc.104.028316 10.1139/X10-113 10.1093/aob/mcn107 10.1038/nature07272 10.1104/pp.110.161026 10.1007/s001220051485 10.1007/s11295-009-0199-8 10.1093/treephys/tpr089 10.2307/3001853 10.1093/genetics/120.4.947 10.1038/sj.hdy.6800358 10.1038/nrg3097 10.1007/s11295-010-0361-3 10.1016/j.plantsci.2003.11.016 10.1111/j.1469-8137.2007.02091.x 10.1111/j.1365-313X.2006.02864.x 10.1111/j.1469-8137.2005.01407.x 10.1007/BF00838558 10.1007/s11295-007-0091-3 10.1016/j.foreco.2007.06.003 10.1038/nature07271 10.1016/j.tips.2006.09.001 10.1016/j.envpol.2010.09.027 10.1093/jxb/erm134 10.1016/j.envexpbot.2007.04.002 10.1016/j.bbapap.2008.11.012 10.1038/ng0209-144 10.1007/s12155-009-9060-z 10.1111/j.1469-8137.2005.01630.x 10.1105/tpc.105.031625 10.1016/j.jplph.2011.03.008 10.1093/genetics/121.1.185 10.1186/1471-2229-9-23 10.1093/nar/gkn923 10.1126/science.1128691 10.1093/nar/gkq045 10.1139/x04-033 10.1073/pnas.260502697 10.1002/9780470316856 10.1111/j.1469-8137.2010.03469.x 10.1071/PP9840539 10.1093/bioinformatics/btl140 10.1139/x06-103 10.1038/72708 10.1186/1471-2164-10-184 10.1139/x05-101 10.1007/s13595-011-0092-0 10.1105/tpc.106.046029 10.1111/j.1469-8137.2005.01424.x 10.1093/treephys/tpp075 10.1007/s001220050761 10.1111/j.1469-8137.2009.02785.x 10.1111/j.1469-8137.2012.04059.x 10.1093/genetics/137.4.1121 10.1139/x03-283 10.1080/07352689109382313 10.1093/jhered/93.1.77 10.1139/x05-245 10.1007/BF00222092 10.1093/genetics/139.2.963 10.1093/genetics/143.1.531 10.1093/treephys/25.4.425 10.1093/treephys/26.7.935 10.1046/j.1365-2958.1999.01162.x 10.1007/s001220050998 10.1093/bioinformatics/btn250 10.1093/genetics/128.1.175 10.1016/j.pbi.2009.10.003 10.1002/(SICI)1097-0134(199707)28:3<405::AID-PROT10>3.0.CO;2-L 10.1016/j.pbi.2004.01.011 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2012 BioMed Central Ltd. 2012 Monclus et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Distributed under a Creative Commons Attribution 4.0 International License Copyright ©2012 Monclus et al.; licensee BioMed Central Ltd. 2012 Monclus et al.; licensee BioMed Central Ltd. |
Copyright_xml | – notice: COPYRIGHT 2012 BioMed Central Ltd. – notice: 2012 Monclus et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Copyright ©2012 Monclus et al.; licensee BioMed Central Ltd. 2012 Monclus et al.; licensee BioMed Central Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7X2 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0K M0S M1P M7N M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 8FD FR3 P64 RC3 1XC VOOES 5PM DOA |
DOI | 10.1186/1471-2229-12-173 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Agriculture Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection Agricultural & Environmental Science Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Agricultural Science Database Genetics Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany Architecture |
EISSN | 1471-2229 |
EndPage | 173 |
ExternalDocumentID | oai_doaj_org_article_61b6cdfccef64bc98fdf050b8e1113ba PMC3520807 oai_HAL_hal_02647348v1 oai_biomedcentral_com_1471_2229_12_173 2839227271 A534147018 23013168 10_1186_1471_2229_12_173 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | France |
GeographicLocations_xml | – name: France |
GroupedDBID | --- 0R~ 23N 2VQ 2WC 2XV 4.4 53G 5GY 5VS 6J9 7X2 7X7 88E 8FE 8FH 8FI 8FJ A8Z AAFWJ AAHBH AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS APEBS ATCPS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAG IAO IEP IGH IGS IHR INH INR IPNFZ ISR ITC KQ8 LK8 M0K M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP WOQ WOW XSB CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. M7N PKEHL PQEST PQUKI PRINS 7X8 8FD FR3 P64 RC3 -A0 ABVAZ ACRMQ ADINQ AFGXO AFNRJ C24 ESTFP 1XC C1A VOOES 5PM PUEGO |
ID | FETCH-LOGICAL-b718t-fe016f45b59e81fb1a37bc42acaa2328a37fe031db06cedf07620dd5d767ac123 |
IEDL.DBID | RBZ |
ISSN | 1471-2229 |
IngestDate | Wed Aug 27 01:31:11 EDT 2025 Thu Aug 21 18:34:39 EDT 2025 Thu Jun 19 06:40:41 EDT 2025 Wed May 22 07:14:59 EDT 2024 Fri Jul 11 12:12:06 EDT 2025 Fri Jul 11 09:04:17 EDT 2025 Fri Jul 25 10:33:31 EDT 2025 Tue Jun 17 22:04:54 EDT 2025 Mon Jul 21 10:57:39 EDT 2025 Fri Jun 27 05:57:31 EDT 2025 Mon Jul 21 06:03:18 EDT 2025 Thu Apr 24 23:02:53 EDT 2025 Tue Jul 01 03:01:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | leaf trait hybrid poplar gene ontology candidate gene productivity water-use efficiency QTL architecture |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b718t-fe016f45b59e81fb1a37bc42acaa2328a37fe031db06cedf07620dd5d767ac123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4125-0738 0000-0002-5016-3006 0000-0001-9210-7072 0000-0003-3160-2736 |
OpenAccessLink | http://dx.doi.org/10.1186/1471-2229-12-173 |
PMID | 23013168 |
PQID | 1237165715 |
PQPubID | 44650 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_61b6cdfccef64bc98fdf050b8e1113ba pubmedcentral_primary_oai_pubmedcentral_nih_gov_3520807 hal_primary_oai_HAL_hal_02647348v1 biomedcentral_primary_oai_biomedcentral_com_1471_2229_12_173 proquest_miscellaneous_1758240325 proquest_miscellaneous_1239059727 proquest_journals_1237165715 gale_infotracmisc_A534147018 gale_infotracacademiconefile_A534147018 gale_incontextgauss_ISR_A534147018 pubmed_primary_23013168 crossref_primary_10_1186_1471_2229_12_173 crossref_citationtrail_10_1186_1471_2229_12_173 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-09-26 |
PublicationDateYYYYMMDD | 2012-09-26 |
PublicationDate_xml | – month: 09 year: 2012 text: 2012-09-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC plant biology |
PublicationTitleAlternate | BMC Plant Biol |
PublicationYear | 2012 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | A Rohde (1161_CR18) 2011; 189 E Novaes (1161_CR7) 2009; 182 CR Henderson (1161_CR56) 1953; 9 NR Street (1161_CR12) 2011; 159 NR Street (1161_CR11) 2006; 48 S Wullschleger (1161_CR15) 2005; 35 W Boerjan (1161_CR3) 2009; 41 GA Tuskan (1161_CR17) 2006; 31 R Monclus (1161_CR29) 2009; 29 R Monclus (1161_CR28) 2006; 169 Y Okushima (1161_CR43) 2005; 17 J Labbé (1161_CR19) 2011; 7 V Gomez-Roldan (1161_CR45) 2008; 455 WE Nyquist (1161_CR58) 1991; 10 B Li (1161_CR60) 1997; 27 N Marron (1161_CR34) 2007; 61 ELL Sonnhammer (1161_CR49) 1997; 28 N Marron (1161_CR35) 2006; 36 J van der Schoot (1161_CR65) 2000; 101 S Bauer (1161_CR23) 2010; 38 SY Dillen (1161_CR30) 2008; 102 Y Brotman (1161_CR38) 2011; 168 A Alexa (1161_CR73) 2006; 22 T Kuroda (1161_CR51) 2009; 1794 GA Tuskan (1161_CR64) 2004; 34 ES Lander (1161_CR67) 1989; 121 PL Morrell (1161_CR2) 2012; 13 YD Zhao (1161_CR41) 2010 K Marinova (1161_CR52) 2007; 19 SY Dillen (1161_CR54) 2007; 252 SH Hulbert (1161_CR69) 1988; 120 HDJ Bradshaw (1161_CR4) 1995; 139 HD Bradshaw Jr (1161_CR62) 1993; 86 V Jorge (1161_CR61) 2005; 167 AH Price (1161_CR1) 2006; 11 D Zhang (1161_CR16) 2006; 36 H Omote (1161_CR50) 2006; 27 RE Voorrips (1161_CR72) 2002; 93 MH Brown (1161_CR24) 1999; 31 RL Wu (1161_CR13) 1998; 96 N Marron (1161_CR26) 2005; 25 D Grattapaglia (1161_CR68) 1994; 137 R Monclus (1161_CR27) 2005; 167 M Schuelke (1161_CR66) 2000; 18 SY Dillen (1161_CR5) 2009; 5 P Ranjan (1161_CR20) 2010; 3 I Barlier (1161_CR42) 2000; 97 E Marguerit (1161_CR39) 2012; 194 S Bauer (1161_CR22) 2008; 24 JO Borevitz (1161_CR37) 2004; 7 V Ongaro (1161_CR46) 2008; 59 C Saintagne (1161_CR71) 2004; 92 AM Rae (1161_CR36) 2004; 34 GD Farquhar (1161_CR55) 1984; 11 SY Dillen (1161_CR31) 2011; 68 AM Rae (1161_CR10) 2007; 175 DW Huang (1161_CR21) 2009; 37 A Chakravarti (1161_CR70) 1991; 128 CA Beveridge (1161_CR48) 2010; 13 M Umehara (1161_CR47) 2008; 455 SR Searle (1161_CR57) 1992 AM Rae (1161_CR8) 2008; 4 C Sorin (1161_CR44) 2005; 17 H Salih (1161_CR40) 2009; 10 XL Zhang (1161_CR25) 2004; 166 M Villar (1161_CR63) 1996; 143 PN Robinson (1161_CR74) 2004; 20 C Goulet (1161_CR53) 2010; 154 1161_CR9 N Marron (1161_CR33) 2006; 26 M Singh (1161_CR59) 1993; 86 S Chamaillard (1161_CR32) 2011; 31 R Wu (1161_CR14) 1998; 97 N Marron (1161_CR6) 2010; 40 20172960 - Nucleic Acids Res. 2010 Jun;38(11):3523-32 17547667 - New Phytol. 2007;175(1):59-69 24710884 - Theor Appl Genet. 1998 Mar;96(3-4):447-57 19291008 - New Phytol. 2009 Jun;182(4):878-90 16617032 - Trends Plant Sci. 2006 May;11(5):213-6 19913454 - Curr Opin Plant Biol. 2010 Feb;13(1):34-9 9223186 - Proteins. 1997 Jul;28(3):405-20 15003212 - Curr Opin Plant Biol. 2004 Apr;7(2):132-6 21536339 - J Plant Physiol. 2011 Aug 15;168(12):1387-94 18690207 - Nature. 2008 Sep 11;455(7210):195-200 19393059 - BMC Genomics. 2009;10:184 15687091 - Tree Physiol. 2005 Apr;25(4):425-35 15948829 - New Phytol. 2005 Jul;167(1):53-62 15659631 - Plant Cell. 2005 Feb;17(2):444-63 7982566 - Genetics. 1994 Aug;137(4):1121-37 2906309 - Genetics. 1988 Dec;120(4):947-58 15829601 - Plant Cell. 2005 May;17(5):1343-59 19100867 - Biochim Biophys Acta. 2009 May;1794(5):763-8 17601828 - Plant Cell. 2007 Jun;19(6):2023-38 2060775 - Genetics. 1991 May;128(1):175-82 21990023 - Tree Physiol. 2011 Oct;31(10):1076-87 14508500 - Heredity (Edinb). 2004 Jan;92(1):20-30 16585039 - Tree Physiol. 2006 Jul;26(7):935-46 2563713 - Genetics. 1989 Jan;121(1):185-99 16606683 - Bioinformatics. 2006 Jul 1;22(13):1600-7 10657137 - Nat Biotechnol. 2000 Feb;18(2):233-4 18690209 - Nature. 2008 Sep 11;455(7210):189-94 19245718 - BMC Plant Biol. 2009;9:23 20192736 - Annu Rev Plant Biol. 2010;61:49-64 19033363 - Nucleic Acids Res. 2009 Jan;37(1):1-13 12011185 - J Hered. 2002 Jan-Feb;93(1):77-8 18511468 - Bioinformatics. 2008 Jul 15;24(14):1650-1 17728300 - J Exp Bot. 2008;59(1):67-74 7713445 - Genetics. 1995 Feb;139(2):963-73 19174836 - Nat Genet. 2009 Feb;41(2):144-5 14764576 - Bioinformatics. 2004 Apr 12;20(6):979-81 20921171 - Plant Physiol. 2010 Oct;154(2):493-6 16996621 - Trends Pharmacol Sci. 2006 Nov;27(11):587-93 20980086 - Environ Pollut. 2011 Jan;159(1):45-54 16973872 - Science. 2006 Sep 15;313(5793):1596-604 21039557 - New Phytol. 2011 Jan;189(1):106-21 17005011 - Plant J. 2006 Nov;48(3):321-41 15948835 - New Phytol. 2005 Jul;167(1):113-27 19773340 - Tree Physiol. 2009 Nov;29(11):1329-39 18587131 - Ann Bot. 2008 Sep;102(3):399-407 9987140 - Mol Microbiol. 1999 Jan;31(1):394-5 24193473 - Theor Appl Genet. 1993 Apr;86(2-3):301-7 22207165 - Nat Rev Genet. 2011 Feb;13(2):85-96 16441757 - New Phytol. 2006;169(4):765-77 8722801 - Genetics. 1996 May;143(1):531-6 11114200 - Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14819-24 22335501 - New Phytol. 2012 Apr;194(2):416-29 24193590 - Theor Appl Genet. 1993 May;86(4):437-41 |
References_xml | – volume: 11 start-page: 213 issue: 5 year: 2006 ident: 1161_CR1 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2006.03.006 – volume: 20 start-page: 979 issue: 6 year: 2004 ident: 1161_CR74 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth040 – volume: 17 start-page: 444 issue: 2 year: 2005 ident: 1161_CR43 publication-title: Plant Cell doi: 10.1105/tpc.104.028316 – volume: 40 start-page: 1887 issue: 10 year: 2010 ident: 1161_CR6 publication-title: Canadian Journal of Forest Research doi: 10.1139/X10-113 – volume: 102 start-page: 399 issue: 3 year: 2008 ident: 1161_CR30 publication-title: Ann Bot doi: 10.1093/aob/mcn107 – volume: 455 start-page: 195 issue: 7210 year: 2008 ident: 1161_CR47 publication-title: Nature doi: 10.1038/nature07272 – volume: 154 start-page: 493 issue: 2 year: 2010 ident: 1161_CR53 publication-title: Plant Physiol doi: 10.1104/pp.110.161026 – volume: 101 start-page: 317 year: 2000 ident: 1161_CR65 publication-title: Theoritical and Applied Genetics doi: 10.1007/s001220051485 – volume: 5 start-page: 375 issue: 2 year: 2009 ident: 1161_CR5 publication-title: Tree Genetics and Genomes doi: 10.1007/s11295-009-0199-8 – volume: 31 start-page: 1076 issue: 10 year: 2011 ident: 1161_CR32 publication-title: Tree Physiol doi: 10.1093/treephys/tpr089 – start-page: 49 volume-title: Annual Review of Plant Biology, Vol 61 year: 2010 ident: 1161_CR41 – volume: 9 start-page: 226 year: 1953 ident: 1161_CR56 publication-title: Biometrics doi: 10.2307/3001853 – volume: 120 start-page: 947 year: 1988 ident: 1161_CR69 publication-title: Genetics doi: 10.1093/genetics/120.4.947 – volume: 92 start-page: 20 issue: 1 year: 2004 ident: 1161_CR71 publication-title: Heredity doi: 10.1038/sj.hdy.6800358 – volume: 13 start-page: 85 issue: 2 year: 2012 ident: 1161_CR2 publication-title: Nat Rev Genet doi: 10.1038/nrg3097 – volume: 7 start-page: 617 issue: 3 year: 2011 ident: 1161_CR19 publication-title: Tree Genetics & Genomes doi: 10.1007/s11295-010-0361-3 – volume: 166 start-page: 791 issue: 3 year: 2004 ident: 1161_CR25 publication-title: Plant Sci doi: 10.1016/j.plantsci.2003.11.016 – volume: 175 start-page: 59 issue: 1 year: 2007 ident: 1161_CR10 publication-title: New Phytol doi: 10.1111/j.1469-8137.2007.02091.x – volume: 48 start-page: 321 issue: 3 year: 2006 ident: 1161_CR11 publication-title: Plant J doi: 10.1111/j.1365-313X.2006.02864.x – volume: 167 start-page: 53 issue: 1 year: 2005 ident: 1161_CR27 publication-title: New Phytol doi: 10.1111/j.1469-8137.2005.01407.x – volume: 86 start-page: 437 issue: 4 year: 1993 ident: 1161_CR59 publication-title: Theor Appl Genet doi: 10.1007/BF00838558 – volume: 4 start-page: 97 issue: 1 year: 2008 ident: 1161_CR8 publication-title: Tree Genetics & Genomes doi: 10.1007/s11295-007-0091-3 – volume: 252 start-page: 12 issue: 1–3 year: 2007 ident: 1161_CR54 publication-title: Forest Ecol Manag doi: 10.1016/j.foreco.2007.06.003 – volume: 455 start-page: 189 issue: 7210 year: 2008 ident: 1161_CR45 publication-title: Nature doi: 10.1038/nature07271 – volume: 27 start-page: 587 issue: 11 year: 2006 ident: 1161_CR50 publication-title: Trends Pharmacol Sci doi: 10.1016/j.tips.2006.09.001 – volume: 159 start-page: 45 issue: 1 year: 2011 ident: 1161_CR12 publication-title: Environ Pollut doi: 10.1016/j.envpol.2010.09.027 – volume: 27 start-page: 1525 year: 1997 ident: 1161_CR60 publication-title: Canadian Journal of Forest Research – volume: 59 start-page: 67 issue: 1 year: 2008 ident: 1161_CR46 publication-title: J Exp Bot doi: 10.1093/jxb/erm134 – volume: 61 start-page: 103 issue: 2 year: 2007 ident: 1161_CR34 publication-title: Environmental and Experimental Botany doi: 10.1016/j.envexpbot.2007.04.002 – volume: 1794 start-page: 763 issue: 5 year: 2009 ident: 1161_CR51 publication-title: Biochimica Et Biophysica Acta-Proteins and Proteomics doi: 10.1016/j.bbapap.2008.11.012 – volume: 41 start-page: 144 issue: 2 year: 2009 ident: 1161_CR3 publication-title: Nat Genet doi: 10.1038/ng0209-144 – volume: 3 start-page: 172 issue: 2 year: 2010 ident: 1161_CR20 publication-title: BioEnergy Research doi: 10.1007/s12155-009-9060-z – volume: 169 start-page: 765 issue: 4 year: 2006 ident: 1161_CR28 publication-title: New Phytol doi: 10.1111/j.1469-8137.2005.01630.x – volume: 17 start-page: 1343 issue: 5 year: 2005 ident: 1161_CR44 publication-title: Plant Cell doi: 10.1105/tpc.105.031625 – volume: 168 start-page: 1387 issue: 12 year: 2011 ident: 1161_CR38 publication-title: J Plant Physiol doi: 10.1016/j.jplph.2011.03.008 – volume: 121 start-page: 185 year: 1989 ident: 1161_CR67 publication-title: Genetics doi: 10.1093/genetics/121.1.185 – ident: 1161_CR9 doi: 10.1186/1471-2229-9-23 – volume: 37 start-page: 1 issue: 1 year: 2009 ident: 1161_CR21 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn923 – volume: 31 start-page: 1596 issue: 5793 year: 2006 ident: 1161_CR17 publication-title: Science doi: 10.1126/science.1128691 – volume: 38 start-page: 3523 issue: 11 year: 2010 ident: 1161_CR23 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq045 – volume: 34 start-page: 1488 issue: 7 year: 2004 ident: 1161_CR36 publication-title: Canadian Journal of Forest Research doi: 10.1139/x04-033 – volume: 97 start-page: 14819 issue: 26 year: 2000 ident: 1161_CR42 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.260502697 – volume-title: Variance components year: 1992 ident: 1161_CR57 doi: 10.1002/9780470316856 – volume: 189 start-page: 106 issue: 1 year: 2011 ident: 1161_CR18 publication-title: New Phytol doi: 10.1111/j.1469-8137.2010.03469.x – volume: 11 start-page: 539 issue: 6 year: 1984 ident: 1161_CR55 publication-title: Australian Journal of Plant Physiology doi: 10.1071/PP9840539 – volume: 22 start-page: 1600 issue: 13 year: 2006 ident: 1161_CR73 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl140 – volume: 36 start-page: 2015 issue: 8 year: 2006 ident: 1161_CR16 publication-title: Canadian Journal of Forest Research doi: 10.1139/x06-103 – volume: 18 start-page: 233 year: 2000 ident: 1161_CR66 publication-title: Nat Biotechnol doi: 10.1038/72708 – volume: 10 start-page: 184 issue: 1 year: 2009 ident: 1161_CR40 publication-title: BMC Genomics doi: 10.1186/1471-2164-10-184 – volume: 35 start-page: 1779 issue: 8 year: 2005 ident: 1161_CR15 publication-title: Canadian Journal of Forest Research doi: 10.1139/x05-101 – volume: 68 start-page: 1265 issue: 7 year: 2011 ident: 1161_CR31 publication-title: Ann Sci doi: 10.1007/s13595-011-0092-0 – volume: 19 start-page: 2023 issue: 6 year: 2007 ident: 1161_CR52 publication-title: Plant Cell doi: 10.1105/tpc.106.046029 – volume: 167 start-page: 113 year: 2005 ident: 1161_CR61 publication-title: New Phytol doi: 10.1111/j.1469-8137.2005.01424.x – volume: 29 start-page: 1329 issue: 11 year: 2009 ident: 1161_CR29 publication-title: Tree Physiol doi: 10.1093/treephys/tpp075 – volume: 96 start-page: 447 issue: 3–4 year: 1998 ident: 1161_CR13 publication-title: Theor Appl Genet doi: 10.1007/s001220050761 – volume: 182 start-page: 878 issue: 4 year: 2009 ident: 1161_CR7 publication-title: New Phytol doi: 10.1111/j.1469-8137.2009.02785.x – volume: 194 start-page: 416 issue: 2 year: 2012 ident: 1161_CR39 publication-title: New Phytol doi: 10.1111/j.1469-8137.2012.04059.x – volume: 137 start-page: 1121 year: 1994 ident: 1161_CR68 publication-title: Genetics doi: 10.1093/genetics/137.4.1121 – volume: 34 start-page: 85 issue: 1 year: 2004 ident: 1161_CR64 publication-title: Canadian Journal of Forest Research doi: 10.1139/x03-283 – volume: 10 start-page: 235 issue: 3 year: 1991 ident: 1161_CR58 publication-title: Critical Reviews in Plant Sciences doi: 10.1080/07352689109382313 – volume: 93 start-page: 77 issue: 1 year: 2002 ident: 1161_CR72 publication-title: J Hered doi: 10.1093/jhered/93.1.77 – volume: 36 start-page: 390 issue: 2 year: 2006 ident: 1161_CR35 publication-title: Canadian Journal of Forest Research doi: 10.1139/x05-245 – volume: 86 start-page: 301 issue: 2–3 year: 1993 ident: 1161_CR62 publication-title: Theor Appl Genet doi: 10.1007/BF00222092 – volume: 139 start-page: 963 year: 1995 ident: 1161_CR4 publication-title: Genetics doi: 10.1093/genetics/139.2.963 – volume: 143 start-page: 531 year: 1996 ident: 1161_CR63 publication-title: Genetics doi: 10.1093/genetics/143.1.531 – volume: 25 start-page: 425 issue: 4 year: 2005 ident: 1161_CR26 publication-title: Tree Physiol doi: 10.1093/treephys/25.4.425 – volume: 26 start-page: 935 issue: 7 year: 2006 ident: 1161_CR33 publication-title: Tree Physiol doi: 10.1093/treephys/26.7.935 – volume: 31 start-page: 394 issue: 1 year: 1999 ident: 1161_CR24 publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.1999.01162.x – volume: 97 start-page: 1110 issue: 7 year: 1998 ident: 1161_CR14 publication-title: Theor Appl Genet doi: 10.1007/s001220050998 – volume: 24 start-page: 1650 issue: 14 year: 2008 ident: 1161_CR22 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn250 – volume: 128 start-page: 175 issue: 1 year: 1991 ident: 1161_CR70 publication-title: Genetics doi: 10.1093/genetics/128.1.175 – volume: 13 start-page: 34 issue: 1 year: 2010 ident: 1161_CR48 publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2009.10.003 – volume: 28 start-page: 405 issue: 3 year: 1997 ident: 1161_CR49 publication-title: Proteins-Structure Function and Genetics doi: 10.1002/(SICI)1097-0134(199707)28:3<405::AID-PROT10>3.0.CO;2-L – volume: 7 start-page: 132 issue: 2 year: 2004 ident: 1161_CR37 publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2004.01.011 – reference: 20980086 - Environ Pollut. 2011 Jan;159(1):45-54 – reference: 19773340 - Tree Physiol. 2009 Nov;29(11):1329-39 – reference: 16973872 - Science. 2006 Sep 15;313(5793):1596-604 – reference: 17005011 - Plant J. 2006 Nov;48(3):321-41 – reference: 7982566 - Genetics. 1994 Aug;137(4):1121-37 – reference: 22207165 - Nat Rev Genet. 2011 Feb;13(2):85-96 – reference: 12011185 - J Hered. 2002 Jan-Feb;93(1):77-8 – reference: 2906309 - Genetics. 1988 Dec;120(4):947-58 – reference: 8722801 - Genetics. 1996 May;143(1):531-6 – reference: 24193473 - Theor Appl Genet. 1993 Apr;86(2-3):301-7 – reference: 20172960 - Nucleic Acids Res. 2010 Jun;38(11):3523-32 – reference: 9987140 - Mol Microbiol. 1999 Jan;31(1):394-5 – reference: 16441757 - New Phytol. 2006;169(4):765-77 – reference: 15687091 - Tree Physiol. 2005 Apr;25(4):425-35 – reference: 14764576 - Bioinformatics. 2004 Apr 12;20(6):979-81 – reference: 19245718 - BMC Plant Biol. 2009;9:23 – reference: 17728300 - J Exp Bot. 2008;59(1):67-74 – reference: 16585039 - Tree Physiol. 2006 Jul;26(7):935-46 – reference: 21039557 - New Phytol. 2011 Jan;189(1):106-21 – reference: 2060775 - Genetics. 1991 May;128(1):175-82 – reference: 20192736 - Annu Rev Plant Biol. 2010;61:49-64 – reference: 18690209 - Nature. 2008 Sep 11;455(7210):189-94 – reference: 22335501 - New Phytol. 2012 Apr;194(2):416-29 – reference: 14508500 - Heredity (Edinb). 2004 Jan;92(1):20-30 – reference: 21990023 - Tree Physiol. 2011 Oct;31(10):1076-87 – reference: 24710884 - Theor Appl Genet. 1998 Mar;96(3-4):447-57 – reference: 15948829 - New Phytol. 2005 Jul;167(1):53-62 – reference: 16617032 - Trends Plant Sci. 2006 May;11(5):213-6 – reference: 19393059 - BMC Genomics. 2009;10:184 – reference: 17547667 - New Phytol. 2007;175(1):59-69 – reference: 19100867 - Biochim Biophys Acta. 2009 May;1794(5):763-8 – reference: 18511468 - Bioinformatics. 2008 Jul 15;24(14):1650-1 – reference: 19291008 - New Phytol. 2009 Jun;182(4):878-90 – reference: 16996621 - Trends Pharmacol Sci. 2006 Nov;27(11):587-93 – reference: 15829601 - Plant Cell. 2005 May;17(5):1343-59 – reference: 19913454 - Curr Opin Plant Biol. 2010 Feb;13(1):34-9 – reference: 10657137 - Nat Biotechnol. 2000 Feb;18(2):233-4 – reference: 19033363 - Nucleic Acids Res. 2009 Jan;37(1):1-13 – reference: 21536339 - J Plant Physiol. 2011 Aug 15;168(12):1387-94 – reference: 2563713 - Genetics. 1989 Jan;121(1):185-99 – reference: 15003212 - Curr Opin Plant Biol. 2004 Apr;7(2):132-6 – reference: 15659631 - Plant Cell. 2005 Feb;17(2):444-63 – reference: 19174836 - Nat Genet. 2009 Feb;41(2):144-5 – reference: 17601828 - Plant Cell. 2007 Jun;19(6):2023-38 – reference: 20921171 - Plant Physiol. 2010 Oct;154(2):493-6 – reference: 18690207 - Nature. 2008 Sep 11;455(7210):195-200 – reference: 11114200 - Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14819-24 – reference: 24193590 - Theor Appl Genet. 1993 May;86(4):437-41 – reference: 9223186 - Proteins. 1997 Jul;28(3):405-20 – reference: 15948835 - New Phytol. 2005 Jul;167(1):113-27 – reference: 7713445 - Genetics. 1995 Feb;139(2):963-73 – reference: 18587131 - Ann Bot. 2008 Sep;102(3):399-407 – reference: 16606683 - Bioinformatics. 2006 Jul 1;22(13):1600-7 |
SSID | ssj0017849 |
Score | 2.2225108 |
Snippet | Hybrid poplars species are candidates for biomass production but breeding efforts are needed to combine productivity and water use efficiency in improved... Background Hybrid poplars species are candidates for biomass production but breeding efforts are needed to combine productivity and water use efficiency in... Doc number: 173 Abstract Background: Hybrid poplars species are candidates for biomass production but breeding efforts are needed to combine productivity and... Background: Hybrid poplars species are candidates for biomass production but breeding efforts are needed to combine productivity and water use efficiency in... BACKGROUND: Hybrid poplars species are candidates for biomass production but breeding efforts are needed to combine productivity and water use efficiency in... Abstract Background Hybrid poplars species are candidates for biomass production but breeding efforts are needed to combine productivity and water use... |
SourceID | doaj pubmedcentral hal biomedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 173 |
SubjectTerms | Analysis Arabidopsis Arabidopsis thaliana Architecture Chromosome Mapping Cloning Confidence Intervals Crosses, Genetic Cultivars Efficiency France Gene loci Gene mapping Genes Genes, Plant - genetics Genetic aspects Genetic Association Studies Genetic Linkage Genetic Markers Genetics Genome, Plant - genetics Genomes Genomics Genotype & phenotype Leaves Life Sciences Molecular Sequence Annotation Ontology Physiological aspects Plant genetics Plant Leaves - genetics Plant physiology Poplar Populus Populus - anatomy & histology Populus - genetics Populus - growth & development Populus trichocarpa Productivity Quantitative genetics Quantitative trait loci Quantitative Trait Loci - genetics Quantitative Trait, Heritable Vegetal Biology Water Water - metabolism Water use Water use efficiency |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdg4oEXxDeBgcyEhJCIGqeJ7Uq8dIipQwPxsUl7s2zHppVGUi0taH8G_zF3TlLV4-uFtzY-u47P9v2uPv-OkGfcld5xqVNwkbO0YGKcGgz7Q-zNjAeL7fGC87v3fHZSvD0tT7dSfWFMWEcP3A3ciDPDbeWtdZ4Xxk6kr3xWZkY6TJJuAjQCmzc4U_35gZAB-DLYelPMWD0cUEo-2jzDoASG-dKjm-5nkYEKPP6b3frqPBT_gkQvB1RuWaiDm-RGDy3ptHulW-SKq2-Ta_sNwL-LO-THYU8MAbaKIjPrV0d1XTfdUTx8rOjH4yM6BHHRVUMX4RKvv6AW777gXwNY0bUUgC5ddlSxIffES7p9HhHa-g7S5-m6ddQFkgq84UkXNf2ACcPWLW2Xy7vk5ODN8etZ2udjSA1YsFXqHeBDX5SmnDjJvGF6LIwtcm21BmAm4SuIjFllMm4dqAk22qyqykpwoS2YyHtkp25q94BQN5EVKNCBGmSR59poJPnR1goxhqZ8Ql5FSlHLjntDIRt2XAILU6FOFepUsVyBThMyGnSobM91jik3zlTweST_TY0XmxrDb_1Zdh-nRdSn8ADmrernrfrXvE3IHk4qhRwcNQb5fNHrtlWHnz-paQnQohAZkwl53gv5BvpvdX9nAgYRabsiyd1IEjYJGxXvzS-N4mx6pPAZOOEFUhx9Y9DGMLVVv5O18MpjcKlLwcqEPN0UY_MYnVe7Zh1kJgDTAQr_RQYcU-R-zKGd-91q2XQH3GCGCdQSIqJ1FPU3LqkX88CFDv4D-Dzi4f9QySNyHeBwjtFAOd8lO6vztXsMkHNlnoTd5Se9kX7_ priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1tb9MwELbY4ANCQjBgBAYyExJCImqcJnYqIaEOMXVoIF42qd8s27HXSiMpTQvaz-Afc-c6pRmwb218cV2ffX7OPj9HyHNuc2d5oWJwkZM4Y6Ifawz7Q-zNtIMV2-EF5w8f-eg0ez_Ox2HDrQlhla1N9Ia6rA3ukffAwgK0zwXL38y-x5g1Ck9XQwqNLXIdqcswpEuM1w4XE0U2aI8mC95jYIhjzF-N4QgMM6V37rifd5Ymz-C_ttNbE1_8Fwa9HEq5sTYd3iG3A6ikw9UouEuu2WqH3BpunBHskBsHNeDAi3vk11FgiIBFiyJF6zdLVVXVqzN5-FjSzyfHtI3moouaTv1tXndBDV6CwT0CfNE2FBAvna04Y30Sild082DC1_UTpOfxsrHUerYKvOpJpxX9hJnDlg1tZrP75PTw3cnbURwSM8QalrJF7CwARZflOh_YgjnNVF9ok6XKKAUIrYCvINJnpU64saVLwOImZZmXggtlQJMPyHZVV_YhoXZQlJYxC1opsjRVWiHbjzJGiD5U5SLyuqMjOVuRcEikxe6WwGiRqGKJKpYslaDiiPRalUoTSM8x98a59M5Pwf_xxsv1G-1v_V_2AEdJp03-QT0_k2HmS840N6UzxjqeaTMoHHRInugC_jbraxWRfRxjEsk4Koz2OVPLppFHX7_IYQ4YIxMJKyLyIgi5GtpvVLg8AZ2I_F0dyb2OJFgL0ynen1zqxdHwWOIz8MYz5Dr6waCOdqTLYNIa-WcCRuTZuhirxzC9ytZLLzMAvA6Y-AoZ8FCRBDKFenZXk2fdHPCHGWZSi4joTKtOe7sl1XTiSdHBkQDnRzy6uumPyU1AvCkG_KR8j2wv5kv7BFDlQj_1puM3FOB3vA priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLbY4IEXxH2BgcyEhJAIi3NzKoFQh5g6tCEum7Q3y3bstVJJStMC_Rn8Y85xk24eHW9tfXzi2D63-pzPhDzPTWZNXsgQQuQoTBlPQoVpf-h7M2XBYlsscD76lA9O0o-n2el5eXQ7gc3a0A7vkzqZjl___rF4BwL_1gl8ke8yULAh3kuNaQbwtA1yHewSRzE9Ss_PFHiR9rqDyjW9EBY4QfQZRF31it_Hns1y0P4rBb4xdM3_OKeXcywvGK392-RW623S_nJ73CHXTHWX3NirwSNc3CN_DlqsCDBfFMFavxsqq6pens7Dx5J-OT6kXV4XndV05Op67YJqLIfBfwuwo2ko-L50skSPdddRvKIXjygcr19APQ3njaHG4VZg0ScdVfQz3iE2b2gzmdwnJ_sfjt8PwvaKhlCBUZuF1oDLaNNMZT1TMKuYTLjSaSy1lOCrFfAVSBJWqijXprQR6N6oLLOS51xqsJoPyGZVV2aLUNMrSsOYgRUp0jiWSiLuj9Sa8wRY2YC88RZFTJZwHAIBsv0WkFWByytweQWLBSxvQHa7NRS6hT_HWzjGwoVBRb6mx8tVj-5ZV9Pu4bbwxuR-qKdnotUBImcq16XV2tg8VbpXWJiQLFIFvDZLlAzIDm4qgbAcFeb9nMl504iDb19FPwNvI-URKwLyoiWyNYxfy7aMAiYRkbw8ym2PEvSG9pp3hpdmcdA_FPgbxOUpoh79ZMCj29qik0145QSi7IyzLCDPVs3IHhP2KlPPHU0PPHfwjv9DA7EqwkHGwOfhUlpWw-lEMSDckyNvvH5LNRo6eHQIKSAM4o-u5PmY3AS3N8asnzjfJpuz6dw8Addypp46jfEX4AR1BA priority: 102 providerName: Scholars Portal |
Title | Integrating genome annotation and QTL position to identify candidate genes for productivity, architecture and water-use efficiency in Populus spp |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23013168 https://www.proquest.com/docview/1237165715 https://www.proquest.com/docview/1239059727 https://www.proquest.com/docview/1758240325 http://dx.doi.org/10.1186/1471-2229-12-173 https://hal.inrae.fr/hal-02647348 https://pubmed.ncbi.nlm.nih.gov/PMC3520807 https://doaj.org/article/61b6cdfccef64bc98fdf050b8e1113ba |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYxgMviO8FRmUmJIREtDhfdiVeWrSpQ9s0xiZVvFi2Y9NKI6mWFrQ_g_-YOzcNSxm88FK18eXq-Gzf7-Lzz4S8zm3mbC5UCCFyFKaMJ6HGtD_E3kw78NgONzgfn-Sji_TjOBv_pslZW8FnIt9jMH2GeOo0JhGArg2yFafgBzEyH35pVwy48FC3lV4tSd6iYW1v-2XHJXnm_nZ-3pj44j-w53oK5Q2fdPCA3G_AJB0srf-Q3LHlI3J3WAHgu35Mfh42VBDgnShysX6zVJVltVx8h68F_XR-RFdpW3Re0anftuuuqcHdLvgyAG-0NQVoS2dLclh_2sQ7enMFwuv6AdJX4aK21HpaCtzTSaclPcUjwhY1rWezJ-TiYP_8wyhsTmAINfiseegsIEKXZjrrW8GcZirh2qSxMkoBFBPwE0QSVugoN7ZwEUytUVFkBc-5MuAUn5LNsirtNqG2LwrLmAUziDSOlVZI66OM4TwBVS4g7ztGkbMl24ZE_utuCQxFiTaVaFPJYgk2DcjeyobSNOzmeMjGpfRRjshvueNte8fqv_4uO8Ru0amTvwAdVTZDXOZM56ZwxliXp9r0hYMGySIt4LFZolVAdrFTSWTdKDGt56ta1LU8_HwmBxmAiZRHTATkTSPkKqi_Uc0uCWhEJOrqSO50JGFaMJ3i3claK44GRxKvQdidIqnRdwY6Vl1bNnNXDY-cQBCdcZYF5FVbjOoxH6-01cLL9AGYA_j9hwyEosj2GIOeZ8vR0lYHAl-GR6YFhHfGUae-3ZJyOvHs5xAxQJTDn_9ff3lB7gH0jTHzJ853yOb8amFfAryc6x7Z4GPeI1vD_ZPTs55_SQOfx6no-RnnF7aTegM |
linkProvider | BioMedCentral |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELZGhwRCQjDeAgPMBEJIRK3zXgmEWtjUsm4aWyftm7Ede600ktK0TP0Z_BF-I3d5Kc2Afdu3Nj67ru98vovvniPkZaB9o4NI2OAit2yPha4tMewPbW8mDZzYBhOc9_aD3rH3-cQ_WSO_qlwYDKusdGKuqONU4TvyJmhYMO39kPkfJt9trBqFt6tVCY1CLHb14hxctux9_xPw95Xj7GwPP_bssqqALUEPz2yjwcoxni_9to6YkUy4oVSeI5QQYF5E8BVIXBbLVqB0bMDRd1px7MdhEArFEOgAVP6654Ir0yDr3e39g8PlvUUYee3qMjQKmgxUv40VszEAgmFt9lpW_VntMMxrBixPhmujvPkvq_di8ObKabhzh9wuzVjaKeTuLlnTyQa51Vm5ldgg17spWJ6Le-Rnv8SkgGOSIijsN01FkqRFFAB8jOmX4YBW8WN0ltJxnj9sFlRh2g2-lcCOOqNgY9NJgVKbl714S1evQvKxzoF6as8zTXWOj4HJpXSc0AOsVTbPaDaZ3CfHV8K0B6SRpIl-RKhuR7FmTANXIs9xhBSILySUCkMXhjIWeVfjEZ8UsB8cgbjrLSCfHFnMkcWcORxYbJFmxVKuSph1rPZxxnN3Kwr-0ePNskf1W_-n7aKU1OaUP0inp7zUNTxgMlCxUUqbwJOqHRlYEL8lI_jbzJXCIlsoYxzhPxKMLzoV8yzj_aND3vHBqvHCFoss8rokMinMX4kyXQMWERHDapSbNUrQT6rWvDW6sIq9zoDjM_D_PURX-sFgjErSealEM_5ny1vkxbIZh8fAwESn85ymDR4CWOGX0IBPjLCTDozzsNg8y-mAB86wdptFwtq2qs233pKMRzkMO7gu4G6Fjy-f-nNyozfcG_BBf3_3CbkJ9raD4UZOsEkas-lcPwWbdiaflYqEkq9Xrbt-A-x8twk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYQIgXxDeBAWZCQkiExvmuxEsLVC2UaYxNmnixbMdeK7okalrQ_gz-Y-7cNGrK4IW3NL5cHH-cf1ff_UzIi1hHRsepcMFF9tyQJYErMewPsTeTBlZsgwnOnw_i4Un48TQ6rdOjMRdGnqtyBjprCqI3m0noM2u54UJ975SZWU34NO4wMLAunkuNYQbwth1yNYmiBKfpUf9bs6eQpBYMN9LrTctLNGxlv89ai5bl9m8s-M7EFv-BTreDLDdWrcEtcrOGm7S3Gh-3yRWd3yHX-gVAwou75NeoJouA9YsiW-u5piLPi9X2PFxm9MvxmK4Du-iioFOb2GsuqMJ8GPy7AB_UFQXwS8sVfaw9j-I13dyjsLp-gvTcXVaaaktcgVmfdJrTQzxEbFnRqizvkZPBh-N3Q7c-o8GVsKotXKMBM5owklFXp8xIJoJEqtAXSggAayn8BJGAZdKLlc6MB8bXy7IoS-JEKFg275PdvMj1Q0J1N800Yxq6IQ19X0iBxD9CqSQJQJVxyNtWp_ByxcfBkSG7XQLjhGOfcuxTznwOfeqQzroPuar5z_EYjhm3flAaX_LEq-aJ9bv-LtvHYdGqk71RzM94bQR4zGSsMqOUNnEoVTc10CCRJ1P4bBZI4ZB9HFQceTlyDPw5E8uq4qOvR7wXAdwIE4-lDnlZC5kC54Ko8yigEZHKqyW515IEw6FaxfuTrVYc9sYc74FjHiLt0Q8GOtZDm9fWrYJPDsDNhhkWOeR5U4zqMWIv18XSynQBugM8_ocMOKvIB-mDnger2dJUB1xjhoeqOSRpzaNWfdsl-XRi-dHBpwA_KHn0f-PlGbl--H7Ax6ODT4_JDcDJPoYJ-fEe2V3Ml_oJYNGFfGpNzG-qnYYI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+genome+annotation+and+QTL+position+to+identify+candidate+genes+for+productivity%2C+architecture+and+water-use+efficiency+in+Populus+spp&rft.jtitle=BMC+plant+biology&rft.au=Monclus%2C+Romain&rft.au=Lepl%C3%A9%2C+Jean-Charles&rft.au=Bastien%2C+Catherine&rft.au=Bert%2C+Pierre-Fran%C3%A7ois&rft.date=2012-09-26&rft.eissn=1471-2229&rft.volume=12&rft.spage=173&rft_id=info:doi/10.1186%2F1471-2229-12-173&rft_id=info%3Apmid%2F23013168&rft.externalDocID=23013168 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2229&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2229&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2229&client=summon |