Genotype-specific responses in Atlantic salmon (Salmo salar) subject to dietary fish oil replacement by vegetable oil: a liver transcriptomic analysis

Expansion of aquaculture is seriously limited by reductions in fish oil (FO) supply for aquafeeds. Terrestrial alternatives such as vegetable oils (VO) have been investigated and recently a strategy combining genetic selection with changes in diet formulations has been proposed to meet growing deman...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 12; no. 1; p. 255
Main Authors Morais, Sofia, Pratoomyot, Jarunan, Taggart, John B, Bron, James E, Guy, Derrick R, Bell, J Gordon, Tocher, Douglas R
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 20.05.2011
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Expansion of aquaculture is seriously limited by reductions in fish oil (FO) supply for aquafeeds. Terrestrial alternatives such as vegetable oils (VO) have been investigated and recently a strategy combining genetic selection with changes in diet formulations has been proposed to meet growing demands for aquaculture products. This study investigates the influence of genotype on transcriptomic responses to sustainable feeds in Atlantic salmon. A microarray analysis was performed to investigate the liver transcriptome of two family groups selected according to their estimated breeding values (EBVs) for flesh lipid content, 'Lean' or 'Fat', fed diets containing either FO or a VO blend. Diet principally affected metabolism genes, mainly of lipid and carbohydrate, followed by immune response genes. Genotype had a much lower impact on metabolism-related genes and affected mostly signalling pathways. Replacement of dietary FO by VO caused an up-regulation of long-chain polyunsaturated fatty acid biosynthesis, but there was a clear genotype effect as fatty acyl elongase (elovl2) was only up-regulated and desaturases (Δ5 fad and Δ6 fad) showed a higher magnitude of response in Lean fish, which was reflected in liver fatty acid composition. Fatty acid synthase (FAS) was also up-regulated by VO and the effect was independent of genotype. Genetic background of the fish clearly affected regulation of lipid metabolism, as PPARα and PPARβ were down-regulated by the VO diet only in Lean fish, while in Fat salmon SREBP-1 expression was up-regulated by VO. In addition, all three genes had a lower expression in the Lean family group than in the Fat, when fed VO. Differences in muscle adiposity between family groups may have been caused by higher levels of hepatic fatty acid and glycerophospholipid synthesis in the Fat fish, as indicated by the expression of FAS, 1-acyl-sn-glycerol-3-phosphate acyltransferase and lipid phosphate phosphohydrolase 2. This study has identified metabolic pathways and key regulators that may respond differently to alternative plant-based feeds depending on genotype. Further studies are required but data suggest that it will be possible to identify families better adapted to alternative diet formulations that might be appropriate for future genetic selection programmes.
AbstractList Background Expansion of aquaculture is seriously limited by reductions in fish oil (FO) supply for aquafeeds. Terrestrial alternatives such as vegetable oils (VO) have been investigated and recently a strategy combining genetic selection with changes in diet formulations has been proposed to meet growing demands for aquaculture products. This study investigates the influence of genotype on transcriptomic responses to sustainable feeds in Atlantic salmon. Results A microarray analysis was performed to investigate the liver transcriptome of two family groups selected according to their estimated breeding values (EBVs) for flesh lipid content, 'Lean' or 'Fat', fed diets containing either FO or a VO blend. Diet principally affected metabolism genes, mainly of lipid and carbohydrate, followed by immune response genes. Genotype had a much lower impact on metabolism-related genes and affected mostly signalling pathways. Replacement of dietary FO by VO caused an up-regulation of long-chain polyunsaturated fatty acid biosynthesis, but there was a clear genotype effect as fatty acyl elongase (elovl2) was only up-regulated and desaturases ([DELA]5 fad and [DELA]6 fad) showed a higher magnitude of response in Lean fish, which was reflected in liver fatty acid composition. Fatty acid synthase (FAS) was also up-regulated by VO and the effect was independent of genotype. Genetic background of the fish clearly affected regulation of lipid metabolism, as PPAR[alpha] and PPAR[beta] were down-regulated by the VO diet only in Lean fish, while in Fat salmon SREBP-1 expression was up-regulated by VO. In addition, all three genes had a lower expression in the Lean family group than in the Fat, when fed VO. Differences in muscle adiposity between family groups may have been caused by higher levels of hepatic fatty acid and glycerophospholipid synthesis in the Fat fish, as indicated by the expression of FAS, 1-acyl-sn-glycerol-3-phosphate acyltransferase and lipid phosphate phosphohydrolase 2. Conclusions This study has identified metabolic pathways and key regulators that may respond differently to alternative plant-based feeds depending on genotype. Further studies are required but data suggest that it will be possible to identify families better adapted to alternative diet formulations that might be appropriate for future genetic selection programmes.
Abstract Background Expansion of aquaculture is seriously limited by reductions in fish oil (FO) supply for aquafeeds. Terrestrial alternatives such as vegetable oils (VO) have been investigated and recently a strategy combining genetic selection with changes in diet formulations has been proposed to meet growing demands for aquaculture products. This study investigates the influence of genotype on transcriptomic responses to sustainable feeds in Atlantic salmon. Results A microarray analysis was performed to investigate the liver transcriptome of two family groups selected according to their estimated breeding values (EBVs) for flesh lipid content, 'Lean' or 'Fat', fed diets containing either FO or a VO blend. Diet principally affected metabolism genes, mainly of lipid and carbohydrate, followed by immune response genes. Genotype had a much lower impact on metabolism-related genes and affected mostly signalling pathways. Replacement of dietary FO by VO caused an up-regulation of long-chain polyunsaturated fatty acid biosynthesis, but there was a clear genotype effect as fatty acyl elongase (elovl2) was only up-regulated and desaturases (Δ5 fad and Δ6 fad) showed a higher magnitude of response in Lean fish, which was reflected in liver fatty acid composition. Fatty acid synthase (FAS) was also up-regulated by VO and the effect was independent of genotype. Genetic background of the fish clearly affected regulation of lipid metabolism, as PPARα and PPARβ were down-regulated by the VO diet only in Lean fish, while in Fat salmon SREBP-1 expression was up-regulated by VO. In addition, all three genes had a lower expression in the Lean family group than in the Fat, when fed VO. Differences in muscle adiposity between family groups may have been caused by higher levels of hepatic fatty acid and glycerophospholipid synthesis in the Fat fish, as indicated by the expression of FAS, 1-acyl-sn-glycerol-3-phosphate acyltransferase and lipid phosphate phosphohydrolase 2. Conclusions This study has identified metabolic pathways and key regulators that may respond differently to alternative plant-based feeds depending on genotype. Further studies are required but data suggest that it will be possible to identify families better adapted to alternative diet formulations that might be appropriate for future genetic selection programmes.
Expansion of aquaculture is seriously limited by reductions in fish oil (FO) supply for aquafeeds. Terrestrial alternatives such as vegetable oils (VO) have been investigated and recently a strategy combining genetic selection with changes in diet formulations has been proposed to meet growing demands for aquaculture products. This study investigates the influence of genotype on transcriptomic responses to sustainable feeds in Atlantic salmon.BACKGROUNDExpansion of aquaculture is seriously limited by reductions in fish oil (FO) supply for aquafeeds. Terrestrial alternatives such as vegetable oils (VO) have been investigated and recently a strategy combining genetic selection with changes in diet formulations has been proposed to meet growing demands for aquaculture products. This study investigates the influence of genotype on transcriptomic responses to sustainable feeds in Atlantic salmon.A microarray analysis was performed to investigate the liver transcriptome of two family groups selected according to their estimated breeding values (EBVs) for flesh lipid content, 'Lean' or 'Fat', fed diets containing either FO or a VO blend. Diet principally affected metabolism genes, mainly of lipid and carbohydrate, followed by immune response genes. Genotype had a much lower impact on metabolism-related genes and affected mostly signalling pathways. Replacement of dietary FO by VO caused an up-regulation of long-chain polyunsaturated fatty acid biosynthesis, but there was a clear genotype effect as fatty acyl elongase (elovl2) was only up-regulated and desaturases (Δ5 fad and Δ6 fad) showed a higher magnitude of response in Lean fish, which was reflected in liver fatty acid composition. Fatty acid synthase (FAS) was also up-regulated by VO and the effect was independent of genotype. Genetic background of the fish clearly affected regulation of lipid metabolism, as PPARα and PPARβ were down-regulated by the VO diet only in Lean fish, while in Fat salmon SREBP-1 expression was up-regulated by VO. In addition, all three genes had a lower expression in the Lean family group than in the Fat, when fed VO. Differences in muscle adiposity between family groups may have been caused by higher levels of hepatic fatty acid and glycerophospholipid synthesis in the Fat fish, as indicated by the expression of FAS, 1-acyl-sn-glycerol-3-phosphate acyltransferase and lipid phosphate phosphohydrolase 2.RESULTSA microarray analysis was performed to investigate the liver transcriptome of two family groups selected according to their estimated breeding values (EBVs) for flesh lipid content, 'Lean' or 'Fat', fed diets containing either FO or a VO blend. Diet principally affected metabolism genes, mainly of lipid and carbohydrate, followed by immune response genes. Genotype had a much lower impact on metabolism-related genes and affected mostly signalling pathways. Replacement of dietary FO by VO caused an up-regulation of long-chain polyunsaturated fatty acid biosynthesis, but there was a clear genotype effect as fatty acyl elongase (elovl2) was only up-regulated and desaturases (Δ5 fad and Δ6 fad) showed a higher magnitude of response in Lean fish, which was reflected in liver fatty acid composition. Fatty acid synthase (FAS) was also up-regulated by VO and the effect was independent of genotype. Genetic background of the fish clearly affected regulation of lipid metabolism, as PPARα and PPARβ were down-regulated by the VO diet only in Lean fish, while in Fat salmon SREBP-1 expression was up-regulated by VO. In addition, all three genes had a lower expression in the Lean family group than in the Fat, when fed VO. Differences in muscle adiposity between family groups may have been caused by higher levels of hepatic fatty acid and glycerophospholipid synthesis in the Fat fish, as indicated by the expression of FAS, 1-acyl-sn-glycerol-3-phosphate acyltransferase and lipid phosphate phosphohydrolase 2.This study has identified metabolic pathways and key regulators that may respond differently to alternative plant-based feeds depending on genotype. Further studies are required but data suggest that it will be possible to identify families better adapted to alternative diet formulations that might be appropriate for future genetic selection programmes.CONCLUSIONSThis study has identified metabolic pathways and key regulators that may respond differently to alternative plant-based feeds depending on genotype. Further studies are required but data suggest that it will be possible to identify families better adapted to alternative diet formulations that might be appropriate for future genetic selection programmes.
Expansion of aquaculture is seriously limited by reductions in fish oil (FO) supply for aquafeeds. Terrestrial alternatives such as vegetable oils (VO) have been investigated and recently a strategy combining genetic selection with changes in diet formulations has been proposed to meet growing demands for aquaculture products. This study investigates the influence of genotype on transcriptomic responses to sustainable feeds in Atlantic salmon. A microarray analysis was performed to investigate the liver transcriptome of two family groups selected according to their estimated breeding values (EBVs) for flesh lipid content, 'Lean' or 'Fat', fed diets containing either FO or a VO blend. Diet principally affected metabolism genes, mainly of lipid and carbohydrate, followed by immune response genes. Genotype had a much lower impact on metabolism-related genes and affected mostly signalling pathways. Replacement of dietary FO by VO caused an up-regulation of long-chain polyunsaturated fatty acid biosynthesis, but there was a clear genotype effect as fatty acyl elongase (elovl2) was only up-regulated and desaturases ([DELA]5 fad and [DELA]6 fad) showed a higher magnitude of response in Lean fish, which was reflected in liver fatty acid composition. Fatty acid synthase (FAS) was also up-regulated by VO and the effect was independent of genotype. Genetic background of the fish clearly affected regulation of lipid metabolism, as PPAR[alpha] and PPAR[beta] were down-regulated by the VO diet only in Lean fish, while in Fat salmon SREBP-1 expression was up-regulated by VO. In addition, all three genes had a lower expression in the Lean family group than in the Fat, when fed VO. Differences in muscle adiposity between family groups may have been caused by higher levels of hepatic fatty acid and glycerophospholipid synthesis in the Fat fish, as indicated by the expression of FAS, 1-acyl-sn-glycerol-3-phosphate acyltransferase and lipid phosphate phosphohydrolase 2. This study has identified metabolic pathways and key regulators that may respond differently to alternative plant-based feeds depending on genotype. Further studies are required but data suggest that it will be possible to identify families better adapted to alternative diet formulations that might be appropriate for future genetic selection programmes.
Expansion of aquaculture is seriously limited by reductions in fish oil (FO) supply for aquafeeds. Terrestrial alternatives such as vegetable oils (VO) have been investigated and recently a strategy combining genetic selection with changes in diet formulations has been proposed to meet growing demands for aquaculture products. This study investigates the influence of genotype on transcriptomic responses to sustainable feeds in Atlantic salmon. A microarray analysis was performed to investigate the liver transcriptome of two family groups selected according to their estimated breeding values (EBVs) for flesh lipid content, 'Lean' or 'Fat', fed diets containing either FO or a VO blend. Diet principally affected metabolism genes, mainly of lipid and carbohydrate, followed by immune response genes. Genotype had a much lower impact on metabolism-related genes and affected mostly signalling pathways. Replacement of dietary FO by VO caused an up-regulation of long-chain polyunsaturated fatty acid biosynthesis, but there was a clear genotype effect as fatty acyl elongase (elovl2) was only up-regulated and desaturases ([DELTA]5 fad and [DELTA]6 fad) showed a higher magnitude of response in Lean fish, which was reflected in liver fatty acid composition. Fatty acid synthase (FAS) was also up-regulated by VO and the effect was independent of genotype. Genetic background of the fish clearly affected regulation of lipid metabolism, as PPAR[alpha] and PPAR[beta] were down-regulated by the VO diet only in Lean fish, while in Fat salmon SREBP-1 expression was up-regulated by VO. In addition, all three genes had a lower expression in the Lean family group than in the Fat, when fed VO. Differences in muscle adiposity between family groups may have been caused by higher levels of hepatic fatty acid and glycerophospholipid synthesis in the Fat fish, as indicated by the expression of FAS, 1-acyl-sn-glycerol-3-phosphate acyltransferase and lipid phosphate phosphohydrolase 2. This study has identified metabolic pathways and key regulators that may respond differently to alternative plant-based feeds depending on genotype. Further studies are required but data suggest that it will be possible to identify families better adapted to alternative diet formulations that might be appropriate for future genetic selection programmes.
BACKGROUND: Expansion of aquaculture is seriously limited by reductions in fish oil (FO) supply for aquafeeds. Terrestrial alternatives such as vegetable oils (VO) have been investigated and recently a strategy combining genetic selection with changes in diet formulations has been proposed to meet growing demands for aquaculture products. This study investigates the influence of genotype on transcriptomic responses to sustainable feeds in Atlantic salmon. RESULTS: A microarray analysis was performed to investigate the liver transcriptome of two family groups selected according to their estimated breeding values (EBVs) for flesh lipid content, 'Lean' or 'Fat', fed diets containing either FO or a VO blend. Diet principally affected metabolism genes, mainly of lipid and carbohydrate, followed by immune response genes. Genotype had a much lower impact on metabolism-related genes and affected mostly signalling pathways. Replacement of dietary FO by VO caused an up-regulation of long-chain polyunsaturated fatty acid biosynthesis, but there was a clear genotype effect as fatty acyl elongase (elovl2) was only up-regulated and desaturases (Δ5 fad and Δ6 fad) showed a higher magnitude of response in Lean fish, which was reflected in liver fatty acid composition. Fatty acid synthase (FAS) was also up-regulated by VO and the effect was independent of genotype. Genetic background of the fish clearly affected regulation of lipid metabolism, as PPARα and PPARβ were down-regulated by the VO diet only in Lean fish, while in Fat salmon SREBP-1 expression was up-regulated by VO. In addition, all three genes had a lower expression in the Lean family group than in the Fat, when fed VO. Differences in muscle adiposity between family groups may have been caused by higher levels of hepatic fatty acid and glycerophospholipid synthesis in the Fat fish, as indicated by the expression of FAS, 1-acyl-sn-glycerol-3-phosphate acyltransferase and lipid phosphate phosphohydrolase 2. CONCLUSIONS: This study has identified metabolic pathways and key regulators that may respond differently to alternative plant-based feeds depending on genotype. Further studies are required but data suggest that it will be possible to identify families better adapted to alternative diet formulations that might be appropriate for future genetic selection programmes.
Background Expansion of aquaculture is seriously limited by reductions in fish oil (FO) supply for aquafeeds. Terrestrial alternatives such as vegetable oils (VO) have been investigated and recently a strategy combining genetic selection with changes in diet formulations has been proposed to meet growing demands for aquaculture products. This study investigates the influence of genotype on transcriptomic responses to sustainable feeds in Atlantic salmon. Results A microarray analysis was performed to investigate the liver transcriptome of two family groups selected according to their estimated breeding values (EBVs) for flesh lipid content, 'Lean' or 'Fat', fed diets containing either FO or a VO blend. Diet principally affected metabolism genes, mainly of lipid and carbohydrate, followed by immune response genes. Genotype had a much lower impact on metabolism-related genes and affected mostly signalling pathways. Replacement of dietary FO by VO caused an up-regulation of long-chain polyunsaturated fatty acid biosynthesis, but there was a clear genotype effect as fatty acyl elongase (elovl2) was only up-regulated and desaturases ([DELTA]5 fad and [DELTA]6 fad) showed a higher magnitude of response in Lean fish, which was reflected in liver fatty acid composition. Fatty acid synthase (FAS) was also up-regulated by VO and the effect was independent of genotype. Genetic background of the fish clearly affected regulation of lipid metabolism, as PPAR[alpha] and PPAR[beta] were down-regulated by the VO diet only in Lean fish, while in Fat salmon SREBP-1 expression was up-regulated by VO. In addition, all three genes had a lower expression in the Lean family group than in the Fat, when fed VO. Differences in muscle adiposity between family groups may have been caused by higher levels of hepatic fatty acid and glycerophospholipid synthesis in the Fat fish, as indicated by the expression of FAS, 1-acyl-sn-glycerol-3-phosphate acyltransferase and lipid phosphate phosphohydrolase 2. Conclusions This study has identified metabolic pathways and key regulators that may respond differently to alternative plant-based feeds depending on genotype. Further studies are required but data suggest that it will be possible to identify families better adapted to alternative diet formulations that might be appropriate for future genetic selection programmes.
Expansion of aquaculture is seriously limited by reductions in fish oil (FO) supply for aquafeeds. Terrestrial alternatives such as vegetable oils (VO) have been investigated and recently a strategy combining genetic selection with changes in diet formulations has been proposed to meet growing demands for aquaculture products. This study investigates the influence of genotype on transcriptomic responses to sustainable feeds in Atlantic salmon. A microarray analysis was performed to investigate the liver transcriptome of two family groups selected according to their estimated breeding values (EBVs) for flesh lipid content, 'Lean' or 'Fat', fed diets containing either FO or a VO blend. Diet principally affected metabolism genes, mainly of lipid and carbohydrate, followed by immune response genes. Genotype had a much lower impact on metabolism-related genes and affected mostly signalling pathways. Replacement of dietary FO by VO caused an up-regulation of long-chain polyunsaturated fatty acid biosynthesis, but there was a clear genotype effect as fatty acyl elongase (elovl2) was only up-regulated and desaturases (Δ5 fad and Δ6 fad) showed a higher magnitude of response in Lean fish, which was reflected in liver fatty acid composition. Fatty acid synthase (FAS) was also up-regulated by VO and the effect was independent of genotype. Genetic background of the fish clearly affected regulation of lipid metabolism, as PPARα and PPARβ were down-regulated by the VO diet only in Lean fish, while in Fat salmon SREBP-1 expression was up-regulated by VO. In addition, all three genes had a lower expression in the Lean family group than in the Fat, when fed VO. Differences in muscle adiposity between family groups may have been caused by higher levels of hepatic fatty acid and glycerophospholipid synthesis in the Fat fish, as indicated by the expression of FAS, 1-acyl-sn-glycerol-3-phosphate acyltransferase and lipid phosphate phosphohydrolase 2. This study has identified metabolic pathways and key regulators that may respond differently to alternative plant-based feeds depending on genotype. Further studies are required but data suggest that it will be possible to identify families better adapted to alternative diet formulations that might be appropriate for future genetic selection programmes.
ArticleNumber 255
Audience Academic
Author Bron, James E
Taggart, John B
Guy, Derrick R
Pratoomyot, Jarunan
Bell, J Gordon
Tocher, Douglas R
Morais, Sofia
AuthorAffiliation 1 Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK
2 Landcatch Natural Selection Ltd, The e-Centre, Cooperage Way, Alloa, FK10 3LP, UK
AuthorAffiliation_xml – name: 2 Landcatch Natural Selection Ltd, The e-Centre, Cooperage Way, Alloa, FK10 3LP, UK
– name: 1 Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK
Author_xml – sequence: 1
  givenname: Sofia
  surname: Morais
  fullname: Morais, Sofia
– sequence: 2
  givenname: Jarunan
  surname: Pratoomyot
  fullname: Pratoomyot, Jarunan
– sequence: 3
  givenname: John B
  surname: Taggart
  fullname: Taggart, John B
– sequence: 4
  givenname: James E
  surname: Bron
  fullname: Bron, James E
– sequence: 5
  givenname: Derrick R
  surname: Guy
  fullname: Guy, Derrick R
– sequence: 6
  givenname: J Gordon
  surname: Bell
  fullname: Bell, J Gordon
– sequence: 7
  givenname: Douglas R
  surname: Tocher
  fullname: Tocher, Douglas R
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21599965$$D View this record in MEDLINE/PubMed
BookMark eNqNk01v1DAQhiNURD_gzglZ4gA9bLGdxIl7QFqtoKxUCYnC2Zo4k62rJA62d8X-EX4vDltWG9QilEhOxu88k_E7OU2Oettjkrxk9IKxUrxjWcFmnIlsxviM5_mT5GQfOjp4Pk5Ovb-jlBUlz58lx5zlUkqRnyQ_r7C3YTvgzA-oTWM0cegH23v0xPRkHlroQ4x6aDvbk7c34zq-gTsnfl3doQ4kWFIbDOC2pDH-lljTRszQgsYO-0CqLdngKgqqFsfNSwKkNRt0JDjovXZmCLaLVaCHduuNf548baD1-OJ-PUu-ffzwdfFpdv35armYX88qUcoQW8ZKUM2ANYxmtGFNgRzKQuZCguZclMi4xlxTzEWVyTqTglNZSQGAmtfpWbLccWsLd2pwpos9KAtG_Q5Yt1LgYvstKllLkHWaQprWWSEoABXAclbGG3MJkfV-xxrWVYe1jo07aCfQ6U5vbtXKblTKWFqUMgIWO0Bl7COA6Y62nRo9VqPHinEVRyBS3tx_hrPf1-iD6ozX2EYf0a69KgsmhSizsd7rnXIFsT_TNzZS9ahW80yUlAqWZv9U8bwsCpqXY9WLB1TxqjH6Gqe2MTE-wf5XwmGF80lC1AT8EVaw9l4tb75M4a8Ordgf4Z-5jwK6E2hnvXfY7CWMqvHXeuhcxV8p2gQIxo5emPbxxF95KCZt
CitedBy_id crossref_primary_10_1016_j_aquaculture_2020_736028
crossref_primary_10_3390_biology10070578
crossref_primary_10_1007_s11745_016_4191_4
crossref_primary_10_1186_s12864_018_5188_6
crossref_primary_10_1371_journal_pone_0143622
crossref_primary_10_1371_journal_pone_0190730
crossref_primary_10_3390_fishes3010001
crossref_primary_10_1111_anu_12046
crossref_primary_10_1111_anu_13136
crossref_primary_10_1016_j_cbpa_2012_11_020
crossref_primary_10_1111_raq_12025
crossref_primary_10_3390_md15120369
crossref_primary_10_1016_j_aquaculture_2015_03_020
crossref_primary_10_1017_S0007114512002024
crossref_primary_10_1007_s10695_018_0560_7
crossref_primary_10_1371_journal_pone_0169985
crossref_primary_10_1007_s11160_015_9408_8
crossref_primary_10_1007_s11745_016_4157_6
crossref_primary_10_1186_1471_2164_13_410
crossref_primary_10_1017_S0007114512003364
crossref_primary_10_1017_S0007114516000830
crossref_primary_10_1016_j_aggene_2017_09_006
crossref_primary_10_1111_anu_12453
crossref_primary_10_1111_mec_14533
crossref_primary_10_1017_S000711451600163X
crossref_primary_10_1080_15592294_2019_1699982
crossref_primary_10_1152_ajpregu_00386_2015
crossref_primary_10_1016_j_aquaculture_2017_08_007
crossref_primary_10_1017_S0007114516001252
crossref_primary_10_1007_s11745_014_3939_y
crossref_primary_10_1016_j_fsi_2013_03_363
crossref_primary_10_1371_journal_pone_0159934
crossref_primary_10_3389_fimmu_2023_1222173
crossref_primary_10_1016_j_cbpa_2018_08_008
crossref_primary_10_1016_j_cbpb_2018_12_003
crossref_primary_10_1080_15376516_2016_1177864
crossref_primary_10_1007_s10126_013_9535_y
crossref_primary_10_1007_s10126_014_9577_9
crossref_primary_10_1016_j_cbpb_2014_04_007
crossref_primary_10_1002_lipd_12083
crossref_primary_10_1007_s10126_020_09950_x
crossref_primary_10_1016_j_cbd_2015_07_005
crossref_primary_10_1016_j_aquaculture_2021_737456
crossref_primary_10_1016_j_gene_2015_04_010
crossref_primary_10_1017_S0007114517001842
crossref_primary_10_1371_journal_pone_0106739
crossref_primary_10_1186_s12864_017_4264_7
crossref_primary_10_3390_antiox11020415
crossref_primary_10_1016_j_aqrep_2022_101158
crossref_primary_10_1016_j_aquaculture_2019_04_052
crossref_primary_10_1186_1471_2164_13_470
crossref_primary_10_1007_s10499_023_01144_1
crossref_primary_10_1016_j_aqrep_2020_100424
crossref_primary_10_1016_j_cbpb_2014_10_001
crossref_primary_10_1194_jlr_M019653
crossref_primary_10_1242_jeb_070581
crossref_primary_10_1007_s10126_022_10144_w
crossref_primary_10_3389_fvets_2019_00165
crossref_primary_10_3389_fphys_2019_00454
crossref_primary_10_1002_jsfa_10975
crossref_primary_10_1111_anu_13402
crossref_primary_10_1186_s12864_021_08062_7
crossref_primary_10_1007_s11033_021_06703_4
crossref_primary_10_1111_anu_12436
crossref_primary_10_1016_j_cbd_2018_11_005
crossref_primary_10_1186_s12864_015_1810_z
crossref_primary_10_1016_j_aquaculture_2021_737166
crossref_primary_10_1007_s10499_013_9624_y
crossref_primary_10_1016_j_chemolab_2016_03_028
crossref_primary_10_1007_s10695_017_0433_5
crossref_primary_10_1371_journal_pone_0049903
crossref_primary_10_1007_s11160_024_09852_4
crossref_primary_10_1016_j_cbpb_2011_12_004
crossref_primary_10_1017_S0007114515002731
crossref_primary_10_1186_1471_2164_13_363
crossref_primary_10_1007_s10695_022_01069_1
crossref_primary_10_1016_j_aquaculture_2014_07_005
crossref_primary_10_3389_fmolb_2020_602587
crossref_primary_10_1186_1471_2164_13_448
crossref_primary_10_1038_s41598_020_59691_z
crossref_primary_10_1016_j_bbalip_2015_01_014
crossref_primary_10_1371_journal_pone_0172386
crossref_primary_10_1371_journal_pone_0040266
crossref_primary_10_1016_j_aquaculture_2020_735091
crossref_primary_10_1111_anu_13292
crossref_primary_10_1371_journal_pone_0094046
crossref_primary_10_1186_1471_2164_14_408
crossref_primary_10_1016_j_aqrep_2022_101013
crossref_primary_10_1038_s41598_024_54349_6
crossref_primary_10_1016_j_jprot_2020_103917
crossref_primary_10_1371_journal_pone_0076570
crossref_primary_10_1186_s12864_020_07218_1
crossref_primary_10_1111_anu_12251
crossref_primary_10_1016_j_aquaculture_2020_736073
crossref_primary_10_1016_j_aninu_2022_04_003
crossref_primary_10_1371_journal_pone_0176216
crossref_primary_10_1016_j_aquaculture_2023_739639
crossref_primary_10_1155_anu_9918595
crossref_primary_10_1038_srep08104
crossref_primary_10_1016_j_aqrep_2021_101002
crossref_primary_10_1016_j_aquaculture_2017_11_055
crossref_primary_10_1089_zeb_2012_0823
crossref_primary_10_1007_s10126_015_9624_1
crossref_primary_10_1016_j_aquaculture_2017_06_023
crossref_primary_10_1016_j_aquaculture_2017_01_004
crossref_primary_10_1016_j_aquaculture_2012_12_010
crossref_primary_10_1017_S0007114517002975
crossref_primary_10_3389_fmars_2021_641824
crossref_primary_10_1016_j_aquaculture_2017_05_017
crossref_primary_10_1007_s11745_015_4089_6
crossref_primary_10_1038_s41598_020_73814_6
crossref_primary_10_3389_fphys_2021_732321
crossref_primary_10_1016_j_aqrep_2024_102407
crossref_primary_10_1111_anu_12184
crossref_primary_10_1111_raq_12287
crossref_primary_10_1371_journal_pone_0201462
crossref_primary_10_3389_fmars_2021_784845
crossref_primary_10_3389_fphys_2018_01751
crossref_primary_10_1016_j_aquaculture_2017_06_032
crossref_primary_10_1016_j_aquaculture_2016_06_013
crossref_primary_10_1016_j_cbd_2019_03_004
crossref_primary_10_1111_jfb_13472
crossref_primary_10_2478_aoas_2023_0083
crossref_primary_10_1016_j_aquaculture_2014_03_039
crossref_primary_10_1016_j_aquaculture_2018_10_056
crossref_primary_10_1016_j_cbd_2013_09_002
crossref_primary_10_1016_j_bbalip_2015_12_015
crossref_primary_10_1016_j_dci_2017_02_024
crossref_primary_10_1016_j_fct_2020_111300
crossref_primary_10_1111_anu_12190
crossref_primary_10_1016_j_aqrep_2023_101549
crossref_primary_10_1017_S0007114518001125
crossref_primary_10_1016_j_cbd_2015_01_005
crossref_primary_10_1007_s10695_015_0130_1
Cites_doi 10.1016/S0021-9258(18)64849-5
10.1016/S0163-7827(96)00007-0
10.1152/ajpregu.00766.2007
10.1093/jn/131.4.1129
10.1042/bj3400677
10.1007/s11357-998-0019-3
10.1017/S0007114509992467
10.1093/jn/135.10.2355
10.1016/j.aquaculture.2009.07.028
10.1046/j.1365-2095.2002.00200.x
10.1093/ajcn/83.6.1505S
10.1016/S0141-1136(97)00071-8
10.1017/S0007114500001951
10.1016/j.gene.2008.08.004
10.1201/9781439808634-c15
10.1111/j.1365-2095.2004.00289.x
10.1016/j.aquaculture.2004.02.003
10.1194/jlr.M400335-JLR200
10.1042/bj3330471
10.1007/s11745-005-1355-7
10.1007/s11745-004-1334-z
10.1073/pnas.95.19.11211
10.1016/S0092-8674(00)81208-8
10.1111/j.1365-2095.2007.00455.x
10.1016/j.aquaculture.2009.05.013
10.1079/BJN20061821
10.1124/pr.55.3.5
10.1111/j.1095-8649.2007.01521.x
10.1016/j.bbalip.2010.12.008
10.1146/annurev.nutr.22.121101.112819
10.1111/j.1365-2249.1994.tb06599.x
10.1038/ng1201-365
10.1007/978-90-481-2773-3
10.1016/j.aquaculture.2006.07.018
10.1007/s10126-009-9179-0
10.1016/j.aquaculture.2010.05.021
10.1042/bst0301076
10.1016/j.cbd.2010.04.002
10.1186/1471-2164-9-299
10.1084/jem.185.10.1859
10.1007/0-387-27447-2_4
10.1016/j.ymgme.2007.09.008
10.1016/j.cbpb.2009.02.012
10.1016/j.bbalip.2005.01.006
10.1007/s11745-008-3208-z
10.1016/j.cbpb.2009.06.010
10.1194/jlr.M200195-JLR200
10.1186/1471-2164-9-506
10.1016/j.cbpb.2006.07.012
10.1016/S1096-4959(01)00316-5
10.1016/j.ygcen.2007.05.034
10.1016/j.aquaculture.2008.08.015
10.1016/j.tiv.2008.05.011
10.1016/S0163-7827(99)00012-0
10.1093/nar/30.9.e36
10.1210/en.2004-1638
10.1111/j.1095-8649.2008.01876.x
10.1016/j.amjcard.2005.12.024
10.1152/ajpgi.00376.2001
10.1002/biof.42
10.1016/j.vetpar.2010.09.015
ContentType Journal Article
Copyright COPYRIGHT 2011 BioMed Central Ltd.
Copyright ©2011 Morais et al; licensee BioMed Central Ltd. 2011 Morais et al; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2011 BioMed Central Ltd.
– notice: Copyright ©2011 Morais et al; licensee BioMed Central Ltd. 2011 Morais et al; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
DOA
DOI 10.1186/1471-2164-12-255
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic





MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage 255
ExternalDocumentID oai_doaj_org_article_9d9a9d33a33d4760aa06a1518518e59a
PMC3113789
oai_biomedcentral_com_1471_2164_12_255
A468006134
A258770585
21599965
10_1186_1471_2164_12_255
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GroupedDBID ---
0R~
23N
2VQ
2WC
2XV
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
IPNFZ
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
7X8
-A0
3V.
ABVAZ
ACRMQ
ADINQ
AFGXO
AFNRJ
AIXEN
C24
5PM
PUEGO
ID FETCH-LOGICAL-b689t-25eb60c1a1f1040f1f7e2a879569ac2268e12ce5c0e56b49d496209b96aaec2d3
IEDL.DBID RBZ
ISSN 1471-2164
IngestDate Wed Aug 27 01:20:51 EDT 2025
Thu Aug 21 14:07:56 EDT 2025
Wed May 22 07:17:03 EDT 2024
Mon Jul 21 09:50:34 EDT 2025
Tue Jun 17 21:31:49 EDT 2025
Tue Jun 17 21:37:41 EDT 2025
Tue Jun 10 20:39:39 EDT 2025
Tue Jun 10 20:36:16 EDT 2025
Fri Jun 27 04:37:37 EDT 2025
Mon Jul 21 05:58:28 EDT 2025
Tue Jul 01 02:21:53 EDT 2025
Thu Apr 24 22:58:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://www.springer.com/tdm
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b689t-25eb60c1a1f1040f1f7e2a879569ac2268e12ce5c0e56b49d496209b96aaec2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1186/1471-2164-12-255
PMID 21599965
PQID 871966849
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_9d9a9d33a33d4760aa06a1518518e59a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3113789
biomedcentral_primary_oai_biomedcentral_com_1471_2164_12_255
proquest_miscellaneous_871966849
gale_infotracmisc_A468006134
gale_infotracmisc_A258770585
gale_infotracacademiconefile_A468006134
gale_infotracacademiconefile_A258770585
gale_incontextgauss_ISR_A468006134
pubmed_primary_21599965
crossref_primary_10_1186_1471_2164_12_255
crossref_citationtrail_10_1186_1471_2164_12_255
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-05-20
PublicationDateYYYYMMDD 2011-05-20
PublicationDate_xml – month: 05
  year: 2011
  text: 2011-05-20
  day: 20
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle BMC genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2011
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References X Zheng (3357_CR17) 2005; 1734
National Research Council (NRC) (3357_CR61) 1993
TW Moon (3357_CR36) 2001; 129B
PC Calder (3357_CR1) 2009; 35
GI Hemre (3357_CR37) 2002; 8
PA Olsvik (3357_CR68) 2007; 71
A Collin (3357_CR59) 2009; 153
N Richard (3357_CR22) 2006; 96
RH Lawrence (3357_CR54) 1994; 98
MJ Leaver (3357_CR6) 2011; 6
C Tang (3357_CR33) 2003; 44
R Jasinska (3357_CR57) 1999; 340
FAO (3357_CR2) 2009
A Saera-Vila (3357_CR45) 2009; 296
J Folch (3357_CR63) 1957; 226
SD Clarke (3357_CR30) 2001; 131
CJ Barnes (3357_CR48) 1998; 21
JG Bell (3357_CR60) 2010; 306
M Minghetti (3357_CR23) 2011; 1811
MJ Leaver (3357_CR25) 2005; 146
L Dircks (3357_CR56) 1999; 38
S Valitutti (3357_CR55) 1997; 185
A Oxley (3357_CR52) 2010; 103
FW Allendorf (3357_CR13) 1984
PC Calder (3357_CR50) 2006; 83
X Zheng (3357_CR34) 2009; 154
EF Finne (3357_CR46) 2008; 22
AGJ Tacon (3357_CR3) 2008; 285
3357_CR12
BE Torstensen (3357_CR21) 2004; 10
Y Wang (3357_CR32) 2005; 46
A-EO Jordal (3357_CR28) 2007; 13
MA Kjær (3357_CR27) 2008; 43
X Zheng (3357_CR16) 2004; 236
MH Davidson (3357_CR18) 2006; 98
C Kolditz (3357_CR8) 2008; 294
I Estensoro (3357_CR51) 2011; 175
DB Jump (3357_CR29) 1996; 35
T Gjedrem (3357_CR5) 2009
WW Christie (3357_CR64) 2003
H Kim (3357_CR19) 2003; 36
MW Pfaffl (3357_CR65) 2002; 30
RJ McMahon (3357_CR40) 2002; 22
MJ Leaver (3357_CR14) 2008; 9
M Takahashi (3357_CR44) 2002; 282
M Delcommenne (3357_CR42) 1998; 95
EJ Kleveland (3357_CR67) 2006; 145
S Panserat (3357_CR11) 2009; 294
MJ Alvarez (3357_CR20) 2000; 84
ML Tsai (3357_CR58) 2008; 425
S Morais (3357_CR15) 2009; 1
MJ Leaver (3357_CR47) 1998; 46
X Zheng (3357_CR66) 2005; 40
MT Nakamura (3357_CR31) 2002; 30
G Sriram (3357_CR39) 2008; 93
MJI Paine (3357_CR35) 2005
CI Kolditz (3357_CR7) 2008; 9
E Boukouvala (3357_CR24) 2004; 39
C Yost (3357_CR43) 1998; 93
FA Wagener (3357_CR49) 2003; 55
AE Jordal (3357_CR9) 2005; 135
D Menoyo (3357_CR38) 2006; 261
H Kondo (3357_CR26) 2007; 154
JB Taggart (3357_CR10) 2008; 72
G Rosenlund (3357_CR4) 2010
JM Boggs (3357_CR53) 1991; 73
PR Shepherd (3357_CR41) 1998; 333
A Brazma (3357_CR62) 2001; 29
17632107 - Gen Comp Endocrinol. 2007 Oct-Dec;154(1-3):120-7
11399456 - Comp Biochem Physiol B Biochem Mol Biol. 2001 Jun;129(2-3):243-9
11285313 - J Nutr. 2001 Apr;131(4):1129-32
12440976 - Biochem Soc Trans. 2002 Nov;30(Pt 6):1076-9
19258045 - Comp Biochem Physiol B Biochem Mol Biol. 2009 Jun;153(2):171-7
16971150 - Comp Biochem Physiol B Biochem Mol Biol. 2006 Oct;145(2):239-48
12055344 - Annu Rev Nutr. 2002;22:221-39
21193059 - Biochim Biophys Acta. 2011 Mar;1811(3):194-202
21736795 - Br J Nutr. 2011 Nov;106(10):1457-69
16177195 - J Nutr. 2005 Oct;135(10):2355-61
1649125 - Immunology. 1991 Jun;73(2):212-6
9736715 - Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11211-6
11177174 - Br J Nutr. 2000 Nov;84(5):619-28
12787479 - J Biochem Mol Biol. 2003 May 31;36(3):258-64
18615261 - Lipids. 2008 Sep;43(9):813-27
13428781 - J Biol Chem. 1957 May;226(1):497-509
19391122 - Biofactors. 2009 May-Jun;35(3):266-72
19563904 - Comp Biochem Physiol B Biochem Mol Biol. 2009 Nov;154(3):255-63
9677303 - Biochem J. 1998 Aug 1;333 ( Pt 3):471-90
12562861 - J Lipid Res. 2003 Apr;44(4):686-95
10793891 - Prog Lipid Res. 1999 Sep-Nov;38(5-6):461-79
19125201 - J Fish Biol. 2008 Jun;72(9):2071-2094
18234747 - Am J Physiol Regul Integr Comp Physiol. 2008 Apr;294(4):R1154-64
18959775 - BMC Genomics. 2008;9:506
18762234 - Gene. 2008 Dec 1;425(1-2):69-78
11972351 - Nucleic Acids Res. 2002 May 1;30(9):e36
16841861 - Am J Clin Nutr. 2006 Jun;83(6 Suppl):1505S-1519S
16919514 - Am J Cardiol. 2006 Aug 21;98(4A):27i-33i
15866479 - Biochim Biophys Acta. 2005 May 1;1734(1):13-24
7923869 - Clin Exp Immunol. 1994 Oct;98(1):12-6
10359651 - Biochem J. 1999 Jun 15;340 ( Pt 3):677-86
23604370 - Age (Omaha). 1998 Jul;21(3):123-8
15654130 - J Lipid Res. 2005 Apr;46(4):706-15
20451480 - Comp Biochem Physiol Part D Genomics Proteomics. 2011 Mar;6(1):62-9
9151711 - J Exp Med. 1997 May 19;185(10):1859-64
12869663 - Pharmacol Rev. 2003 Sep;55(3):551-71
9082451 - Prog Lipid Res. 1996 Sep;35(3):227-41
16923224 - Br J Nutr. 2006 Aug;96(2):299-309
18577222 - BMC Genomics. 2008;9:299
9635432 - Cell. 1998 Jun 12;93(6):1031-41
11804856 - Am J Physiol Gastrointest Liver Physiol. 2002 Feb;282(2):G338-48
19943982 - Br J Nutr. 2010 Mar;103(6):851-61
15825826 - Lipids. 2005 Jan;40(1):13-24
15726823 - Lipids. 2004 Nov;39(11):1085-92
15790725 - Endocrinology. 2005 Jul;146(7):3150-62
18029214 - Mol Genet Metab. 2008 Feb;93(2):145-59
19184219 - Mar Biotechnol (NY). 2009 Sep-Oct;11(5):627-39
18603400 - Toxicol In Vitro. 2008 Sep;22(6):1657-61
11726920 - Nat Genet. 2001 Dec;29(4):365-71
20947256 - Vet Parasitol. 2011 Jan 10;175(1-2):141-50
References_xml – ident: 3357_CR12
– volume: 226
  start-page: 497
  year: 1957
  ident: 3357_CR63
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)64849-5
– volume-title: The State of World Fisheries and Aquaculture 2008
  year: 2009
  ident: 3357_CR2
– volume: 35
  start-page: 227
  year: 1996
  ident: 3357_CR29
  publication-title: Prog Lipid Res
  doi: 10.1016/S0163-7827(96)00007-0
– volume: 294
  start-page: R1154
  year: 2008
  ident: 3357_CR8
  publication-title: Am J Physiol Regul Integr Comp Physiol
  doi: 10.1152/ajpregu.00766.2007
– volume: 131
  start-page: 1129
  year: 2001
  ident: 3357_CR30
  publication-title: J Nutr
  doi: 10.1093/jn/131.4.1129
– volume: 340
  start-page: 677
  year: 1999
  ident: 3357_CR57
  publication-title: Biochem J
  doi: 10.1042/bj3400677
– volume: 21
  start-page: 123
  year: 1998
  ident: 3357_CR48
  publication-title: Age
  doi: 10.1007/s11357-998-0019-3
– volume: 103
  start-page: 851
  year: 2010
  ident: 3357_CR52
  publication-title: Br J Nutr
  doi: 10.1017/S0007114509992467
– volume: 135
  start-page: 2355
  year: 2005
  ident: 3357_CR9
  publication-title: J Nutr
  doi: 10.1093/jn/135.10.2355
– volume: 296
  start-page: 87
  year: 2009
  ident: 3357_CR45
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2009.07.028
– volume: 8
  start-page: 175
  year: 2002
  ident: 3357_CR37
  publication-title: Aquac Nutr
  doi: 10.1046/j.1365-2095.2002.00200.x
– volume: 83
  start-page: 1505S
  issue: 6 Suppl
  year: 2006
  ident: 3357_CR50
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/83.6.1505S
– volume: 46
  start-page: 71
  year: 1998
  ident: 3357_CR47
  publication-title: Mar Environ Res
  doi: 10.1016/S0141-1136(97)00071-8
– volume: 84
  start-page: 619
  year: 2000
  ident: 3357_CR20
  publication-title: Br J Nutr
  doi: 10.1017/S0007114500001951
– volume: 425
  start-page: 69
  year: 2008
  ident: 3357_CR58
  publication-title: Gene
  doi: 10.1016/j.gene.2008.08.004
– start-page: 487
  volume-title: Fish Oil Replacement and Alternative Lipid Sources in Aquaculture Feeds
  year: 2010
  ident: 3357_CR4
  doi: 10.1201/9781439808634-c15
– volume: 10
  start-page: 175
  year: 2004
  ident: 3357_CR21
  publication-title: Aquacult Nutr
  doi: 10.1111/j.1365-2095.2004.00289.x
– volume: 73
  start-page: 212
  year: 1991
  ident: 3357_CR53
  publication-title: Immunology
– volume: 236
  start-page: 467
  year: 2004
  ident: 3357_CR16
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2004.02.003
– volume: 46
  start-page: 706
  year: 2005
  ident: 3357_CR32
  publication-title: J Lipid Res
  doi: 10.1194/jlr.M400335-JLR200
– volume: 333
  start-page: 471
  year: 1998
  ident: 3357_CR41
  publication-title: Biochem J
  doi: 10.1042/bj3330471
– volume: 40
  start-page: 13
  year: 2005
  ident: 3357_CR66
  publication-title: Lipids
  doi: 10.1007/s11745-005-1355-7
– volume: 39
  start-page: 1085
  year: 2004
  ident: 3357_CR24
  publication-title: Lipids
  doi: 10.1007/s11745-004-1334-z
– volume: 95
  start-page: 11211
  year: 1998
  ident: 3357_CR42
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.19.11211
– volume: 93
  start-page: 1031
  year: 1998
  ident: 3357_CR43
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81208-8
– volume: 13
  start-page: 114
  year: 2007
  ident: 3357_CR28
  publication-title: Aquacult Nutr
  doi: 10.1111/j.1365-2095.2007.00455.x
– volume: 294
  start-page: 123
  year: 2009
  ident: 3357_CR11
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2009.05.013
– volume: 96
  start-page: 299
  year: 2006
  ident: 3357_CR22
  publication-title: Br J Nutr
  doi: 10.1079/BJN20061821
– start-page: 55
  volume-title: Evolutionary Genetics of Fishes
  year: 1984
  ident: 3357_CR13
– volume: 55
  start-page: 551
  year: 2003
  ident: 3357_CR49
  publication-title: Pharmacol Rev
  doi: 10.1124/pr.55.3.5
– volume: 71
  start-page: 550
  year: 2007
  ident: 3357_CR68
  publication-title: J Fish Biol
  doi: 10.1111/j.1095-8649.2007.01521.x
– volume: 1811
  start-page: 194
  year: 2011
  ident: 3357_CR23
  publication-title: Biochim Biophys Acta Molecular and Cell Biology of Lipids
  doi: 10.1016/j.bbalip.2010.12.008
– volume: 36
  start-page: 258
  year: 2003
  ident: 3357_CR19
  publication-title: J Biochem Mol Biol
– volume: 22
  start-page: 221
  year: 2002
  ident: 3357_CR40
  publication-title: Annu Rev Nutr
  doi: 10.1146/annurev.nutr.22.121101.112819
– volume: 98
  start-page: 12
  year: 1994
  ident: 3357_CR54
  publication-title: Clin Exp Immunol
  doi: 10.1111/j.1365-2249.1994.tb06599.x
– volume: 29
  start-page: 365
  year: 2001
  ident: 3357_CR62
  publication-title: Nat Genet
  doi: 10.1038/ng1201-365
– volume-title: Selective Breeding in Aquaculture: an Introduction
  year: 2009
  ident: 3357_CR5
  doi: 10.1007/978-90-481-2773-3
– volume: 261
  start-page: 294
  year: 2006
  ident: 3357_CR38
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2006.07.018
– volume: 1
  start-page: 627
  year: 2009
  ident: 3357_CR15
  publication-title: Mar Biotechnol
  doi: 10.1007/s10126-009-9179-0
– volume: 306
  start-page: 225
  year: 2010
  ident: 3357_CR60
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2010.05.021
– volume: 30
  start-page: 1076
  year: 2002
  ident: 3357_CR31
  publication-title: Biochem Soc Trans
  doi: 10.1042/bst0301076
– volume: 6
  start-page: 62
  year: 2011
  ident: 3357_CR6
  publication-title: Comp Biochem Physiol Part D Genomics Proteomics
  doi: 10.1016/j.cbd.2010.04.002
– volume: 9
  start-page: 299
  year: 2008
  ident: 3357_CR14
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-9-299
– volume: 185
  start-page: 1859
  year: 1997
  ident: 3357_CR55
  publication-title: J Exp Med
  doi: 10.1084/jem.185.10.1859
– start-page: 115
  volume-title: Cytochrome P450: structure, mechanism and biochemistry
  year: 2005
  ident: 3357_CR35
  doi: 10.1007/0-387-27447-2_4
– volume: 93
  start-page: 145
  year: 2008
  ident: 3357_CR39
  publication-title: Mol Genet Metab
  doi: 10.1016/j.ymgme.2007.09.008
– volume: 153
  start-page: 171
  year: 2009
  ident: 3357_CR59
  publication-title: Comp Biochem Physiol B Biochem Mol Biol
  doi: 10.1016/j.cbpb.2009.02.012
– volume: 1734
  start-page: 13
  year: 2005
  ident: 3357_CR17
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbalip.2005.01.006
– volume: 43
  start-page: 813
  year: 2008
  ident: 3357_CR27
  publication-title: Lipids
  doi: 10.1007/s11745-008-3208-z
– volume: 154
  start-page: 255
  year: 2009
  ident: 3357_CR34
  publication-title: Comp Biochem Physiol B Biochem Mol Biol
  doi: 10.1016/j.cbpb.2009.06.010
– volume: 44
  start-page: 686
  year: 2003
  ident: 3357_CR33
  publication-title: J Lipid Res
  doi: 10.1194/jlr.M200195-JLR200
– volume: 9
  start-page: 506
  year: 2008
  ident: 3357_CR7
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-9-506
– volume: 145
  start-page: 239
  year: 2006
  ident: 3357_CR67
  publication-title: Comp Biochem Physiol B Biochem Mol Biol
  doi: 10.1016/j.cbpb.2006.07.012
– volume: 129B
  start-page: 243
  year: 2001
  ident: 3357_CR36
  publication-title: Comp Biochem Physiol
  doi: 10.1016/S1096-4959(01)00316-5
– volume: 154
  start-page: 120
  year: 2007
  ident: 3357_CR26
  publication-title: Gen Comp Endocrinol
  doi: 10.1016/j.ygcen.2007.05.034
– volume: 285
  start-page: 146
  year: 2008
  ident: 3357_CR3
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2008.08.015
– volume: 22
  start-page: 1657
  year: 2008
  ident: 3357_CR46
  publication-title: Toxicol In Vitro
  doi: 10.1016/j.tiv.2008.05.011
– volume: 38
  start-page: 461
  year: 1999
  ident: 3357_CR56
  publication-title: Prog Lipid Res
  doi: 10.1016/S0163-7827(99)00012-0
– volume: 30
  start-page: e36
  year: 2002
  ident: 3357_CR65
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.9.e36
– volume: 146
  start-page: 3150
  year: 2005
  ident: 3357_CR25
  publication-title: Endocrinology
  doi: 10.1210/en.2004-1638
– volume: 72
  start-page: 2071
  year: 2008
  ident: 3357_CR10
  publication-title: J Fish Biol
  doi: 10.1111/j.1095-8649.2008.01876.x
– volume: 98
  start-page: 27i
  year: 2006
  ident: 3357_CR18
  publication-title: Am J Cardiol
  doi: 10.1016/j.amjcard.2005.12.024
– volume: 282
  start-page: G338
  year: 2002
  ident: 3357_CR44
  publication-title: Am J Physiol Gastrointest Liver Physiol
  doi: 10.1152/ajpgi.00376.2001
– volume-title: Nutrient Requirements of Fish
  year: 1993
  ident: 3357_CR61
– volume: 35
  start-page: 266
  year: 2009
  ident: 3357_CR1
  publication-title: BioFactors
  doi: 10.1002/biof.42
– volume: 175
  start-page: 141
  year: 2011
  ident: 3357_CR51
  publication-title: Vet Parasitol
  doi: 10.1016/j.vetpar.2010.09.015
– volume-title: Lipid analysis
  year: 2003
  ident: 3357_CR64
– reference: 20947256 - Vet Parasitol. 2011 Jan 10;175(1-2):141-50
– reference: 16971150 - Comp Biochem Physiol B Biochem Mol Biol. 2006 Oct;145(2):239-48
– reference: 7923869 - Clin Exp Immunol. 1994 Oct;98(1):12-6
– reference: 9151711 - J Exp Med. 1997 May 19;185(10):1859-64
– reference: 10793891 - Prog Lipid Res. 1999 Sep-Nov;38(5-6):461-79
– reference: 21193059 - Biochim Biophys Acta. 2011 Mar;1811(3):194-202
– reference: 15726823 - Lipids. 2004 Nov;39(11):1085-92
– reference: 12440976 - Biochem Soc Trans. 2002 Nov;30(Pt 6):1076-9
– reference: 1649125 - Immunology. 1991 Jun;73(2):212-6
– reference: 17632107 - Gen Comp Endocrinol. 2007 Oct-Dec;154(1-3):120-7
– reference: 19943982 - Br J Nutr. 2010 Mar;103(6):851-61
– reference: 19125201 - J Fish Biol. 2008 Jun;72(9):2071-2094
– reference: 12787479 - J Biochem Mol Biol. 2003 May 31;36(3):258-64
– reference: 9635432 - Cell. 1998 Jun 12;93(6):1031-41
– reference: 15825826 - Lipids. 2005 Jan;40(1):13-24
– reference: 19184219 - Mar Biotechnol (NY). 2009 Sep-Oct;11(5):627-39
– reference: 9082451 - Prog Lipid Res. 1996 Sep;35(3):227-41
– reference: 11177174 - Br J Nutr. 2000 Nov;84(5):619-28
– reference: 18029214 - Mol Genet Metab. 2008 Feb;93(2):145-59
– reference: 19563904 - Comp Biochem Physiol B Biochem Mol Biol. 2009 Nov;154(3):255-63
– reference: 11399456 - Comp Biochem Physiol B Biochem Mol Biol. 2001 Jun;129(2-3):243-9
– reference: 9736715 - Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11211-6
– reference: 12055344 - Annu Rev Nutr. 2002;22:221-39
– reference: 18615261 - Lipids. 2008 Sep;43(9):813-27
– reference: 19391122 - Biofactors. 2009 May-Jun;35(3):266-72
– reference: 15866479 - Biochim Biophys Acta. 2005 May 1;1734(1):13-24
– reference: 15654130 - J Lipid Res. 2005 Apr;46(4):706-15
– reference: 23604370 - Age (Omaha). 1998 Jul;21(3):123-8
– reference: 12562861 - J Lipid Res. 2003 Apr;44(4):686-95
– reference: 10359651 - Biochem J. 1999 Jun 15;340 ( Pt 3):677-86
– reference: 13428781 - J Biol Chem. 1957 May;226(1):497-509
– reference: 18603400 - Toxicol In Vitro. 2008 Sep;22(6):1657-61
– reference: 11285313 - J Nutr. 2001 Apr;131(4):1129-32
– reference: 18577222 - BMC Genomics. 2008;9:299
– reference: 11726920 - Nat Genet. 2001 Dec;29(4):365-71
– reference: 11972351 - Nucleic Acids Res. 2002 May 1;30(9):e36
– reference: 19258045 - Comp Biochem Physiol B Biochem Mol Biol. 2009 Jun;153(2):171-7
– reference: 20451480 - Comp Biochem Physiol Part D Genomics Proteomics. 2011 Mar;6(1):62-9
– reference: 9677303 - Biochem J. 1998 Aug 1;333 ( Pt 3):471-90
– reference: 16841861 - Am J Clin Nutr. 2006 Jun;83(6 Suppl):1505S-1519S
– reference: 16923224 - Br J Nutr. 2006 Aug;96(2):299-309
– reference: 18762234 - Gene. 2008 Dec 1;425(1-2):69-78
– reference: 18234747 - Am J Physiol Regul Integr Comp Physiol. 2008 Apr;294(4):R1154-64
– reference: 16177195 - J Nutr. 2005 Oct;135(10):2355-61
– reference: 15790725 - Endocrinology. 2005 Jul;146(7):3150-62
– reference: 16919514 - Am J Cardiol. 2006 Aug 21;98(4A):27i-33i
– reference: 11804856 - Am J Physiol Gastrointest Liver Physiol. 2002 Feb;282(2):G338-48
– reference: 18959775 - BMC Genomics. 2008;9:506
– reference: 12869663 - Pharmacol Rev. 2003 Sep;55(3):551-71
– reference: 21736795 - Br J Nutr. 2011 Nov;106(10):1457-69
SSID ssj0017825
Score 2.4013014
Snippet Expansion of aquaculture is seriously limited by reductions in fish oil (FO) supply for aquafeeds. Terrestrial alternatives such as vegetable oils (VO) have...
Background Expansion of aquaculture is seriously limited by reductions in fish oil (FO) supply for aquafeeds. Terrestrial alternatives such as vegetable oils...
BACKGROUND: Expansion of aquaculture is seriously limited by reductions in fish oil (FO) supply for aquafeeds. Terrestrial alternatives such as vegetable oils...
Abstract Background Expansion of aquaculture is seriously limited by reductions in fish oil (FO) supply for aquafeeds. Terrestrial alternatives such as...
SourceID doaj
pubmedcentral
biomedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 255
SubjectTerms Animals
Atlantic salmon
Dietary Fats, Unsaturated - pharmacology
Evolution, Molecular
Fatty Acids - metabolism
Fish Oils - pharmacology
Gene expression
Gene Expression Profiling
Genetic aspects
Genotype
Lipid Metabolism - drug effects
Lipid Metabolism - genetics
Liver - drug effects
Liver - metabolism
Oligonucleotide Array Sequence Analysis
Physiological aspects
Plant Oils - pharmacology
Polymerase chain reaction
Reverse Transcriptase Polymerase Chain Reaction
Salmo salar - genetics
Salmo salar - metabolism
Salmon
Selection, Genetic
Transcription (Genetics)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1di9QwMMiB4Iv47Z6nBBH0Hsq2SZsP8WUVz1PQB8-DewtJk94tlFa2XWH_iL_Xmba7bPDkXnwqzcdsd2aSmUnmg5BXIecycJ4nTHiW5F6ERFXo7OAlzz0IRDck0_n6TZye518uiou9Ul_oEzamBx4RN9deW-05t5z7XIrU2lRYEFOgKahQ6EE1Apm3Naam-wOQe8UQVySzhIFFsL2gVGK-a0OnBIYhflGkex0JqCGP_9-79Z64il0p92TTyT1yd1Iq6WL8M_fJrdA8ILfHMpObh-T3p9C0eNaaYFwl-gbR1egaGzq6bOiirwG_0NrZGriSvjnDJ77Z1THt1g7PamjfUr8MvV1taLXsrmi7rAHM4NOFJ4zUbeivcAkDXB2w8y21tEavD9qjPBx2JwyBpnbKg_KInJ98_PHhNJnqMSROKN0DsoITaZnZrAIjLq2ySgZmsVq50LYEPU6FjJWhKNNQCJdrn2sBtHFaWBtK5vljctC0TXhKqABIQjMPypoCFc476VhZSMv8QOdqRt5FRDE_x9wbBrNhxz2wMA3S1CBNTcYM0HRG5lsamnLKdY4lN2oz2DxKXDPjeDdj-1v_Hvse2SL6pqEB-NZMfGtu4tsZeYlMZTAHR4NOPpd23XXm89l3s8iFQtWS5zPyehpUtfD9pZ1iJgCJmLbLLFihpEzB5Ltx5B7Mo2gkbCdlBOi67r3ZdLsIDHahi14T2nVnwPIG01nlekaejGtihyBQK9GuBtgyWi0RBuOeZnk15DrnWcal0of_A-XPyJ3xRqAA2XBEDvrVOjwHlbJ3L4bd4w8-jnFS
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA96Ivgifrt6ShBBfKjXJmk-RJFVPE_hfFAX7i2kTbq3UFrddsX9D_yznWm7d1td0ddmku3OR-Y36cyEkMdBcBU4FxGTnkXCyxDpApMdvOLCg0PMumY6xx_l0Ux8OElPzsujBwY2O0M7vE9qtiyf_fi2fgUG_7IzeC0PEthgIwa4H9MMACJfJJfALyk002Nx_k0BfGHa1RoN1JuPljtW-K36vRw5ra63_587-JYLG6dXbvmrw2vk6gA06bTXjOvkQqhukMv91ZPrm-Tnu1DVeP4aYa0l5gvRZZ8uGxq6qOi0LYHn8LRxJWgqbVYZntjQtqZ-EVq3XNNi0ZzSelHCxC6zC88Zabam38McCLIy4OBz6miJuR-0Ra_Y7VFYCE3d0A3lFpkdvv3y5igabmWIMqlNC-wJmYzzxCUFhHJxkRQqMId3lkvjckBzOiQsD2keh1RmwnhhJItNZqRzIWee3yZ7VV2Fu4RKWEka5gGyaQByPlMZy1PlmHece1FMyIuRGOzXvgOHxZ7Y4xEwT4tStChFmzALUpyQg43UbD50PMeLN0rbRT5a7pjx9GzG5rf-TvsaFWH0Tt2Dejm3g9lb440znvPu_ygZOxdLByALcK4OqXET8gjVyGInjgpTfeZu1TT2_edPdiqkRoDJxYQ8GYiKGt4_d0PlBDARm3fZKUu1UjEEfv-k3Fpzf0QJm0o-WmjX8NZsulF7i0OYqFeFetVYiL8hgNbCTMid3grOGATgEqNrWFuN7GPEwfFItTjtOp7zJOFKm3v_zYj75Ep_-J-CG9gne-1yFR4Aemyzh92m8AvPe2t5
  priority: 102
  providerName: Scholars Portal
Title Genotype-specific responses in Atlantic salmon (Salmo salar) subject to dietary fish oil replacement by vegetable oil: a liver transcriptomic analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/21599965
https://www.proquest.com/docview/871966849
http://dx.doi.org/10.1186/1471-2164-12-255
https://pubmed.ncbi.nlm.nih.gov/PMC3113789
https://doaj.org/article/9d9a9d33a33d4760aa06a1518518e59a
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYJiReEN8rjMpCSLCHaInj-APx0qKNgbQJbUyqeLGc2NkqRQlqUqT-I_y93KVpaUYRD7ykSny-pD777nf2-UzIa89j6eOYB0w4FnAnfKByDHZwMuYODGLaJtM5OxenV_zzJJn8TpNzawU_UuIoAvUZMED1GEQAAHiH7DEOdhA98_G39YoBWLqk3UnUUa-WJLdwuLW3veiZpDZz_5_6ecNA9YMnN6zRyQNyv4ORdLSU-0Nyx5ePyN3lwZKLx-TnR19WOLsa4E5KjAais2UwrK_ptKSjpoAWhae1LaAf0reX-It3dnZI63mKszO0qaib-sbOFjSf1je0mhbApo3iwjlFmi7oD38NBGnhsfAdtbTAOA_aoAVs9RFueqa2y3zyhFydHH_9cBp0JzAEqVC6gcbyqQizyEY5uG1hHuXSM4vnkwttM0Buykcs80kW-kSkXDuuBQt1qoW1PmMufkp2y6r0-4QK4CQ0cwDPFIA2l8qUZYm0zNk4djwfkPc9oZjvy2wbBvNf90tgKBqUqUGZmogZkOmAHK1kaLIuuzkeslGY1stRYkuNw3WN1bv-TjvGbtH7pvYBdFTTDXGjnbbaxXH7f6QIrQ2FBUAFmFb5RNsBeYWdymDWjRLDeq7tvK7Np8sLM-JCIZiM-YC86YjyCr4_s90uCWhETNRlRixRUobg5P2TcoPnQY8SFEjWY7SteKM2XQ0Cg0UYlFf6al4b8LXBWVZcD8iz5ZhYNxAASfSkgbfsjZZeC_ZLyulNm908jqJYKv38__rDC3JvOfufgB04ILvNbO5fAnxs0iHZkRM5JHvj4_MvF8N2EgauZ1wNW43yCyckbug
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQw0CpFCC6INwsFLIQEPYQmdmLHiMsW0W6h7aEPqeJiObGzjZQmaJNF2h_he5lJsqsNFHHgtNp4PIk943nYM2NC3riQS8d56DFhmRda4bw4w2AHK3loQSEmbTGdo2MxOQ-_XEQXG2R_mQuTXKVYnPQqT-v36wnoRSu1l8Fi3VqPxU4AstVjYPJjhAFYxzfITRlFEq8yONn9tjpOADUYtWlGPfTyvPIaDL8lvhcDfdWW9f9TeK9pr2Fk5Zqq2rtH7vY2Jh13w7hPNlz5gNzqbp1cPCQ_92HouPXqYZolhgrRWRcp62qal3TcFDDd8LQ2BTApfXeKv_jPzLZpPU9w64Y2FbW5a8xsQbO8vqRVXgCaNsQLNxxpsqA_3BQAksJh4wdqaIFBILRB9dgKKyQANX1ZlEfkfO_z2aeJ11_P4CUiVg1MlkuEnwYmyMCn87Mgk44ZvLxcKJOCWRe7gKUuSn0XiSRUNlSC-SpRwhiXMssfk82yKt1TQgVgEopZsN1isOhsIhOWRtIwazi3YTYiHwdE0d-7Uhwai2MPW4BNNNJUI011wDTQdER2ljTUaV_6HG_gKHTrAsXimh7bqx7Ld_0ddhfZYvBN7YNqNtU9x2pllVGW83Y8UvjG-MKAtQUGb-wiZUbkNTKVxpIcJcb8TM28rvXB6YkehyJGS5OHI_K2B8oq-P7U9CkUMIlYxUuPWRRL6YMH-E_INZxbA0iQLukA0XXNa73pchFobMKIvdJV81qDIw6edByqEXnSrYnVBIGViW424JaD1TKYwWFLmV-2pc95EHAZq2f_xw-vyO3J2dGhPjw4_vqc3OmOCSJQGFtks5nN3QuwM5vkZStDfgF0qHlf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw0BpDIF4Q3xQGWAgJ9hCa2IkTI146oHR8TGhj0sSLZcdOF5GlU5Mi9Y_we7lL0qqBIR54ahtfLo3v2747E_LMhTx2nIceE5Z5oRXOSzJMdrAxDy0YRNM00_l8ICbH4YeT6GSLTFa1MOYsxeakZ3lavdwsQC8arQ1f0u_Dc5u1wp6IYQDK1WPg82OKAbjHl8jlOIpiFNHDvW_r_QSwg1FTZ9RBrzYsL8DwW-V70TNYTV__P7X3hvnqp1Zu2KrxDXK9czLpqOWKm2TLlbfIlfbYyeVt8vM9vDuuvXpYZ4m5QnTepsq6iuYlHdUFzDdcrXQBXEpfHOEn_tLzXVotDK7d0HpGbe5qPV_SLK9O6SwvAE2T44UrjtQs6Q83BQBTOBx8RTUtMAuE1mgfG22FFKC664tyhxyP3319M_G68xk8IxJZw2Q5I_w00EEGQZ2fBVnsmMbTy4XUKfh1iQtY6qLUd5EwobShFMyXRgqtXcosv0u2y1np7hMqAJOQzILzloBLZ01sWBrFmlnNuQ2zAXndI4o6b3txKOyO3R8BPlFIU4U0VQFTQNMBGa5oqNKu9zkewVGoJgZKxAV37K7vWD3r77B7yBa9_9RcmM2nqlMASlqppeW8eZ9Y-Fr7QoO7BR5v4iKpB-QpMpXCnhwlJv1M9aKq1P7RoRqFIkFXk4cD8rwDymYoC7qroYBJxDZeasSiJI59CAH_CbmBc6cHCeol7SG6aHjjbroSAoVDmLJXutmiUhCJQyidhHJA7rUysZ4gcDMxzgbccU9aejPYHynz06b3OQ8CHifywf_xwxNy9cvbsfq0f_DxIbnWbhNEYDB2yHY9X7hH4GfW5nGjQn4Bv_d5Kg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genotype-specific+responses+in+Atlantic+salmon+subject+to+dietary+fish+oil+replacement+by+vegetable+oil%3A+a+liver+transcriptomic+analysis&rft.jtitle=BMC+genomics&rft.au=Morais%2C+Sofia&rft.au=Pratoomyot%2C+Jarunan&rft.au=Taggart%2C+John+B&rft.au=Bron%2C+James+E&rft.date=2011-05-20&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=12&rft.spage=255&rft_id=info:doi/10.1186%2F1471-2164-12-255&rft.externalDocID=A258770585
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon