Profiling the venom gland transcriptomes of Costa Rican snakes by 454 pyrosequencing

A long term research goal of venomics, of applied importance for improving current antivenom therapy, but also for drug discovery, is to understand the pharmacological potential of venoms. Individually or combined, proteomic and transcriptomic studies have demonstrated their feasibility to explore i...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 12; no. 1; p. 259
Main Authors Durban, Jordi, Juárez, Paula, Angulo, Yamileth, Lomonte, Bruno, Flores-Diaz, Marietta, Alape-Girón, Alberto, Sasa, Mahmood, Sanz, Libia, Gutiérrez, José M, Dopazo, Joaquín, Conesa, Ana, Calvete, Juan J
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 23.05.2011
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A long term research goal of venomics, of applied importance for improving current antivenom therapy, but also for drug discovery, is to understand the pharmacological potential of venoms. Individually or combined, proteomic and transcriptomic studies have demonstrated their feasibility to explore in depth the molecular diversity of venoms. In the absence of genome sequence, transcriptomes represent also valuable searchable databases for proteomic projects. The venom gland transcriptomes of 8 Costa Rican taxa from 5 genera (Crotalus, Bothrops, Atropoides, Cerrophidion, and Bothriechis) of pitvipers were investigated using high-throughput 454 pyrosequencing. 100,394 out of 330,010 masked reads produced significant hits in the available databases. 5.165,220 nucleotides (8.27%) were masked by RepeatMasker, the vast majority of which corresponding to class I (retroelements) and class II (DNA transposons) mobile elements. BLAST hits included 79,991 matches to entries of the taxonomic suborder Serpentes, of which 62,433 displayed similarity to documented venom proteins. Strong discrepancies between the transcriptome-computed and the proteome-gathered toxin compositions were obvious at first sight. Although the reasons underlaying this discrepancy are elusive, since no clear trend within or between species is apparent, the data indicate that individual mRNA species may be translationally controlled in a species-dependent manner. The minimum number of genes from each toxin family transcribed into the venom gland transcriptome of each species was calculated from multiple alignments of reads matched to a full-length reference sequence of each toxin family. Reads encoding ORF regions of Kazal-type inhibitor-like proteins were uniquely found in Bothriechis schlegelii and B. lateralis transcriptomes, suggesting a genus-specific recruitment event during the early-Middle Miocene. A transcriptome-based cladogram supports the large divergence between A. mexicanus and A. picadoi, and a closer kinship between A. mexicanus and C. godmani. Our comparative next-generation sequencing (NGS) analysis reveals taxon-specific trends governing the formulation of the venom arsenal. Knowledge of the venom proteome provides hints on the translation efficiency of toxin-coding transcripts, contributing thereby to a more accurate interpretation of the transcriptome. The application of NGS to the analysis of snake venom transcriptomes, may represent the tool for opening the door to systems venomics.
AbstractList A long term research goal of venomics, of applied importance for improving current antivenom therapy, but also for drug discovery, is to understand the pharmacological potential of venoms. Individually or combined, proteomic and transcriptomic studies have demonstrated their feasibility to explore in depth the molecular diversity of venoms. In the absence of genome sequence, transcriptomes represent also valuable searchable databases for proteomic projects. The venom gland transcriptomes of 8 Costa Rican taxa from 5 genera (Crotalus, Bothrops, Atropoides, Cerrophidion, and Bothriechis) of pitvipers were investigated using high-throughput 454 pyrosequencing. 100,394 out of 330,010 masked reads produced significant hits in the available databases. 5.165,220 nucleotides (8.27%) were masked by RepeatMasker, the vast majority of which corresponding to class I (retroelements) and class II (DNA transposons) mobile elements. BLAST hits included 79,991 matches to entries of the taxonomic suborder Serpentes, of which 62,433 displayed similarity to documented venom proteins. Strong discrepancies between the transcriptome-computed and the proteome-gathered toxin compositions were obvious at first sight. Although the reasons underlaying this discrepancy are elusive, since no clear trend within or between species is apparent, the data indicate that individual mRNA species may be translationally controlled in a species-dependent manner. The minimum number of genes from each toxin family transcribed into the venom gland transcriptome of each species was calculated from multiple alignments of reads matched to a full-length reference sequence of each toxin family. Reads encoding ORF regions of Kazal-type inhibitor-like proteins were uniquely found in Bothriechis schlegelii and B. lateralis transcriptomes, suggesting a genus-specific recruitment event during the early-Middle Miocene. A transcriptome-based cladogram supports the large divergence between A. mexicanus and A. picadoi, and a closer kinship between A. mexicanus and C. godmani. Our comparative next-generation sequencing (NGS) analysis reveals taxon-specific trends governing the formulation of the venom arsenal. Knowledge of the venom proteome provides hints on the translation efficiency of toxin-coding transcripts, contributing thereby to a more accurate interpretation of the transcriptome. The application of NGS to the analysis of snake venom transcriptomes, may represent the tool for opening the door to systems venomics.
Abstract Background A long term research goal of venomics, of applied importance for improving current antivenom therapy, but also for drug discovery, is to understand the pharmacological potential of venoms. Individually or combined, proteomic and transcriptomic studies have demonstrated their feasibility to explore in depth the molecular diversity of venoms. In the absence of genome sequence, transcriptomes represent also valuable searchable databases for proteomic projects. Results The venom gland transcriptomes of 8 Costa Rican taxa from 5 genera (Crotalus, Bothrops, Atropoides, Cerrophidion, and Bothriechis) of pitvipers were investigated using high-throughput 454 pyrosequencing. 100,394 out of 330,010 masked reads produced significant hits in the available databases. 5.165,220 nucleotides (8.27%) were masked by RepeatMasker, the vast majority of which corresponding to class I (retroelements) and class II (DNA transposons) mobile elements. BLAST hits included 79,991 matches to entries of the taxonomic suborder Serpentes, of which 62,433 displayed similarity to documented venom proteins. Strong discrepancies between the transcriptome-computed and the proteome-gathered toxin compositions were obvious at first sight. Although the reasons underlaying this discrepancy are elusive, since no clear trend within or between species is apparent, the data indicate that individual mRNA species may be translationally controlled in a species-dependent manner. The minimum number of genes from each toxin family transcribed into the venom gland transcriptome of each species was calculated from multiple alignments of reads matched to a full-length reference sequence of each toxin family. Reads encoding ORF regions of Kazal-type inhibitor-like proteins were uniquely found in Bothriechis schlegelii and B. lateralis transcriptomes, suggesting a genus-specific recruitment event during the early-Middle Miocene. A transcriptome-based cladogram supports the large divergence between A. mexicanus and A. picadoi, and a closer kinship between A. mexicanus and C. godmani. Conclusions Our comparative next-generation sequencing (NGS) analysis reveals taxon-specific trends governing the formulation of the venom arsenal. Knowledge of the venom proteome provides hints on the translation efficiency of toxin-coding transcripts, contributing thereby to a more accurate interpretation of the transcriptome. The application of NGS to the analysis of snake venom transcriptomes, may represent the tool for opening the door to systems venomics.
A long term research goal of venomics, of applied importance for improving current antivenom therapy, but also for drug discovery, is to understand the pharmacological potential of venoms. Individually or combined, proteomic and transcriptomic studies have demonstrated their feasibility to explore in depth the molecular diversity of venoms. In the absence of genome sequence, transcriptomes represent also valuable searchable databases for proteomic projects. The venom gland transcriptomes of 8 Costa Rican taxa from 5 genera (Crotalus, Bothrops, Atropoides, Cerrophidion, and Bothriechis) of pitvipers were investigated using high-throughput 454 pyrosequencing. 100,394 out of 330,010 masked reads produced significant hits in the available databases. 5.165,220 nucleotides (8.27%) were masked by RepeatMasker, the vast majority of which corresponding to class I (retroelements) and class II (DNA transposons) mobile elements. BLAST hits included 79,991 matches to entries of the taxonomic suborder Serpentes, of which 62,433 displayed similarity to documented venom proteins. Strong discrepancies between the transcriptome-computed and the proteome-gathered toxin compositions were obvious at first sight. Although the reasons underlaying this discrepancy are elusive, since no clear trend within or between species is apparent, the data indicate that individual mRNA species may be translationally controlled in a species-dependent manner. The minimum number of genes from each toxin family transcribed into the venom gland transcriptome of each species was calculated from multiple alignments of reads matched to a full-length reference sequence of each toxin family. Reads encoding ORF regions of Kazal-type inhibitor-like proteins were uniquely found in Bothriechis schlegelii and B. lateralis transcriptomes, suggesting a genus-specific recruitment event during the early-Middle Miocene. A transcriptome-based cladogram supports the large divergence between A. mexicanus and A. picadoi, and a closer kinship between A. mexicanus and C. godmani. Our comparative next-generation sequencing (NGS) analysis reveals taxon-specific trends governing the formulation of the venom arsenal. Knowledge of the venom proteome provides hints on the translation efficiency of toxin-coding transcripts, contributing thereby to a more accurate interpretation of the transcriptome. The application of NGS to the analysis of snake venom transcriptomes, may represent the tool for opening the door to systems venomics.
BACKGROUND: A long term research goal of venomics, of applied importance for improving current antivenom therapy, but also for drug discovery, is to understand the pharmacological potential of venoms. Individually or combined, proteomic and transcriptomic studies have demonstrated their feasibility to explore in depth the molecular diversity of venoms. In the absence of genome sequence, transcriptomes represent also valuable searchable databases for proteomic projects. RESULTS: The venom gland transcriptomes of 8 Costa Rican taxa from 5 genera (Crotalus, Bothrops, Atropoides, Cerrophidion, and Bothriechis) of pitvipers were investigated using high-throughput 454 pyrosequencing. 100,394 out of 330,010 masked reads produced significant hits in the available databases. 5.165,220 nucleotides (8.27%) were masked by RepeatMasker, the vast majority of which corresponding to class I (retroelements) and class II (DNA transposons) mobile elements. BLAST hits included 79,991 matches to entries of the taxonomic suborder Serpentes, of which 62,433 displayed similarity to documented venom proteins. Strong discrepancies between the transcriptome-computed and the proteome-gathered toxin compositions were obvious at first sight. Although the reasons underlaying this discrepancy are elusive, since no clear trend within or between species is apparent, the data indicate that individual mRNA species may be translationally controlled in a species-dependent manner. The minimum number of genes from each toxin family transcribed into the venom gland transcriptome of each species was calculated from multiple alignments of reads matched to a full-length reference sequence of each toxin family. Reads encoding ORF regions of Kazal-type inhibitor-like proteins were uniquely found in Bothriechis schlegelii and B. lateralis transcriptomes, suggesting a genus-specific recruitment event during the early-Middle Miocene. A transcriptome-based cladogram supports the large divergence between A. mexicanus and A. picadoi, and a closer kinship between A. mexicanus and C. godmani. CONCLUSIONS: Our comparative next-generation sequencing (NGS) analysis reveals taxon-specific trends governing the formulation of the venom arsenal. Knowledge of the venom proteome provides hints on the translation efficiency of toxin-coding transcripts, contributing thereby to a more accurate interpretation of the transcriptome. The application of NGS to the analysis of snake venom transcriptomes, may represent the tool for opening the door to systems venomics.
A long term research goal of venomics, of applied importance for improving current antivenom therapy, but also for drug discovery, is to understand the pharmacological potential of venoms. Individually or combined, proteomic and transcriptomic studies have demonstrated their feasibility to explore in depth the molecular diversity of venoms. In the absence of genome sequence, transcriptomes represent also valuable searchable databases for proteomic projects.BACKGROUNDA long term research goal of venomics, of applied importance for improving current antivenom therapy, but also for drug discovery, is to understand the pharmacological potential of venoms. Individually or combined, proteomic and transcriptomic studies have demonstrated their feasibility to explore in depth the molecular diversity of venoms. In the absence of genome sequence, transcriptomes represent also valuable searchable databases for proteomic projects.The venom gland transcriptomes of 8 Costa Rican taxa from 5 genera (Crotalus, Bothrops, Atropoides, Cerrophidion, and Bothriechis) of pitvipers were investigated using high-throughput 454 pyrosequencing. 100,394 out of 330,010 masked reads produced significant hits in the available databases. 5.165,220 nucleotides (8.27%) were masked by RepeatMasker, the vast majority of which corresponding to class I (retroelements) and class II (DNA transposons) mobile elements. BLAST hits included 79,991 matches to entries of the taxonomic suborder Serpentes, of which 62,433 displayed similarity to documented venom proteins. Strong discrepancies between the transcriptome-computed and the proteome-gathered toxin compositions were obvious at first sight. Although the reasons underlaying this discrepancy are elusive, since no clear trend within or between species is apparent, the data indicate that individual mRNA species may be translationally controlled in a species-dependent manner. The minimum number of genes from each toxin family transcribed into the venom gland transcriptome of each species was calculated from multiple alignments of reads matched to a full-length reference sequence of each toxin family. Reads encoding ORF regions of Kazal-type inhibitor-like proteins were uniquely found in Bothriechis schlegelii and B. lateralis transcriptomes, suggesting a genus-specific recruitment event during the early-Middle Miocene. A transcriptome-based cladogram supports the large divergence between A. mexicanus and A. picadoi, and a closer kinship between A. mexicanus and C. godmani.RESULTSThe venom gland transcriptomes of 8 Costa Rican taxa from 5 genera (Crotalus, Bothrops, Atropoides, Cerrophidion, and Bothriechis) of pitvipers were investigated using high-throughput 454 pyrosequencing. 100,394 out of 330,010 masked reads produced significant hits in the available databases. 5.165,220 nucleotides (8.27%) were masked by RepeatMasker, the vast majority of which corresponding to class I (retroelements) and class II (DNA transposons) mobile elements. BLAST hits included 79,991 matches to entries of the taxonomic suborder Serpentes, of which 62,433 displayed similarity to documented venom proteins. Strong discrepancies between the transcriptome-computed and the proteome-gathered toxin compositions were obvious at first sight. Although the reasons underlaying this discrepancy are elusive, since no clear trend within or between species is apparent, the data indicate that individual mRNA species may be translationally controlled in a species-dependent manner. The minimum number of genes from each toxin family transcribed into the venom gland transcriptome of each species was calculated from multiple alignments of reads matched to a full-length reference sequence of each toxin family. Reads encoding ORF regions of Kazal-type inhibitor-like proteins were uniquely found in Bothriechis schlegelii and B. lateralis transcriptomes, suggesting a genus-specific recruitment event during the early-Middle Miocene. A transcriptome-based cladogram supports the large divergence between A. mexicanus and A. picadoi, and a closer kinship between A. mexicanus and C. godmani.Our comparative next-generation sequencing (NGS) analysis reveals taxon-specific trends governing the formulation of the venom arsenal. Knowledge of the venom proteome provides hints on the translation efficiency of toxin-coding transcripts, contributing thereby to a more accurate interpretation of the transcriptome. The application of NGS to the analysis of snake venom transcriptomes, may represent the tool for opening the door to systems venomics.CONCLUSIONSOur comparative next-generation sequencing (NGS) analysis reveals taxon-specific trends governing the formulation of the venom arsenal. Knowledge of the venom proteome provides hints on the translation efficiency of toxin-coding transcripts, contributing thereby to a more accurate interpretation of the transcriptome. The application of NGS to the analysis of snake venom transcriptomes, may represent the tool for opening the door to systems venomics.
ArticleNumber 259
Audience Academic
Author Conesa, Ana
Sanz, Libia
Juárez, Paula
Angulo, Yamileth
Calvete, Juan J
Durban, Jordi
Lomonte, Bruno
Flores-Diaz, Marietta
Dopazo, Joaquín
Gutiérrez, José M
Sasa, Mahmood
Alape-Girón, Alberto
AuthorAffiliation 3 Centro de Investigaciones en Estructuras Microscópicas, Universidad de Costa Rica, San José, Costa Rica
1 Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010 Valencia. Spain
2 Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
4 Centro de Investigación Príncipe Felipe, Valencia. Spain
AuthorAffiliation_xml – name: 2 Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
– name: 1 Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010 Valencia. Spain
– name: 3 Centro de Investigaciones en Estructuras Microscópicas, Universidad de Costa Rica, San José, Costa Rica
– name: 4 Centro de Investigación Príncipe Felipe, Valencia. Spain
Author_xml – sequence: 1
  givenname: Jordi
  surname: Durban
  fullname: Durban, Jordi
– sequence: 2
  givenname: Paula
  surname: Juárez
  fullname: Juárez, Paula
– sequence: 3
  givenname: Yamileth
  surname: Angulo
  fullname: Angulo, Yamileth
– sequence: 4
  givenname: Bruno
  surname: Lomonte
  fullname: Lomonte, Bruno
– sequence: 5
  givenname: Marietta
  surname: Flores-Diaz
  fullname: Flores-Diaz, Marietta
– sequence: 6
  givenname: Alberto
  surname: Alape-Girón
  fullname: Alape-Girón, Alberto
– sequence: 7
  givenname: Mahmood
  surname: Sasa
  fullname: Sasa, Mahmood
– sequence: 8
  givenname: Libia
  surname: Sanz
  fullname: Sanz, Libia
– sequence: 9
  givenname: José M
  surname: Gutiérrez
  fullname: Gutiérrez, José M
– sequence: 10
  givenname: Joaquín
  surname: Dopazo
  fullname: Dopazo, Joaquín
– sequence: 11
  givenname: Ana
  surname: Conesa
  fullname: Conesa, Ana
– sequence: 12
  givenname: Juan J
  surname: Calvete
  fullname: Calvete, Juan J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21605378$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1v1DAQxSNURD_gzglF4lBxSLEdx3EuSNWKwkqVQKWcLceepC6JvcTeiv3vO8uWVYNa5eBo_OYnz3tznB344CHL3lJyRqkUHymvacGo4AVlBauaF9nRvnTw6P8wO47xlhBaS1a9yg6xRqqylkfZ9fcpdG5wvs_TDeR34MOY94P2Nk-T9tFMbpXCCDEPXb4IMen8yhnt8-j1L6y2m5xXPF9tphDh9xq8QdTr7GWnhwhvHs6T7OfF5-vF1-Ly25fl4vyyaIWUqeg63YlK13UjLOuIsVLbhmrSQCnxlFZTyWnd8qptWiPKhkvLOQcCXAohSXmSLXdcG_StWk1u1NNGBe3U30KYeqWn5MwAqmptZ2ULjLCGQ22asqKUUWakBFLVLbI-7VirdTuCNeBx_mEGnd94d6P6cKdKyiQRAgGLHaB14RnA_MaEUW0TUtuEFGUKA0TK6cMzpoB2xqRGFw0MmAiEdVSy5lxWgkpUvt8pe43zOd8FpJqtWp0zQdA6NBZVZ0-o8LMwOoPbhOHDvOHDrAE1Cf6kXq9jVMsfV3Ptu8ee7Wf9t14oIDuBwfWIE3R7CSVqu8FPGSD-azEu6eTC1jQ3PN94D5FZ8hU
CitedBy_id crossref_primary_10_1021_pr201021d
crossref_primary_10_1016_j_biochi_2015_07_005
crossref_primary_10_1098_rspb_2020_0613
crossref_primary_10_1074_jbc_M114_635458
crossref_primary_10_1016_j_toxicon_2018_08_016
crossref_primary_10_1016_j_toxicon_2016_08_014
crossref_primary_10_3390_toxins15010001
crossref_primary_10_1093_gbe_evaa115
crossref_primary_10_3390_toxins8080230
crossref_primary_10_3390_toxins16030142
crossref_primary_10_3390_toxins5111948
crossref_primary_10_1016_j_nbt_2017_05_005
crossref_primary_10_1016_j_jprot_2014_09_003
crossref_primary_10_1093_gbe_evu166
crossref_primary_10_1016_j_toxicon_2014_10_022
crossref_primary_10_3389_fevo_2019_00279
crossref_primary_10_3390_toxins16110458
crossref_primary_10_1093_gbe_evw149
crossref_primary_10_7717_peerj_3142
crossref_primary_10_1016_j_jprot_2016_10_006
crossref_primary_10_1186_s12859_014_0389_8
crossref_primary_10_1371_journal_pntd_0004587
crossref_primary_10_1371_journal_pntd_0002442
crossref_primary_10_1134_S1061934822130081
crossref_primary_10_1371_journal_pntd_0001554
crossref_primary_10_1007_s00216_021_03506_1
crossref_primary_10_1371_journal_pntd_0003731
crossref_primary_10_4155_fmc_14_95
crossref_primary_10_1016_j_toxcx_2020_100037
crossref_primary_10_1016_j_ygeno_2018_11_026
crossref_primary_10_1146_annurev_animal_021419_083626
crossref_primary_10_1586_epr_11_61
crossref_primary_10_1186_s12864_021_07824_7
crossref_primary_10_3390_toxins15060398
crossref_primary_10_3389_fevo_2019_00218
crossref_primary_10_1093_icb_icw063
crossref_primary_10_1016_j_toxicon_2017_10_025
crossref_primary_10_3390_toxins16020083
crossref_primary_10_1186_s12867_016_0059_7
crossref_primary_10_1042_BJ20130599
crossref_primary_10_5005_jp_journals_10071_24362
crossref_primary_10_3390_toxins11020104
crossref_primary_10_1016_j_toxicon_2015_09_012
crossref_primary_10_1111_j_1463_6409_2012_00547_x
crossref_primary_10_1016_j_biochi_2012_02_006
crossref_primary_10_1016_j_jprot_2020_103945
crossref_primary_10_1016_j_toxicon_2012_11_010
crossref_primary_10_1016_j_biochi_2013_06_025
crossref_primary_10_1186_1471_2164_14_394
crossref_primary_10_1186_s12864_015_1828_2
crossref_primary_10_3390_toxins13080548
crossref_primary_10_1186_s12864_020_6545_9
crossref_primary_10_1038_s41598_020_70565_2
crossref_primary_10_1016_j_actatropica_2018_09_017
crossref_primary_10_1016_j_jprot_2018_03_032
crossref_primary_10_1016_j_toxicon_2022_04_002
crossref_primary_10_1016_j_jprot_2011_09_021
crossref_primary_10_1016_j_jprot_2012_02_022
crossref_primary_10_1016_j_biochi_2016_03_004
crossref_primary_10_1371_journal_pone_0100682
crossref_primary_10_1371_journal_pone_0127883
crossref_primary_10_1093_molbev_msu337
crossref_primary_10_1371_journal_pone_0063927
crossref_primary_10_3390_toxins8070210
crossref_primary_10_1021_acs_jproteome_7b00414
crossref_primary_10_1016_j_toxicon_2013_06_019
crossref_primary_10_1021_pr200876c
crossref_primary_10_1186_1471_2164_13_312
crossref_primary_10_1186_1471_2164_13_439
crossref_primary_10_3390_ani12162058
crossref_primary_10_1016_j_jprot_2016_02_028
crossref_primary_10_3390_molecules25040912
crossref_primary_10_1016_j_jprot_2015_09_015
crossref_primary_10_1016_j_toxicon_2013_07_005
crossref_primary_10_1186_1471_2164_14_234
crossref_primary_10_1016_j_gene_2012_01_009
crossref_primary_10_1073_pnas_1405484111
crossref_primary_10_1016_j_toxicon_2013_07_008
crossref_primary_10_1021_acs_jproteome_6b00217
crossref_primary_10_1016_j_ijbiomac_2014_05_039
crossref_primary_10_1038_srep09454
crossref_primary_10_1586_14789450_2014_900447
crossref_primary_10_1016_j_toxicon_2013_03_020
crossref_primary_10_1186_s40409_015_0002_2
crossref_primary_10_1007_s00239_023_10115_2
crossref_primary_10_1016_j_jprot_2012_03_028
Cites_doi 10.1046/j.1432-1033.2002.02982.x
10.1073/pnas.0404838101
10.1016/j.toxicon.2005.02.022
10.1016/j.toxicon.2005.12.010
10.1016/j.bbrc.2007.11.027
10.1007/978-3-642-86659-3
10.1186/1471-2148-7-2
10.1038/nature03959
10.1093/emboj/16.3.651
10.1021/pr060494k
10.1186/1471-2199-5-17
10.1016/j.toxicon.2006.07.008
10.1073/pnas.1004139107
10.1146/annurev.genet.42.110807.091501
10.1111/j.1365-2699.2008.01991.x
10.1074/mcp.M300129-MCP200
10.1016/j.jprot.2009.01.001
10.1016/S0041-0101(98)00148-2
10.1073/pnas.0402888101
10.1021/pr100545d
10.1016/S0041-0101(98)00150-0
10.1016/j.jprot.2009.01.009
10.1021/bi035871a
10.1655/01-105.2
10.1146/annurev-genom-082908-145957
10.1016/j.gene.2006.03.008
10.1038/75556
10.1186/gb-2005-6-13-r111
10.1128/MCB.25.15.6427-6435.2005
10.1093/icb/23.2.431
10.1016/j.jprot.2008.10.003
10.3109/15569549509019467
10.1016/j.jprot.2007.10.004
10.1016/j.toxicon.2009.01.006
10.1007/s00018-009-0050-2
10.1038/nmeth.1376
10.1038/nature07178
10.1016/j.toxicon.2006.01.022
10.1016/j.toxicon.2009.11.010
10.1021/pr800332p
10.1038/nrg2484
10.1093/molbev/msn179
10.1101/SQB.1956.021.01.017
10.1007/s00239-008-9067-7
10.1007/s00018-006-6315-0
10.1186/1471-2164-7-152
10.1371/journal.pmed.0050218
10.1016/j.ympev.2005.05.013
10.1586/epr.09.45
10.1007/s10709-008-9326-y
10.1101/gr.074492.107
10.1093/nar/gkp971
10.1016/j.febslet.2006.07.010
10.1021/pr8000139
10.1074/mcp.M700094-MCP200
10.1021/pr9008749
10.1002/jms.1389
10.1111/j.1755-0998.2009.02750.x
10.1016/j.toxicon.2011.01.008
10.1016/0968-0004(94)90072-8
10.1016/j.toxicon.2004.10.009
10.1186/1471-2164-10-465
10.1016/j.jprot.2009.12.006
10.1016/j.tig.2007.12.007
10.1186/1471-2199-8-115
10.1007/s00726-010-0516-4
10.1186/1471-2164-11-571
10.1093/genetics/144.3.1271
10.1093/nar/gkm1000
10.1038/ng775
10.1016/j.actatropica.2008.05.021
10.1073/pnas.94.15.7799
10.1534/genetics.106.056515
10.1016/S0041-0101(98)00156-1
10.1002/pmic.200700777
10.1016/j.toxicon.2008.02.019
10.1159/000084966
10.1021/pr700610z
10.1093/bioinformatics/btm076
10.1201/9781420008661.ch24
10.1016/j.gene.2010.04.001
10.1016/S0022-2836(05)80360-2
10.1186/1471-2105-5-113
10.1002/jms.1242
10.1017/S0031182005007808
10.1038/nsb1015
10.1016/0041-0101(91)90116-9
10.1038/nature04328
10.1016/0041-0101(92)90534-C
10.1016/S0378-1119(02)01080-6
10.1093/nar/gkp299
10.1016/j.ympev.2005.12.014
10.1101/gr.282402
10.1016/j.jprot.2009.01.020
10.1126/science.2047873
10.1073/pnas.0635171100
10.1093/molbev/msh091
10.1093/bioinformatics/bti610
10.1021/pr900249q
10.1146/annurev.genom.9.081307.164356
10.1016/j.jprot.2009.01.018
10.1101/gr.3228405
10.1002/rcm.1973
10.1093/nar/gkm832
10.1016/j.yexcr.2010.02.036
10.1111/j.1432-1033.1997.00772.x
10.1021/pr901042p
10.1002/jmor.1052080106
10.1016/j.tig.2003.08.004
10.1016/j.bbrc.2006.01.006
10.1021/pr1000829
10.1016/j.biochi.2004.02.002
ContentType Journal Article
Copyright COPYRIGHT 2011 BioMed Central Ltd.
Copyright ©2011 Durban et al; licensee BioMed Central Ltd. 2011 Durban et al; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2011 BioMed Central Ltd.
– notice: Copyright ©2011 Durban et al; licensee BioMed Central Ltd. 2011 Durban et al; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
DOA
DOI 10.1186/1471-2164-12-259
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage 259
ExternalDocumentID oai_doaj_org_article_5bdfd8be20294e7c93511212c88e057b
PMC3128066
oai_biomedcentral_com_1471_2164_12_259
A260184779
21605378
10_1186_1471_2164_12_259
Genre Research Support, U.S. Gov't, P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Costa Rica
Spain
GeographicLocations_xml – name: Costa Rica
– name: Spain
GroupedDBID ---
0R~
23N
2VQ
2WC
2XV
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
IPNFZ
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
7X8
-A0
3V.
ABVAZ
ACRMQ
ADINQ
AFGXO
AFNRJ
AIXEN
C24
5PM
PUEGO
ID FETCH-LOGICAL-b688t-ffaf65a7796d2f0cd8ad91a09e3891a8da18417b45b9bc63948d444e0e4866803
IEDL.DBID RBZ
ISSN 1471-2164
IngestDate Wed Aug 27 01:29:43 EDT 2025
Thu Aug 21 18:05:11 EDT 2025
Wed May 22 07:16:58 EDT 2024
Fri Jul 11 04:57:09 EDT 2025
Tue Jun 17 22:07:53 EDT 2025
Tue Jun 10 21:06:48 EDT 2025
Fri Jun 27 06:08:43 EDT 2025
Mon Jul 21 05:57:40 EDT 2025
Thu Apr 24 22:53:13 EDT 2025
Tue Jul 01 02:21:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b688t-ffaf65a7796d2f0cd8ad91a09e3891a8da18417b45b9bc63948d444e0e4866803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1186/1471-2164-12-259
PMID 21605378
PQID 874485618
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_5bdfd8be20294e7c93511212c88e057b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3128066
biomedcentral_primary_oai_biomedcentral_com_1471_2164_12_259
proquest_miscellaneous_874485618
gale_infotracmisc_A260184779
gale_infotracacademiconefile_A260184779
gale_incontextgauss_ISR_A260184779
pubmed_primary_21605378
crossref_primary_10_1186_1471_2164_12_259
crossref_citationtrail_10_1186_1471_2164_12_259
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-05-23
PublicationDateYYYYMMDD 2011-05-23
PublicationDate_xml – month: 05
  year: 2011
  text: 2011-05-23
  day: 23
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle BMC genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2011
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References BG Fry (3432_CR5) 2006; 439
TA Castoe (3432_CR106) 2005; 37
ER Mardis (3432_CR38) 2008; 24
HW Deng (3432_CR104) 1996; 144
JA Campbell (3432_CR43) 2004
S Kashima (3432_CR82) 2004; 86
DCI Koh (3432_CR11) 2006; 63
S Decuypere (3432_CR93) 2005; 131
D Kordis (3432_CR55) 1997; 246
Q Liu (3432_CR66) 2006; 341
TA Castoe (3432_CR108) 2003; 59
N Ikeda (3432_CR57) 2010; 461
LN van de Lagemaat (3432_CR61) 2003; 19
PL Ho (3432_CR29) 1995; 14
ILM Junqueira-de-Azevedo (3432_CR53) 2006; 172
S Kumar (3432_CR64) 2010; 11
TA Castoe (3432_CR78) 2010; 10
SM Munekiyo (3432_CR75) 2005; 45
B Zhang (3432_CR39) 2006; 7
A Alape-Girón (3432_CR117) 2008; 7
S Slomovic (3432_CR94) 2005; 25
FJ Vonk (3432_CR4) 2008; 454
P Escoubas (3432_CR22) 2008; 43
E Fasoli (3432_CR28) 2010; 73
S Linnarsson (3432_CR36) 2010; 316
JP Chippaux (3432_CR10) 2008; 107
LS Wermelinger (3432_CR73) 2005; 19
J Fernández (3432_CR100) 2010; 9
D Kordis (3432_CR56) 1998; 36
VJ Lynch (3432_CR59) 2007; 7
JW Fox (3432_CR21) 2008; 8
MD Adams (3432_CR30) 1991; 252
CW Wheat (3432_CR35) 2010; 138
ILM Junqueira de Azevedo (3432_CR25) 2009
A Ménez (3432_CR14) 1998; 36
AL Harvey (3432_CR13) 1998; 36
Q He (3432_CR68) 2008; 36
JJ Calvete (3432_CR12) 2009; 72
JM Gutiérrez (3432_CR42) 2009
B Lomonte (3432_CR115) 2008; 7
S Pahari (3432_CR95) 2007; 8
Y Yao (3432_CR90) 1997; 16
DR Zerbino (3432_CR63) 2008; 18
HW Greene (3432_CR7) 1983; 23
A Conesa (3432_CR113) 2005; 21
The Gene Ontology Consortium (3432_CR114) 2000; 25
T Preiss (3432_CR97) 2003; 10
P Juárez (3432_CR86) 2008; 25
M Margulies (3432_CR110) 2005; 437
SF Altschul (3432_CR112) 1990; 215
DAP Cidade (3432_CR83) 2006; 48
G Naamati (3432_CR67) 2009; 37
JJ Calvete (3432_CR118) 2010; 9
3432_CR44
Y Arava (3432_CR96) 2003; 100
W Pi (3432_CR51) 2010; 107
RB Freedman (3432_CR89) 1994; 19
N Bannert (3432_CR47) 2004; 101
Z Yang (3432_CR105) 1996; 11
B McClintock (3432_CR46) 1956; 21
GP Espino-Solis (3432_CR19) 2009; 72
L Menin (3432_CR74) 2008; 51
P Flicek (3432_CR65) 2009; 6
TA Castoe (3432_CR101) 2009; 36
PL Deininger (3432_CR48) 2002; 12
JJ Calvete (3432_CR31) 2007; 6
RC Rodríguez de la Vega (3432_CR24) 2009; 56
JJ Calvete (3432_CR20) 2007; 42
RH Valente (3432_CR32) 2009; 72
3432_CR111
LD Dos Santos (3432_CR23) 2010; 9
P Medstrand (3432_CR62) 2005; 110
KF Huang (3432_CR77) 2002; 269
O Morozova (3432_CR37) 2009; 10
JW Fox (3432_CR70) 2006; 47
MJ Paine (3432_CR109) 1992; 30
M Neiva (3432_CR84) 2009; 53
JP Chippaux (3432_CR33) 1991; 29
BG Fry (3432_CR79) 2009; 10
World Health Organization (3432_CR8) 2007
MK Kuhner (3432_CR103) 1994; 11
ILM Junqueira-de-Azevedo (3432_CR52) 2002; 299
I Vetter (3432_CR17) 2011; 17
DR Rokyta (3432_CR40) 2011; 57
P Escoubas (3432_CR16) 2009; 6
JF Hughes (3432_CR49) 2001; 29
ND Rawlings (3432_CR69) 2010; 38
TA Castoe (3432_CR107) 2006; 39
Y Angulo (3432_CR116) 2008; 7
D Georgieva (3432_CR71) 2010; 9
SC Wagstaff (3432_CR34) 2006; 377
JJ Calvete (3432_CR72) 2009; 8
R Doley (3432_CR85) 2009; 66
Q Lu (3432_CR87) 2005; 45
VL MacKay (3432_CR98) 2004; 3
HL Gibbs (3432_CR60) 2008; 66
Z Wang (3432_CR41) 2009; 10
BG Fry (3432_CR3) 2008; 7
BI Crother (3432_CR102) 1992
M Ohno (3432_CR58) 1970
RC Edgar (3432_CR120) 2004; 5
A Ménez (3432_CR15) 2006; 47
JS Papadopoulos (3432_CR119) 2007; 23
JR Walker (3432_CR88) 2004; 43
BG Fry (3432_CR6) 2009; 72
W Wang (3432_CR45) 2009; 10
J Fleischmann (3432_CR91) 2004; 5
SC Wagstaff (3432_CR27) 2009; 71
P Jern (3432_CR50) 2008; 42
M Nei (3432_CR80) 1997; 94
BG Fry (3432_CR2) 2004; 21
A Kasturiratne (3432_CR9) 2008; 5
BG Fry (3432_CR81) 2005; 15
JM Gutiérrez (3432_CR18) 2009
AT Ching (3432_CR54) 2006; 580
SC Wagstaff (3432_CR76) 2008; 365
GL Law (3432_CR99) 2005; 6
SP Mackessy (3432_CR1) 1991; 208
L Sanz (3432_CR26) 2008; 71
L Kuai (3432_CR92) 2004; 101
References_xml – volume: 269
  start-page: 3047
  year: 2002
  ident: 3432_CR77
  publication-title: Eur J Biochem
  doi: 10.1046/j.1432-1033.2002.02982.x
– volume: 101
  start-page: 14572
  year: 2004
  ident: 3432_CR47
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0404838101
– volume: 45
  start-page: 1089
  year: 2005
  ident: 3432_CR87
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2005.02.022
– volume: 47
  start-page: 255
  year: 2006
  ident: 3432_CR15
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2005.12.010
– volume: 365
  start-page: 650
  year: 2008
  ident: 3432_CR76
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2007.11.027
– start-page: 1
  volume-title: Biology of the Pitvipers
  year: 1992
  ident: 3432_CR102
– volume-title: Evolution by gene duplication
  year: 1970
  ident: 3432_CR58
  doi: 10.1007/978-3-642-86659-3
– volume: 7
  start-page: 2
  year: 2007
  ident: 3432_CR59
  publication-title: BMC Evol Biol
  doi: 10.1186/1471-2148-7-2
– volume: 437
  start-page: 376
  year: 2005
  ident: 3432_CR110
  publication-title: Nature
  doi: 10.1038/nature03959
– volume: 16
  start-page: 651
  year: 1997
  ident: 3432_CR90
  publication-title: EMBO J
  doi: 10.1093/emboj/16.3.651
– volume: 6
  start-page: 326
  year: 2007
  ident: 3432_CR31
  publication-title: J Proteome Res
  doi: 10.1021/pr060494k
– volume: 5
  start-page: 17
  year: 2004
  ident: 3432_CR91
  publication-title: BMC Mol Biol
  doi: 10.1186/1471-2199-5-17
– volume: 48
  start-page: 437
  year: 2006
  ident: 3432_CR83
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2006.07.008
– volume: 107
  start-page: 12992
  year: 2010
  ident: 3432_CR51
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1004139107
– volume: 42
  start-page: 709
  year: 2008
  ident: 3432_CR50
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev.genet.42.110807.091501
– volume: 36
  start-page: 88
  year: 2009
  ident: 3432_CR101
  publication-title: J Biogeogr
  doi: 10.1111/j.1365-2699.2008.01991.x
– volume: 3
  start-page: 478
  year: 2004
  ident: 3432_CR98
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.M300129-MCP200
– ident: 3432_CR111
– volume: 72
  start-page: 241
  year: 2009
  ident: 3432_CR32
  publication-title: J Proteomics
  doi: 10.1016/j.jprot.2009.01.001
– volume: 36
  start-page: 1557
  year: 1998
  ident: 3432_CR14
  publication-title: Toxicon
  doi: 10.1016/S0041-0101(98)00148-2
– volume: 101
  start-page: 8581
  year: 2004
  ident: 3432_CR92
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0402888101
– volume: 9
  start-page: 4234
  year: 2010
  ident: 3432_CR100
  publication-title: J Proteome Res
  doi: 10.1021/pr100545d
– volume: 36
  start-page: 1585
  year: 1998
  ident: 3432_CR56
  publication-title: Toxicon
  doi: 10.1016/S0041-0101(98)00150-0
– start-page: 693
  volume-title: Animal Toxins: State of the Art. Perspectives in Health and Biotechnology
  year: 2009
  ident: 3432_CR25
– volume: 72
  start-page: 127
  year: 2009
  ident: 3432_CR6
  publication-title: J Proteomics
  doi: 10.1016/j.jprot.2009.01.009
– volume-title: Rabies and envenomings. A neglected public health issue: Report of a consultative meeting
  year: 2007
  ident: 3432_CR8
– volume: 43
  start-page: 3783
  year: 2004
  ident: 3432_CR88
  publication-title: Biochemistry
  doi: 10.1021/bi035871a
– volume: 59
  start-page: 420
  year: 2003
  ident: 3432_CR108
  publication-title: Herpetologica
  doi: 10.1655/01-105.2
– volume: 10
  start-page: 135
  year: 2009
  ident: 3432_CR37
  publication-title: Annu Rev Genomics Hum Genet
  doi: 10.1146/annurev-genom-082908-145957
– volume: 377
  start-page: 21
  year: 2006
  ident: 3432_CR34
  publication-title: Gene
  doi: 10.1016/j.gene.2006.03.008
– volume: 25
  start-page: 25
  year: 2000
  ident: 3432_CR114
  publication-title: Nat Genet
  doi: 10.1038/75556
– volume: 6
  start-page: R111
  year: 2005
  ident: 3432_CR99
  publication-title: Genome Biol
  doi: 10.1186/gb-2005-6-13-r111
– volume: 25
  start-page: 6427
  year: 2005
  ident: 3432_CR94
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.25.15.6427-6435.2005
– volume: 23
  start-page: 431
  year: 1983
  ident: 3432_CR7
  publication-title: Am Zool
  doi: 10.1093/icb/23.2.431
– volume: 71
  start-page: 609
  year: 2009
  ident: 3432_CR27
  publication-title: J Proteomics
  doi: 10.1016/j.jprot.2008.10.003
– volume: 11
  start-page: 459
  year: 1994
  ident: 3432_CR103
  publication-title: Mol Biol Evol
– volume: 14
  start-page: 327
  year: 1995
  ident: 3432_CR29
  publication-title: J Toxicol Toxin Reviews
  doi: 10.3109/15569549509019467
– volume: 71
  start-page: 46
  year: 2008
  ident: 3432_CR26
  publication-title: J Proteomics
  doi: 10.1016/j.jprot.2007.10.004
– volume: 53
  start-page: 427
  year: 2009
  ident: 3432_CR84
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2009.01.006
– volume: 66
  start-page: 2851
  year: 2009
  ident: 3432_CR85
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-009-0050-2
– volume: 6
  start-page: S6
  year: 2009
  ident: 3432_CR65
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1376
– volume: 454
  start-page: 630
  year: 2008
  ident: 3432_CR4
  publication-title: Nature
  doi: 10.1038/nature07178
– volume: 47
  start-page: 700
  year: 2006
  ident: 3432_CR70
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2006.01.022
– volume: 56
  start-page: 1155
  year: 2009
  ident: 3432_CR24
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2009.11.010
– volume: 7
  start-page: 3556
  year: 2008
  ident: 3432_CR117
  publication-title: J Proteome Res
  doi: 10.1021/pr800332p
– volume: 10
  start-page: 57
  year: 2009
  ident: 3432_CR41
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2484
– volume: 25
  start-page: 2391
  year: 2008
  ident: 3432_CR86
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msn179
– volume: 21
  start-page: 197
  year: 1956
  ident: 3432_CR46
  publication-title: Cold Spring Harb Symp Quant Biol
  doi: 10.1101/SQB.1956.021.01.017
– volume: 66
  start-page: 151
  year: 2008
  ident: 3432_CR60
  publication-title: J Mol Evol
  doi: 10.1007/s00239-008-9067-7
– volume: 63
  start-page: 3030
  year: 2006
  ident: 3432_CR11
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-006-6315-0
– volume: 7
  start-page: 152
  year: 2006
  ident: 3432_CR39
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-7-152
– volume: 5
  start-page: e218
  year: 2008
  ident: 3432_CR9
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.0050218
– volume: 37
  start-page: 881
  year: 2005
  ident: 3432_CR106
  publication-title: Mol Phylogenet Evol
  doi: 10.1016/j.ympev.2005.05.013
– volume: 6
  start-page: 221
  year: 2009
  ident: 3432_CR16
  publication-title: Expert Rev Proteomics
  doi: 10.1586/epr.09.45
– volume: 138
  start-page: 433
  year: 2010
  ident: 3432_CR35
  publication-title: Genetica
  doi: 10.1007/s10709-008-9326-y
– volume: 18
  start-page: 821
  year: 2008
  ident: 3432_CR63
  publication-title: Genome Res
  doi: 10.1101/gr.074492.107
– volume: 38
  start-page: D227
  year: 2010
  ident: 3432_CR69
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp971
– volume: 580
  start-page: 4417
  year: 2006
  ident: 3432_CR54
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2006.07.010
– volume: 7
  start-page: 2445
  year: 2008
  ident: 3432_CR115
  publication-title: J Proteome Res
  doi: 10.1021/pr8000139
– volume: 7
  start-page: 215
  year: 2008
  ident: 3432_CR3
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.M700094-MCP200
– volume: 9
  start-page: 528
  year: 2010
  ident: 3432_CR118
  publication-title: J Proteome Res
  doi: 10.1021/pr9008749
– start-page: 393
  volume-title: Animal Toxins: State of the Art. Perspectives in Health and Biotechnology
  year: 2009
  ident: 3432_CR18
– volume: 43
  start-page: 279
  year: 2008
  ident: 3432_CR22
  publication-title: J Mass Spectrom
  doi: 10.1002/jms.1389
– volume: 10
  start-page: 341
  year: 2010
  ident: 3432_CR78
  publication-title: Mol Ecol Res
  doi: 10.1111/j.1755-0998.2009.02750.x
– volume: 57
  start-page: 657
  year: 2011
  ident: 3432_CR40
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2011.01.008
– volume: 19
  start-page: 331
  year: 1994
  ident: 3432_CR89
  publication-title: Trends Biochem Sci
  doi: 10.1016/0968-0004(94)90072-8
– volume: 45
  start-page: 255
  year: 2005
  ident: 3432_CR75
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2004.10.009
– volume: 10
  start-page: 465
  year: 2009
  ident: 3432_CR45
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-10-465
– volume: 73
  start-page: 932
  year: 2010
  ident: 3432_CR28
  publication-title: J Proteomics
  doi: 10.1016/j.jprot.2009.12.006
– volume: 24
  start-page: 133
  year: 2008
  ident: 3432_CR38
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2007.12.007
– volume: 8
  start-page: 115
  year: 2007
  ident: 3432_CR95
  publication-title: BMC Mol Biol
  doi: 10.1186/1471-2199-8-115
– volume: 17
  start-page: 15
  year: 2011
  ident: 3432_CR17
  publication-title: Amino Acids
  doi: 10.1007/s00726-010-0516-4
– volume: 11
  start-page: 571
  year: 2010
  ident: 3432_CR64
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-11-571
– volume: 144
  start-page: 1271
  year: 1996
  ident: 3432_CR104
  publication-title: Genetics
  doi: 10.1093/genetics/144.3.1271
– ident: 3432_CR44
  doi: 10.1093/nar/gkm1000
– volume: 29
  start-page: 487
  year: 2001
  ident: 3432_CR49
  publication-title: Nat Genet
  doi: 10.1038/ng775
– volume: 107
  start-page: 71
  year: 2008
  ident: 3432_CR10
  publication-title: Acta Trop
  doi: 10.1016/j.actatropica.2008.05.021
– volume: 94
  start-page: 7799
  year: 1997
  ident: 3432_CR80
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.94.15.7799
– volume: 172
  start-page: 877
  year: 2006
  ident: 3432_CR53
  publication-title: Genetics
  doi: 10.1534/genetics.106.056515
– volume: 36
  start-page: 1635
  year: 1998
  ident: 3432_CR13
  publication-title: Toxicon
  doi: 10.1016/S0041-0101(98)00156-1
– volume: 8
  start-page: 909
  year: 2008
  ident: 3432_CR21
  publication-title: Proteomics
  doi: 10.1002/pmic.200700777
– volume: 51
  start-page: 1288
  year: 2008
  ident: 3432_CR74
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2008.02.019
– volume: 110
  start-page: 342
  year: 2005
  ident: 3432_CR62
  publication-title: Cytogenet Genome Res
  doi: 10.1159/000084966
– volume: 7
  start-page: 708
  year: 2008
  ident: 3432_CR116
  publication-title: J Proteome Res
  doi: 10.1021/pr700610z
– volume: 23
  start-page: 1073
  year: 2007
  ident: 3432_CR119
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm076
– start-page: 491
  volume-title: Handbook of Venoms and Toxins of Reptiles
  year: 2009
  ident: 3432_CR42
  doi: 10.1201/9781420008661.ch24
– volume: 461
  start-page: 15
  year: 2010
  ident: 3432_CR57
  publication-title: Gene
  doi: 10.1016/j.gene.2010.04.001
– volume: 215
  start-page: 403
  year: 1990
  ident: 3432_CR112
  publication-title: J Mol Biol
  doi: 10.1016/S0022-2836(05)80360-2
– volume: 5
  start-page: 113
  year: 2004
  ident: 3432_CR120
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-5-113
– volume: 42
  start-page: 1405
  year: 2007
  ident: 3432_CR20
  publication-title: J Mass Spectrom
  doi: 10.1002/jms.1242
– volume: 131
  start-page: 121
  year: 2005
  ident: 3432_CR93
  publication-title: Parasitology
  doi: 10.1017/S0031182005007808
– volume: 10
  start-page: 1039
  year: 2003
  ident: 3432_CR97
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsb1015
– volume: 29
  start-page: 1279
  year: 1991
  ident: 3432_CR33
  publication-title: Toxicon
  doi: 10.1016/0041-0101(91)90116-9
– volume: 439
  start-page: 584
  year: 2006
  ident: 3432_CR5
  publication-title: Nature
  doi: 10.1038/nature04328
– volume: 30
  start-page: 379
  year: 1992
  ident: 3432_CR109
  publication-title: Toxicon
  doi: 10.1016/0041-0101(92)90534-C
– volume: 299
  start-page: 279
  year: 2002
  ident: 3432_CR52
  publication-title: Gene
  doi: 10.1016/S0378-1119(02)01080-6
– volume: 37
  start-page: W363
  year: 2009
  ident: 3432_CR67
  publication-title: Nucleic Acid Res
  doi: 10.1093/nar/gkp299
– volume: 39
  start-page: 91
  year: 2006
  ident: 3432_CR107
  publication-title: Mol Phylogenet Evol
  doi: 10.1016/j.ympev.2005.12.014
– volume: 12
  start-page: 1455
  year: 2002
  ident: 3432_CR48
  publication-title: Genome Res
  doi: 10.1101/gr.282402
– volume: 72
  start-page: 183
  year: 2009
  ident: 3432_CR19
  publication-title: J Proteomics
  doi: 10.1016/j.jprot.2009.01.020
– volume: 252
  start-page: 1651
  year: 1991
  ident: 3432_CR30
  publication-title: Science
  doi: 10.1126/science.2047873
– volume: 100
  start-page: 3889
  year: 2003
  ident: 3432_CR96
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0635171100
– volume: 21
  start-page: 870
  year: 2004
  ident: 3432_CR2
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msh091
– volume-title: The Venomous Reptiles of the Western Hemisphere
  year: 2004
  ident: 3432_CR43
– volume: 21
  start-page: 3674
  year: 2005
  ident: 3432_CR113
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti610
– volume: 8
  start-page: 3055
  year: 2009
  ident: 3432_CR72
  publication-title: J Proteome Res
  doi: 10.1021/pr900249q
– volume: 10
  start-page: 483
  year: 2009
  ident: 3432_CR79
  publication-title: Annu Rev Genom Human Genet
  doi: 10.1146/annurev.genom.9.081307.164356
– volume: 72
  start-page: 121
  year: 2009
  ident: 3432_CR12
  publication-title: J Proteomics
  doi: 10.1016/j.jprot.2009.01.018
– volume: 15
  start-page: 403
  year: 2005
  ident: 3432_CR81
  publication-title: Genome Res
  doi: 10.1101/gr.3228405
– volume: 19
  start-page: 1703
  year: 2005
  ident: 3432_CR73
  publication-title: Rapid Commun Mass Spectrom
  doi: 10.1002/rcm.1973
– volume: 36
  start-page: D293
  year: 2008
  ident: 3432_CR68
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm832
– volume: 316
  start-page: 1339
  year: 2010
  ident: 3432_CR36
  publication-title: Exp Cell Res
  doi: 10.1016/j.yexcr.2010.02.036
– volume: 246
  start-page: 772
  year: 1997
  ident: 3432_CR55
  publication-title: Eur J Biochem
  doi: 10.1111/j.1432-1033.1997.00772.x
– volume: 9
  start-page: 2302
  year: 2010
  ident: 3432_CR71
  publication-title: J Proteome Res
  doi: 10.1021/pr901042p
– volume: 208
  start-page: 109
  year: 1991
  ident: 3432_CR1
  publication-title: J Morphol
  doi: 10.1002/jmor.1052080106
– volume: 19
  start-page: 530
  year: 2003
  ident: 3432_CR61
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2003.08.004
– volume: 341
  start-page: 522
  year: 2006
  ident: 3432_CR66
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2006.01.006
– volume: 11
  start-page: 367
  year: 1996
  ident: 3432_CR105
  publication-title: Tree
– volume: 9
  start-page: 3867
  year: 2010
  ident: 3432_CR23
  publication-title: J Proteome Res
  doi: 10.1021/pr1000829
– volume: 86
  start-page: 211
  year: 2004
  ident: 3432_CR82
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2004.02.002
SSID ssj0017825
Score 2.329176
Snippet A long term research goal of venomics, of applied importance for improving current antivenom therapy, but also for drug discovery, is to understand the...
Background A long term research goal of venomics, of applied importance for improving current antivenom therapy, but also for drug discovery, is to understand...
BACKGROUND: A long term research goal of venomics, of applied importance for improving current antivenom therapy, but also for drug discovery, is to understand...
Abstract Background A long term research goal of venomics, of applied importance for improving current antivenom therapy, but also for drug discovery, is to...
SourceID doaj
pubmedcentral
biomedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 259
SubjectTerms 454 pyrosequencing
Animals
Atropoides
bioinformatic analysis
Bothriechis
Bothrops asper
Cerrophidion
Costa Rica
Costa Rican snakes
Crotalus
DNA sequencing
Gene Expression Profiling - methods
High-Throughput Nucleotide Sequencing - methods
next generation high-throughput DNA sequencing
Nucleotide sequencing
Physiological aspects
Proteome - metabolism
RNA, Messenger - genetics
RNA, Messenger - metabolism
Salivary Glands - metabolism
Sequence Analysis, DNA - methods
Snake venom gland transcriptomics
Snake Venoms - genetics
Snakes - classification
Snakes - genetics
Snakes - metabolism
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9VAEF6kIPgi1uuxVRYRxIdwks1mMwFfarFUQZHaQt-WvUWLNSnmnIfz753ZJIezqPji616yt9m5ZGa_YewlgU1aX6JZEgIZKHWRATjIfO4DiNaDBHrg_PGTOr2QHy6ry51UXxQTNsIDjxu3rKzHHjagkd7IULuGPF_Ibx1AQF3DEvdFmTcbU5P_AOVeFd8V4dgCLYLZQQlquS2joARBGKXJS_frREBFHP_fufWOuEpDKXdk08k9dndSKvnRuJh9dit099ntMc3k5gE7_xwTc6OQ4qjucWRv_Q8ec3fwFYmqyDhwbgPvW37co77Iz4g78qEz37HUbrisJL_Z4ITHyGv81EN2cfLu_Pg0m7IpZFYBrLK2Na2qTF03yos2dx6MbwqTN4FclQa8QWOvqK2sbGMdKi4SvJQy5EGCUpCXj9he13fhCeO1NRZEKArVWFl6hzZc8CJILypQuWkW7E2ypfpmRM7QhGWd1uC10nQimk5EF0LjiSzYcj4B7SakckqYca2jxQLqDz1eb3vMY_297Vs61GROsQCpTk9Up_9FdQv2gkhCE4JGRyE6X816GPT7L2f6iEDaUObXONKrqVHb4_ydmV484CYS6FbS8jBpiVfcJdV8pjxNVRQX14V-PWhKXgCoAsOCPR4JcbsuXDJh9WBNnZBosvC0prv6FgHGy4L87erp_9ipA3Zn_A1fZaI8ZHurn-vwDPW4lX0er-wv_UJBWw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA96Ivgifls9JYggPtTrR5pOQZHz8DiFEzlv4d5C0qSnuLbndhfc_96ZtL276Pria5Ns08z3zuQ3jD0nsEljcwxLnKMApUxjgBpim1gHWWNBAF1wPvwkD2bi40lxcnE9ejzAfmNoR_2kZov5q18_129R4N94gQe5k6KCjTP0-6nMAN35q-wa2qWSxPRQXOQU0BYWU6JywyoPCywJ3gT-uPw-D2yWh_b_W4FfsmBhdeUlc7V_i90c_Uy-OzDGbXbFtXfY9aHz5PouO_7se3Wj3eLoAXLUeN0P7tt58CVZL69LcG897xq-16ELyY9IYfK-1d_xqVlzUQh-tsYND8XY-FP32Gz__fHeQTw2WIiNBFjGTaMbWeiyrKTNmqS2oG2V6qRylL3UYDXGf2lpRGEqU6MvI8AKIVziBEgJSX6fbbVd6x4yXhptIHNpKisjcltjWOds5oTNCpCJriL2OjhSdTaAaSiCtw5HUNIUEUcRcVSaKSROxHYmCqh6BC-nHhpz5YMYkBtWvDxfMb3r33PfEVGDPfkH3eJUjRKsCmORdY3LkqwSrqwrSsGi4a8BHDq9JmLPiCUUgWq0VLVzqld9rz58OVK7hNuGbkCJb3oxTmo63H-tx0sQeIiEwxXM3A5motTXwTCfOE_REJXKta5b9Yr6GQB6xRCxBwMjnn_XxN8RKwMWDT48HGm_ffWY43lKKXj56L9XPmY3hr_jizjLt9nWcrFyT9CfW5qnXkx_A-MwRx4
  priority: 102
  providerName: Scholars Portal
Title Profiling the venom gland transcriptomes of Costa Rican snakes by 454 pyrosequencing
URI https://www.ncbi.nlm.nih.gov/pubmed/21605378
https://www.proquest.com/docview/874485618
http://dx.doi.org/10.1186/1471-2164-12-259
https://pubmed.ncbi.nlm.nih.gov/PMC3128066
https://doaj.org/article/5bdfd8be20294e7c93511212c88e057b
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoKyQuiDcLZWUhJMQhauI4zkTi0q1aFaRW1dJKKy6WHTsFUZKK3T3sv2fGyS51KScuOWScxM6M5-Gxv2HsHYFNWpdjWOI9BShllgDUkLjUeRCNAwl0wPnkVB1fyM-zYvYHJudWBj8DtZeh-kwEevW0iQCd9S22IyTaQYrMJ183GQO0dEU4STS0Xqck73jDrbPtV5FJCsj9f-vnGwYq3jx5wxodPWIPBzeS7_d8f8zu-fYJu98Xllw9ZednoRQ3miWODh5Hhdb95KFaB1-QcQqqAvs2513DDzr0EPmU9CGft-YH3rUrLgvJr1fY4X6vNb7qGbs4Ojw_OE6G-gmJVQCLpGlMowpTlpVyoklrB8ZVmUkrT8lJA85geJeVVha2sjW6KhKclNKnXoJSkObP2Xbbtf4l46U1FoTPMlVZmbsaozbvhJdOFKBSU43Yx-iX6useK0MTenVMwYmkiSOaOKIzoZEjI7a35oCuB2xyKpFxpUOMAuqOJz5snlh_699tJ8TUqE_hBoqZHiaoLqxDybRepKKSvqwryrCiXa8BPPq0dsTekkhowsxoaVPOpVnO5_rTl6neJ1g2tPIlfun90KjpsP-1Gc444E8kmK2o5W7UEid1HZH5WvI0kWgnXOu75VxTuQJApxdG7EUviJtx4ZAJnQcpZSSi0cBjSvv9W4AUzzPKsKtX_8fG1-xBv-ReJCLfZduLX0v_Bn22hR2zrXJWjtnO5PD0bDoOKx94PZEwDtP4N8YBPpU
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKEYIL4s1CAQshIQ6heTi2I3FpK8oW2gotW6niYvmVUrFNqmYXaf89M3ms1lBOXONxYnvGnnFm5htC3iDYpHEZXEu8xwuKSCIprYxc7LxMSyeZxATno2M-PmGfT_PTDfJpyIUxFxbBSS_ObfN-PQF91p7aQ7BYt9cl307gbI1SMPkxwgAs-RvkpshzgaUMJrvfV-4EUIN5m2bUUw_-ymve8Efi-yzQVy2s_9-H95r2CiMr11TV_j1yt7cx6U43jftkw1cPyK2u6uTyIZl-bet0g86iYP3RX7gQtC3lQeeoudpzBMbW0LqkezWYj3SChyVtKv0TnpolZTmjl0sYcBeIDa96RE72P073xlFfXCEyXMp5VJa65LkWouAuLWPrpHZFouPCo-dSS6fh7pcIw3JTGAt2DJOOMeZjzyTnMs4ek82qrvxTQoXRRqY-SXhhWOYsXOm8Sz1zaS55rIsR-RAsqbrsgDQUQluHLcBkhRxRyBGVpAo4MiLbAweU7YHLsX7GTLUXGMmv6fFu1WP41r9pd5GpwZjaB_XVmerlTeXGgdgan8ZpwbywBbpfQelbKT0YvGZEXqNIKATUqDBi50wvmkYdfJuoHcRsAxNAwJfe9kRlDeO3uk-AgEVEDK6AciughB1vg2Y6SJ7CJgyTq3y9aBTWMpBgEcsRedIJ4mpeMGWE7oEWEYhoMPGwpTr_0eKNZwm63_mz_2PjK3J7PD06VIcHx1-ekzvdv_k8SrMtsjm_WvgXYNzNzct24_4GUStJDA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfGEIgXxDeFARZCQjyE5sNxHImXbVB1fExT2aSJF8tfGdO6pFpapP733DlpVcN44i2KncT23fnu4rvfEfIGwSa1zcAtcQ4dlCKJhDAisrF1Iq2sYAITnL8d8vEJ-3yan26R8SoXRl8aBCe9PDft-80E9KnfteHCXAxntuqEXfBhAptrlILNjyEGYMrfIDeLPC9QRCd7P9bnCaAHc59n1PdeHVhe84Y_Mt-ngcLyuP5_794b6isMrdzQVaN75G5vZNLdjivuky1XPyC3urKTy4fk-MgX6galRcH8o79wJaiv5UHnqLr8RgJja2lT0f0G7Ec6wd2StrW6gLt6SVnO6GwJA-4iseFVj8jJ6NPx_jjqqytEmgsxj6pKVTxXRVFym1axsULZMlFx6fDoUgmrwPlLCs1yXWoDhgwTljHmYscE5yLOHpPtuqndU0ILrbRIXZLwUrPMGvDpnE0ds2kueKzKAfkQLKmcdUgaErGtwxagskSKSKSITFIJFBmQ4YoC0vTI5VhAYyq9ByP4NU-8Wz-x-ta_--4hUYMx-RvN1ZnsxVfm2gLfapfGaclcYUo8fwWtb4RwYPHqAXmNLCERUaPGkJ0ztWhbefB9IncRtA1sgAK-9LbvVDXIyarPgIBFRBCuoOdO0BNE3gTNdMV5EpswTq52zaKVWMxAgEksBuRJx4jrecGUEbsHWoqARYOJhy31-U8POJ4leP7On_0fGV-R20cfR_LrweGX5-RO928-j9Jsh2zPrxbuBRh3c_3Sy-1vt_9I1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Profiling+the+venom+gland+transcriptomes+of+Costa+Rican+snakes+by+454+pyrosequencing&rft.jtitle=BMC+genomics&rft.au=Durban%2C+Jordi&rft.au=Ju%C3%A1rez%2C+Paula&rft.au=Angulo%2C+Yamileth&rft.au=Lomonte%2C+Bruno&rft.date=2011-05-23&rft.pub=BioMed+Central&rft.eissn=1471-2164&rft.volume=12&rft.spage=259&rft.epage=259&rft_id=info:doi/10.1186%2F1471-2164-12-259&rft_id=info%3Apmid%2F21605378&rft.externalDocID=PMC3128066
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon