Profiling the venom gland transcriptomes of Costa Rican snakes by 454 pyrosequencing
A long term research goal of venomics, of applied importance for improving current antivenom therapy, but also for drug discovery, is to understand the pharmacological potential of venoms. Individually or combined, proteomic and transcriptomic studies have demonstrated their feasibility to explore i...
Saved in:
Published in | BMC genomics Vol. 12; no. 1; p. 259 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
23.05.2011
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A long term research goal of venomics, of applied importance for improving current antivenom therapy, but also for drug discovery, is to understand the pharmacological potential of venoms. Individually or combined, proteomic and transcriptomic studies have demonstrated their feasibility to explore in depth the molecular diversity of venoms. In the absence of genome sequence, transcriptomes represent also valuable searchable databases for proteomic projects.
The venom gland transcriptomes of 8 Costa Rican taxa from 5 genera (Crotalus, Bothrops, Atropoides, Cerrophidion, and Bothriechis) of pitvipers were investigated using high-throughput 454 pyrosequencing. 100,394 out of 330,010 masked reads produced significant hits in the available databases. 5.165,220 nucleotides (8.27%) were masked by RepeatMasker, the vast majority of which corresponding to class I (retroelements) and class II (DNA transposons) mobile elements. BLAST hits included 79,991 matches to entries of the taxonomic suborder Serpentes, of which 62,433 displayed similarity to documented venom proteins. Strong discrepancies between the transcriptome-computed and the proteome-gathered toxin compositions were obvious at first sight. Although the reasons underlaying this discrepancy are elusive, since no clear trend within or between species is apparent, the data indicate that individual mRNA species may be translationally controlled in a species-dependent manner. The minimum number of genes from each toxin family transcribed into the venom gland transcriptome of each species was calculated from multiple alignments of reads matched to a full-length reference sequence of each toxin family. Reads encoding ORF regions of Kazal-type inhibitor-like proteins were uniquely found in Bothriechis schlegelii and B. lateralis transcriptomes, suggesting a genus-specific recruitment event during the early-Middle Miocene. A transcriptome-based cladogram supports the large divergence between A. mexicanus and A. picadoi, and a closer kinship between A. mexicanus and C. godmani.
Our comparative next-generation sequencing (NGS) analysis reveals taxon-specific trends governing the formulation of the venom arsenal. Knowledge of the venom proteome provides hints on the translation efficiency of toxin-coding transcripts, contributing thereby to a more accurate interpretation of the transcriptome. The application of NGS to the analysis of snake venom transcriptomes, may represent the tool for opening the door to systems venomics. |
---|---|
AbstractList | A long term research goal of venomics, of applied importance for improving current antivenom therapy, but also for drug discovery, is to understand the pharmacological potential of venoms. Individually or combined, proteomic and transcriptomic studies have demonstrated their feasibility to explore in depth the molecular diversity of venoms. In the absence of genome sequence, transcriptomes represent also valuable searchable databases for proteomic projects. The venom gland transcriptomes of 8 Costa Rican taxa from 5 genera (Crotalus, Bothrops, Atropoides, Cerrophidion, and Bothriechis) of pitvipers were investigated using high-throughput 454 pyrosequencing. 100,394 out of 330,010 masked reads produced significant hits in the available databases. 5.165,220 nucleotides (8.27%) were masked by RepeatMasker, the vast majority of which corresponding to class I (retroelements) and class II (DNA transposons) mobile elements. BLAST hits included 79,991 matches to entries of the taxonomic suborder Serpentes, of which 62,433 displayed similarity to documented venom proteins. Strong discrepancies between the transcriptome-computed and the proteome-gathered toxin compositions were obvious at first sight. Although the reasons underlaying this discrepancy are elusive, since no clear trend within or between species is apparent, the data indicate that individual mRNA species may be translationally controlled in a species-dependent manner. The minimum number of genes from each toxin family transcribed into the venom gland transcriptome of each species was calculated from multiple alignments of reads matched to a full-length reference sequence of each toxin family. Reads encoding ORF regions of Kazal-type inhibitor-like proteins were uniquely found in Bothriechis schlegelii and B. lateralis transcriptomes, suggesting a genus-specific recruitment event during the early-Middle Miocene. A transcriptome-based cladogram supports the large divergence between A. mexicanus and A. picadoi, and a closer kinship between A. mexicanus and C. godmani. Our comparative next-generation sequencing (NGS) analysis reveals taxon-specific trends governing the formulation of the venom arsenal. Knowledge of the venom proteome provides hints on the translation efficiency of toxin-coding transcripts, contributing thereby to a more accurate interpretation of the transcriptome. The application of NGS to the analysis of snake venom transcriptomes, may represent the tool for opening the door to systems venomics. Abstract Background A long term research goal of venomics, of applied importance for improving current antivenom therapy, but also for drug discovery, is to understand the pharmacological potential of venoms. Individually or combined, proteomic and transcriptomic studies have demonstrated their feasibility to explore in depth the molecular diversity of venoms. In the absence of genome sequence, transcriptomes represent also valuable searchable databases for proteomic projects. Results The venom gland transcriptomes of 8 Costa Rican taxa from 5 genera (Crotalus, Bothrops, Atropoides, Cerrophidion, and Bothriechis) of pitvipers were investigated using high-throughput 454 pyrosequencing. 100,394 out of 330,010 masked reads produced significant hits in the available databases. 5.165,220 nucleotides (8.27%) were masked by RepeatMasker, the vast majority of which corresponding to class I (retroelements) and class II (DNA transposons) mobile elements. BLAST hits included 79,991 matches to entries of the taxonomic suborder Serpentes, of which 62,433 displayed similarity to documented venom proteins. Strong discrepancies between the transcriptome-computed and the proteome-gathered toxin compositions were obvious at first sight. Although the reasons underlaying this discrepancy are elusive, since no clear trend within or between species is apparent, the data indicate that individual mRNA species may be translationally controlled in a species-dependent manner. The minimum number of genes from each toxin family transcribed into the venom gland transcriptome of each species was calculated from multiple alignments of reads matched to a full-length reference sequence of each toxin family. Reads encoding ORF regions of Kazal-type inhibitor-like proteins were uniquely found in Bothriechis schlegelii and B. lateralis transcriptomes, suggesting a genus-specific recruitment event during the early-Middle Miocene. A transcriptome-based cladogram supports the large divergence between A. mexicanus and A. picadoi, and a closer kinship between A. mexicanus and C. godmani. Conclusions Our comparative next-generation sequencing (NGS) analysis reveals taxon-specific trends governing the formulation of the venom arsenal. Knowledge of the venom proteome provides hints on the translation efficiency of toxin-coding transcripts, contributing thereby to a more accurate interpretation of the transcriptome. The application of NGS to the analysis of snake venom transcriptomes, may represent the tool for opening the door to systems venomics. A long term research goal of venomics, of applied importance for improving current antivenom therapy, but also for drug discovery, is to understand the pharmacological potential of venoms. Individually or combined, proteomic and transcriptomic studies have demonstrated their feasibility to explore in depth the molecular diversity of venoms. In the absence of genome sequence, transcriptomes represent also valuable searchable databases for proteomic projects. The venom gland transcriptomes of 8 Costa Rican taxa from 5 genera (Crotalus, Bothrops, Atropoides, Cerrophidion, and Bothriechis) of pitvipers were investigated using high-throughput 454 pyrosequencing. 100,394 out of 330,010 masked reads produced significant hits in the available databases. 5.165,220 nucleotides (8.27%) were masked by RepeatMasker, the vast majority of which corresponding to class I (retroelements) and class II (DNA transposons) mobile elements. BLAST hits included 79,991 matches to entries of the taxonomic suborder Serpentes, of which 62,433 displayed similarity to documented venom proteins. Strong discrepancies between the transcriptome-computed and the proteome-gathered toxin compositions were obvious at first sight. Although the reasons underlaying this discrepancy are elusive, since no clear trend within or between species is apparent, the data indicate that individual mRNA species may be translationally controlled in a species-dependent manner. The minimum number of genes from each toxin family transcribed into the venom gland transcriptome of each species was calculated from multiple alignments of reads matched to a full-length reference sequence of each toxin family. Reads encoding ORF regions of Kazal-type inhibitor-like proteins were uniquely found in Bothriechis schlegelii and B. lateralis transcriptomes, suggesting a genus-specific recruitment event during the early-Middle Miocene. A transcriptome-based cladogram supports the large divergence between A. mexicanus and A. picadoi, and a closer kinship between A. mexicanus and C. godmani. Our comparative next-generation sequencing (NGS) analysis reveals taxon-specific trends governing the formulation of the venom arsenal. Knowledge of the venom proteome provides hints on the translation efficiency of toxin-coding transcripts, contributing thereby to a more accurate interpretation of the transcriptome. The application of NGS to the analysis of snake venom transcriptomes, may represent the tool for opening the door to systems venomics. BACKGROUND: A long term research goal of venomics, of applied importance for improving current antivenom therapy, but also for drug discovery, is to understand the pharmacological potential of venoms. Individually or combined, proteomic and transcriptomic studies have demonstrated their feasibility to explore in depth the molecular diversity of venoms. In the absence of genome sequence, transcriptomes represent also valuable searchable databases for proteomic projects. RESULTS: The venom gland transcriptomes of 8 Costa Rican taxa from 5 genera (Crotalus, Bothrops, Atropoides, Cerrophidion, and Bothriechis) of pitvipers were investigated using high-throughput 454 pyrosequencing. 100,394 out of 330,010 masked reads produced significant hits in the available databases. 5.165,220 nucleotides (8.27%) were masked by RepeatMasker, the vast majority of which corresponding to class I (retroelements) and class II (DNA transposons) mobile elements. BLAST hits included 79,991 matches to entries of the taxonomic suborder Serpentes, of which 62,433 displayed similarity to documented venom proteins. Strong discrepancies between the transcriptome-computed and the proteome-gathered toxin compositions were obvious at first sight. Although the reasons underlaying this discrepancy are elusive, since no clear trend within or between species is apparent, the data indicate that individual mRNA species may be translationally controlled in a species-dependent manner. The minimum number of genes from each toxin family transcribed into the venom gland transcriptome of each species was calculated from multiple alignments of reads matched to a full-length reference sequence of each toxin family. Reads encoding ORF regions of Kazal-type inhibitor-like proteins were uniquely found in Bothriechis schlegelii and B. lateralis transcriptomes, suggesting a genus-specific recruitment event during the early-Middle Miocene. A transcriptome-based cladogram supports the large divergence between A. mexicanus and A. picadoi, and a closer kinship between A. mexicanus and C. godmani. CONCLUSIONS: Our comparative next-generation sequencing (NGS) analysis reveals taxon-specific trends governing the formulation of the venom arsenal. Knowledge of the venom proteome provides hints on the translation efficiency of toxin-coding transcripts, contributing thereby to a more accurate interpretation of the transcriptome. The application of NGS to the analysis of snake venom transcriptomes, may represent the tool for opening the door to systems venomics. A long term research goal of venomics, of applied importance for improving current antivenom therapy, but also for drug discovery, is to understand the pharmacological potential of venoms. Individually or combined, proteomic and transcriptomic studies have demonstrated their feasibility to explore in depth the molecular diversity of venoms. In the absence of genome sequence, transcriptomes represent also valuable searchable databases for proteomic projects.BACKGROUNDA long term research goal of venomics, of applied importance for improving current antivenom therapy, but also for drug discovery, is to understand the pharmacological potential of venoms. Individually or combined, proteomic and transcriptomic studies have demonstrated their feasibility to explore in depth the molecular diversity of venoms. In the absence of genome sequence, transcriptomes represent also valuable searchable databases for proteomic projects.The venom gland transcriptomes of 8 Costa Rican taxa from 5 genera (Crotalus, Bothrops, Atropoides, Cerrophidion, and Bothriechis) of pitvipers were investigated using high-throughput 454 pyrosequencing. 100,394 out of 330,010 masked reads produced significant hits in the available databases. 5.165,220 nucleotides (8.27%) were masked by RepeatMasker, the vast majority of which corresponding to class I (retroelements) and class II (DNA transposons) mobile elements. BLAST hits included 79,991 matches to entries of the taxonomic suborder Serpentes, of which 62,433 displayed similarity to documented venom proteins. Strong discrepancies between the transcriptome-computed and the proteome-gathered toxin compositions were obvious at first sight. Although the reasons underlaying this discrepancy are elusive, since no clear trend within or between species is apparent, the data indicate that individual mRNA species may be translationally controlled in a species-dependent manner. The minimum number of genes from each toxin family transcribed into the venom gland transcriptome of each species was calculated from multiple alignments of reads matched to a full-length reference sequence of each toxin family. Reads encoding ORF regions of Kazal-type inhibitor-like proteins were uniquely found in Bothriechis schlegelii and B. lateralis transcriptomes, suggesting a genus-specific recruitment event during the early-Middle Miocene. A transcriptome-based cladogram supports the large divergence between A. mexicanus and A. picadoi, and a closer kinship between A. mexicanus and C. godmani.RESULTSThe venom gland transcriptomes of 8 Costa Rican taxa from 5 genera (Crotalus, Bothrops, Atropoides, Cerrophidion, and Bothriechis) of pitvipers were investigated using high-throughput 454 pyrosequencing. 100,394 out of 330,010 masked reads produced significant hits in the available databases. 5.165,220 nucleotides (8.27%) were masked by RepeatMasker, the vast majority of which corresponding to class I (retroelements) and class II (DNA transposons) mobile elements. BLAST hits included 79,991 matches to entries of the taxonomic suborder Serpentes, of which 62,433 displayed similarity to documented venom proteins. Strong discrepancies between the transcriptome-computed and the proteome-gathered toxin compositions were obvious at first sight. Although the reasons underlaying this discrepancy are elusive, since no clear trend within or between species is apparent, the data indicate that individual mRNA species may be translationally controlled in a species-dependent manner. The minimum number of genes from each toxin family transcribed into the venom gland transcriptome of each species was calculated from multiple alignments of reads matched to a full-length reference sequence of each toxin family. Reads encoding ORF regions of Kazal-type inhibitor-like proteins were uniquely found in Bothriechis schlegelii and B. lateralis transcriptomes, suggesting a genus-specific recruitment event during the early-Middle Miocene. A transcriptome-based cladogram supports the large divergence between A. mexicanus and A. picadoi, and a closer kinship between A. mexicanus and C. godmani.Our comparative next-generation sequencing (NGS) analysis reveals taxon-specific trends governing the formulation of the venom arsenal. Knowledge of the venom proteome provides hints on the translation efficiency of toxin-coding transcripts, contributing thereby to a more accurate interpretation of the transcriptome. The application of NGS to the analysis of snake venom transcriptomes, may represent the tool for opening the door to systems venomics.CONCLUSIONSOur comparative next-generation sequencing (NGS) analysis reveals taxon-specific trends governing the formulation of the venom arsenal. Knowledge of the venom proteome provides hints on the translation efficiency of toxin-coding transcripts, contributing thereby to a more accurate interpretation of the transcriptome. The application of NGS to the analysis of snake venom transcriptomes, may represent the tool for opening the door to systems venomics. |
ArticleNumber | 259 |
Audience | Academic |
Author | Conesa, Ana Sanz, Libia Juárez, Paula Angulo, Yamileth Calvete, Juan J Durban, Jordi Lomonte, Bruno Flores-Diaz, Marietta Dopazo, Joaquín Gutiérrez, José M Sasa, Mahmood Alape-Girón, Alberto |
AuthorAffiliation | 3 Centro de Investigaciones en Estructuras Microscópicas, Universidad de Costa Rica, San José, Costa Rica 1 Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010 Valencia. Spain 2 Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica 4 Centro de Investigación Príncipe Felipe, Valencia. Spain |
AuthorAffiliation_xml | – name: 2 Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica – name: 1 Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010 Valencia. Spain – name: 3 Centro de Investigaciones en Estructuras Microscópicas, Universidad de Costa Rica, San José, Costa Rica – name: 4 Centro de Investigación Príncipe Felipe, Valencia. Spain |
Author_xml | – sequence: 1 givenname: Jordi surname: Durban fullname: Durban, Jordi – sequence: 2 givenname: Paula surname: Juárez fullname: Juárez, Paula – sequence: 3 givenname: Yamileth surname: Angulo fullname: Angulo, Yamileth – sequence: 4 givenname: Bruno surname: Lomonte fullname: Lomonte, Bruno – sequence: 5 givenname: Marietta surname: Flores-Diaz fullname: Flores-Diaz, Marietta – sequence: 6 givenname: Alberto surname: Alape-Girón fullname: Alape-Girón, Alberto – sequence: 7 givenname: Mahmood surname: Sasa fullname: Sasa, Mahmood – sequence: 8 givenname: Libia surname: Sanz fullname: Sanz, Libia – sequence: 9 givenname: José M surname: Gutiérrez fullname: Gutiérrez, José M – sequence: 10 givenname: Joaquín surname: Dopazo fullname: Dopazo, Joaquín – sequence: 11 givenname: Ana surname: Conesa fullname: Conesa, Ana – sequence: 12 givenname: Juan J surname: Calvete fullname: Calvete, Juan J |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21605378$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks1v1DAQxSNURD_gzglF4lBxSLEdx3EuSNWKwkqVQKWcLceepC6JvcTeiv3vO8uWVYNa5eBo_OYnz3tznB344CHL3lJyRqkUHymvacGo4AVlBauaF9nRvnTw6P8wO47xlhBaS1a9yg6xRqqylkfZ9fcpdG5wvs_TDeR34MOY94P2Nk-T9tFMbpXCCDEPXb4IMen8yhnt8-j1L6y2m5xXPF9tphDh9xq8QdTr7GWnhwhvHs6T7OfF5-vF1-Ly25fl4vyyaIWUqeg63YlK13UjLOuIsVLbhmrSQCnxlFZTyWnd8qptWiPKhkvLOQcCXAohSXmSLXdcG_StWk1u1NNGBe3U30KYeqWn5MwAqmptZ2ULjLCGQ22asqKUUWakBFLVLbI-7VirdTuCNeBx_mEGnd94d6P6cKdKyiQRAgGLHaB14RnA_MaEUW0TUtuEFGUKA0TK6cMzpoB2xqRGFw0MmAiEdVSy5lxWgkpUvt8pe43zOd8FpJqtWp0zQdA6NBZVZ0-o8LMwOoPbhOHDvOHDrAE1Cf6kXq9jVMsfV3Ptu8ee7Wf9t14oIDuBwfWIE3R7CSVqu8FPGSD-azEu6eTC1jQ3PN94D5FZ8hU |
CitedBy_id | crossref_primary_10_1021_pr201021d crossref_primary_10_1016_j_biochi_2015_07_005 crossref_primary_10_1098_rspb_2020_0613 crossref_primary_10_1074_jbc_M114_635458 crossref_primary_10_1016_j_toxicon_2018_08_016 crossref_primary_10_1016_j_toxicon_2016_08_014 crossref_primary_10_3390_toxins15010001 crossref_primary_10_1093_gbe_evaa115 crossref_primary_10_3390_toxins8080230 crossref_primary_10_3390_toxins16030142 crossref_primary_10_3390_toxins5111948 crossref_primary_10_1016_j_nbt_2017_05_005 crossref_primary_10_1016_j_jprot_2014_09_003 crossref_primary_10_1093_gbe_evu166 crossref_primary_10_1016_j_toxicon_2014_10_022 crossref_primary_10_3389_fevo_2019_00279 crossref_primary_10_3390_toxins16110458 crossref_primary_10_1093_gbe_evw149 crossref_primary_10_7717_peerj_3142 crossref_primary_10_1016_j_jprot_2016_10_006 crossref_primary_10_1186_s12859_014_0389_8 crossref_primary_10_1371_journal_pntd_0004587 crossref_primary_10_1371_journal_pntd_0002442 crossref_primary_10_1134_S1061934822130081 crossref_primary_10_1371_journal_pntd_0001554 crossref_primary_10_1007_s00216_021_03506_1 crossref_primary_10_1371_journal_pntd_0003731 crossref_primary_10_4155_fmc_14_95 crossref_primary_10_1016_j_toxcx_2020_100037 crossref_primary_10_1016_j_ygeno_2018_11_026 crossref_primary_10_1146_annurev_animal_021419_083626 crossref_primary_10_1586_epr_11_61 crossref_primary_10_1186_s12864_021_07824_7 crossref_primary_10_3390_toxins15060398 crossref_primary_10_3389_fevo_2019_00218 crossref_primary_10_1093_icb_icw063 crossref_primary_10_1016_j_toxicon_2017_10_025 crossref_primary_10_3390_toxins16020083 crossref_primary_10_1186_s12867_016_0059_7 crossref_primary_10_1042_BJ20130599 crossref_primary_10_5005_jp_journals_10071_24362 crossref_primary_10_3390_toxins11020104 crossref_primary_10_1016_j_toxicon_2015_09_012 crossref_primary_10_1111_j_1463_6409_2012_00547_x crossref_primary_10_1016_j_biochi_2012_02_006 crossref_primary_10_1016_j_jprot_2020_103945 crossref_primary_10_1016_j_toxicon_2012_11_010 crossref_primary_10_1016_j_biochi_2013_06_025 crossref_primary_10_1186_1471_2164_14_394 crossref_primary_10_1186_s12864_015_1828_2 crossref_primary_10_3390_toxins13080548 crossref_primary_10_1186_s12864_020_6545_9 crossref_primary_10_1038_s41598_020_70565_2 crossref_primary_10_1016_j_actatropica_2018_09_017 crossref_primary_10_1016_j_jprot_2018_03_032 crossref_primary_10_1016_j_toxicon_2022_04_002 crossref_primary_10_1016_j_jprot_2011_09_021 crossref_primary_10_1016_j_jprot_2012_02_022 crossref_primary_10_1016_j_biochi_2016_03_004 crossref_primary_10_1371_journal_pone_0100682 crossref_primary_10_1371_journal_pone_0127883 crossref_primary_10_1093_molbev_msu337 crossref_primary_10_1371_journal_pone_0063927 crossref_primary_10_3390_toxins8070210 crossref_primary_10_1021_acs_jproteome_7b00414 crossref_primary_10_1016_j_toxicon_2013_06_019 crossref_primary_10_1021_pr200876c crossref_primary_10_1186_1471_2164_13_312 crossref_primary_10_1186_1471_2164_13_439 crossref_primary_10_3390_ani12162058 crossref_primary_10_1016_j_jprot_2016_02_028 crossref_primary_10_3390_molecules25040912 crossref_primary_10_1016_j_jprot_2015_09_015 crossref_primary_10_1016_j_toxicon_2013_07_005 crossref_primary_10_1186_1471_2164_14_234 crossref_primary_10_1016_j_gene_2012_01_009 crossref_primary_10_1073_pnas_1405484111 crossref_primary_10_1016_j_toxicon_2013_07_008 crossref_primary_10_1021_acs_jproteome_6b00217 crossref_primary_10_1016_j_ijbiomac_2014_05_039 crossref_primary_10_1038_srep09454 crossref_primary_10_1586_14789450_2014_900447 crossref_primary_10_1016_j_toxicon_2013_03_020 crossref_primary_10_1186_s40409_015_0002_2 crossref_primary_10_1007_s00239_023_10115_2 crossref_primary_10_1016_j_jprot_2012_03_028 |
Cites_doi | 10.1046/j.1432-1033.2002.02982.x 10.1073/pnas.0404838101 10.1016/j.toxicon.2005.02.022 10.1016/j.toxicon.2005.12.010 10.1016/j.bbrc.2007.11.027 10.1007/978-3-642-86659-3 10.1186/1471-2148-7-2 10.1038/nature03959 10.1093/emboj/16.3.651 10.1021/pr060494k 10.1186/1471-2199-5-17 10.1016/j.toxicon.2006.07.008 10.1073/pnas.1004139107 10.1146/annurev.genet.42.110807.091501 10.1111/j.1365-2699.2008.01991.x 10.1074/mcp.M300129-MCP200 10.1016/j.jprot.2009.01.001 10.1016/S0041-0101(98)00148-2 10.1073/pnas.0402888101 10.1021/pr100545d 10.1016/S0041-0101(98)00150-0 10.1016/j.jprot.2009.01.009 10.1021/bi035871a 10.1655/01-105.2 10.1146/annurev-genom-082908-145957 10.1016/j.gene.2006.03.008 10.1038/75556 10.1186/gb-2005-6-13-r111 10.1128/MCB.25.15.6427-6435.2005 10.1093/icb/23.2.431 10.1016/j.jprot.2008.10.003 10.3109/15569549509019467 10.1016/j.jprot.2007.10.004 10.1016/j.toxicon.2009.01.006 10.1007/s00018-009-0050-2 10.1038/nmeth.1376 10.1038/nature07178 10.1016/j.toxicon.2006.01.022 10.1016/j.toxicon.2009.11.010 10.1021/pr800332p 10.1038/nrg2484 10.1093/molbev/msn179 10.1101/SQB.1956.021.01.017 10.1007/s00239-008-9067-7 10.1007/s00018-006-6315-0 10.1186/1471-2164-7-152 10.1371/journal.pmed.0050218 10.1016/j.ympev.2005.05.013 10.1586/epr.09.45 10.1007/s10709-008-9326-y 10.1101/gr.074492.107 10.1093/nar/gkp971 10.1016/j.febslet.2006.07.010 10.1021/pr8000139 10.1074/mcp.M700094-MCP200 10.1021/pr9008749 10.1002/jms.1389 10.1111/j.1755-0998.2009.02750.x 10.1016/j.toxicon.2011.01.008 10.1016/0968-0004(94)90072-8 10.1016/j.toxicon.2004.10.009 10.1186/1471-2164-10-465 10.1016/j.jprot.2009.12.006 10.1016/j.tig.2007.12.007 10.1186/1471-2199-8-115 10.1007/s00726-010-0516-4 10.1186/1471-2164-11-571 10.1093/genetics/144.3.1271 10.1093/nar/gkm1000 10.1038/ng775 10.1016/j.actatropica.2008.05.021 10.1073/pnas.94.15.7799 10.1534/genetics.106.056515 10.1016/S0041-0101(98)00156-1 10.1002/pmic.200700777 10.1016/j.toxicon.2008.02.019 10.1159/000084966 10.1021/pr700610z 10.1093/bioinformatics/btm076 10.1201/9781420008661.ch24 10.1016/j.gene.2010.04.001 10.1016/S0022-2836(05)80360-2 10.1186/1471-2105-5-113 10.1002/jms.1242 10.1017/S0031182005007808 10.1038/nsb1015 10.1016/0041-0101(91)90116-9 10.1038/nature04328 10.1016/0041-0101(92)90534-C 10.1016/S0378-1119(02)01080-6 10.1093/nar/gkp299 10.1016/j.ympev.2005.12.014 10.1101/gr.282402 10.1016/j.jprot.2009.01.020 10.1126/science.2047873 10.1073/pnas.0635171100 10.1093/molbev/msh091 10.1093/bioinformatics/bti610 10.1021/pr900249q 10.1146/annurev.genom.9.081307.164356 10.1016/j.jprot.2009.01.018 10.1101/gr.3228405 10.1002/rcm.1973 10.1093/nar/gkm832 10.1016/j.yexcr.2010.02.036 10.1111/j.1432-1033.1997.00772.x 10.1021/pr901042p 10.1002/jmor.1052080106 10.1016/j.tig.2003.08.004 10.1016/j.bbrc.2006.01.006 10.1021/pr1000829 10.1016/j.biochi.2004.02.002 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2011 BioMed Central Ltd. Copyright ©2011 Durban et al; licensee BioMed Central Ltd. 2011 Durban et al; licensee BioMed Central Ltd. |
Copyright_xml | – notice: COPYRIGHT 2011 BioMed Central Ltd. – notice: Copyright ©2011 Durban et al; licensee BioMed Central Ltd. 2011 Durban et al; licensee BioMed Central Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 5PM DOA |
DOI | 10.1186/1471-2164-12-259 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2164 |
EndPage | 259 |
ExternalDocumentID | oai_doaj_org_article_5bdfd8be20294e7c93511212c88e057b PMC3128066 oai_biomedcentral_com_1471_2164_12_259 A260184779 21605378 10_1186_1471_2164_12_259 |
Genre | Research Support, U.S. Gov't, P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Costa Rica Spain |
GeographicLocations_xml | – name: Costa Rica – name: Spain |
GroupedDBID | --- 0R~ 23N 2VQ 2WC 2XV 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C1A C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR INH INR IPNFZ ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB PMFND 7X8 -A0 3V. ABVAZ ACRMQ ADINQ AFGXO AFNRJ AIXEN C24 5PM PUEGO |
ID | FETCH-LOGICAL-b688t-ffaf65a7796d2f0cd8ad91a09e3891a8da18417b45b9bc63948d444e0e4866803 |
IEDL.DBID | RBZ |
ISSN | 1471-2164 |
IngestDate | Wed Aug 27 01:29:43 EDT 2025 Thu Aug 21 18:05:11 EDT 2025 Wed May 22 07:16:58 EDT 2024 Fri Jul 11 04:57:09 EDT 2025 Tue Jun 17 22:07:53 EDT 2025 Tue Jun 10 21:06:48 EDT 2025 Fri Jun 27 06:08:43 EDT 2025 Mon Jul 21 05:57:40 EDT 2025 Thu Apr 24 22:53:13 EDT 2025 Tue Jul 01 02:21:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b688t-ffaf65a7796d2f0cd8ad91a09e3891a8da18417b45b9bc63948d444e0e4866803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1186/1471-2164-12-259 |
PMID | 21605378 |
PQID | 874485618 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5bdfd8be20294e7c93511212c88e057b pubmedcentral_primary_oai_pubmedcentral_nih_gov_3128066 biomedcentral_primary_oai_biomedcentral_com_1471_2164_12_259 proquest_miscellaneous_874485618 gale_infotracmisc_A260184779 gale_infotracacademiconefile_A260184779 gale_incontextgauss_ISR_A260184779 pubmed_primary_21605378 crossref_primary_10_1186_1471_2164_12_259 crossref_citationtrail_10_1186_1471_2164_12_259 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-05-23 |
PublicationDateYYYYMMDD | 2011-05-23 |
PublicationDate_xml | – month: 05 year: 2011 text: 2011-05-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | BMC genomics |
PublicationTitleAlternate | BMC Genomics |
PublicationYear | 2011 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | BG Fry (3432_CR5) 2006; 439 TA Castoe (3432_CR106) 2005; 37 ER Mardis (3432_CR38) 2008; 24 HW Deng (3432_CR104) 1996; 144 JA Campbell (3432_CR43) 2004 S Kashima (3432_CR82) 2004; 86 DCI Koh (3432_CR11) 2006; 63 S Decuypere (3432_CR93) 2005; 131 D Kordis (3432_CR55) 1997; 246 Q Liu (3432_CR66) 2006; 341 TA Castoe (3432_CR108) 2003; 59 N Ikeda (3432_CR57) 2010; 461 LN van de Lagemaat (3432_CR61) 2003; 19 PL Ho (3432_CR29) 1995; 14 ILM Junqueira-de-Azevedo (3432_CR53) 2006; 172 S Kumar (3432_CR64) 2010; 11 TA Castoe (3432_CR78) 2010; 10 SM Munekiyo (3432_CR75) 2005; 45 B Zhang (3432_CR39) 2006; 7 A Alape-Girón (3432_CR117) 2008; 7 S Slomovic (3432_CR94) 2005; 25 FJ Vonk (3432_CR4) 2008; 454 P Escoubas (3432_CR22) 2008; 43 E Fasoli (3432_CR28) 2010; 73 S Linnarsson (3432_CR36) 2010; 316 JP Chippaux (3432_CR10) 2008; 107 LS Wermelinger (3432_CR73) 2005; 19 J Fernández (3432_CR100) 2010; 9 D Kordis (3432_CR56) 1998; 36 VJ Lynch (3432_CR59) 2007; 7 JW Fox (3432_CR21) 2008; 8 MD Adams (3432_CR30) 1991; 252 CW Wheat (3432_CR35) 2010; 138 ILM Junqueira de Azevedo (3432_CR25) 2009 A Ménez (3432_CR14) 1998; 36 AL Harvey (3432_CR13) 1998; 36 Q He (3432_CR68) 2008; 36 JJ Calvete (3432_CR12) 2009; 72 JM Gutiérrez (3432_CR42) 2009 B Lomonte (3432_CR115) 2008; 7 S Pahari (3432_CR95) 2007; 8 Y Yao (3432_CR90) 1997; 16 DR Zerbino (3432_CR63) 2008; 18 HW Greene (3432_CR7) 1983; 23 A Conesa (3432_CR113) 2005; 21 The Gene Ontology Consortium (3432_CR114) 2000; 25 T Preiss (3432_CR97) 2003; 10 P Juárez (3432_CR86) 2008; 25 M Margulies (3432_CR110) 2005; 437 SF Altschul (3432_CR112) 1990; 215 DAP Cidade (3432_CR83) 2006; 48 G Naamati (3432_CR67) 2009; 37 JJ Calvete (3432_CR118) 2010; 9 3432_CR44 Y Arava (3432_CR96) 2003; 100 W Pi (3432_CR51) 2010; 107 RB Freedman (3432_CR89) 1994; 19 N Bannert (3432_CR47) 2004; 101 Z Yang (3432_CR105) 1996; 11 B McClintock (3432_CR46) 1956; 21 GP Espino-Solis (3432_CR19) 2009; 72 L Menin (3432_CR74) 2008; 51 P Flicek (3432_CR65) 2009; 6 TA Castoe (3432_CR101) 2009; 36 PL Deininger (3432_CR48) 2002; 12 JJ Calvete (3432_CR31) 2007; 6 RC Rodríguez de la Vega (3432_CR24) 2009; 56 JJ Calvete (3432_CR20) 2007; 42 RH Valente (3432_CR32) 2009; 72 3432_CR111 LD Dos Santos (3432_CR23) 2010; 9 P Medstrand (3432_CR62) 2005; 110 KF Huang (3432_CR77) 2002; 269 O Morozova (3432_CR37) 2009; 10 JW Fox (3432_CR70) 2006; 47 MJ Paine (3432_CR109) 1992; 30 M Neiva (3432_CR84) 2009; 53 JP Chippaux (3432_CR33) 1991; 29 BG Fry (3432_CR79) 2009; 10 World Health Organization (3432_CR8) 2007 MK Kuhner (3432_CR103) 1994; 11 ILM Junqueira-de-Azevedo (3432_CR52) 2002; 299 I Vetter (3432_CR17) 2011; 17 DR Rokyta (3432_CR40) 2011; 57 P Escoubas (3432_CR16) 2009; 6 JF Hughes (3432_CR49) 2001; 29 ND Rawlings (3432_CR69) 2010; 38 TA Castoe (3432_CR107) 2006; 39 Y Angulo (3432_CR116) 2008; 7 D Georgieva (3432_CR71) 2010; 9 SC Wagstaff (3432_CR34) 2006; 377 JJ Calvete (3432_CR72) 2009; 8 R Doley (3432_CR85) 2009; 66 Q Lu (3432_CR87) 2005; 45 VL MacKay (3432_CR98) 2004; 3 HL Gibbs (3432_CR60) 2008; 66 Z Wang (3432_CR41) 2009; 10 BG Fry (3432_CR3) 2008; 7 BI Crother (3432_CR102) 1992 M Ohno (3432_CR58) 1970 RC Edgar (3432_CR120) 2004; 5 A Ménez (3432_CR15) 2006; 47 JS Papadopoulos (3432_CR119) 2007; 23 JR Walker (3432_CR88) 2004; 43 BG Fry (3432_CR6) 2009; 72 W Wang (3432_CR45) 2009; 10 J Fleischmann (3432_CR91) 2004; 5 SC Wagstaff (3432_CR27) 2009; 71 P Jern (3432_CR50) 2008; 42 M Nei (3432_CR80) 1997; 94 BG Fry (3432_CR2) 2004; 21 A Kasturiratne (3432_CR9) 2008; 5 BG Fry (3432_CR81) 2005; 15 JM Gutiérrez (3432_CR18) 2009 AT Ching (3432_CR54) 2006; 580 SC Wagstaff (3432_CR76) 2008; 365 GL Law (3432_CR99) 2005; 6 SP Mackessy (3432_CR1) 1991; 208 L Sanz (3432_CR26) 2008; 71 L Kuai (3432_CR92) 2004; 101 |
References_xml | – volume: 269 start-page: 3047 year: 2002 ident: 3432_CR77 publication-title: Eur J Biochem doi: 10.1046/j.1432-1033.2002.02982.x – volume: 101 start-page: 14572 year: 2004 ident: 3432_CR47 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0404838101 – volume: 45 start-page: 1089 year: 2005 ident: 3432_CR87 publication-title: Toxicon doi: 10.1016/j.toxicon.2005.02.022 – volume: 47 start-page: 255 year: 2006 ident: 3432_CR15 publication-title: Toxicon doi: 10.1016/j.toxicon.2005.12.010 – volume: 365 start-page: 650 year: 2008 ident: 3432_CR76 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2007.11.027 – start-page: 1 volume-title: Biology of the Pitvipers year: 1992 ident: 3432_CR102 – volume-title: Evolution by gene duplication year: 1970 ident: 3432_CR58 doi: 10.1007/978-3-642-86659-3 – volume: 7 start-page: 2 year: 2007 ident: 3432_CR59 publication-title: BMC Evol Biol doi: 10.1186/1471-2148-7-2 – volume: 437 start-page: 376 year: 2005 ident: 3432_CR110 publication-title: Nature doi: 10.1038/nature03959 – volume: 16 start-page: 651 year: 1997 ident: 3432_CR90 publication-title: EMBO J doi: 10.1093/emboj/16.3.651 – volume: 6 start-page: 326 year: 2007 ident: 3432_CR31 publication-title: J Proteome Res doi: 10.1021/pr060494k – volume: 5 start-page: 17 year: 2004 ident: 3432_CR91 publication-title: BMC Mol Biol doi: 10.1186/1471-2199-5-17 – volume: 48 start-page: 437 year: 2006 ident: 3432_CR83 publication-title: Toxicon doi: 10.1016/j.toxicon.2006.07.008 – volume: 107 start-page: 12992 year: 2010 ident: 3432_CR51 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1004139107 – volume: 42 start-page: 709 year: 2008 ident: 3432_CR50 publication-title: Annu Rev Genet doi: 10.1146/annurev.genet.42.110807.091501 – volume: 36 start-page: 88 year: 2009 ident: 3432_CR101 publication-title: J Biogeogr doi: 10.1111/j.1365-2699.2008.01991.x – volume: 3 start-page: 478 year: 2004 ident: 3432_CR98 publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M300129-MCP200 – ident: 3432_CR111 – volume: 72 start-page: 241 year: 2009 ident: 3432_CR32 publication-title: J Proteomics doi: 10.1016/j.jprot.2009.01.001 – volume: 36 start-page: 1557 year: 1998 ident: 3432_CR14 publication-title: Toxicon doi: 10.1016/S0041-0101(98)00148-2 – volume: 101 start-page: 8581 year: 2004 ident: 3432_CR92 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0402888101 – volume: 9 start-page: 4234 year: 2010 ident: 3432_CR100 publication-title: J Proteome Res doi: 10.1021/pr100545d – volume: 36 start-page: 1585 year: 1998 ident: 3432_CR56 publication-title: Toxicon doi: 10.1016/S0041-0101(98)00150-0 – start-page: 693 volume-title: Animal Toxins: State of the Art. Perspectives in Health and Biotechnology year: 2009 ident: 3432_CR25 – volume: 72 start-page: 127 year: 2009 ident: 3432_CR6 publication-title: J Proteomics doi: 10.1016/j.jprot.2009.01.009 – volume-title: Rabies and envenomings. A neglected public health issue: Report of a consultative meeting year: 2007 ident: 3432_CR8 – volume: 43 start-page: 3783 year: 2004 ident: 3432_CR88 publication-title: Biochemistry doi: 10.1021/bi035871a – volume: 59 start-page: 420 year: 2003 ident: 3432_CR108 publication-title: Herpetologica doi: 10.1655/01-105.2 – volume: 10 start-page: 135 year: 2009 ident: 3432_CR37 publication-title: Annu Rev Genomics Hum Genet doi: 10.1146/annurev-genom-082908-145957 – volume: 377 start-page: 21 year: 2006 ident: 3432_CR34 publication-title: Gene doi: 10.1016/j.gene.2006.03.008 – volume: 25 start-page: 25 year: 2000 ident: 3432_CR114 publication-title: Nat Genet doi: 10.1038/75556 – volume: 6 start-page: R111 year: 2005 ident: 3432_CR99 publication-title: Genome Biol doi: 10.1186/gb-2005-6-13-r111 – volume: 25 start-page: 6427 year: 2005 ident: 3432_CR94 publication-title: Mol Cell Biol doi: 10.1128/MCB.25.15.6427-6435.2005 – volume: 23 start-page: 431 year: 1983 ident: 3432_CR7 publication-title: Am Zool doi: 10.1093/icb/23.2.431 – volume: 71 start-page: 609 year: 2009 ident: 3432_CR27 publication-title: J Proteomics doi: 10.1016/j.jprot.2008.10.003 – volume: 11 start-page: 459 year: 1994 ident: 3432_CR103 publication-title: Mol Biol Evol – volume: 14 start-page: 327 year: 1995 ident: 3432_CR29 publication-title: J Toxicol Toxin Reviews doi: 10.3109/15569549509019467 – volume: 71 start-page: 46 year: 2008 ident: 3432_CR26 publication-title: J Proteomics doi: 10.1016/j.jprot.2007.10.004 – volume: 53 start-page: 427 year: 2009 ident: 3432_CR84 publication-title: Toxicon doi: 10.1016/j.toxicon.2009.01.006 – volume: 66 start-page: 2851 year: 2009 ident: 3432_CR85 publication-title: Cell Mol Life Sci doi: 10.1007/s00018-009-0050-2 – volume: 6 start-page: S6 year: 2009 ident: 3432_CR65 publication-title: Nature Methods doi: 10.1038/nmeth.1376 – volume: 454 start-page: 630 year: 2008 ident: 3432_CR4 publication-title: Nature doi: 10.1038/nature07178 – volume: 47 start-page: 700 year: 2006 ident: 3432_CR70 publication-title: Toxicon doi: 10.1016/j.toxicon.2006.01.022 – volume: 56 start-page: 1155 year: 2009 ident: 3432_CR24 publication-title: Toxicon doi: 10.1016/j.toxicon.2009.11.010 – volume: 7 start-page: 3556 year: 2008 ident: 3432_CR117 publication-title: J Proteome Res doi: 10.1021/pr800332p – volume: 10 start-page: 57 year: 2009 ident: 3432_CR41 publication-title: Nat Rev Genet doi: 10.1038/nrg2484 – volume: 25 start-page: 2391 year: 2008 ident: 3432_CR86 publication-title: Mol Biol Evol doi: 10.1093/molbev/msn179 – volume: 21 start-page: 197 year: 1956 ident: 3432_CR46 publication-title: Cold Spring Harb Symp Quant Biol doi: 10.1101/SQB.1956.021.01.017 – volume: 66 start-page: 151 year: 2008 ident: 3432_CR60 publication-title: J Mol Evol doi: 10.1007/s00239-008-9067-7 – volume: 63 start-page: 3030 year: 2006 ident: 3432_CR11 publication-title: Cell Mol Life Sci doi: 10.1007/s00018-006-6315-0 – volume: 7 start-page: 152 year: 2006 ident: 3432_CR39 publication-title: BMC Genomics doi: 10.1186/1471-2164-7-152 – volume: 5 start-page: e218 year: 2008 ident: 3432_CR9 publication-title: PLoS Med doi: 10.1371/journal.pmed.0050218 – volume: 37 start-page: 881 year: 2005 ident: 3432_CR106 publication-title: Mol Phylogenet Evol doi: 10.1016/j.ympev.2005.05.013 – volume: 6 start-page: 221 year: 2009 ident: 3432_CR16 publication-title: Expert Rev Proteomics doi: 10.1586/epr.09.45 – volume: 138 start-page: 433 year: 2010 ident: 3432_CR35 publication-title: Genetica doi: 10.1007/s10709-008-9326-y – volume: 18 start-page: 821 year: 2008 ident: 3432_CR63 publication-title: Genome Res doi: 10.1101/gr.074492.107 – volume: 38 start-page: D227 year: 2010 ident: 3432_CR69 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp971 – volume: 580 start-page: 4417 year: 2006 ident: 3432_CR54 publication-title: FEBS Lett doi: 10.1016/j.febslet.2006.07.010 – volume: 7 start-page: 2445 year: 2008 ident: 3432_CR115 publication-title: J Proteome Res doi: 10.1021/pr8000139 – volume: 7 start-page: 215 year: 2008 ident: 3432_CR3 publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M700094-MCP200 – volume: 9 start-page: 528 year: 2010 ident: 3432_CR118 publication-title: J Proteome Res doi: 10.1021/pr9008749 – start-page: 393 volume-title: Animal Toxins: State of the Art. Perspectives in Health and Biotechnology year: 2009 ident: 3432_CR18 – volume: 43 start-page: 279 year: 2008 ident: 3432_CR22 publication-title: J Mass Spectrom doi: 10.1002/jms.1389 – volume: 10 start-page: 341 year: 2010 ident: 3432_CR78 publication-title: Mol Ecol Res doi: 10.1111/j.1755-0998.2009.02750.x – volume: 57 start-page: 657 year: 2011 ident: 3432_CR40 publication-title: Toxicon doi: 10.1016/j.toxicon.2011.01.008 – volume: 19 start-page: 331 year: 1994 ident: 3432_CR89 publication-title: Trends Biochem Sci doi: 10.1016/0968-0004(94)90072-8 – volume: 45 start-page: 255 year: 2005 ident: 3432_CR75 publication-title: Toxicon doi: 10.1016/j.toxicon.2004.10.009 – volume: 10 start-page: 465 year: 2009 ident: 3432_CR45 publication-title: BMC Genomics doi: 10.1186/1471-2164-10-465 – volume: 73 start-page: 932 year: 2010 ident: 3432_CR28 publication-title: J Proteomics doi: 10.1016/j.jprot.2009.12.006 – volume: 24 start-page: 133 year: 2008 ident: 3432_CR38 publication-title: Trends Genet doi: 10.1016/j.tig.2007.12.007 – volume: 8 start-page: 115 year: 2007 ident: 3432_CR95 publication-title: BMC Mol Biol doi: 10.1186/1471-2199-8-115 – volume: 17 start-page: 15 year: 2011 ident: 3432_CR17 publication-title: Amino Acids doi: 10.1007/s00726-010-0516-4 – volume: 11 start-page: 571 year: 2010 ident: 3432_CR64 publication-title: BMC Genomics doi: 10.1186/1471-2164-11-571 – volume: 144 start-page: 1271 year: 1996 ident: 3432_CR104 publication-title: Genetics doi: 10.1093/genetics/144.3.1271 – ident: 3432_CR44 doi: 10.1093/nar/gkm1000 – volume: 29 start-page: 487 year: 2001 ident: 3432_CR49 publication-title: Nat Genet doi: 10.1038/ng775 – volume: 107 start-page: 71 year: 2008 ident: 3432_CR10 publication-title: Acta Trop doi: 10.1016/j.actatropica.2008.05.021 – volume: 94 start-page: 7799 year: 1997 ident: 3432_CR80 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.94.15.7799 – volume: 172 start-page: 877 year: 2006 ident: 3432_CR53 publication-title: Genetics doi: 10.1534/genetics.106.056515 – volume: 36 start-page: 1635 year: 1998 ident: 3432_CR13 publication-title: Toxicon doi: 10.1016/S0041-0101(98)00156-1 – volume: 8 start-page: 909 year: 2008 ident: 3432_CR21 publication-title: Proteomics doi: 10.1002/pmic.200700777 – volume: 51 start-page: 1288 year: 2008 ident: 3432_CR74 publication-title: Toxicon doi: 10.1016/j.toxicon.2008.02.019 – volume: 110 start-page: 342 year: 2005 ident: 3432_CR62 publication-title: Cytogenet Genome Res doi: 10.1159/000084966 – volume: 7 start-page: 708 year: 2008 ident: 3432_CR116 publication-title: J Proteome Res doi: 10.1021/pr700610z – volume: 23 start-page: 1073 year: 2007 ident: 3432_CR119 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm076 – start-page: 491 volume-title: Handbook of Venoms and Toxins of Reptiles year: 2009 ident: 3432_CR42 doi: 10.1201/9781420008661.ch24 – volume: 461 start-page: 15 year: 2010 ident: 3432_CR57 publication-title: Gene doi: 10.1016/j.gene.2010.04.001 – volume: 215 start-page: 403 year: 1990 ident: 3432_CR112 publication-title: J Mol Biol doi: 10.1016/S0022-2836(05)80360-2 – volume: 5 start-page: 113 year: 2004 ident: 3432_CR120 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-5-113 – volume: 42 start-page: 1405 year: 2007 ident: 3432_CR20 publication-title: J Mass Spectrom doi: 10.1002/jms.1242 – volume: 131 start-page: 121 year: 2005 ident: 3432_CR93 publication-title: Parasitology doi: 10.1017/S0031182005007808 – volume: 10 start-page: 1039 year: 2003 ident: 3432_CR97 publication-title: Nat Struct Mol Biol doi: 10.1038/nsb1015 – volume: 29 start-page: 1279 year: 1991 ident: 3432_CR33 publication-title: Toxicon doi: 10.1016/0041-0101(91)90116-9 – volume: 439 start-page: 584 year: 2006 ident: 3432_CR5 publication-title: Nature doi: 10.1038/nature04328 – volume: 30 start-page: 379 year: 1992 ident: 3432_CR109 publication-title: Toxicon doi: 10.1016/0041-0101(92)90534-C – volume: 299 start-page: 279 year: 2002 ident: 3432_CR52 publication-title: Gene doi: 10.1016/S0378-1119(02)01080-6 – volume: 37 start-page: W363 year: 2009 ident: 3432_CR67 publication-title: Nucleic Acid Res doi: 10.1093/nar/gkp299 – volume: 39 start-page: 91 year: 2006 ident: 3432_CR107 publication-title: Mol Phylogenet Evol doi: 10.1016/j.ympev.2005.12.014 – volume: 12 start-page: 1455 year: 2002 ident: 3432_CR48 publication-title: Genome Res doi: 10.1101/gr.282402 – volume: 72 start-page: 183 year: 2009 ident: 3432_CR19 publication-title: J Proteomics doi: 10.1016/j.jprot.2009.01.020 – volume: 252 start-page: 1651 year: 1991 ident: 3432_CR30 publication-title: Science doi: 10.1126/science.2047873 – volume: 100 start-page: 3889 year: 2003 ident: 3432_CR96 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0635171100 – volume: 21 start-page: 870 year: 2004 ident: 3432_CR2 publication-title: Mol Biol Evol doi: 10.1093/molbev/msh091 – volume-title: The Venomous Reptiles of the Western Hemisphere year: 2004 ident: 3432_CR43 – volume: 21 start-page: 3674 year: 2005 ident: 3432_CR113 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti610 – volume: 8 start-page: 3055 year: 2009 ident: 3432_CR72 publication-title: J Proteome Res doi: 10.1021/pr900249q – volume: 10 start-page: 483 year: 2009 ident: 3432_CR79 publication-title: Annu Rev Genom Human Genet doi: 10.1146/annurev.genom.9.081307.164356 – volume: 72 start-page: 121 year: 2009 ident: 3432_CR12 publication-title: J Proteomics doi: 10.1016/j.jprot.2009.01.018 – volume: 15 start-page: 403 year: 2005 ident: 3432_CR81 publication-title: Genome Res doi: 10.1101/gr.3228405 – volume: 19 start-page: 1703 year: 2005 ident: 3432_CR73 publication-title: Rapid Commun Mass Spectrom doi: 10.1002/rcm.1973 – volume: 36 start-page: D293 year: 2008 ident: 3432_CR68 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm832 – volume: 316 start-page: 1339 year: 2010 ident: 3432_CR36 publication-title: Exp Cell Res doi: 10.1016/j.yexcr.2010.02.036 – volume: 246 start-page: 772 year: 1997 ident: 3432_CR55 publication-title: Eur J Biochem doi: 10.1111/j.1432-1033.1997.00772.x – volume: 9 start-page: 2302 year: 2010 ident: 3432_CR71 publication-title: J Proteome Res doi: 10.1021/pr901042p – volume: 208 start-page: 109 year: 1991 ident: 3432_CR1 publication-title: J Morphol doi: 10.1002/jmor.1052080106 – volume: 19 start-page: 530 year: 2003 ident: 3432_CR61 publication-title: Trends Genet doi: 10.1016/j.tig.2003.08.004 – volume: 341 start-page: 522 year: 2006 ident: 3432_CR66 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2006.01.006 – volume: 11 start-page: 367 year: 1996 ident: 3432_CR105 publication-title: Tree – volume: 9 start-page: 3867 year: 2010 ident: 3432_CR23 publication-title: J Proteome Res doi: 10.1021/pr1000829 – volume: 86 start-page: 211 year: 2004 ident: 3432_CR82 publication-title: Biochimie doi: 10.1016/j.biochi.2004.02.002 |
SSID | ssj0017825 |
Score | 2.329176 |
Snippet | A long term research goal of venomics, of applied importance for improving current antivenom therapy, but also for drug discovery, is to understand the... Background A long term research goal of venomics, of applied importance for improving current antivenom therapy, but also for drug discovery, is to understand... BACKGROUND: A long term research goal of venomics, of applied importance for improving current antivenom therapy, but also for drug discovery, is to understand... Abstract Background A long term research goal of venomics, of applied importance for improving current antivenom therapy, but also for drug discovery, is to... |
SourceID | doaj pubmedcentral biomedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 259 |
SubjectTerms | 454 pyrosequencing Animals Atropoides bioinformatic analysis Bothriechis Bothrops asper Cerrophidion Costa Rica Costa Rican snakes Crotalus DNA sequencing Gene Expression Profiling - methods High-Throughput Nucleotide Sequencing - methods next generation high-throughput DNA sequencing Nucleotide sequencing Physiological aspects Proteome - metabolism RNA, Messenger - genetics RNA, Messenger - metabolism Salivary Glands - metabolism Sequence Analysis, DNA - methods Snake venom gland transcriptomics Snake Venoms - genetics Snakes - classification Snakes - genetics Snakes - metabolism |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9VAEF6kIPgi1uuxVRYRxIdwks1mMwFfarFUQZHaQt-WvUWLNSnmnIfz753ZJIezqPji616yt9m5ZGa_YewlgU1aX6JZEgIZKHWRATjIfO4DiNaDBHrg_PGTOr2QHy6ry51UXxQTNsIDjxu3rKzHHjagkd7IULuGPF_Ibx1AQF3DEvdFmTcbU5P_AOVeFd8V4dgCLYLZQQlquS2joARBGKXJS_frREBFHP_fufWOuEpDKXdk08k9dndSKvnRuJh9dit099ntMc3k5gE7_xwTc6OQ4qjucWRv_Q8ec3fwFYmqyDhwbgPvW37co77Iz4g78qEz37HUbrisJL_Z4ITHyGv81EN2cfLu_Pg0m7IpZFYBrLK2Na2qTF03yos2dx6MbwqTN4FclQa8QWOvqK2sbGMdKi4SvJQy5EGCUpCXj9he13fhCeO1NRZEKArVWFl6hzZc8CJILypQuWkW7E2ypfpmRM7QhGWd1uC10nQimk5EF0LjiSzYcj4B7SakckqYca2jxQLqDz1eb3vMY_297Vs61GROsQCpTk9Up_9FdQv2gkhCE4JGRyE6X816GPT7L2f6iEDaUObXONKrqVHb4_ydmV484CYS6FbS8jBpiVfcJdV8pjxNVRQX14V-PWhKXgCoAsOCPR4JcbsuXDJh9WBNnZBosvC0prv6FgHGy4L87erp_9ipA3Zn_A1fZaI8ZHurn-vwDPW4lX0er-wv_UJBWw priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA96Ivgifls9JYggPtTrR5pOQZHz8DiFEzlv4d5C0qSnuLbndhfc_96ZtL276Pria5Ns08z3zuQ3jD0nsEljcwxLnKMApUxjgBpim1gHWWNBAF1wPvwkD2bi40lxcnE9ejzAfmNoR_2kZov5q18_129R4N94gQe5k6KCjTP0-6nMAN35q-wa2qWSxPRQXOQU0BYWU6JywyoPCywJ3gT-uPw-D2yWh_b_W4FfsmBhdeUlc7V_i90c_Uy-OzDGbXbFtXfY9aHz5PouO_7se3Wj3eLoAXLUeN0P7tt58CVZL69LcG897xq-16ELyY9IYfK-1d_xqVlzUQh-tsYND8XY-FP32Gz__fHeQTw2WIiNBFjGTaMbWeiyrKTNmqS2oG2V6qRylL3UYDXGf2lpRGEqU6MvI8AKIVziBEgJSX6fbbVd6x4yXhptIHNpKisjcltjWOds5oTNCpCJriL2OjhSdTaAaSiCtw5HUNIUEUcRcVSaKSROxHYmCqh6BC-nHhpz5YMYkBtWvDxfMb3r33PfEVGDPfkH3eJUjRKsCmORdY3LkqwSrqwrSsGi4a8BHDq9JmLPiCUUgWq0VLVzqld9rz58OVK7hNuGbkCJb3oxTmo63H-tx0sQeIiEwxXM3A5motTXwTCfOE_REJXKta5b9Yr6GQB6xRCxBwMjnn_XxN8RKwMWDT48HGm_ffWY43lKKXj56L9XPmY3hr_jizjLt9nWcrFyT9CfW5qnXkx_A-MwRx4 priority: 102 providerName: Scholars Portal |
Title | Profiling the venom gland transcriptomes of Costa Rican snakes by 454 pyrosequencing |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21605378 https://www.proquest.com/docview/874485618 http://dx.doi.org/10.1186/1471-2164-12-259 https://pubmed.ncbi.nlm.nih.gov/PMC3128066 https://doaj.org/article/5bdfd8be20294e7c93511212c88e057b |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoKyQuiDcLZWUhJMQhauI4zkTi0q1aFaRW1dJKKy6WHTsFUZKK3T3sv2fGyS51KScuOWScxM6M5-Gxv2HsHYFNWpdjWOI9BShllgDUkLjUeRCNAwl0wPnkVB1fyM-zYvYHJudWBj8DtZeh-kwEevW0iQCd9S22IyTaQYrMJ183GQO0dEU4STS0Xqck73jDrbPtV5FJCsj9f-vnGwYq3jx5wxodPWIPBzeS7_d8f8zu-fYJu98Xllw9ZednoRQ3miWODh5Hhdb95KFaB1-QcQqqAvs2513DDzr0EPmU9CGft-YH3rUrLgvJr1fY4X6vNb7qGbs4Ojw_OE6G-gmJVQCLpGlMowpTlpVyoklrB8ZVmUkrT8lJA85geJeVVha2sjW6KhKclNKnXoJSkObP2Xbbtf4l46U1FoTPMlVZmbsaozbvhJdOFKBSU43Yx-iX6useK0MTenVMwYmkiSOaOKIzoZEjI7a35oCuB2xyKpFxpUOMAuqOJz5snlh_699tJ8TUqE_hBoqZHiaoLqxDybRepKKSvqwryrCiXa8BPPq0dsTekkhowsxoaVPOpVnO5_rTl6neJ1g2tPIlfun90KjpsP-1Gc444E8kmK2o5W7UEid1HZH5WvI0kWgnXOu75VxTuQJApxdG7EUviJtx4ZAJnQcpZSSi0cBjSvv9W4AUzzPKsKtX_8fG1-xBv-ReJCLfZduLX0v_Bn22hR2zrXJWjtnO5PD0bDoOKx94PZEwDtP4N8YBPpU |
linkProvider | BioMedCentral |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKEYIL4s1CAQshIQ6heTi2I3FpK8oW2gotW6niYvmVUrFNqmYXaf89M3ms1lBOXONxYnvGnnFm5htC3iDYpHEZXEu8xwuKSCIprYxc7LxMSyeZxATno2M-PmGfT_PTDfJpyIUxFxbBSS_ObfN-PQF91p7aQ7BYt9cl307gbI1SMPkxwgAs-RvkpshzgaUMJrvfV-4EUIN5m2bUUw_-ymve8Efi-yzQVy2s_9-H95r2CiMr11TV_j1yt7cx6U43jftkw1cPyK2u6uTyIZl-bet0g86iYP3RX7gQtC3lQeeoudpzBMbW0LqkezWYj3SChyVtKv0TnpolZTmjl0sYcBeIDa96RE72P073xlFfXCEyXMp5VJa65LkWouAuLWPrpHZFouPCo-dSS6fh7pcIw3JTGAt2DJOOMeZjzyTnMs4ek82qrvxTQoXRRqY-SXhhWOYsXOm8Sz1zaS55rIsR-RAsqbrsgDQUQluHLcBkhRxRyBGVpAo4MiLbAweU7YHLsX7GTLUXGMmv6fFu1WP41r9pd5GpwZjaB_XVmerlTeXGgdgan8ZpwbywBbpfQelbKT0YvGZEXqNIKATUqDBi50wvmkYdfJuoHcRsAxNAwJfe9kRlDeO3uk-AgEVEDK6AciughB1vg2Y6SJ7CJgyTq3y9aBTWMpBgEcsRedIJ4mpeMGWE7oEWEYhoMPGwpTr_0eKNZwm63_mz_2PjK3J7PD06VIcHx1-ekzvdv_k8SrMtsjm_WvgXYNzNzct24_4GUStJDA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfGEIgXxDeFARZCQjyE5sNxHImXbVB1fExT2aSJF8tfGdO6pFpapP733DlpVcN44i2KncT23fnu4rvfEfIGwSa1zcAtcQ4dlCKJhDAisrF1Iq2sYAITnL8d8vEJ-3yan26R8SoXRl8aBCe9PDft-80E9KnfteHCXAxntuqEXfBhAptrlILNjyEGYMrfIDeLPC9QRCd7P9bnCaAHc59n1PdeHVhe84Y_Mt-ngcLyuP5_794b6isMrdzQVaN75G5vZNLdjivuky1XPyC3urKTy4fk-MgX6galRcH8o79wJaiv5UHnqLr8RgJja2lT0f0G7Ec6wd2StrW6gLt6SVnO6GwJA-4iseFVj8jJ6NPx_jjqqytEmgsxj6pKVTxXRVFym1axsULZMlFx6fDoUgmrwPlLCs1yXWoDhgwTljHmYscE5yLOHpPtuqndU0ILrbRIXZLwUrPMGvDpnE0ds2kueKzKAfkQLKmcdUgaErGtwxagskSKSKSITFIJFBmQ4YoC0vTI5VhAYyq9ByP4NU-8Wz-x-ta_--4hUYMx-RvN1ZnsxVfm2gLfapfGaclcYUo8fwWtb4RwYPHqAXmNLCERUaPGkJ0ztWhbefB9IncRtA1sgAK-9LbvVDXIyarPgIBFRBCuoOdO0BNE3gTNdMV5EpswTq52zaKVWMxAgEksBuRJx4jrecGUEbsHWoqARYOJhy31-U8POJ4leP7On_0fGV-R20cfR_LrweGX5-RO928-j9Jsh2zPrxbuBRh3c_3Sy-1vt_9I1w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Profiling+the+venom+gland+transcriptomes+of+Costa+Rican+snakes+by+454+pyrosequencing&rft.jtitle=BMC+genomics&rft.au=Durban%2C+Jordi&rft.au=Ju%C3%A1rez%2C+Paula&rft.au=Angulo%2C+Yamileth&rft.au=Lomonte%2C+Bruno&rft.date=2011-05-23&rft.pub=BioMed+Central&rft.eissn=1471-2164&rft.volume=12&rft.spage=259&rft.epage=259&rft_id=info:doi/10.1186%2F1471-2164-12-259&rft_id=info%3Apmid%2F21605378&rft.externalDocID=PMC3128066 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |