Comparative genome analysis and genome-guided physiological analysis of Roseobacter litoralis
Roseobacter litoralis OCh149, the type species of the genus, and Roseobacter denitrificans OCh114 were the first described organisms of the Roseobacter clade, an ecologically important group of marine bacteria. Both species were isolated from seaweed and are able to perform aerobic anoxygenic photos...
Saved in:
Published in | BMC genomics Vol. 12; no. 1; p. 324 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
21.06.2011
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Roseobacter litoralis OCh149, the type species of the genus, and Roseobacter denitrificans OCh114 were the first described organisms of the Roseobacter clade, an ecologically important group of marine bacteria. Both species were isolated from seaweed and are able to perform aerobic anoxygenic photosynthesis.
The genome of R. litoralis OCh149 contains one circular chromosome of 4,505,211 bp and three plasmids of 93,578 bp (pRLO149_94), 83,129 bp (pRLO149_83) and 63,532 bp (pRLO149_63). Of the 4537 genes predicted for R. litoralis, 1122 (24.7%) are not present in the genome of R. denitrificans. Many of the unique genes of R. litoralis are located in genomic islands and on plasmids. On pRLO149_83 several potential heavy metal resistance genes are encoded which are not present in the genome of R. denitrificans. The comparison of the heavy metal tolerance of the two organisms showed an increased zinc tolerance of R. litoralis. In contrast to R. denitrificans, the photosynthesis genes of R. litoralis are plasmid encoded. The activity of the photosynthetic apparatus was confirmed by respiration rate measurements, indicating a growth-phase dependent response to light. Comparative genomics with other members of the Roseobacter clade revealed several genomic regions that were only conserved in the two Roseobacter species. One of those regions encodes a variety of genes that might play a role in host association of the organisms. The catabolism of different carbon and nitrogen sources was predicted from the genome and combined with experimental data. In several cases, e.g. the degradation of some algal osmolytes and sugars, the genome-derived predictions of the metabolic pathways in R. litoralis differed from the phenotype.
The genomic differences between the two Roseobacter species are mainly due to lateral gene transfer and genomic rearrangements. Plasmid pRLO149_83 contains predominantly recently acquired genetic material whereas pRLO149_94 was probably translocated from the chromosome. Plasmid pRLO149_63 and one plasmid of R. denitrifcans (pTB2) seem to have a common ancestor and are important for cell envelope biosynthesis. Several new mechanisms of substrate degradation were indicated from the combination of experimental and genomic data. The photosynthetic activity of R. litoralis is probably regulated by nutrient availability. |
---|---|
AbstractList | Roseobacter litoralis OCh149, the type species of the genus, and Roseobacter denitrificans OCh114 were the first described organisms of the Roseobacter clade, an ecologically important group of marine bacteria. Both species were isolated from seaweed and are able to perform aerobic anoxygenic photosynthesis. The genome of R. litoralis OCh149 contains one circular chromosome of 4,505,211 bp and three plasmids of 93,578 bp (pRLO149_94), 83,129 bp (pRLO149_83) and 63,532 bp (pRLO149_63). Of the 4537 genes predicted for R. litoralis, 1122 (24.7%) are not present in the genome of R. denitrificans. Many of the unique genes of R. litoralis are located in genomic islands and on plasmids. On pRLO149_83 several potential heavy metal resistance genes are encoded which are not present in the genome of R. denitrificans. The comparison of the heavy metal tolerance of the two organisms showed an increased zinc tolerance of R. litoralis. In contrast to R. denitrificans, the photosynthesis genes of R. litoralis are plasmid encoded. The activity of the photosynthetic apparatus was confirmed by respiration rate measurements, indicating a growth-phase dependent response to light. Comparative genomics with other members of the Roseobacter clade revealed several genomic regions that were only conserved in the two Roseobacter species. One of those regions encodes a variety of genes that might play a role in host association of the organisms. The catabolism of different carbon and nitrogen sources was predicted from the genome and combined with experimental data. In several cases, e.g. the degradation of some algal osmolytes and sugars, the genome-derived predictions of the metabolic pathways in R. litoralis differed from the phenotype. The genomic differences between the two Roseobacter species are mainly due to lateral gene transfer and genomic rearrangements. Plasmid pRLO149_83 contains predominantly recently acquired genetic material whereas pRLO149_94 was probably translocated from the chromosome. Plasmid pRLO149_63 and one plasmid of R. denitrifcans (pTB2) seem to have a common ancestor and are important for cell envelope biosynthesis. Several new mechanisms of substrate degradation were indicated from the combination of experimental and genomic data. The photosynthetic activity of R. litoralis is probably regulated by nutrient availability. Background Roseobacter litoralis OCh149, the type species of the genus, and Roseobacter denitrificans OCh114 were the first described organisms of the Roseobacter clade, an ecologically important group of marine bacteria. Both species were isolated from seaweed and are able to perform aerobic anoxygenic photosynthesis. Results The genome of R. litoralis OCh149 contains one circular chromosome of 4,505,211 bp and three plasmids of 93,578 bp (pRLO149_94), 83,129 bp (pRLO149_83) and 63,532 bp (pRLO149_63). Of the 4537 genes predicted for R. litoralis, 1122 (24.7%) are not present in the genome of R. denitrificans. Many of the unique genes of R. litoralis are located in genomic islands and on plasmids. On pRLO149_83 several potential heavy metal resistance genes are encoded which are not present in the genome of R. denitrificans. The comparison of the heavy metal tolerance of the two organisms showed an increased zinc tolerance of R. litoralis. In contrast to R. denitrificans, the photosynthesis genes of R. litoralis are plasmid encoded. The activity of the photosynthetic apparatus was confirmed by respiration rate measurements, indicating a growth-phase dependent response to light. Comparative genomics with other members of the Roseobacter clade revealed several genomic regions that were only conserved in the two Roseobacter species. One of those regions encodes a variety of genes that might play a role in host association of the organisms. The catabolism of different carbon and nitrogen sources was predicted from the genome and combined with experimental data. In several cases, e.g. the degradation of some algal osmolytes and sugars, the genome-derived predictions of the metabolic pathways in R. litoralis differed from the phenotype. Conclusions The genomic differences between the two Roseobacter species are mainly due to lateral gene transfer and genomic rearrangements. Plasmid pRLO149_83 contains predominantly recently acquired genetic material whereas pRLO149_94 was probably translocated from the chromosome. Plasmid pRLO149_63 and one plasmid of R. denitrifcans (pTB2) seem to have a common ancestor and are important for cell envelope biosynthesis. Several new mechanisms of substrate degradation were indicated from the combination of experimental and genomic data. The photosynthetic activity of R. litoralis is probably regulated by nutrient availability. Roseobacter litoralis OCh149, the type species of the genus, and Roseobacter denitrificans OCh114 were the first described organisms of the Roseobacter clade, an ecologically important group of marine bacteria. Both species were isolated from seaweed and are able to perform aerobic anoxygenic photosynthesis. The genome of R. litoralis OCh149 contains one circular chromosome of 4,505,211 bp and three plasmids of 93,578 bp (pRLO149_94), 83,129 bp (pRLO149_83) and 63,532 bp (pRLO149_63). Of the 4537 genes predicted for R. litoralis, 1122 (24.7%) are not present in the genome of R. denitrificans. Many of the unique genes of R. litoralis are located in genomic islands and on plasmids. On pRLO149_83 several potential heavy metal resistance genes are encoded which are not present in the genome of R. denitrificans. The comparison of the heavy metal tolerance of the two organisms showed an increased zinc tolerance of R. litoralis. In contrast to R. denitrificans, the photosynthesis genes of R. litoralis are plasmid encoded. The activity of the photosynthetic apparatus was confirmed by respiration rate measurements, indicating a growth-phase dependent response to light. Comparative genomics with other members of the Roseobacter clade revealed several genomic regions that were only conserved in the two Roseobacter species. One of those regions encodes a variety of genes that might play a role in host association of the organisms. The catabolism of different carbon and nitrogen sources was predicted from the genome and combined with experimental data. In several cases, e.g. the degradation of some algal osmolytes and sugars, the genome-derived predictions of the metabolic pathways in R. litoralis differed from the phenotype. The genomic differences between the two Roseobacter species are mainly due to lateral gene transfer and genomic rearrangements. Plasmid pRLO149_83 contains predominantly recently acquired genetic material whereas pRLO149_94 was probably translocated from the chromosome. Plasmid pRLO149_63 and one plasmid of R. denitrifcans (pTB2) seem to have a common ancestor and are important for cell envelope biosynthesis. Several new mechanisms of substrate degradation were indicated from the combination of experimental and genomic data. The photosynthetic activity of R. litoralis is probably regulated by nutrient availability. Roseobacter litoralis OCh149, the type species of the genus, and Roseobacter denitrificans OCh114 were the first described organisms of the Roseobacter clade, an ecologically important group of marine bacteria. Both species were isolated from seaweed and are able to perform aerobic anoxygenic photosynthesis.BACKGROUNDRoseobacter litoralis OCh149, the type species of the genus, and Roseobacter denitrificans OCh114 were the first described organisms of the Roseobacter clade, an ecologically important group of marine bacteria. Both species were isolated from seaweed and are able to perform aerobic anoxygenic photosynthesis.The genome of R. litoralis OCh149 contains one circular chromosome of 4,505,211 bp and three plasmids of 93,578 bp (pRLO149_94), 83,129 bp (pRLO149_83) and 63,532 bp (pRLO149_63). Of the 4537 genes predicted for R. litoralis, 1122 (24.7%) are not present in the genome of R. denitrificans. Many of the unique genes of R. litoralis are located in genomic islands and on plasmids. On pRLO149_83 several potential heavy metal resistance genes are encoded which are not present in the genome of R. denitrificans. The comparison of the heavy metal tolerance of the two organisms showed an increased zinc tolerance of R. litoralis. In contrast to R. denitrificans, the photosynthesis genes of R. litoralis are plasmid encoded. The activity of the photosynthetic apparatus was confirmed by respiration rate measurements, indicating a growth-phase dependent response to light. Comparative genomics with other members of the Roseobacter clade revealed several genomic regions that were only conserved in the two Roseobacter species. One of those regions encodes a variety of genes that might play a role in host association of the organisms. The catabolism of different carbon and nitrogen sources was predicted from the genome and combined with experimental data. In several cases, e.g. the degradation of some algal osmolytes and sugars, the genome-derived predictions of the metabolic pathways in R. litoralis differed from the phenotype.RESULTSThe genome of R. litoralis OCh149 contains one circular chromosome of 4,505,211 bp and three plasmids of 93,578 bp (pRLO149_94), 83,129 bp (pRLO149_83) and 63,532 bp (pRLO149_63). Of the 4537 genes predicted for R. litoralis, 1122 (24.7%) are not present in the genome of R. denitrificans. Many of the unique genes of R. litoralis are located in genomic islands and on plasmids. On pRLO149_83 several potential heavy metal resistance genes are encoded which are not present in the genome of R. denitrificans. The comparison of the heavy metal tolerance of the two organisms showed an increased zinc tolerance of R. litoralis. In contrast to R. denitrificans, the photosynthesis genes of R. litoralis are plasmid encoded. The activity of the photosynthetic apparatus was confirmed by respiration rate measurements, indicating a growth-phase dependent response to light. Comparative genomics with other members of the Roseobacter clade revealed several genomic regions that were only conserved in the two Roseobacter species. One of those regions encodes a variety of genes that might play a role in host association of the organisms. The catabolism of different carbon and nitrogen sources was predicted from the genome and combined with experimental data. In several cases, e.g. the degradation of some algal osmolytes and sugars, the genome-derived predictions of the metabolic pathways in R. litoralis differed from the phenotype.The genomic differences between the two Roseobacter species are mainly due to lateral gene transfer and genomic rearrangements. Plasmid pRLO149_83 contains predominantly recently acquired genetic material whereas pRLO149_94 was probably translocated from the chromosome. Plasmid pRLO149_63 and one plasmid of R. denitrifcans (pTB2) seem to have a common ancestor and are important for cell envelope biosynthesis. Several new mechanisms of substrate degradation were indicated from the combination of experimental and genomic data. The photosynthetic activity of R. litoralis is probably regulated by nutrient availability.CONCLUSIONSThe genomic differences between the two Roseobacter species are mainly due to lateral gene transfer and genomic rearrangements. Plasmid pRLO149_83 contains predominantly recently acquired genetic material whereas pRLO149_94 was probably translocated from the chromosome. Plasmid pRLO149_63 and one plasmid of R. denitrifcans (pTB2) seem to have a common ancestor and are important for cell envelope biosynthesis. Several new mechanisms of substrate degradation were indicated from the combination of experimental and genomic data. The photosynthetic activity of R. litoralis is probably regulated by nutrient availability. Abstract Background Roseobacter litoralis OCh149, the type species of the genus, and Roseobacter denitrificans OCh114 were the first described organisms of the Roseobacter clade, an ecologically important group of marine bacteria. Both species were isolated from seaweed and are able to perform aerobic anoxygenic photosynthesis. Results The genome of R. litoralis OCh149 contains one circular chromosome of 4,505,211 bp and three plasmids of 93,578 bp (pRLO149_94), 83,129 bp (pRLO149_83) and 63,532 bp (pRLO149_63). Of the 4537 genes predicted for R. litoralis, 1122 (24.7%) are not present in the genome of R. denitrificans. Many of the unique genes of R. litoralis are located in genomic islands and on plasmids. On pRLO149_83 several potential heavy metal resistance genes are encoded which are not present in the genome of R. denitrificans. The comparison of the heavy metal tolerance of the two organisms showed an increased zinc tolerance of R. litoralis. In contrast to R. denitrificans, the photosynthesis genes of R. litoralis are plasmid encoded. The activity of the photosynthetic apparatus was confirmed by respiration rate measurements, indicating a growth-phase dependent response to light. Comparative genomics with other members of the Roseobacter clade revealed several genomic regions that were only conserved in the two Roseobacter species. One of those regions encodes a variety of genes that might play a role in host association of the organisms. The catabolism of different carbon and nitrogen sources was predicted from the genome and combined with experimental data. In several cases, e.g. the degradation of some algal osmolytes and sugars, the genome-derived predictions of the metabolic pathways in R. litoralis differed from the phenotype. Conclusions The genomic differences between the two Roseobacter species are mainly due to lateral gene transfer and genomic rearrangements. Plasmid pRLO149_83 contains predominantly recently acquired genetic material whereas pRLO149_94 was probably translocated from the chromosome. Plasmid pRLO149_63 and one plasmid of R. denitrifcans (pTB2) seem to have a common ancestor and are important for cell envelope biosynthesis. Several new mechanisms of substrate degradation were indicated from the combination of experimental and genomic data. The photosynthetic activity of R. litoralis is probably regulated by nutrient availability. |
ArticleNumber | 324 |
Audience | Academic |
Author | Brinkhoff, Thorsten Thole, Sebastian Liesegang, Heiko Daniel, Rolf Voget, Sonja Lehmann, Rüdiger Simon, Meinhard Kalhoefer, Daniela Wollher, Antje |
AuthorAffiliation | 1 Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany 2 Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany |
AuthorAffiliation_xml | – name: 1 Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany – name: 2 Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany |
Author_xml | – sequence: 1 givenname: Daniela surname: Kalhoefer fullname: Kalhoefer, Daniela – sequence: 2 givenname: Sebastian surname: Thole fullname: Thole, Sebastian – sequence: 3 givenname: Sonja surname: Voget fullname: Voget, Sonja – sequence: 4 givenname: Rüdiger surname: Lehmann fullname: Lehmann, Rüdiger – sequence: 5 givenname: Heiko surname: Liesegang fullname: Liesegang, Heiko – sequence: 6 givenname: Antje surname: Wollher fullname: Wollher, Antje – sequence: 7 givenname: Rolf surname: Daniel fullname: Daniel, Rolf – sequence: 8 givenname: Meinhard surname: Simon fullname: Simon, Meinhard – sequence: 9 givenname: Thorsten surname: Brinkhoff fullname: Brinkhoff, Thorsten |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21693016$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kstr3DAQxk1JaR7tvaey0EPpwanG8kO-FMLSx0KgkLbHIkbSyFGwra3lDc1_X7nebuOSoIPEN7_50DxOk6Pe95QkL4GdA4jyHeQVpBmUeQpZyrP8SXJykI7uvY-T0xBuGINKZMWz5DhqNWdQniQ_1r7b4oCju6VVQ73vaIU9tnfBhfgwey1tds6QWW2vY8C3vnEa23-gt6srH8gr1CMNq9aNfsDWhefJU4ttoBf7-yz5_vHDt_Xn9PLLp8364jJVpRBjqm1e19pgxQQHJCxNDbywBVhjFCLyWqiKsqLkxqoCFat1URMAEeSaqYKfJZvZ13i8kdvBdTjcSY9O_hH80EgcRqdbkqg4gSlExZXNSWu0xOuc2YJRXel88no_e213qiOjqR9jLQvTZaR317Lxt5JDDmXFosF6NlDOP2KwjGjfyWlUchqVhEzGSUaXN_tvDP7njsIoOxc0tS325HdBikoIEKKuIvl6JhuM9bne-uiqJ1peZGXGBGQAkTp_gIrHUOd0XCvror5IeLtIiMxIv8YGdyHIzderJfvqfs8Otf7dswiwGdCDD2Ege0CAyWmVH2pA-V-KdmPcUz81zbWPJ_4GW_74Tg |
CitedBy_id | crossref_primary_10_1371_journal_pone_0051662 crossref_primary_10_1111_1462_2920_13253 crossref_primary_10_1021_pr400554e crossref_primary_10_1093_femsec_fiz060 crossref_primary_10_1146_annurev_earth_060313_054810 crossref_primary_10_1089_omi_2015_0142 crossref_primary_10_1080_03650340_2021_1921743 crossref_primary_10_3389_fmicb_2016_00058 crossref_primary_10_3389_fmicb_2016_00730 crossref_primary_10_3389_fmicb_2015_00146 crossref_primary_10_1089_ast_2021_0165 crossref_primary_10_2323_jgam_61_44 crossref_primary_10_1093_gbe_evz138 crossref_primary_10_1128_AEM_02930_15 crossref_primary_10_1371_journal_pone_0063422 crossref_primary_10_1111_j_1574_6968_2011_02477_x crossref_primary_10_1093_gbe_evs127 crossref_primary_10_1099_ijs_0_053249_0 crossref_primary_10_1128_MMBR_00020_14 crossref_primary_10_1186_1471_2180_13_46 crossref_primary_10_1016_j_envpol_2019_07_091 crossref_primary_10_3389_fmicb_2022_900669 crossref_primary_10_1038_ismej_2016_30 crossref_primary_10_1016_j_aquabot_2023_103698 crossref_primary_10_1099_ijs_0_040675_0 crossref_primary_10_1128_mSystems_00358_19 crossref_primary_10_1186_s40793_018_0311_5 crossref_primary_10_1016_j_syapm_2017_05_006 crossref_primary_10_1128_mSystems_00443_20 crossref_primary_10_1186_s40168_024_01860_7 crossref_primary_10_3389_fmicb_2016_00248 crossref_primary_10_3389_fmicb_2016_00742 crossref_primary_10_3389_fmicb_2015_00233 crossref_primary_10_1111_1574_6976_12011 crossref_primary_10_1016_j_aquaculture_2023_739254 crossref_primary_10_1111_j_1462_2920_2012_02806_x crossref_primary_10_1099_ijsem_0_006403 crossref_primary_10_1016_j_syapm_2014_12_001 crossref_primary_10_1099_ijsem_0_003194 crossref_primary_10_1038_s41396_018_0150_9 crossref_primary_10_1128_AEM_02153_18 crossref_primary_10_1007_s00253_013_4746_8 crossref_primary_10_1038_s41396_020_00790_0 |
Cites_doi | 10.1128/mr.57.3.543-594.1993 10.3233/ISB-00108 10.1038/ismej.2010.6 10.1128/AEM.02339-07 10.1128/jb.175.24.7880-7886.1993 10.1186/1745-6150-3-38 10.1128/AEM.02580-06 10.1093/bioinformatics/btn578 10.1099/ijs.0.02377-0 10.1128/JB.183.15.4664-4667.2001 10.1021/bi048412y 10.1074/jbc.M602585200 10.1186/1471-2180-9-209 10.1002/pmic.200900120 10.1128/jb.179.7.2452-2458.1997 10.1099/mic.0.041905-0 10.1093/oxfordjournals.jbchem.a122371 10.1128/JB.186.24.8433-8442.2004 10.1016/S0966-842X(00)88917-9 10.1074/jbc.M606727200 10.1186/gb-2003-4-6-r36 10.1111/j.1462-2920.2005.00843.x 10.1007/BF00407934 10.1128/IAI.66.11.5485-5493.1998 10.1038/nrmicro884 10.1093/bioinformatics/bti553 10.1007/s00244-008-9135-4 10.1038/ismej.2009.150 10.1016/S0021-9258(18)70755-2 10.1038/ismej.2009.94 10.1128/AEM.70.6.3360-3369.2004 10.1016/S0168-6445(03)00048-2 10.1007/BF00443236 10.1073/pnas.1534787100 10.1186/gb-2000-1-6-research0011 10.1007/s00203-008-0353-y 10.1016/S0147-619X(02)00117-8 10.1016/j.cbi.2008.09.018 10.1007/s002390010163 10.1007/BF02115582 10.1007/s00128-006-0920-3 10.1101/gr.2289704 10.1093/bioinformatics/btp030 10.1371/journal.pone.0011604 10.1099/00221287-143-1-83 10.1099/ijs.0.02850-0 10.1016/S0378-1119(96)00323-X 10.1146/annurev.micro.50.1.753 10.1126/science.278.5338.631 10.1128/JB.187.21.7176-7184.2005 10.1099/ijs.0.63511-0 10.1093/nar/gkg148 10.1128/MMBR.69.4.608-634.2005 10.1007/978-0-387-33504-9_1 10.1093/nar/30.1.56 10.1146/annurev.genet.42.110807.091653 10.2307/1352394 10.1093/bioinformatics/17.9.847 10.1128/JB.01390-06 10.1007/s002840010126 10.1016/S0723-2020(11)80292-4 10.1093/nar/gkj024 10.1186/1471-2105-7-142 10.1111/j.1365-2958.2009.06629.x 10.1016/j.procbio.2006.06.029 10.1111/j.1462-2920.2009.01987.x 10.1038/nrmicro1901 10.1074/jbc.M506477200 10.1128/JB.00208-06 10.1099/00207713-32-2-211 10.1007/s10661-008-0183-z 10.1128/JB.181.22.6907-6913.1999 10.1099/mic.0.28938-0 10.1128/JB.01917-07 10.1016/0269-7491(87)90057-1 10.1128/jb.172.11.6442-6446.1990 10.1093/nar/gkh378 10.1046/j.1365-2958.1999.01384.x 10.1074/jbc.271.37.22831 10.1093/nar/30.1.59 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2011 BioMed Central Ltd. Copyright ©2011 Kalhoefer et al; licensee BioMed Central Ltd. 2011 Kalhoefer et al; licensee BioMed Central Ltd. |
Copyright_xml | – notice: COPYRIGHT 2011 BioMed Central Ltd. – notice: Copyright ©2011 Kalhoefer et al; licensee BioMed Central Ltd. 2011 Kalhoefer et al; licensee BioMed Central Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 5PM DOA |
DOI | 10.1186/1471-2164-12-324 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale in Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2164 |
EndPage | 324 |
ExternalDocumentID | oai_doaj_org_article_ab3e1d5873bf4eccafe3940f50e97c45 PMC3141670 oai_biomedcentral_com_1471_2164_12_324 A262081211 21693016 10_1186_1471_2164_12_324 |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GroupedDBID | --- 0R~ 23N 2VQ 2WC 2XV 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C1A C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR INH INR IPNFZ ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB CGR CUY CVF ECM EIF NPM PMFND 7X8 PPXIY PQGLB -A0 3V. ABVAZ ACRMQ ADINQ AFGXO AFNRJ AIXEN C24 5PM PJZUB PUEGO |
ID | FETCH-LOGICAL-b688t-cf499cda70831aea6d9135f51fddbaaa398b7e2563dfb5ab09c59e11ee14c0b53 |
IEDL.DBID | RBZ |
ISSN | 1471-2164 |
IngestDate | Wed Aug 27 01:31:43 EDT 2025 Thu Aug 21 18:21:56 EDT 2025 Wed May 22 07:16:54 EDT 2024 Fri Jul 11 10:18:58 EDT 2025 Tue Jun 17 21:34:41 EDT 2025 Tue Jun 10 20:42:28 EDT 2025 Fri Jun 27 04:58:00 EDT 2025 Thu Apr 03 06:57:47 EDT 2025 Tue Jul 01 05:24:58 EDT 2025 Thu Apr 24 23:02:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b688t-cf499cda70831aea6d9135f51fddbaaa398b7e2563dfb5ab09c59e11ee14c0b53 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1186/1471-2164-12-324 |
PMID | 21693016 |
PQID | 878818897 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ab3e1d5873bf4eccafe3940f50e97c45 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3141670 biomedcentral_primary_oai_biomedcentral_com_1471_2164_12_324 proquest_miscellaneous_878818897 gale_infotracmisc_A262081211 gale_infotracacademiconefile_A262081211 gale_incontextgauss_ISR_A262081211 pubmed_primary_21693016 crossref_primary_10_1186_1471_2164_12_324 crossref_citationtrail_10_1186_1471_2164_12_324 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-06-21 |
PublicationDateYYYYMMDD | 2011-06-21 |
PublicationDate_xml | – month: 06 year: 2011 text: 2011-06-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | BMC genomics |
PublicationTitleAlternate | BMC Genomics |
PublicationYear | 2011 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | 3460_CR96 S Watanabe (3460_CR50) 2006; 281 MGI Langille (3460_CR82) 2009; 25 MA Moran (3460_CR21) 2007; 73 RJ Newton (3460_CR22) 2010; 4 CA Pinedo (3460_CR46) 2008; 190 CK Yost (3460_CR34) 2006; 152 C Whitfield (3460_CR37) 1995; 3 EP Rocha (3460_CR84) 2008; 42 C Pasternak (3460_CR70) 1997; 143 BA Geddes (3460_CR33) 2010; 156 LPTM Zevenhuizen (3460_CR59) 1981; 47 AM Cook (3460_CR66) 2006; 583 J Petersen (3460_CR16) 2009; 11 V Gonzalez (3460_CR35) 2003; 4 J De Ley (3460_CR47) 1957; 227 L Bourassa (3460_CR57) 2009; 72 RL Tatusov (3460_CR87) 1997; 278 3460_CR90 H Biebl (3460_CR40) 2006; 41 G Altug (3460_CR10) 2009; 149 M Cunliffe (3460_CR24) 2010 TA Garrow (3460_CR63) 1996; 271 PD Karp (3460_CR89) 2002; 30 3460_CR95 PW Postma (3460_CR44) 1993; 57 RG Ankenbauer (3460_CR54) 1990; 172 L Barra (3460_CR65) 2006; 188 T Fürch (3460_CR60) 2009; 9 CW Bamforth (3460_CR69) 1978; 119 K Hiller (3460_CR85) 2004; 32 S Silver (3460_CR8) 1996; 179 U Dobrindt (3460_CR18) 2004; 2 T Shiba (3460_CR1) 1991; 14 ACM Toes (3460_CR11) 2008; 55 T Shiba (3460_CR67) 1982; 32 S Watanabe (3460_CR49) 2006; 281 G Grass (3460_CR30) 2001; 183 SL Doty (3460_CR52) 1993; 175 M Tech (3460_CR75) 2003; 3 S Watanabe (3460_CR48) 2006; 281 R Overbeek (3460_CR77) 2003; 31 S Silver (3460_CR9) 1996; 50 EM Zdobnov (3460_CR79) 2001; 17 PD Karp (3460_CR88) 2002; 30 T Carver (3460_CR80) 2009; 25 NS Kalesh (3460_CR13) 2006; 76 Y Zhu (3460_CR55) 1986; 23 J Holert (3460_CR4) 2010 JM Kemner (3460_CR53) 1997; 179 A Pena (3460_CR26) 2010; 4 3460_CR74 Y Shioi (3460_CR91) 1986; 27 CF Gonzalez (3460_CR45) 2005; 44 H Zech (3460_CR61) 2009; 9 3460_CR78 S Pradella (3460_CR5) 2004; 70 3460_CR38 N Igarashi (3460_CR41) 2001; 52 AA Hamdy (3460_CR14) 2000; 41 N Shearer (3460_CR71) 1999; 181 H Geng (3460_CR92) 2008; 74 WD Swingley (3460_CR7) 2007; 189 T Brinkhoff (3460_CR6) 2008; 189 DH Nies (3460_CR29) 2003; 27 I Wagner-Döbler (3460_CR93) 2003; 53 C Huang (3460_CR28) 2010 Y Asada (3460_CR56) 2009; 178 Y Shioi (3460_CR2) 1988; 29 N Yutin (3460_CR42) 2005; 7 RD Barabote (3460_CR43) 2005; 69 JS Richardson (3460_CR20) 2004; 186 3460_CR73 H Arata (3460_CR3) 1988; 103 F Godfroid (3460_CR25) 1998; 66 D Medini (3460_CR27) 2008; 6 A Mira (3460_CR19) 2010; 13 K Tang (3460_CR23) 2010; 5 3460_CR64 I Wagner-Döbler (3460_CR94) 2004; 54 AM Osborn (3460_CR17) 2002; 48 S Ullrich (3460_CR31) 2005; 187 JE Ugalde (3460_CR58) 2003; 100 PL Klerks (3460_CR15) 1987; 45 VM Markowitz (3460_CR39) 2006; 34 I Wagner-Döbler (3460_CR32) 2010; 4 P Puigbò (3460_CR86) 2008; 3 A Sfriso (3460_CR72) 1992; 15 AA Al-Homaidan (3460_CR12) 2007; 5 JA Eisen (3460_CR36) 2000; 1 ACE Darling (3460_CR81) 2004; 14 S Waack (3460_CR83) 2006; 7 H Biebl (3460_CR68) 2005; 55 E Van Bastelaere (3460_CR51) 1999; 32 3460_CR62 TJ Carver (3460_CR76) 2005; 21 |
References_xml | – volume: 57 start-page: 543 year: 1993 ident: 3460_CR44 publication-title: Microbiol Rev doi: 10.1128/mr.57.3.543-594.1993 – volume: 3 start-page: 441 year: 2003 ident: 3460_CR75 publication-title: In Silico Biol doi: 10.3233/ISB-00108 – volume: 4 start-page: 882 year: 2010 ident: 3460_CR26 publication-title: ISME J doi: 10.1038/ismej.2010.6 – volume-title: Curr Microbiol year: 2010 ident: 3460_CR28 – volume: 74 start-page: 1535 year: 2008 ident: 3460_CR92 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02339-07 – ident: 3460_CR74 – volume: 175 start-page: 7880 year: 1993 ident: 3460_CR52 publication-title: J Bacteriol doi: 10.1128/jb.175.24.7880-7886.1993 – volume: 3 start-page: 38 year: 2008 ident: 3460_CR86 publication-title: Biol Direct doi: 10.1186/1745-6150-3-38 – ident: 3460_CR78 – volume-title: Environ Microbiol Rep year: 2010 ident: 3460_CR4 – volume: 73 start-page: 4559 year: 2007 ident: 3460_CR21 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02580-06 – volume: 25 start-page: 119 year: 2009 ident: 3460_CR80 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn578 – volume: 53 start-page: 731 year: 2003 ident: 3460_CR93 publication-title: Int J Syst Evol Micr doi: 10.1099/ijs.0.02377-0 – volume: 183 start-page: 4664 year: 2001 ident: 3460_CR30 publication-title: J Bacteriol doi: 10.1128/JB.183.15.4664-4667.2001 – volume: 44 start-page: 598 year: 2005 ident: 3460_CR45 publication-title: Biochemistry doi: 10.1021/bi048412y – volume: 281 start-page: 28876 year: 2006 ident: 3460_CR49 publication-title: J Biol Chem doi: 10.1074/jbc.M602585200 – volume: 9 start-page: 209 year: 2009 ident: 3460_CR60 publication-title: BMC Microbiol doi: 10.1186/1471-2180-9-209 – volume: 9 start-page: 3677 year: 2009 ident: 3460_CR61 publication-title: Proteomics doi: 10.1002/pmic.200900120 – volume: 179 start-page: 2452 year: 1997 ident: 3460_CR53 publication-title: J Bacteriol doi: 10.1128/jb.179.7.2452-2458.1997 – volume: 27 start-page: 567 year: 1986 ident: 3460_CR91 publication-title: Plant Cell Physiol – volume: 156 start-page: 2970 year: 2010 ident: 3460_CR33 publication-title: Microbiology doi: 10.1099/mic.0.041905-0 – volume: 103 start-page: 1011 year: 1988 ident: 3460_CR3 publication-title: J Biochem doi: 10.1093/oxfordjournals.jbchem.a122371 – volume: 186 start-page: 8433 year: 2004 ident: 3460_CR20 publication-title: J Bacteriol doi: 10.1128/JB.186.24.8433-8442.2004 – volume: 3 start-page: 178 year: 1995 ident: 3460_CR37 publication-title: Trends Microbiol doi: 10.1016/S0966-842X(00)88917-9 – volume: 281 start-page: 33521 year: 2006 ident: 3460_CR50 publication-title: J Biol Chem doi: 10.1074/jbc.M606727200 – volume: 4 start-page: R36 year: 2003 ident: 3460_CR35 publication-title: Genome Biol doi: 10.1186/gb-2003-4-6-r36 – volume: 7 start-page: 2027 year: 2005 ident: 3460_CR42 publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2005.00843.x – volume: 119 start-page: 91 year: 1978 ident: 3460_CR69 publication-title: Arch Microbiol doi: 10.1007/BF00407934 – volume: 66 start-page: 5485 year: 1998 ident: 3460_CR25 publication-title: Infect Immun doi: 10.1128/IAI.66.11.5485-5493.1998 – volume: 2 start-page: 414 year: 2004 ident: 3460_CR18 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro884 – volume: 21 start-page: 3422 year: 2005 ident: 3460_CR76 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti553 – ident: 3460_CR90 – volume: 55 start-page: 372 year: 2008 ident: 3460_CR11 publication-title: Arch of Environ Contam Tox doi: 10.1007/s00244-008-9135-4 – volume: 4 start-page: 784 year: 2010 ident: 3460_CR22 publication-title: ISME J doi: 10.1038/ismej.2009.150 – volume: 227 start-page: 745 year: 1957 ident: 3460_CR47 publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)70755-2 – volume: 5 start-page: 354 year: 2007 ident: 3460_CR12 publication-title: J Food Agric Environ – volume: 4 start-page: 61 year: 2010 ident: 3460_CR32 publication-title: ISME J doi: 10.1038/ismej.2009.94 – ident: 3460_CR38 – volume: 70 start-page: 3360 year: 2004 ident: 3460_CR5 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.70.6.3360-3369.2004 – ident: 3460_CR73 – volume: 27 start-page: 313 year: 2003 ident: 3460_CR29 publication-title: FEMS Microbiol Rev doi: 10.1016/S0168-6445(03)00048-2 – volume: 47 start-page: 481 year: 1981 ident: 3460_CR59 publication-title: Antonie Van Leeuwenhoek doi: 10.1007/BF00443236 – volume: 100 start-page: 10659 year: 2003 ident: 3460_CR58 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1534787100 – volume: 1 start-page: research00111 year: 2000 ident: 3460_CR36 publication-title: Genome Biol doi: 10.1186/gb-2000-1-6-research0011 – volume: 189 start-page: 531 year: 2008 ident: 3460_CR6 publication-title: Arch Microbiol doi: 10.1007/s00203-008-0353-y – volume: 48 start-page: 202 year: 2002 ident: 3460_CR17 publication-title: Plasmid doi: 10.1016/S0147-619X(02)00117-8 – volume: 178 start-page: 117 year: 2009 ident: 3460_CR56 publication-title: Chem Biol Interact doi: 10.1016/j.cbi.2008.09.018 – ident: 3460_CR62 – volume: 52 start-page: 333 year: 2001 ident: 3460_CR41 publication-title: J Mol Evol doi: 10.1007/s002390010163 – volume: 23 start-page: 259 year: 1986 ident: 3460_CR55 publication-title: J Mol Evol doi: 10.1007/BF02115582 – volume: 76 start-page: 293 year: 2006 ident: 3460_CR13 publication-title: Bull Environ Contam Toxicol doi: 10.1007/s00128-006-0920-3 – volume: 14 start-page: 1394 year: 2004 ident: 3460_CR81 publication-title: Genome Res doi: 10.1101/gr.2289704 – volume: 25 start-page: 664 year: 2009 ident: 3460_CR82 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp030 – volume: 5 start-page: e11604 year: 2010 ident: 3460_CR23 publication-title: PLoS One doi: 10.1371/journal.pone.0011604 – volume: 143 start-page: 83 issue: Pt 1 year: 1997 ident: 3460_CR70 publication-title: Microbiology doi: 10.1099/00221287-143-1-83 – volume-title: ISME J year: 2010 ident: 3460_CR24 – volume: 54 start-page: 1177 year: 2004 ident: 3460_CR94 publication-title: Int J Syst Evol Micr doi: 10.1099/ijs.0.02850-0 – ident: 3460_CR95 – volume: 179 start-page: 9 year: 1996 ident: 3460_CR8 publication-title: Gene doi: 10.1016/S0378-1119(96)00323-X – volume: 50 start-page: 753 year: 1996 ident: 3460_CR9 publication-title: Annu Rev Microbiol doi: 10.1146/annurev.micro.50.1.753 – volume: 278 start-page: 631 year: 1997 ident: 3460_CR87 publication-title: Science doi: 10.1126/science.278.5338.631 – volume: 29 start-page: 861 year: 1988 ident: 3460_CR2 publication-title: Plant Cell Physiol – volume: 187 start-page: 7176 year: 2005 ident: 3460_CR31 publication-title: J Bacteriol doi: 10.1128/JB.187.21.7176-7184.2005 – volume: 55 start-page: 1089 year: 2005 ident: 3460_CR68 publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijs.0.63511-0 – volume: 31 start-page: 164 year: 2003 ident: 3460_CR77 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg148 – volume: 69 start-page: 608 year: 2005 ident: 3460_CR43 publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.69.4.608-634.2005 – volume: 583 start-page: 3 year: 2006 ident: 3460_CR66 publication-title: Adv Exp Med Biol doi: 10.1007/978-0-387-33504-9_1 – volume: 30 start-page: 56 year: 2002 ident: 3460_CR89 publication-title: Nucleic Acids Res doi: 10.1093/nar/30.1.56 – volume: 42 start-page: 211 year: 2008 ident: 3460_CR84 publication-title: Annu Rev Genet doi: 10.1146/annurev.genet.42.110807.091653 – volume: 15 start-page: 517 year: 1992 ident: 3460_CR72 publication-title: Estuaries doi: 10.2307/1352394 – volume: 17 start-page: 847 year: 2001 ident: 3460_CR79 publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.9.847 – volume: 189 start-page: 683 year: 2007 ident: 3460_CR7 publication-title: J Bacteriol doi: 10.1128/JB.01390-06 – volume: 41 start-page: 232 year: 2000 ident: 3460_CR14 publication-title: Curr Microbiol doi: 10.1007/s002840010126 – volume: 14 start-page: 140 year: 1991 ident: 3460_CR1 publication-title: Syst Appl Microbiol doi: 10.1016/S0723-2020(11)80292-4 – volume: 34 start-page: D344 year: 2006 ident: 3460_CR39 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkj024 – volume: 7 start-page: 142 year: 2006 ident: 3460_CR83 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-142 – volume: 72 start-page: 124 year: 2009 ident: 3460_CR57 publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2009.06629.x – volume: 41 start-page: 2153 year: 2006 ident: 3460_CR40 publication-title: Process Biochem doi: 10.1016/j.procbio.2006.06.029 – volume: 11 start-page: 2627 year: 2009 ident: 3460_CR16 publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2009.01987.x – volume: 6 start-page: 419 year: 2008 ident: 3460_CR27 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro1901 – volume: 281 start-page: 2612 year: 2006 ident: 3460_CR48 publication-title: J Biol Chem doi: 10.1074/jbc.M506477200 – volume: 188 start-page: 7195 year: 2006 ident: 3460_CR65 publication-title: J Bacteriol doi: 10.1128/JB.00208-06 – ident: 3460_CR96 – volume: 32 start-page: 211 year: 1982 ident: 3460_CR67 publication-title: Int J Syst Bacteriol doi: 10.1099/00207713-32-2-211 – volume: 149 start-page: 61 year: 2009 ident: 3460_CR10 publication-title: Environ Monit and Assess doi: 10.1007/s10661-008-0183-z – volume: 181 start-page: 6907 year: 1999 ident: 3460_CR71 publication-title: J Bacteriol doi: 10.1128/JB.181.22.6907-6913.1999 – volume: 13 start-page: 45 year: 2010 ident: 3460_CR19 publication-title: Int Microbiol – volume: 152 start-page: 2061 year: 2006 ident: 3460_CR34 publication-title: Microbiology doi: 10.1099/mic.0.28938-0 – volume: 190 start-page: 2947 year: 2008 ident: 3460_CR46 publication-title: J Bacteriol doi: 10.1128/JB.01917-07 – volume: 45 start-page: 173 year: 1987 ident: 3460_CR15 publication-title: Environ Pollut doi: 10.1016/0269-7491(87)90057-1 – volume: 172 start-page: 6442 year: 1990 ident: 3460_CR54 publication-title: J Bacteriol doi: 10.1128/jb.172.11.6442-6446.1990 – volume: 32 start-page: W375 year: 2004 ident: 3460_CR85 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh378 – ident: 3460_CR64 – volume: 32 start-page: 703 year: 1999 ident: 3460_CR51 publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.1999.01384.x – volume: 271 start-page: 22831 year: 1996 ident: 3460_CR63 publication-title: J Biol Chem doi: 10.1074/jbc.271.37.22831 – volume: 30 start-page: 59 year: 2002 ident: 3460_CR88 publication-title: Nucleic Acids Res doi: 10.1093/nar/30.1.59 |
SSID | ssj0017825 |
Score | 2.2333987 |
Snippet | Roseobacter litoralis OCh149, the type species of the genus, and Roseobacter denitrificans OCh114 were the first described organisms of the Roseobacter clade,... Background Roseobacter litoralis OCh149, the type species of the genus, and Roseobacter denitrificans OCh114 were the first described organisms of the... BACKGROUND: Roseobacter litoralis OCh149, the type species of the genus, and Roseobacter denitrificans OCh114 were the first described organisms of the... Abstract Background Roseobacter litoralis OCh149, the type species of the genus, and Roseobacter denitrificans OCh114 were the first described organisms of the... |
SourceID | doaj pubmedcentral biomedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 324 |
SubjectTerms | Genetic aspects Genetic code Genome, Bacterial Genomic Islands Genomics Glycogen - metabolism Identification and classification Metals, Heavy - metabolism Molecular Sequence Data Photosynthesis - genetics Plasmids Plasmids - chemistry Plasmids - genetics Properties Proteobacteria Roseobacter - genetics Roseobacter - physiology Species Specificity |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SELyIrV-rrSwiiIflbTabTQJearG0gh7UQi8S8lkftPvE996h_70z2d3XF6r04m1JJmSTmcnM7GZ-Q8gbJRvXGusqcIl81RrlK8moqVTbBCF4VHXKcv38pTs5az-d8_OtUl94J2yABx42bmYsC9RzKZiNLc4XAxbzjrwOSrg2oZeCzZuCqfH_Adg9nvKKBK0aiAimH5Sym23aElzfrUz3y8xAJRz_26f1lrnKr1Ju2abjR-Th6FSWh8Nidsm90O-R-0OZyevH5MfRDcR3iaCsV6E0IxgJPPixrbpYz33wZfrYMZ2JN4SLWGIZRtB_xHcuwX3H5P758gk5O_74_eikGssqVLaTclW5CFGO80ZgkTETTOcVZTxyGr23xhimpBUBXCHmo-XG1spxFSgNgbautpw9JTv9og_PScmFcIx568FJgUAxWjg5nQsmNr5TrXUFeZ_trf41QGhoBLXOe0C_NLJGI2s0bTSwpiCziRXajZDlWDnjUqfQRXZ_GfFuM2Ka69-0H5C72TulBhA_PYqfvkv8CvIaZUMjlEaPd3UuzHq51KffvupDxPqXCKFXkLcjUVzA-zszpj7AJiL6Vka5n1GCrrusu5xEUGMXXpDrw2K91BLLAkipREGeDRK5WVeDeDvg2RdEZLKaLTzv6ec_E9I4o-Cvi_rF_9ipl-TB8D2-A-3bJzur3-twAA7dyr5KuvsHvHFJfA priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA66Ivgi3q2uUkQQH-o2bdMkoMi6uKzC-qAO7IuEXMeBsdXpDLj_3nN62dng-OLb0Jwwbc41bc73EfJcisJW2tgMSiKXVVq6TJRUZ7IqPOcsyLzvcj39VJ_Mqo9n7GzbHj0uYLdza4d8UrPV8tXvX-dvweHf9A4v6gMKATYroO7vAfiK6iq5BnmJI5_BabX9pgC5kE0fKnfM6mGBkRgQqc-j5vdllLN6aP-_A_ilDBafrryUro5vkZtjnZkeDoZxm1zxzR1yfWCePL9Lvh1tUb9TxGn94VM94pPADzdey-abhfMu7d9_TGFyK9iGFJkZISQg5HMKFT32-y-6e2R2_P7r0Uk2Mi1kphZindkAGx_rNEfeMe117SQtWWA0OGe01qUUhnuojkoXDNMml5ZJT6n3tLK5YeV9ste0jX9IUsa5LUtnHNQtsHcMBoKptV6HwtWyMjYhr6O1VT8HVA2FONfxCLicQi0p1JKihQItJeRgUoWyI4o5kmksVb-bEfWOGS8vZkz_9W_Zd6jd6J76C-1qrkZXVtqUnjomeGlChR4QPNLLB5Z7yW3FEvIMbUMhukaDx3fmetN16sOXz-oQ4f8Fouol5MUoFFq4f6vHbghYRATkiiT3I0lwfxsNp5MJKhzCM3ONbzedEsgUIITkCXkwWOTFc02GnhAe2Wr04PFIs_jeg4-XFEp4nj_675mPyY3hvXwN3rdP9tarjX8Chd3aPO399Q9gxE2p priority: 102 providerName: Scholars Portal |
Title | Comparative genome analysis and genome-guided physiological analysis of Roseobacter litoralis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21693016 https://www.proquest.com/docview/878818897 http://dx.doi.org/10.1186/1471-2164-12-324 https://pubmed.ncbi.nlm.nih.gov/PMC3141670 https://doaj.org/article/ab3e1d5873bf4eccafe3940f50e97c45 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBdry2AvY9_z1gUzBmMPppEtWRLspSkt3aBldCuEwRD67AKdU5rkYf_97vyRVF33tBcTrLNj--6k30m63xHyTsnSMWNdAZDIF8woX8iKmkKxMgjBoxq3Wa4np_XxOfs85dMNTc6tFXwq6z0K3WdRAqpv6fVKtkV2SgYBHUbmk-_rFQMY6XibSdRLD0uSd9zhVm77ZTIktcz9f_fPNwaodPPkjdHo6BF52MPIfL_T-2NyLzRPyP2usOTvp-THwYbUO0ca1l8hNz39CPzw_bniYjXzweft9MbQC24E5zHHwovg8cjonANgx3T-2eIZOT86_HZwXPSFFApbS7ksXIS4xnkjsKyYCab2ilY8chq9t8aYSkkrAoCfykfLjR0rx1WgNATK3Njy6jnZbuZNeElyLoSrKm89wBIIDaOFvtK5YGLpa8Wsy8jH5Nvqq440QyONddoCHqVRNRpVo2mpQTUZ2RtUoV1PUo61Mi51G6zI-o4rPqyvGP7r37IT1G7yTO0JsDfde6o2tgrUcykqGxkaeAxYPT7ycVDCMZ6Rt2gbGskzGtydc2FWi4X-9PVM7yO7v0TSvIy874XiHJ7fmT7ZAT4i8m0lkruJJHi3S5rzwQQ1NuGWuCbMVwstsRCAlEpk5EVnkev3KpFhB7B8RkRiq8mLpy3N7GfLLV5RQOhi_Or_1PiaPOjm3mvwu12yvbxehTcA3pZ2RLbEVIzIzuTw9MvZqJ0CgeMJk6PWn_8AoWhFIQ |
linkProvider | BioMedCentral |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxJtAgQiBEIfQzcOxLcGhLVRb-jhAK1VIlfFzWWmbRc2uUH8Zf48ZJ9luoJxQb1E8UZyZ8XgmnvmGkJeCZ6ZQ2iTgEtmkUMImPE9VIorMMUa9GIQq1_2DcnhUfDqmxyvkV1cLo08NgpOejk39drkAfRKsdpcs1qx1Xq6nYFuTDFz-gL2XFW125a47_wmxW_1-5wMI-lWWbX883BombXuBRJeczxLjwds3VjFstqWcKq1Ic-pp6q3VSqlccM0cuAS59ZoqPRCGCpemzqWFGWhsFwG2_xqjlIXCsc2vi-ML2HZpKGtqZ9edj14y4z8K7Se9_TG0Efh7s1jaLfuZnEtb4_Ztcqv1aeONhm13yIqr7pLrTZfL83vkZOsCYTwObHexarFQ4MK295LRfGydjcO_ls4kXxBOfYxdIMH8ILx0DNEDYguM6_vk6ErY_oCsVtPKPSIxZczkudUWfCSIU70Gw22MUz6zpSi0ici7Hm_ljwbBQyKmdn8EtEuiaCSKRqaZBNFEZL0ThTQtYjo27pjIEDnx8pIn3iye6N71b9pNlG5vTuHG9GwkW0WXSucutZSzXPsCV5t32Mre04ETzBQ0Ii9QNyQieVSYKjRS87qWO18-yw1sNcARwS8ir1siP4X5G9VWXgATEfyrR7nWowRTY3rDcaeCEocwP69y03ktOXYl4FywiDxsNHLxXRnC_UBgERHW09Xeh_dHqvH3AHSepxAusMHj_xPjc3JjeLi_J_d2DnafkJvNoUAJa3CNrM7O5u4peJUz_Sys4Jh8u2qT8RuytYuw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIhAXxJuUAhECIQ5hNw_HjgSHPlh1KVSoUKmqhIyf2xXbbNXsCvWf8fOYcZLtBsoJ9RbFE8XxjMczsef7CHlR8ERnUukIQiITZbIwEU9jGRVZYhmjruj7KtdPe_nOQfbhkB6ukF9tLYw60QhOejLW1ZvlAvSJ99pwoX_0To2rJzvPezE41yiBmN-D7yVZc7xy157_hOStejfcBk2_TJLB-69bO1HDLxCpnPNZpB2E-9pIhmxb0srcFHFKHY2dMUpKmRZcMQsxQWqcolL1C00LG8fWxpnuK-SLAOd_jVHKkDthf_NosX8B6y71dU1N79oN0kt6_Eel_aSzQHoegb9Xi6XlsnuUc2ltHNwmt5qgNtyorfAOWbHlXXK9prk8v0e-bV1AjId-3G0oGzAUuDDNvWg0HxtrQv-zpfXJF4JTFyINJPgfxJcOIX1AcIFxdZ8cXMmwPyCr5bS0j0hIGdNpapSBIAkSVafAc2ttpUtMXmRKB-RtZ2zFaQ3hIRBUu9sC5iVQNQJVI-JEgGoC0mtVIXQDmY7MHRPhUyeeX_LE68UT7bv-LbuJ2u30yd-Yno1E4zeEVKmNDeUsVS7D6eYsctk72rcF0xkNyHO0DYFQHiWeFRrJeVWJ4Zd9sYFcAxwh_ALyqhFyU5xCsim9gEFE9K-O5HpHEnyN7jSHrQkKbMIDeqWdzivBkZaA84IF5GFtkYvvShDvBzKLgLCOrXY-vNtSjo890nkaQ77A-mv_p8Zn5Mbn7YH4ONzbfUxu1psCOUzBdbI6O5vbJxBVztRTP4FD8v2qPcZv8KeLew |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+genome+analysis+and+genome-guided+physiological+analysis+of+Roseobacter+litoralis&rft.jtitle=BMC+genomics&rft.au=Kalhoefer%2C+Daniela&rft.au=Thole%2C+Sebastian&rft.au=Voget%2C+Sonja&rft.au=Lehmann%2C+R%C3%BCdiger&rft.date=2011-06-21&rft.pub=BioMed+Central&rft.eissn=1471-2164&rft.volume=12&rft.spage=324&rft.epage=324&rft_id=info:doi/10.1186%2F1471-2164-12-324&rft_id=info%3Apmid%2F21693016&rft.externalDocID=PMC3141670 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |