Comparative genome analysis and genome-guided physiological analysis of Roseobacter litoralis

Roseobacter litoralis OCh149, the type species of the genus, and Roseobacter denitrificans OCh114 were the first described organisms of the Roseobacter clade, an ecologically important group of marine bacteria. Both species were isolated from seaweed and are able to perform aerobic anoxygenic photos...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 12; no. 1; p. 324
Main Authors Kalhoefer, Daniela, Thole, Sebastian, Voget, Sonja, Lehmann, Rüdiger, Liesegang, Heiko, Wollher, Antje, Daniel, Rolf, Simon, Meinhard, Brinkhoff, Thorsten
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 21.06.2011
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Roseobacter litoralis OCh149, the type species of the genus, and Roseobacter denitrificans OCh114 were the first described organisms of the Roseobacter clade, an ecologically important group of marine bacteria. Both species were isolated from seaweed and are able to perform aerobic anoxygenic photosynthesis. The genome of R. litoralis OCh149 contains one circular chromosome of 4,505,211 bp and three plasmids of 93,578 bp (pRLO149_94), 83,129 bp (pRLO149_83) and 63,532 bp (pRLO149_63). Of the 4537 genes predicted for R. litoralis, 1122 (24.7%) are not present in the genome of R. denitrificans. Many of the unique genes of R. litoralis are located in genomic islands and on plasmids. On pRLO149_83 several potential heavy metal resistance genes are encoded which are not present in the genome of R. denitrificans. The comparison of the heavy metal tolerance of the two organisms showed an increased zinc tolerance of R. litoralis. In contrast to R. denitrificans, the photosynthesis genes of R. litoralis are plasmid encoded. The activity of the photosynthetic apparatus was confirmed by respiration rate measurements, indicating a growth-phase dependent response to light. Comparative genomics with other members of the Roseobacter clade revealed several genomic regions that were only conserved in the two Roseobacter species. One of those regions encodes a variety of genes that might play a role in host association of the organisms. The catabolism of different carbon and nitrogen sources was predicted from the genome and combined with experimental data. In several cases, e.g. the degradation of some algal osmolytes and sugars, the genome-derived predictions of the metabolic pathways in R. litoralis differed from the phenotype. The genomic differences between the two Roseobacter species are mainly due to lateral gene transfer and genomic rearrangements. Plasmid pRLO149_83 contains predominantly recently acquired genetic material whereas pRLO149_94 was probably translocated from the chromosome. Plasmid pRLO149_63 and one plasmid of R. denitrifcans (pTB2) seem to have a common ancestor and are important for cell envelope biosynthesis. Several new mechanisms of substrate degradation were indicated from the combination of experimental and genomic data. The photosynthetic activity of R. litoralis is probably regulated by nutrient availability.
AbstractList Roseobacter litoralis OCh149, the type species of the genus, and Roseobacter denitrificans OCh114 were the first described organisms of the Roseobacter clade, an ecologically important group of marine bacteria. Both species were isolated from seaweed and are able to perform aerobic anoxygenic photosynthesis. The genome of R. litoralis OCh149 contains one circular chromosome of 4,505,211 bp and three plasmids of 93,578 bp (pRLO149_94), 83,129 bp (pRLO149_83) and 63,532 bp (pRLO149_63). Of the 4537 genes predicted for R. litoralis, 1122 (24.7%) are not present in the genome of R. denitrificans. Many of the unique genes of R. litoralis are located in genomic islands and on plasmids. On pRLO149_83 several potential heavy metal resistance genes are encoded which are not present in the genome of R. denitrificans. The comparison of the heavy metal tolerance of the two organisms showed an increased zinc tolerance of R. litoralis. In contrast to R. denitrificans, the photosynthesis genes of R. litoralis are plasmid encoded. The activity of the photosynthetic apparatus was confirmed by respiration rate measurements, indicating a growth-phase dependent response to light. Comparative genomics with other members of the Roseobacter clade revealed several genomic regions that were only conserved in the two Roseobacter species. One of those regions encodes a variety of genes that might play a role in host association of the organisms. The catabolism of different carbon and nitrogen sources was predicted from the genome and combined with experimental data. In several cases, e.g. the degradation of some algal osmolytes and sugars, the genome-derived predictions of the metabolic pathways in R. litoralis differed from the phenotype. The genomic differences between the two Roseobacter species are mainly due to lateral gene transfer and genomic rearrangements. Plasmid pRLO149_83 contains predominantly recently acquired genetic material whereas pRLO149_94 was probably translocated from the chromosome. Plasmid pRLO149_63 and one plasmid of R. denitrifcans (pTB2) seem to have a common ancestor and are important for cell envelope biosynthesis. Several new mechanisms of substrate degradation were indicated from the combination of experimental and genomic data. The photosynthetic activity of R. litoralis is probably regulated by nutrient availability.
Background Roseobacter litoralis OCh149, the type species of the genus, and Roseobacter denitrificans OCh114 were the first described organisms of the Roseobacter clade, an ecologically important group of marine bacteria. Both species were isolated from seaweed and are able to perform aerobic anoxygenic photosynthesis. Results The genome of R. litoralis OCh149 contains one circular chromosome of 4,505,211 bp and three plasmids of 93,578 bp (pRLO149_94), 83,129 bp (pRLO149_83) and 63,532 bp (pRLO149_63). Of the 4537 genes predicted for R. litoralis, 1122 (24.7%) are not present in the genome of R. denitrificans. Many of the unique genes of R. litoralis are located in genomic islands and on plasmids. On pRLO149_83 several potential heavy metal resistance genes are encoded which are not present in the genome of R. denitrificans. The comparison of the heavy metal tolerance of the two organisms showed an increased zinc tolerance of R. litoralis. In contrast to R. denitrificans, the photosynthesis genes of R. litoralis are plasmid encoded. The activity of the photosynthetic apparatus was confirmed by respiration rate measurements, indicating a growth-phase dependent response to light. Comparative genomics with other members of the Roseobacter clade revealed several genomic regions that were only conserved in the two Roseobacter species. One of those regions encodes a variety of genes that might play a role in host association of the organisms. The catabolism of different carbon and nitrogen sources was predicted from the genome and combined with experimental data. In several cases, e.g. the degradation of some algal osmolytes and sugars, the genome-derived predictions of the metabolic pathways in R. litoralis differed from the phenotype. Conclusions The genomic differences between the two Roseobacter species are mainly due to lateral gene transfer and genomic rearrangements. Plasmid pRLO149_83 contains predominantly recently acquired genetic material whereas pRLO149_94 was probably translocated from the chromosome. Plasmid pRLO149_63 and one plasmid of R. denitrifcans (pTB2) seem to have a common ancestor and are important for cell envelope biosynthesis. Several new mechanisms of substrate degradation were indicated from the combination of experimental and genomic data. The photosynthetic activity of R. litoralis is probably regulated by nutrient availability.
Roseobacter litoralis OCh149, the type species of the genus, and Roseobacter denitrificans OCh114 were the first described organisms of the Roseobacter clade, an ecologically important group of marine bacteria. Both species were isolated from seaweed and are able to perform aerobic anoxygenic photosynthesis. The genome of R. litoralis OCh149 contains one circular chromosome of 4,505,211 bp and three plasmids of 93,578 bp (pRLO149_94), 83,129 bp (pRLO149_83) and 63,532 bp (pRLO149_63). Of the 4537 genes predicted for R. litoralis, 1122 (24.7%) are not present in the genome of R. denitrificans. Many of the unique genes of R. litoralis are located in genomic islands and on plasmids. On pRLO149_83 several potential heavy metal resistance genes are encoded which are not present in the genome of R. denitrificans. The comparison of the heavy metal tolerance of the two organisms showed an increased zinc tolerance of R. litoralis. In contrast to R. denitrificans, the photosynthesis genes of R. litoralis are plasmid encoded. The activity of the photosynthetic apparatus was confirmed by respiration rate measurements, indicating a growth-phase dependent response to light. Comparative genomics with other members of the Roseobacter clade revealed several genomic regions that were only conserved in the two Roseobacter species. One of those regions encodes a variety of genes that might play a role in host association of the organisms. The catabolism of different carbon and nitrogen sources was predicted from the genome and combined with experimental data. In several cases, e.g. the degradation of some algal osmolytes and sugars, the genome-derived predictions of the metabolic pathways in R. litoralis differed from the phenotype. The genomic differences between the two Roseobacter species are mainly due to lateral gene transfer and genomic rearrangements. Plasmid pRLO149_83 contains predominantly recently acquired genetic material whereas pRLO149_94 was probably translocated from the chromosome. Plasmid pRLO149_63 and one plasmid of R. denitrifcans (pTB2) seem to have a common ancestor and are important for cell envelope biosynthesis. Several new mechanisms of substrate degradation were indicated from the combination of experimental and genomic data. The photosynthetic activity of R. litoralis is probably regulated by nutrient availability.
Roseobacter litoralis OCh149, the type species of the genus, and Roseobacter denitrificans OCh114 were the first described organisms of the Roseobacter clade, an ecologically important group of marine bacteria. Both species were isolated from seaweed and are able to perform aerobic anoxygenic photosynthesis.BACKGROUNDRoseobacter litoralis OCh149, the type species of the genus, and Roseobacter denitrificans OCh114 were the first described organisms of the Roseobacter clade, an ecologically important group of marine bacteria. Both species were isolated from seaweed and are able to perform aerobic anoxygenic photosynthesis.The genome of R. litoralis OCh149 contains one circular chromosome of 4,505,211 bp and three plasmids of 93,578 bp (pRLO149_94), 83,129 bp (pRLO149_83) and 63,532 bp (pRLO149_63). Of the 4537 genes predicted for R. litoralis, 1122 (24.7%) are not present in the genome of R. denitrificans. Many of the unique genes of R. litoralis are located in genomic islands and on plasmids. On pRLO149_83 several potential heavy metal resistance genes are encoded which are not present in the genome of R. denitrificans. The comparison of the heavy metal tolerance of the two organisms showed an increased zinc tolerance of R. litoralis. In contrast to R. denitrificans, the photosynthesis genes of R. litoralis are plasmid encoded. The activity of the photosynthetic apparatus was confirmed by respiration rate measurements, indicating a growth-phase dependent response to light. Comparative genomics with other members of the Roseobacter clade revealed several genomic regions that were only conserved in the two Roseobacter species. One of those regions encodes a variety of genes that might play a role in host association of the organisms. The catabolism of different carbon and nitrogen sources was predicted from the genome and combined with experimental data. In several cases, e.g. the degradation of some algal osmolytes and sugars, the genome-derived predictions of the metabolic pathways in R. litoralis differed from the phenotype.RESULTSThe genome of R. litoralis OCh149 contains one circular chromosome of 4,505,211 bp and three plasmids of 93,578 bp (pRLO149_94), 83,129 bp (pRLO149_83) and 63,532 bp (pRLO149_63). Of the 4537 genes predicted for R. litoralis, 1122 (24.7%) are not present in the genome of R. denitrificans. Many of the unique genes of R. litoralis are located in genomic islands and on plasmids. On pRLO149_83 several potential heavy metal resistance genes are encoded which are not present in the genome of R. denitrificans. The comparison of the heavy metal tolerance of the two organisms showed an increased zinc tolerance of R. litoralis. In contrast to R. denitrificans, the photosynthesis genes of R. litoralis are plasmid encoded. The activity of the photosynthetic apparatus was confirmed by respiration rate measurements, indicating a growth-phase dependent response to light. Comparative genomics with other members of the Roseobacter clade revealed several genomic regions that were only conserved in the two Roseobacter species. One of those regions encodes a variety of genes that might play a role in host association of the organisms. The catabolism of different carbon and nitrogen sources was predicted from the genome and combined with experimental data. In several cases, e.g. the degradation of some algal osmolytes and sugars, the genome-derived predictions of the metabolic pathways in R. litoralis differed from the phenotype.The genomic differences between the two Roseobacter species are mainly due to lateral gene transfer and genomic rearrangements. Plasmid pRLO149_83 contains predominantly recently acquired genetic material whereas pRLO149_94 was probably translocated from the chromosome. Plasmid pRLO149_63 and one plasmid of R. denitrifcans (pTB2) seem to have a common ancestor and are important for cell envelope biosynthesis. Several new mechanisms of substrate degradation were indicated from the combination of experimental and genomic data. The photosynthetic activity of R. litoralis is probably regulated by nutrient availability.CONCLUSIONSThe genomic differences between the two Roseobacter species are mainly due to lateral gene transfer and genomic rearrangements. Plasmid pRLO149_83 contains predominantly recently acquired genetic material whereas pRLO149_94 was probably translocated from the chromosome. Plasmid pRLO149_63 and one plasmid of R. denitrifcans (pTB2) seem to have a common ancestor and are important for cell envelope biosynthesis. Several new mechanisms of substrate degradation were indicated from the combination of experimental and genomic data. The photosynthetic activity of R. litoralis is probably regulated by nutrient availability.
Abstract Background Roseobacter litoralis OCh149, the type species of the genus, and Roseobacter denitrificans OCh114 were the first described organisms of the Roseobacter clade, an ecologically important group of marine bacteria. Both species were isolated from seaweed and are able to perform aerobic anoxygenic photosynthesis. Results The genome of R. litoralis OCh149 contains one circular chromosome of 4,505,211 bp and three plasmids of 93,578 bp (pRLO149_94), 83,129 bp (pRLO149_83) and 63,532 bp (pRLO149_63). Of the 4537 genes predicted for R. litoralis, 1122 (24.7%) are not present in the genome of R. denitrificans. Many of the unique genes of R. litoralis are located in genomic islands and on plasmids. On pRLO149_83 several potential heavy metal resistance genes are encoded which are not present in the genome of R. denitrificans. The comparison of the heavy metal tolerance of the two organisms showed an increased zinc tolerance of R. litoralis. In contrast to R. denitrificans, the photosynthesis genes of R. litoralis are plasmid encoded. The activity of the photosynthetic apparatus was confirmed by respiration rate measurements, indicating a growth-phase dependent response to light. Comparative genomics with other members of the Roseobacter clade revealed several genomic regions that were only conserved in the two Roseobacter species. One of those regions encodes a variety of genes that might play a role in host association of the organisms. The catabolism of different carbon and nitrogen sources was predicted from the genome and combined with experimental data. In several cases, e.g. the degradation of some algal osmolytes and sugars, the genome-derived predictions of the metabolic pathways in R. litoralis differed from the phenotype. Conclusions The genomic differences between the two Roseobacter species are mainly due to lateral gene transfer and genomic rearrangements. Plasmid pRLO149_83 contains predominantly recently acquired genetic material whereas pRLO149_94 was probably translocated from the chromosome. Plasmid pRLO149_63 and one plasmid of R. denitrifcans (pTB2) seem to have a common ancestor and are important for cell envelope biosynthesis. Several new mechanisms of substrate degradation were indicated from the combination of experimental and genomic data. The photosynthetic activity of R. litoralis is probably regulated by nutrient availability.
ArticleNumber 324
Audience Academic
Author Brinkhoff, Thorsten
Thole, Sebastian
Liesegang, Heiko
Daniel, Rolf
Voget, Sonja
Lehmann, Rüdiger
Simon, Meinhard
Kalhoefer, Daniela
Wollher, Antje
AuthorAffiliation 1 Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
2 Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
AuthorAffiliation_xml – name: 1 Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
– name: 2 Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
Author_xml – sequence: 1
  givenname: Daniela
  surname: Kalhoefer
  fullname: Kalhoefer, Daniela
– sequence: 2
  givenname: Sebastian
  surname: Thole
  fullname: Thole, Sebastian
– sequence: 3
  givenname: Sonja
  surname: Voget
  fullname: Voget, Sonja
– sequence: 4
  givenname: Rüdiger
  surname: Lehmann
  fullname: Lehmann, Rüdiger
– sequence: 5
  givenname: Heiko
  surname: Liesegang
  fullname: Liesegang, Heiko
– sequence: 6
  givenname: Antje
  surname: Wollher
  fullname: Wollher, Antje
– sequence: 7
  givenname: Rolf
  surname: Daniel
  fullname: Daniel, Rolf
– sequence: 8
  givenname: Meinhard
  surname: Simon
  fullname: Simon, Meinhard
– sequence: 9
  givenname: Thorsten
  surname: Brinkhoff
  fullname: Brinkhoff, Thorsten
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21693016$$D View this record in MEDLINE/PubMed
BookMark eNp1kstr3DAQxk1JaR7tvaey0EPpwanG8kO-FMLSx0KgkLbHIkbSyFGwra3lDc1_X7nebuOSoIPEN7_50DxOk6Pe95QkL4GdA4jyHeQVpBmUeQpZyrP8SXJykI7uvY-T0xBuGINKZMWz5DhqNWdQniQ_1r7b4oCju6VVQ73vaIU9tnfBhfgwey1tds6QWW2vY8C3vnEa23-gt6srH8gr1CMNq9aNfsDWhefJU4ttoBf7-yz5_vHDt_Xn9PLLp8364jJVpRBjqm1e19pgxQQHJCxNDbywBVhjFCLyWqiKsqLkxqoCFat1URMAEeSaqYKfJZvZ13i8kdvBdTjcSY9O_hH80EgcRqdbkqg4gSlExZXNSWu0xOuc2YJRXel88no_e213qiOjqR9jLQvTZaR317Lxt5JDDmXFosF6NlDOP2KwjGjfyWlUchqVhEzGSUaXN_tvDP7njsIoOxc0tS325HdBikoIEKKuIvl6JhuM9bne-uiqJ1peZGXGBGQAkTp_gIrHUOd0XCvror5IeLtIiMxIv8YGdyHIzderJfvqfs8Otf7dswiwGdCDD2Ege0CAyWmVH2pA-V-KdmPcUz81zbWPJ_4GW_74Tg
CitedBy_id crossref_primary_10_1371_journal_pone_0051662
crossref_primary_10_1111_1462_2920_13253
crossref_primary_10_1021_pr400554e
crossref_primary_10_1093_femsec_fiz060
crossref_primary_10_1146_annurev_earth_060313_054810
crossref_primary_10_1089_omi_2015_0142
crossref_primary_10_1080_03650340_2021_1921743
crossref_primary_10_3389_fmicb_2016_00058
crossref_primary_10_3389_fmicb_2016_00730
crossref_primary_10_3389_fmicb_2015_00146
crossref_primary_10_1089_ast_2021_0165
crossref_primary_10_2323_jgam_61_44
crossref_primary_10_1093_gbe_evz138
crossref_primary_10_1128_AEM_02930_15
crossref_primary_10_1371_journal_pone_0063422
crossref_primary_10_1111_j_1574_6968_2011_02477_x
crossref_primary_10_1093_gbe_evs127
crossref_primary_10_1099_ijs_0_053249_0
crossref_primary_10_1128_MMBR_00020_14
crossref_primary_10_1186_1471_2180_13_46
crossref_primary_10_1016_j_envpol_2019_07_091
crossref_primary_10_3389_fmicb_2022_900669
crossref_primary_10_1038_ismej_2016_30
crossref_primary_10_1016_j_aquabot_2023_103698
crossref_primary_10_1099_ijs_0_040675_0
crossref_primary_10_1128_mSystems_00358_19
crossref_primary_10_1186_s40793_018_0311_5
crossref_primary_10_1016_j_syapm_2017_05_006
crossref_primary_10_1128_mSystems_00443_20
crossref_primary_10_1186_s40168_024_01860_7
crossref_primary_10_3389_fmicb_2016_00248
crossref_primary_10_3389_fmicb_2016_00742
crossref_primary_10_3389_fmicb_2015_00233
crossref_primary_10_1111_1574_6976_12011
crossref_primary_10_1016_j_aquaculture_2023_739254
crossref_primary_10_1111_j_1462_2920_2012_02806_x
crossref_primary_10_1099_ijsem_0_006403
crossref_primary_10_1016_j_syapm_2014_12_001
crossref_primary_10_1099_ijsem_0_003194
crossref_primary_10_1038_s41396_018_0150_9
crossref_primary_10_1128_AEM_02153_18
crossref_primary_10_1007_s00253_013_4746_8
crossref_primary_10_1038_s41396_020_00790_0
Cites_doi 10.1128/mr.57.3.543-594.1993
10.3233/ISB-00108
10.1038/ismej.2010.6
10.1128/AEM.02339-07
10.1128/jb.175.24.7880-7886.1993
10.1186/1745-6150-3-38
10.1128/AEM.02580-06
10.1093/bioinformatics/btn578
10.1099/ijs.0.02377-0
10.1128/JB.183.15.4664-4667.2001
10.1021/bi048412y
10.1074/jbc.M602585200
10.1186/1471-2180-9-209
10.1002/pmic.200900120
10.1128/jb.179.7.2452-2458.1997
10.1099/mic.0.041905-0
10.1093/oxfordjournals.jbchem.a122371
10.1128/JB.186.24.8433-8442.2004
10.1016/S0966-842X(00)88917-9
10.1074/jbc.M606727200
10.1186/gb-2003-4-6-r36
10.1111/j.1462-2920.2005.00843.x
10.1007/BF00407934
10.1128/IAI.66.11.5485-5493.1998
10.1038/nrmicro884
10.1093/bioinformatics/bti553
10.1007/s00244-008-9135-4
10.1038/ismej.2009.150
10.1016/S0021-9258(18)70755-2
10.1038/ismej.2009.94
10.1128/AEM.70.6.3360-3369.2004
10.1016/S0168-6445(03)00048-2
10.1007/BF00443236
10.1073/pnas.1534787100
10.1186/gb-2000-1-6-research0011
10.1007/s00203-008-0353-y
10.1016/S0147-619X(02)00117-8
10.1016/j.cbi.2008.09.018
10.1007/s002390010163
10.1007/BF02115582
10.1007/s00128-006-0920-3
10.1101/gr.2289704
10.1093/bioinformatics/btp030
10.1371/journal.pone.0011604
10.1099/00221287-143-1-83
10.1099/ijs.0.02850-0
10.1016/S0378-1119(96)00323-X
10.1146/annurev.micro.50.1.753
10.1126/science.278.5338.631
10.1128/JB.187.21.7176-7184.2005
10.1099/ijs.0.63511-0
10.1093/nar/gkg148
10.1128/MMBR.69.4.608-634.2005
10.1007/978-0-387-33504-9_1
10.1093/nar/30.1.56
10.1146/annurev.genet.42.110807.091653
10.2307/1352394
10.1093/bioinformatics/17.9.847
10.1128/JB.01390-06
10.1007/s002840010126
10.1016/S0723-2020(11)80292-4
10.1093/nar/gkj024
10.1186/1471-2105-7-142
10.1111/j.1365-2958.2009.06629.x
10.1016/j.procbio.2006.06.029
10.1111/j.1462-2920.2009.01987.x
10.1038/nrmicro1901
10.1074/jbc.M506477200
10.1128/JB.00208-06
10.1099/00207713-32-2-211
10.1007/s10661-008-0183-z
10.1128/JB.181.22.6907-6913.1999
10.1099/mic.0.28938-0
10.1128/JB.01917-07
10.1016/0269-7491(87)90057-1
10.1128/jb.172.11.6442-6446.1990
10.1093/nar/gkh378
10.1046/j.1365-2958.1999.01384.x
10.1074/jbc.271.37.22831
10.1093/nar/30.1.59
ContentType Journal Article
Copyright COPYRIGHT 2011 BioMed Central Ltd.
Copyright ©2011 Kalhoefer et al; licensee BioMed Central Ltd. 2011 Kalhoefer et al; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2011 BioMed Central Ltd.
– notice: Copyright ©2011 Kalhoefer et al; licensee BioMed Central Ltd. 2011 Kalhoefer et al; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
DOA
DOI 10.1186/1471-2164-12-324
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale in Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage 324
ExternalDocumentID oai_doaj_org_article_ab3e1d5873bf4eccafe3940f50e97c45
PMC3141670
oai_biomedcentral_com_1471_2164_12_324
A262081211
21693016
10_1186_1471_2164_12_324
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID ---
0R~
23N
2VQ
2WC
2XV
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
IPNFZ
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7X8
PPXIY
PQGLB
-A0
3V.
ABVAZ
ACRMQ
ADINQ
AFGXO
AFNRJ
AIXEN
C24
5PM
PJZUB
PUEGO
ID FETCH-LOGICAL-b688t-cf499cda70831aea6d9135f51fddbaaa398b7e2563dfb5ab09c59e11ee14c0b53
IEDL.DBID RBZ
ISSN 1471-2164
IngestDate Wed Aug 27 01:31:43 EDT 2025
Thu Aug 21 18:21:56 EDT 2025
Wed May 22 07:16:54 EDT 2024
Fri Jul 11 10:18:58 EDT 2025
Tue Jun 17 21:34:41 EDT 2025
Tue Jun 10 20:42:28 EDT 2025
Fri Jun 27 04:58:00 EDT 2025
Thu Apr 03 06:57:47 EDT 2025
Tue Jul 01 05:24:58 EDT 2025
Thu Apr 24 23:02:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b688t-cf499cda70831aea6d9135f51fddbaaa398b7e2563dfb5ab09c59e11ee14c0b53
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink http://dx.doi.org/10.1186/1471-2164-12-324
PMID 21693016
PQID 878818897
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_ab3e1d5873bf4eccafe3940f50e97c45
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3141670
biomedcentral_primary_oai_biomedcentral_com_1471_2164_12_324
proquest_miscellaneous_878818897
gale_infotracmisc_A262081211
gale_infotracacademiconefile_A262081211
gale_incontextgauss_ISR_A262081211
pubmed_primary_21693016
crossref_primary_10_1186_1471_2164_12_324
crossref_citationtrail_10_1186_1471_2164_12_324
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-06-21
PublicationDateYYYYMMDD 2011-06-21
PublicationDate_xml – month: 06
  year: 2011
  text: 2011-06-21
  day: 21
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle BMC genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2011
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References 3460_CR96
S Watanabe (3460_CR50) 2006; 281
MGI Langille (3460_CR82) 2009; 25
MA Moran (3460_CR21) 2007; 73
RJ Newton (3460_CR22) 2010; 4
CA Pinedo (3460_CR46) 2008; 190
CK Yost (3460_CR34) 2006; 152
C Whitfield (3460_CR37) 1995; 3
EP Rocha (3460_CR84) 2008; 42
C Pasternak (3460_CR70) 1997; 143
BA Geddes (3460_CR33) 2010; 156
LPTM Zevenhuizen (3460_CR59) 1981; 47
AM Cook (3460_CR66) 2006; 583
J Petersen (3460_CR16) 2009; 11
V Gonzalez (3460_CR35) 2003; 4
J De Ley (3460_CR47) 1957; 227
L Bourassa (3460_CR57) 2009; 72
RL Tatusov (3460_CR87) 1997; 278
3460_CR90
H Biebl (3460_CR40) 2006; 41
G Altug (3460_CR10) 2009; 149
M Cunliffe (3460_CR24) 2010
TA Garrow (3460_CR63) 1996; 271
PD Karp (3460_CR89) 2002; 30
3460_CR95
PW Postma (3460_CR44) 1993; 57
RG Ankenbauer (3460_CR54) 1990; 172
L Barra (3460_CR65) 2006; 188
T Fürch (3460_CR60) 2009; 9
CW Bamforth (3460_CR69) 1978; 119
K Hiller (3460_CR85) 2004; 32
S Silver (3460_CR8) 1996; 179
U Dobrindt (3460_CR18) 2004; 2
T Shiba (3460_CR1) 1991; 14
ACM Toes (3460_CR11) 2008; 55
T Shiba (3460_CR67) 1982; 32
S Watanabe (3460_CR49) 2006; 281
G Grass (3460_CR30) 2001; 183
SL Doty (3460_CR52) 1993; 175
M Tech (3460_CR75) 2003; 3
S Watanabe (3460_CR48) 2006; 281
R Overbeek (3460_CR77) 2003; 31
S Silver (3460_CR9) 1996; 50
EM Zdobnov (3460_CR79) 2001; 17
PD Karp (3460_CR88) 2002; 30
T Carver (3460_CR80) 2009; 25
NS Kalesh (3460_CR13) 2006; 76
Y Zhu (3460_CR55) 1986; 23
J Holert (3460_CR4) 2010
JM Kemner (3460_CR53) 1997; 179
A Pena (3460_CR26) 2010; 4
3460_CR74
Y Shioi (3460_CR91) 1986; 27
CF Gonzalez (3460_CR45) 2005; 44
H Zech (3460_CR61) 2009; 9
3460_CR78
S Pradella (3460_CR5) 2004; 70
3460_CR38
N Igarashi (3460_CR41) 2001; 52
AA Hamdy (3460_CR14) 2000; 41
N Shearer (3460_CR71) 1999; 181
H Geng (3460_CR92) 2008; 74
WD Swingley (3460_CR7) 2007; 189
T Brinkhoff (3460_CR6) 2008; 189
DH Nies (3460_CR29) 2003; 27
I Wagner-Döbler (3460_CR93) 2003; 53
C Huang (3460_CR28) 2010
Y Asada (3460_CR56) 2009; 178
Y Shioi (3460_CR2) 1988; 29
N Yutin (3460_CR42) 2005; 7
RD Barabote (3460_CR43) 2005; 69
JS Richardson (3460_CR20) 2004; 186
3460_CR73
H Arata (3460_CR3) 1988; 103
F Godfroid (3460_CR25) 1998; 66
D Medini (3460_CR27) 2008; 6
A Mira (3460_CR19) 2010; 13
K Tang (3460_CR23) 2010; 5
3460_CR64
I Wagner-Döbler (3460_CR94) 2004; 54
AM Osborn (3460_CR17) 2002; 48
S Ullrich (3460_CR31) 2005; 187
JE Ugalde (3460_CR58) 2003; 100
PL Klerks (3460_CR15) 1987; 45
VM Markowitz (3460_CR39) 2006; 34
I Wagner-Döbler (3460_CR32) 2010; 4
P Puigbò (3460_CR86) 2008; 3
A Sfriso (3460_CR72) 1992; 15
AA Al-Homaidan (3460_CR12) 2007; 5
JA Eisen (3460_CR36) 2000; 1
ACE Darling (3460_CR81) 2004; 14
S Waack (3460_CR83) 2006; 7
H Biebl (3460_CR68) 2005; 55
E Van Bastelaere (3460_CR51) 1999; 32
3460_CR62
TJ Carver (3460_CR76) 2005; 21
References_xml – volume: 57
  start-page: 543
  year: 1993
  ident: 3460_CR44
  publication-title: Microbiol Rev
  doi: 10.1128/mr.57.3.543-594.1993
– volume: 3
  start-page: 441
  year: 2003
  ident: 3460_CR75
  publication-title: In Silico Biol
  doi: 10.3233/ISB-00108
– volume: 4
  start-page: 882
  year: 2010
  ident: 3460_CR26
  publication-title: ISME J
  doi: 10.1038/ismej.2010.6
– volume-title: Curr Microbiol
  year: 2010
  ident: 3460_CR28
– volume: 74
  start-page: 1535
  year: 2008
  ident: 3460_CR92
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02339-07
– ident: 3460_CR74
– volume: 175
  start-page: 7880
  year: 1993
  ident: 3460_CR52
  publication-title: J Bacteriol
  doi: 10.1128/jb.175.24.7880-7886.1993
– volume: 3
  start-page: 38
  year: 2008
  ident: 3460_CR86
  publication-title: Biol Direct
  doi: 10.1186/1745-6150-3-38
– ident: 3460_CR78
– volume-title: Environ Microbiol Rep
  year: 2010
  ident: 3460_CR4
– volume: 73
  start-page: 4559
  year: 2007
  ident: 3460_CR21
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02580-06
– volume: 25
  start-page: 119
  year: 2009
  ident: 3460_CR80
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn578
– volume: 53
  start-page: 731
  year: 2003
  ident: 3460_CR93
  publication-title: Int J Syst Evol Micr
  doi: 10.1099/ijs.0.02377-0
– volume: 183
  start-page: 4664
  year: 2001
  ident: 3460_CR30
  publication-title: J Bacteriol
  doi: 10.1128/JB.183.15.4664-4667.2001
– volume: 44
  start-page: 598
  year: 2005
  ident: 3460_CR45
  publication-title: Biochemistry
  doi: 10.1021/bi048412y
– volume: 281
  start-page: 28876
  year: 2006
  ident: 3460_CR49
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M602585200
– volume: 9
  start-page: 209
  year: 2009
  ident: 3460_CR60
  publication-title: BMC Microbiol
  doi: 10.1186/1471-2180-9-209
– volume: 9
  start-page: 3677
  year: 2009
  ident: 3460_CR61
  publication-title: Proteomics
  doi: 10.1002/pmic.200900120
– volume: 179
  start-page: 2452
  year: 1997
  ident: 3460_CR53
  publication-title: J Bacteriol
  doi: 10.1128/jb.179.7.2452-2458.1997
– volume: 27
  start-page: 567
  year: 1986
  ident: 3460_CR91
  publication-title: Plant Cell Physiol
– volume: 156
  start-page: 2970
  year: 2010
  ident: 3460_CR33
  publication-title: Microbiology
  doi: 10.1099/mic.0.041905-0
– volume: 103
  start-page: 1011
  year: 1988
  ident: 3460_CR3
  publication-title: J Biochem
  doi: 10.1093/oxfordjournals.jbchem.a122371
– volume: 186
  start-page: 8433
  year: 2004
  ident: 3460_CR20
  publication-title: J Bacteriol
  doi: 10.1128/JB.186.24.8433-8442.2004
– volume: 3
  start-page: 178
  year: 1995
  ident: 3460_CR37
  publication-title: Trends Microbiol
  doi: 10.1016/S0966-842X(00)88917-9
– volume: 281
  start-page: 33521
  year: 2006
  ident: 3460_CR50
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M606727200
– volume: 4
  start-page: R36
  year: 2003
  ident: 3460_CR35
  publication-title: Genome Biol
  doi: 10.1186/gb-2003-4-6-r36
– volume: 7
  start-page: 2027
  year: 2005
  ident: 3460_CR42
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2005.00843.x
– volume: 119
  start-page: 91
  year: 1978
  ident: 3460_CR69
  publication-title: Arch Microbiol
  doi: 10.1007/BF00407934
– volume: 66
  start-page: 5485
  year: 1998
  ident: 3460_CR25
  publication-title: Infect Immun
  doi: 10.1128/IAI.66.11.5485-5493.1998
– volume: 2
  start-page: 414
  year: 2004
  ident: 3460_CR18
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro884
– volume: 21
  start-page: 3422
  year: 2005
  ident: 3460_CR76
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti553
– ident: 3460_CR90
– volume: 55
  start-page: 372
  year: 2008
  ident: 3460_CR11
  publication-title: Arch of Environ Contam Tox
  doi: 10.1007/s00244-008-9135-4
– volume: 4
  start-page: 784
  year: 2010
  ident: 3460_CR22
  publication-title: ISME J
  doi: 10.1038/ismej.2009.150
– volume: 227
  start-page: 745
  year: 1957
  ident: 3460_CR47
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)70755-2
– volume: 5
  start-page: 354
  year: 2007
  ident: 3460_CR12
  publication-title: J Food Agric Environ
– volume: 4
  start-page: 61
  year: 2010
  ident: 3460_CR32
  publication-title: ISME J
  doi: 10.1038/ismej.2009.94
– ident: 3460_CR38
– volume: 70
  start-page: 3360
  year: 2004
  ident: 3460_CR5
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.70.6.3360-3369.2004
– ident: 3460_CR73
– volume: 27
  start-page: 313
  year: 2003
  ident: 3460_CR29
  publication-title: FEMS Microbiol Rev
  doi: 10.1016/S0168-6445(03)00048-2
– volume: 47
  start-page: 481
  year: 1981
  ident: 3460_CR59
  publication-title: Antonie Van Leeuwenhoek
  doi: 10.1007/BF00443236
– volume: 100
  start-page: 10659
  year: 2003
  ident: 3460_CR58
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1534787100
– volume: 1
  start-page: research00111
  year: 2000
  ident: 3460_CR36
  publication-title: Genome Biol
  doi: 10.1186/gb-2000-1-6-research0011
– volume: 189
  start-page: 531
  year: 2008
  ident: 3460_CR6
  publication-title: Arch Microbiol
  doi: 10.1007/s00203-008-0353-y
– volume: 48
  start-page: 202
  year: 2002
  ident: 3460_CR17
  publication-title: Plasmid
  doi: 10.1016/S0147-619X(02)00117-8
– volume: 178
  start-page: 117
  year: 2009
  ident: 3460_CR56
  publication-title: Chem Biol Interact
  doi: 10.1016/j.cbi.2008.09.018
– ident: 3460_CR62
– volume: 52
  start-page: 333
  year: 2001
  ident: 3460_CR41
  publication-title: J Mol Evol
  doi: 10.1007/s002390010163
– volume: 23
  start-page: 259
  year: 1986
  ident: 3460_CR55
  publication-title: J Mol Evol
  doi: 10.1007/BF02115582
– volume: 76
  start-page: 293
  year: 2006
  ident: 3460_CR13
  publication-title: Bull Environ Contam Toxicol
  doi: 10.1007/s00128-006-0920-3
– volume: 14
  start-page: 1394
  year: 2004
  ident: 3460_CR81
  publication-title: Genome Res
  doi: 10.1101/gr.2289704
– volume: 25
  start-page: 664
  year: 2009
  ident: 3460_CR82
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp030
– volume: 5
  start-page: e11604
  year: 2010
  ident: 3460_CR23
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0011604
– volume: 143
  start-page: 83
  issue: Pt 1
  year: 1997
  ident: 3460_CR70
  publication-title: Microbiology
  doi: 10.1099/00221287-143-1-83
– volume-title: ISME J
  year: 2010
  ident: 3460_CR24
– volume: 54
  start-page: 1177
  year: 2004
  ident: 3460_CR94
  publication-title: Int J Syst Evol Micr
  doi: 10.1099/ijs.0.02850-0
– ident: 3460_CR95
– volume: 179
  start-page: 9
  year: 1996
  ident: 3460_CR8
  publication-title: Gene
  doi: 10.1016/S0378-1119(96)00323-X
– volume: 50
  start-page: 753
  year: 1996
  ident: 3460_CR9
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev.micro.50.1.753
– volume: 278
  start-page: 631
  year: 1997
  ident: 3460_CR87
  publication-title: Science
  doi: 10.1126/science.278.5338.631
– volume: 29
  start-page: 861
  year: 1988
  ident: 3460_CR2
  publication-title: Plant Cell Physiol
– volume: 187
  start-page: 7176
  year: 2005
  ident: 3460_CR31
  publication-title: J Bacteriol
  doi: 10.1128/JB.187.21.7176-7184.2005
– volume: 55
  start-page: 1089
  year: 2005
  ident: 3460_CR68
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijs.0.63511-0
– volume: 31
  start-page: 164
  year: 2003
  ident: 3460_CR77
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkg148
– volume: 69
  start-page: 608
  year: 2005
  ident: 3460_CR43
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.69.4.608-634.2005
– volume: 583
  start-page: 3
  year: 2006
  ident: 3460_CR66
  publication-title: Adv Exp Med Biol
  doi: 10.1007/978-0-387-33504-9_1
– volume: 30
  start-page: 56
  year: 2002
  ident: 3460_CR89
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.1.56
– volume: 42
  start-page: 211
  year: 2008
  ident: 3460_CR84
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev.genet.42.110807.091653
– volume: 15
  start-page: 517
  year: 1992
  ident: 3460_CR72
  publication-title: Estuaries
  doi: 10.2307/1352394
– volume: 17
  start-page: 847
  year: 2001
  ident: 3460_CR79
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.9.847
– volume: 189
  start-page: 683
  year: 2007
  ident: 3460_CR7
  publication-title: J Bacteriol
  doi: 10.1128/JB.01390-06
– volume: 41
  start-page: 232
  year: 2000
  ident: 3460_CR14
  publication-title: Curr Microbiol
  doi: 10.1007/s002840010126
– volume: 14
  start-page: 140
  year: 1991
  ident: 3460_CR1
  publication-title: Syst Appl Microbiol
  doi: 10.1016/S0723-2020(11)80292-4
– volume: 34
  start-page: D344
  year: 2006
  ident: 3460_CR39
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkj024
– volume: 7
  start-page: 142
  year: 2006
  ident: 3460_CR83
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-142
– volume: 72
  start-page: 124
  year: 2009
  ident: 3460_CR57
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2009.06629.x
– volume: 41
  start-page: 2153
  year: 2006
  ident: 3460_CR40
  publication-title: Process Biochem
  doi: 10.1016/j.procbio.2006.06.029
– volume: 11
  start-page: 2627
  year: 2009
  ident: 3460_CR16
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2009.01987.x
– volume: 6
  start-page: 419
  year: 2008
  ident: 3460_CR27
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro1901
– volume: 281
  start-page: 2612
  year: 2006
  ident: 3460_CR48
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M506477200
– volume: 188
  start-page: 7195
  year: 2006
  ident: 3460_CR65
  publication-title: J Bacteriol
  doi: 10.1128/JB.00208-06
– ident: 3460_CR96
– volume: 32
  start-page: 211
  year: 1982
  ident: 3460_CR67
  publication-title: Int J Syst Bacteriol
  doi: 10.1099/00207713-32-2-211
– volume: 149
  start-page: 61
  year: 2009
  ident: 3460_CR10
  publication-title: Environ Monit and Assess
  doi: 10.1007/s10661-008-0183-z
– volume: 181
  start-page: 6907
  year: 1999
  ident: 3460_CR71
  publication-title: J Bacteriol
  doi: 10.1128/JB.181.22.6907-6913.1999
– volume: 13
  start-page: 45
  year: 2010
  ident: 3460_CR19
  publication-title: Int Microbiol
– volume: 152
  start-page: 2061
  year: 2006
  ident: 3460_CR34
  publication-title: Microbiology
  doi: 10.1099/mic.0.28938-0
– volume: 190
  start-page: 2947
  year: 2008
  ident: 3460_CR46
  publication-title: J Bacteriol
  doi: 10.1128/JB.01917-07
– volume: 45
  start-page: 173
  year: 1987
  ident: 3460_CR15
  publication-title: Environ Pollut
  doi: 10.1016/0269-7491(87)90057-1
– volume: 172
  start-page: 6442
  year: 1990
  ident: 3460_CR54
  publication-title: J Bacteriol
  doi: 10.1128/jb.172.11.6442-6446.1990
– volume: 32
  start-page: W375
  year: 2004
  ident: 3460_CR85
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh378
– ident: 3460_CR64
– volume: 32
  start-page: 703
  year: 1999
  ident: 3460_CR51
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.1999.01384.x
– volume: 271
  start-page: 22831
  year: 1996
  ident: 3460_CR63
  publication-title: J Biol Chem
  doi: 10.1074/jbc.271.37.22831
– volume: 30
  start-page: 59
  year: 2002
  ident: 3460_CR88
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.1.59
SSID ssj0017825
Score 2.2333987
Snippet Roseobacter litoralis OCh149, the type species of the genus, and Roseobacter denitrificans OCh114 were the first described organisms of the Roseobacter clade,...
Background Roseobacter litoralis OCh149, the type species of the genus, and Roseobacter denitrificans OCh114 were the first described organisms of the...
BACKGROUND: Roseobacter litoralis OCh149, the type species of the genus, and Roseobacter denitrificans OCh114 were the first described organisms of the...
Abstract Background Roseobacter litoralis OCh149, the type species of the genus, and Roseobacter denitrificans OCh114 were the first described organisms of the...
SourceID doaj
pubmedcentral
biomedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 324
SubjectTerms Genetic aspects
Genetic code
Genome, Bacterial
Genomic Islands
Genomics
Glycogen - metabolism
Identification and classification
Metals, Heavy - metabolism
Molecular Sequence Data
Photosynthesis - genetics
Plasmids
Plasmids - chemistry
Plasmids - genetics
Properties
Proteobacteria
Roseobacter - genetics
Roseobacter - physiology
Species Specificity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SELyIrV-rrSwiiIflbTabTQJearG0gh7UQi8S8lkftPvE996h_70z2d3XF6r04m1JJmSTmcnM7GZ-Q8gbJRvXGusqcIl81RrlK8moqVTbBCF4VHXKcv38pTs5az-d8_OtUl94J2yABx42bmYsC9RzKZiNLc4XAxbzjrwOSrg2oZeCzZuCqfH_Adg9nvKKBK0aiAimH5Sym23aElzfrUz3y8xAJRz_26f1lrnKr1Ju2abjR-Th6FSWh8Nidsm90O-R-0OZyevH5MfRDcR3iaCsV6E0IxgJPPixrbpYz33wZfrYMZ2JN4SLWGIZRtB_xHcuwX3H5P758gk5O_74_eikGssqVLaTclW5CFGO80ZgkTETTOcVZTxyGr23xhimpBUBXCHmo-XG1spxFSgNgbautpw9JTv9og_PScmFcIx568FJgUAxWjg5nQsmNr5TrXUFeZ_trf41QGhoBLXOe0C_NLJGI2s0bTSwpiCziRXajZDlWDnjUqfQRXZ_GfFuM2Ka69-0H5C72TulBhA_PYqfvkv8CvIaZUMjlEaPd3UuzHq51KffvupDxPqXCKFXkLcjUVzA-zszpj7AJiL6Vka5n1GCrrusu5xEUGMXXpDrw2K91BLLAkipREGeDRK5WVeDeDvg2RdEZLKaLTzv6ec_E9I4o-Cvi_rF_9ipl-TB8D2-A-3bJzur3-twAA7dyr5KuvsHvHFJfA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA66Ivgi3q2uUkQQH-o2bdMkoMi6uKzC-qAO7IuEXMeBsdXpDLj_3nN62dng-OLb0Jwwbc41bc73EfJcisJW2tgMSiKXVVq6TJRUZ7IqPOcsyLzvcj39VJ_Mqo9n7GzbHj0uYLdza4d8UrPV8tXvX-dvweHf9A4v6gMKATYroO7vAfiK6iq5BnmJI5_BabX9pgC5kE0fKnfM6mGBkRgQqc-j5vdllLN6aP-_A_ilDBafrryUro5vkZtjnZkeDoZxm1zxzR1yfWCePL9Lvh1tUb9TxGn94VM94pPADzdey-abhfMu7d9_TGFyK9iGFJkZISQg5HMKFT32-y-6e2R2_P7r0Uk2Mi1kphZindkAGx_rNEfeMe117SQtWWA0OGe01qUUhnuojkoXDNMml5ZJT6n3tLK5YeV9ste0jX9IUsa5LUtnHNQtsHcMBoKptV6HwtWyMjYhr6O1VT8HVA2FONfxCLicQi0p1JKihQItJeRgUoWyI4o5kmksVb-bEfWOGS8vZkz_9W_Zd6jd6J76C-1qrkZXVtqUnjomeGlChR4QPNLLB5Z7yW3FEvIMbUMhukaDx3fmetN16sOXz-oQ4f8Fouol5MUoFFq4f6vHbghYRATkiiT3I0lwfxsNp5MJKhzCM3ONbzedEsgUIITkCXkwWOTFc02GnhAe2Wr04PFIs_jeg4-XFEp4nj_675mPyY3hvXwN3rdP9tarjX8Chd3aPO399Q9gxE2p
  priority: 102
  providerName: Scholars Portal
Title Comparative genome analysis and genome-guided physiological analysis of Roseobacter litoralis
URI https://www.ncbi.nlm.nih.gov/pubmed/21693016
https://www.proquest.com/docview/878818897
http://dx.doi.org/10.1186/1471-2164-12-324
https://pubmed.ncbi.nlm.nih.gov/PMC3141670
https://doaj.org/article/ab3e1d5873bf4eccafe3940f50e97c45
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBdry2AvY9_z1gUzBmMPppEtWRLspSkt3aBldCuEwRD67AKdU5rkYf_97vyRVF33tBcTrLNj--6k30m63xHyTsnSMWNdAZDIF8woX8iKmkKxMgjBoxq3Wa4np_XxOfs85dMNTc6tFXwq6z0K3WdRAqpv6fVKtkV2SgYBHUbmk-_rFQMY6XibSdRLD0uSd9zhVm77ZTIktcz9f_fPNwaodPPkjdHo6BF52MPIfL_T-2NyLzRPyP2usOTvp-THwYbUO0ca1l8hNz39CPzw_bniYjXzweft9MbQC24E5zHHwovg8cjonANgx3T-2eIZOT86_HZwXPSFFApbS7ksXIS4xnkjsKyYCab2ilY8chq9t8aYSkkrAoCfykfLjR0rx1WgNATK3Njy6jnZbuZNeElyLoSrKm89wBIIDaOFvtK5YGLpa8Wsy8jH5Nvqq440QyONddoCHqVRNRpVo2mpQTUZ2RtUoV1PUo61Mi51G6zI-o4rPqyvGP7r37IT1G7yTO0JsDfde6o2tgrUcykqGxkaeAxYPT7ycVDCMZ6Rt2gbGskzGtydc2FWi4X-9PVM7yO7v0TSvIy874XiHJ7fmT7ZAT4i8m0lkruJJHi3S5rzwQQ1NuGWuCbMVwstsRCAlEpk5EVnkev3KpFhB7B8RkRiq8mLpy3N7GfLLV5RQOhi_Or_1PiaPOjm3mvwu12yvbxehTcA3pZ2RLbEVIzIzuTw9MvZqJ0CgeMJk6PWn_8AoWhFIQ
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxJtAgQiBEIfQzcOxLcGhLVRb-jhAK1VIlfFzWWmbRc2uUH8Zf48ZJ9luoJxQb1E8UZyZ8XgmnvmGkJeCZ6ZQ2iTgEtmkUMImPE9VIorMMUa9GIQq1_2DcnhUfDqmxyvkV1cLo08NgpOejk39drkAfRKsdpcs1qx1Xq6nYFuTDFz-gL2XFW125a47_wmxW_1-5wMI-lWWbX883BombXuBRJeczxLjwds3VjFstqWcKq1Ic-pp6q3VSqlccM0cuAS59ZoqPRCGCpemzqWFGWhsFwG2_xqjlIXCsc2vi-ML2HZpKGtqZ9edj14y4z8K7Se9_TG0Efh7s1jaLfuZnEtb4_Ztcqv1aeONhm13yIqr7pLrTZfL83vkZOsCYTwObHexarFQ4MK295LRfGydjcO_ls4kXxBOfYxdIMH8ILx0DNEDYguM6_vk6ErY_oCsVtPKPSIxZczkudUWfCSIU70Gw22MUz6zpSi0ici7Hm_ljwbBQyKmdn8EtEuiaCSKRqaZBNFEZL0ThTQtYjo27pjIEDnx8pIn3iye6N71b9pNlG5vTuHG9GwkW0WXSucutZSzXPsCV5t32Mre04ETzBQ0Ii9QNyQieVSYKjRS87qWO18-yw1sNcARwS8ir1siP4X5G9VWXgATEfyrR7nWowRTY3rDcaeCEocwP69y03ktOXYl4FywiDxsNHLxXRnC_UBgERHW09Xeh_dHqvH3AHSepxAusMHj_xPjc3JjeLi_J_d2DnafkJvNoUAJa3CNrM7O5u4peJUz_Sys4Jh8u2qT8RuytYuw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIhAXxJuUAhECIQ5hNw_HjgSHPlh1KVSoUKmqhIyf2xXbbNXsCvWf8fOYcZLtBsoJ9RbFE8XxjMczsef7CHlR8ERnUukIQiITZbIwEU9jGRVZYhmjruj7KtdPe_nOQfbhkB6ukF9tLYw60QhOejLW1ZvlAvSJ99pwoX_0To2rJzvPezE41yiBmN-D7yVZc7xy157_hOStejfcBk2_TJLB-69bO1HDLxCpnPNZpB2E-9pIhmxb0srcFHFKHY2dMUpKmRZcMQsxQWqcolL1C00LG8fWxpnuK-SLAOd_jVHKkDthf_NosX8B6y71dU1N79oN0kt6_Eel_aSzQHoegb9Xi6XlsnuUc2ltHNwmt5qgNtyorfAOWbHlXXK9prk8v0e-bV1AjId-3G0oGzAUuDDNvWg0HxtrQv-zpfXJF4JTFyINJPgfxJcOIX1AcIFxdZ8cXMmwPyCr5bS0j0hIGdNpapSBIAkSVafAc2ttpUtMXmRKB-RtZ2zFaQ3hIRBUu9sC5iVQNQJVI-JEgGoC0mtVIXQDmY7MHRPhUyeeX_LE68UT7bv-LbuJ2u30yd-Yno1E4zeEVKmNDeUsVS7D6eYsctk72rcF0xkNyHO0DYFQHiWeFRrJeVWJ4Zd9sYFcAxwh_ALyqhFyU5xCsim9gEFE9K-O5HpHEnyN7jSHrQkKbMIDeqWdzivBkZaA84IF5GFtkYvvShDvBzKLgLCOrXY-vNtSjo890nkaQ77A-mv_p8Zn5Mbn7YH4ONzbfUxu1psCOUzBdbI6O5vbJxBVztRTP4FD8v2qPcZv8KeLew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+genome+analysis+and+genome-guided+physiological+analysis+of+Roseobacter+litoralis&rft.jtitle=BMC+genomics&rft.au=Kalhoefer%2C+Daniela&rft.au=Thole%2C+Sebastian&rft.au=Voget%2C+Sonja&rft.au=Lehmann%2C+R%C3%BCdiger&rft.date=2011-06-21&rft.pub=BioMed+Central&rft.eissn=1471-2164&rft.volume=12&rft.spage=324&rft.epage=324&rft_id=info:doi/10.1186%2F1471-2164-12-324&rft_id=info%3Apmid%2F21693016&rft.externalDocID=PMC3141670
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon