Reference values for healthy human myocardium using a T1 mapping methodology: results from the International T1 Multicenter cardiovascular magnetic resonance study
T1 mapping is a robust and highly reproducible application to quantify myocardial relaxation of longitudinal magnetisation. Available T1 mapping methods are presently site and vendor specific, with variable accuracy and precision of T1 values between the systems and sequences. We assessed the transf...
Saved in:
Published in | Journal of cardiovascular magnetic resonance Vol. 16; no. 1; p. 69 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
21.10.2014
BioMed Central |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | T1 mapping is a robust and highly reproducible application to quantify myocardial relaxation of longitudinal magnetisation. Available T1 mapping methods are presently site and vendor specific, with variable accuracy and precision of T1 values between the systems and sequences. We assessed the transferability of a T1 mapping method and determined the reference values of healthy human myocardium in a multicenter setting.
Healthy subjects (n=102; mean age 41 years (range 17-83), male, n=53 (52%)), with no previous medical history, and normotensive low risk subjects (n=113) referred for clinical cardiovascular magnetic resonance (CMR) were examined. Further inclusion criteria for all were absence of regular medication and subsequently normal findings of routine CMR. All subjects underwent T1 mapping using a uniform imaging set-up (modified Look- Locker inversion recovery, MOLLI, using scheme 3(3)3(3)5)) on 1.5 Tesla (T) and 3 T Philips scanners. Native T1-maps were acquired in a single midventricular short axis slice and repeated 20 minutes following gadobutrol. Reference values were obtained for native T1 and gadolinium-based partition coefficients, λ and extracellular volume fraction (ECV) in a core lab using standardized postprocessing.
In healthy controls, mean native T1 values were 950±21 msec at 1.5 T and 1052±23 at 3 T. λ and ECV values were 0.44±0.06 and 0.25±0.04 at 1.5 T, and 0.44±0.07 and 0.26±0.04 at 3 T, respectively. There were no significant differences between healthy controls and low risk subjects in routine CMR parameters and T1 values. The entire cohort showed no correlation between age, gender and native T1. Cross-center comparisons of mean values showed no significant difference for any of the T1 indices at any field strength. There were considerable regional differences in segmental T1 values. λ and ECV were found to be dose dependent. There was excellent inter- and intraobserver reproducibility for measurement of native septal T1.
We show transferability for a unifying T1 mapping methodology in a multicenter setting. We provide reference ranges for T1 values in healthy human myocardium, which can be applied across participating sites. |
---|---|
AbstractList | Background T1 mapping is a robust and highly reproducible application to quantify myocardial relaxation of longitudinal magnetisation. Available T1 mapping methods are presently site and vendor specific, with variable accuracy and precision of T1 values between the systems and sequences. We assessed the transferability of a T1 mapping method and determined the reference values of healthy human myocardium in a multicenter setting. Methods Healthy subjects (n = 102; mean age 41 years (range 17-83), male, n = 53 (52%)), with no previous medical history, and normotensive low risk subjects (n=113) referred for clinical cardiovascular magnetic resonance (CMR) were examined. Further inclusion criteria for all were absence of regular medication and subsequently normal findings of routine CMR. All subjects underwent T1 mapping using a uniform imaging set-up (modified Look- Locker inversion recovery, MOLLI, using scheme 3(3)3(3)5)) on 1.5 Tesla (T) and 3 T Philips scanners. Native T1-maps were acquired in a single midventricular short axis slice and repeated 20 minutes following gadobutrol. Reference values were obtained for native T1 and gadolinium-based partition coefficients, [lambda] and extracellular volume fraction (ECV) in a core lab using standardized postprocessing. Results In healthy controls, mean native T1 values were 950 [+ or -] 21 msec at 1.5 T and 1052 [+ or -] 23 at 3 T. [lambda] and ECV values were 0.44 [+ or -] 0.06 and 0.25 [+ or -] 0.04 at 1.5 T, and 0.44 [+ or -] 0.07 and 0.26 [+ or -] 0.04 at 3 T, respectively. There were no significant differences between healthy controls and low risk subjects in routine CMR parameters and T1 values. The entire cohort showed no correlation between age, gender and native T1. Cross-center comparisons of mean values showed no significant difference for any of the T1 indices at any field strength. There were considerable regional differences in segmental T1 values. [lambda] and ECV were found to be dose dependent. There was excellent inter- and intraobserver reproducibility for measurement of native septal T1. Conclusion We show transferability for a unifying T1 mapping methodology in a multicenter setting. We provide reference ranges for T1 values in healthy human myocardium, which can be applied across participating sites. Keywords: T1 mapping, Reference values, Multicenter study, MOLLI, Native T1, ECV T1 mapping is a robust and highly reproducible application to quantify myocardial relaxation of longitudinal magnetisation. Available T1 mapping methods are presently site and vendor specific, with variable accuracy and precision of T1 values between the systems and sequences. We assessed the transferability of a T1 mapping method and determined the reference values of healthy human myocardium in a multicenter setting. Healthy subjects (n = 102; mean age 41 years (range 17-83), male, n = 53 (52%)), with no previous medical history, and normotensive low risk subjects (n=113) referred for clinical cardiovascular magnetic resonance (CMR) were examined. Further inclusion criteria for all were absence of regular medication and subsequently normal findings of routine CMR. All subjects underwent T1 mapping using a uniform imaging set-up (modified Look- Locker inversion recovery, MOLLI, using scheme 3(3)3(3)5)) on 1.5 Tesla (T) and 3 T Philips scanners. Native T1-maps were acquired in a single midventricular short axis slice and repeated 20 minutes following gadobutrol. Reference values were obtained for native T1 and gadolinium-based partition coefficients, [lambda] and extracellular volume fraction (ECV) in a core lab using standardized postprocessing. In healthy controls, mean native T1 values were 950 [+ or -] 21 msec at 1.5 T and 1052 [+ or -] 23 at 3 T. [lambda] and ECV values were 0.44 [+ or -] 0.06 and 0.25 [+ or -] 0.04 at 1.5 T, and 0.44 [+ or -] 0.07 and 0.26 [+ or -] 0.04 at 3 T, respectively. There were no significant differences between healthy controls and low risk subjects in routine CMR parameters and T1 values. The entire cohort showed no correlation between age, gender and native T1. Cross-center comparisons of mean values showed no significant difference for any of the T1 indices at any field strength. There were considerable regional differences in segmental T1 values. [lambda] and ECV were found to be dose dependent. There was excellent inter- and intraobserver reproducibility for measurement of native septal T1. We show transferability for a unifying T1 mapping methodology in a multicenter setting. We provide reference ranges for T1 values in healthy human myocardium, which can be applied across participating sites. T1 mapping is a robust and highly reproducible application to quantify myocardial relaxation of longitudinal magnetisation. Available T1 mapping methods are presently site and vendor specific, with variable accuracy and precision of T1 values between the systems and sequences. We assessed the transferability of a T1 mapping method and determined the reference values of healthy human myocardium in a multicenter setting.BACKGROUNDT1 mapping is a robust and highly reproducible application to quantify myocardial relaxation of longitudinal magnetisation. Available T1 mapping methods are presently site and vendor specific, with variable accuracy and precision of T1 values between the systems and sequences. We assessed the transferability of a T1 mapping method and determined the reference values of healthy human myocardium in a multicenter setting.Healthy subjects (n=102; mean age 41 years (range 17-83), male, n=53 (52%)), with no previous medical history, and normotensive low risk subjects (n=113) referred for clinical cardiovascular magnetic resonance (CMR) were examined. Further inclusion criteria for all were absence of regular medication and subsequently normal findings of routine CMR. All subjects underwent T1 mapping using a uniform imaging set-up (modified Look- Locker inversion recovery, MOLLI, using scheme 3(3)3(3)5)) on 1.5 Tesla (T) and 3 T Philips scanners. Native T1-maps were acquired in a single midventricular short axis slice and repeated 20 minutes following gadobutrol. Reference values were obtained for native T1 and gadolinium-based partition coefficients, λ and extracellular volume fraction (ECV) in a core lab using standardized postprocessing.METHODSHealthy subjects (n=102; mean age 41 years (range 17-83), male, n=53 (52%)), with no previous medical history, and normotensive low risk subjects (n=113) referred for clinical cardiovascular magnetic resonance (CMR) were examined. Further inclusion criteria for all were absence of regular medication and subsequently normal findings of routine CMR. All subjects underwent T1 mapping using a uniform imaging set-up (modified Look- Locker inversion recovery, MOLLI, using scheme 3(3)3(3)5)) on 1.5 Tesla (T) and 3 T Philips scanners. Native T1-maps were acquired in a single midventricular short axis slice and repeated 20 minutes following gadobutrol. Reference values were obtained for native T1 and gadolinium-based partition coefficients, λ and extracellular volume fraction (ECV) in a core lab using standardized postprocessing.In healthy controls, mean native T1 values were 950±21 msec at 1.5 T and 1052±23 at 3 T. λ and ECV values were 0.44±0.06 and 0.25±0.04 at 1.5 T, and 0.44±0.07 and 0.26±0.04 at 3 T, respectively. There were no significant differences between healthy controls and low risk subjects in routine CMR parameters and T1 values. The entire cohort showed no correlation between age, gender and native T1. Cross-center comparisons of mean values showed no significant difference for any of the T1 indices at any field strength. There were considerable regional differences in segmental T1 values. λ and ECV were found to be dose dependent. There was excellent inter- and intraobserver reproducibility for measurement of native septal T1.RESULTSIn healthy controls, mean native T1 values were 950±21 msec at 1.5 T and 1052±23 at 3 T. λ and ECV values were 0.44±0.06 and 0.25±0.04 at 1.5 T, and 0.44±0.07 and 0.26±0.04 at 3 T, respectively. There were no significant differences between healthy controls and low risk subjects in routine CMR parameters and T1 values. The entire cohort showed no correlation between age, gender and native T1. Cross-center comparisons of mean values showed no significant difference for any of the T1 indices at any field strength. There were considerable regional differences in segmental T1 values. λ and ECV were found to be dose dependent. There was excellent inter- and intraobserver reproducibility for measurement of native septal T1.We show transferability for a unifying T1 mapping methodology in a multicenter setting. We provide reference ranges for T1 values in healthy human myocardium, which can be applied across participating sites.CONCLUSIONWe show transferability for a unifying T1 mapping methodology in a multicenter setting. We provide reference ranges for T1 values in healthy human myocardium, which can be applied across participating sites. Doc number: 69 Abstract Background: T1 mapping is a robust and highly reproducible application to quantify myocardial relaxation of longitudinal magnetisation. Available T1 mapping methods are presently site and vendor specific, with variable accuracy and precision of T1 values between the systems and sequences. We assessed the transferability of a T1 mapping method and determined the reference values of healthy human myocardium in a multicenter setting. Methods: Healthy subjects (n = 102; mean age 41 years (range 17-83), male, n = 53 (52%)), with no previous medical history, and normotensive low risk subjects (n=113) referred for clinical cardiovascular magnetic resonance (CMR) were examined. Further inclusion criteria for all were absence of regular medication and subsequently normal findings of routine CMR. All subjects underwent T1 mapping using a uniform imaging set-up (modified Look- Locker inversion recovery, MOLLI, using scheme 3(3)3(3)5)) on 1.5 Tesla (T) and 3 T Philips scanners. Native T1-maps were acquired in a single midventricular short axis slice and repeated 20 minutes following gadobutrol. Reference values were obtained for native T1 and gadolinium-based partition coefficients, λ and extracellular volume fraction (ECV) in a core lab using standardized postprocessing. Results: In healthy controls, mean native T1 values were 950 ± 21 msec at 1.5 T and 1052 ± 23 at 3 T. λ and ECV values were 0.44 ± 0.06 and 0.25 ± 0.04 at 1.5 T, and 0.44 ± 0.07 and 0.26 ± 0.04 at 3 T, respectively. There were no significant differences between healthy controls and low risk subjects in routine CMR parameters and T1 values. The entire cohort showed no correlation between age, gender and native T1. Cross-center comparisons of mean values showed no significant difference for any of the T1 indices at any field strength. There were considerable regional differences in segmental T1 values. λ and ECV were found to be dose dependent. There was excellent inter- and intraobserver reproducibility for measurement of native septal T1. Conclusion: We show transferability for a unifying T1 mapping methodology in a multicenter setting. We provide reference ranges for T1 values in healthy human myocardium, which can be applied across participating sites. BACKGROUND: T1 mapping is a robust and highly reproducible application to quantify myocardial relaxation of longitudinal magnetisation. Available T1 mapping methods are presently site and vendor specific, with variable accuracy and precision of T1 values between the systems and sequences. We assessed the transferability of a T1 mapping method and determined the reference values of healthy human myocardium in a multicenter setting. METHODS: Healthy subjects (n = 102; mean age 41 years (range 17-83), male, n = 53 (52%)), with no previous medical history, and normotensive low risk subjects (n=113) referred for clinical cardiovascular magnetic resonance (CMR) were examined. Further inclusion criteria for all were absence of regular medication and subsequently normal findings of routine CMR. All subjects underwent T1 mapping using a uniform imaging set-up (modified Look- Locker inversion recovery, MOLLI, using scheme 3(3)3(3)5)) on 1.5 Tesla (T) and 3 T Philips scanners. Native T1-maps were acquired in a single midventricular short axis slice and repeated 20 minutes following gadobutrol. Reference values were obtained for native T1 and gadolinium-based partition coefficients, λ and extracellular volume fraction (ECV) in a core lab using standardized postprocessing. RESULTS: In healthy controls, mean native T1 values were 950 ± 21 msec at 1.5 T and 1052 ± 23 at 3 T. λ and ECV values were 0.44 ± 0.06 and 0.25 ± 0.04 at 1.5 T, and 0.44 ± 0.07 and 0.26 ± 0.04 at 3 T, respectively. There were no significant differences between healthy controls and low risk subjects in routine CMR parameters and T1 values. The entire cohort showed no correlation between age, gender and native T1. Cross-center comparisons of mean values showed no significant difference for any of the T1 indices at any field strength. There were considerable regional differences in segmental T1 values. λ and ECV were found to be dose dependent. There was excellent inter- and intraobserver reproducibility for measurement of native septal T1. CONCLUSION: We show transferability for a unifying T1 mapping methodology in a multicenter setting. We provide reference ranges for T1 values in healthy human myocardium, which can be applied across participating sites. Background: T1 mapping is a robust and highly reproducible application to quantify myocardial relaxation of longitudinal magnetisation. Available T1 mapping methods are presently site and vendor specific, with variable accuracy and precision of T1 values between the systems and sequences. We assessed the transferability of a T1 mapping method and determined the reference values of healthy human myocardium in a multicenter setting. Methods: Healthy subjects (n = 102; mean age 41 years (range 17-83), male, n = 53 (52%)), with no previous medical history, and normotensive low risk subjects (n=113) referred for clinical cardiovascular magnetic resonance (CMR) were examined. Further inclusion criteria for all were absence of regular medication and subsequently normal findings of routine CMR. All subjects underwent T1 mapping using a uniform imaging set-up (modified Look- Locker inversion recovery, MOLLI, using scheme 3(3)3(3)5)) on 1.5 Tesla (T) and 3 T Philips scanners. Native T1-maps were acquired in a single midventricular short axis slice and repeated 20 minutes following gadobutrol. Reference values were obtained for native T1 and gadolinium-based partition coefficients, [lambda] and extracellular volume fraction (ECV) in a core lab using standardized postprocessing. Results: In healthy controls, mean native T1 values were 950 plus or minus 21 msec at 1.5 T and 1052 plus or minus 23 at 3 T. [lambda] and ECV values were 0.44 plus or minus 0.06 and 0.25 plus or minus 0.04 at 1.5 T, and 0.44 plus or minus 0.07 and 0.26 plus or minus 0.04 at 3 T, respectively. There were no significant differences between healthy controls and low risk subjects in routine CMR parameters and T1 values. The entire cohort showed no correlation between age, gender and native T1. Cross-center comparisons of mean values showed no significant difference for any of the T1 indices at any field strength. There were considerable regional differences in segmental T1 values. [lambda] and ECV were found to be dose dependent. There was excellent inter- and intraobserver reproducibility for measurement of native septal T1. Conclusion: We show transferability for a unifying T1 mapping methodology in a multicenter setting. We provide reference ranges for T1 values in healthy human myocardium, which can be applied across participating sites. T1 mapping is a robust and highly reproducible application to quantify myocardial relaxation of longitudinal magnetisation. Available T1 mapping methods are presently site and vendor specific, with variable accuracy and precision of T1 values between the systems and sequences. We assessed the transferability of a T1 mapping method and determined the reference values of healthy human myocardium in a multicenter setting. Healthy subjects (n=102; mean age 41 years (range 17-83), male, n=53 (52%)), with no previous medical history, and normotensive low risk subjects (n=113) referred for clinical cardiovascular magnetic resonance (CMR) were examined. Further inclusion criteria for all were absence of regular medication and subsequently normal findings of routine CMR. All subjects underwent T1 mapping using a uniform imaging set-up (modified Look- Locker inversion recovery, MOLLI, using scheme 3(3)3(3)5)) on 1.5 Tesla (T) and 3 T Philips scanners. Native T1-maps were acquired in a single midventricular short axis slice and repeated 20 minutes following gadobutrol. Reference values were obtained for native T1 and gadolinium-based partition coefficients, λ and extracellular volume fraction (ECV) in a core lab using standardized postprocessing. In healthy controls, mean native T1 values were 950±21 msec at 1.5 T and 1052±23 at 3 T. λ and ECV values were 0.44±0.06 and 0.25±0.04 at 1.5 T, and 0.44±0.07 and 0.26±0.04 at 3 T, respectively. There were no significant differences between healthy controls and low risk subjects in routine CMR parameters and T1 values. The entire cohort showed no correlation between age, gender and native T1. Cross-center comparisons of mean values showed no significant difference for any of the T1 indices at any field strength. There were considerable regional differences in segmental T1 values. λ and ECV were found to be dose dependent. There was excellent inter- and intraobserver reproducibility for measurement of native septal T1. We show transferability for a unifying T1 mapping methodology in a multicenter setting. We provide reference ranges for T1 values in healthy human myocardium, which can be applied across participating sites. |
ArticleNumber | 69 |
Audience | Academic |
Author | Jabbour, Andrew Broadbent, David Kalra, Ashwin Schnackenburg, Bernhard Dabir, Darius Gebker, Rolf Rogers, Toby Foote, Lucy McDiarmid, Adam Cummins, Ciara Plein, Sven Kidambi, Ananth Nagel, Eike Otton, James Puntmann, Valentina O Yu, Chung-Yao Higgins, David M Child, Nicholas |
Author_xml | – sequence: 1 givenname: Darius surname: Dabir fullname: Dabir, Darius – sequence: 2 givenname: Nicholas surname: Child fullname: Child, Nicholas – sequence: 3 givenname: Ashwin surname: Kalra fullname: Kalra, Ashwin – sequence: 4 givenname: Toby surname: Rogers fullname: Rogers, Toby – sequence: 5 givenname: Rolf surname: Gebker fullname: Gebker, Rolf – sequence: 6 givenname: Andrew surname: Jabbour fullname: Jabbour, Andrew – sequence: 7 givenname: Sven surname: Plein fullname: Plein, Sven – sequence: 8 givenname: Chung-Yao surname: Yu fullname: Yu, Chung-Yao – sequence: 9 givenname: James surname: Otton fullname: Otton, James – sequence: 10 givenname: Ananth surname: Kidambi fullname: Kidambi, Ananth – sequence: 11 givenname: Adam surname: McDiarmid fullname: McDiarmid, Adam – sequence: 12 givenname: David surname: Broadbent fullname: Broadbent, David – sequence: 13 givenname: David M surname: Higgins fullname: Higgins, David M – sequence: 14 givenname: Bernhard surname: Schnackenburg fullname: Schnackenburg, Bernhard – sequence: 15 givenname: Lucy surname: Foote fullname: Foote, Lucy – sequence: 16 givenname: Ciara surname: Cummins fullname: Cummins, Ciara – sequence: 17 givenname: Eike surname: Nagel fullname: Nagel, Eike – sequence: 18 givenname: Valentina O surname: Puntmann fullname: Puntmann, Valentina O |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25384607$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk81q3DAUhU1JaX7aB-imCAqlG6eSbclyF4WQ_gVSCiWF7oQsX48VZGki2UPmefKikTJJmwkJFC9s6Z77caRzvZ_tWGchy14TfEgIZx8CKRrGc0yqHGPW5JfPsj1CyyKviubPTvzGTZ0zVtW72X4I5xiTpsb1i2y3oCWvGK73sqtf0IMHqwCtpJkhoN55NIA007BGwzxKi8a1U9J3eh7RHLRdIInOCBrlcpkWI0yD65xxi_VH5CHMZooQ70Y0DYBO7ATeykk7K01q-xHrWkHaRjdUt5JBzUb6SFxYiMVEifLkKUxzt36ZPe-lCfDq9n2Q_f765ez4e37689vJ8dFp3jJOp5xJ2dKqAw5lRXlRdDjuyLbFtG9rUAXBkpOelBIrIG0jeV9wyiRPi6aqVXmQfdpwl3M7QpdMemnE0utR-rVwUovtitWDWLiVqApcNphHwOcNoNXuCcB2RblRbEIUMUSRQhSXEfP-1od3FzGSSYw6KDBGWnBzEITVhFaEU_of0qJqSopZGaVvH0jP3RyjMUlFaHRBq_qfaiENCG17F42qBBVHtGwYa3idDnr4iCo-HYxaxSHtddzfanh3r2EzXsGZOc1F2Ba-uZ_B37u7m9goqDcC5V0IHnqh9HQzX9GCNoJgkf6NR6-VPOi8gz_dcw1HHxUL |
CitedBy_id | crossref_primary_10_1001_jamacardio_2020_3557 crossref_primary_10_1002_jmri_25217 crossref_primary_10_1016_j_yacr_2019_03_001 crossref_primary_10_1148_ryct_2019190010 crossref_primary_10_1111_1756_185X_13107 crossref_primary_10_1002_acr2_11515 crossref_primary_10_1016_j_jacc_2019_11_032 crossref_primary_10_1002_jmri_27639 crossref_primary_10_1136_openhrt_2023_002590 crossref_primary_10_1002_mrm_29956 crossref_primary_10_1007_s10741_020_09943_x crossref_primary_10_1097_RCT_0000000000000746 crossref_primary_10_4329_wjr_v9_i1_1 crossref_primary_10_1016_j_rec_2016_02_027 crossref_primary_10_1002_mrm_26565 crossref_primary_10_1161_JAHA_120_020351 crossref_primary_10_3389_fcvm_2022_1017097 crossref_primary_10_1016_j_rx_2015_12_007 crossref_primary_10_1016_j_ijcard_2019_01_101 crossref_primary_10_1161_CIRCIMAGING_120_011713 crossref_primary_10_1186_s12968_020_00683_3 crossref_primary_10_1186_s12968_021_00762_z crossref_primary_10_1002_jmri_26895 crossref_primary_10_1186_s12968_023_00975_4 crossref_primary_10_3390_diagnostics11122334 crossref_primary_10_1016_j_ijcard_2021_03_023 crossref_primary_10_1002_mrm_27524 crossref_primary_10_1007_s00246_017_1734_2 crossref_primary_10_1249_MSS_0000000000002411 crossref_primary_10_1016_j_jcmg_2019_03_026 crossref_primary_10_1016_j_ijcha_2023_101181 crossref_primary_10_1161_CIRCRESAHA_116_307974 crossref_primary_10_1007_s00246_017_1690_x crossref_primary_10_1186_1532_429X_18_S1_P219 crossref_primary_10_1007_s00330_019_06364_9 crossref_primary_10_1186_s12968_016_0286_6 crossref_primary_10_2147_IJGM_S350673 crossref_primary_10_3390_jcdd10060252 crossref_primary_10_1109_TMI_2022_3215798 crossref_primary_10_1186_s12968_015_0150_0 crossref_primary_10_3389_fcvm_2021_737257 crossref_primary_10_1186_s12968_017_0337_7 crossref_primary_10_1186_s43055_024_01341_9 crossref_primary_10_1016_j_hlc_2019_05_080 crossref_primary_10_1007_s10554_022_02648_2 crossref_primary_10_1016_j_jcmg_2018_10_027 crossref_primary_10_1016_j_ejrad_2019_02_026 crossref_primary_10_1016_j_ijcard_2018_11_107 crossref_primary_10_22468_cvia_2017_00073 crossref_primary_10_1002_nbm_4436 crossref_primary_10_1148_radiol_2018171342 crossref_primary_10_1016_j_ejrad_2019_06_001 crossref_primary_10_1007_s10554_024_03314_5 crossref_primary_10_1016_j_mri_2015_04_001 crossref_primary_10_1016_j_crad_2017_04_019 crossref_primary_10_1186_s12880_018_0301_5 crossref_primary_10_1186_s40959_023_00175_0 crossref_primary_10_1016_j_jacbts_2019_07_008 crossref_primary_10_1186_s12968_017_0326_x crossref_primary_10_1186_s12968_023_00974_5 crossref_primary_10_4250_jcvi_2022_0021 crossref_primary_10_6009_jjrt_2018_JSRT_74_11_1329 crossref_primary_10_1093_ehjopen_oeae076 crossref_primary_10_1186_s12968_021_00760_1 crossref_primary_10_1016_j_crad_2016_02_013 crossref_primary_10_1093_rheumatology_keaa742 crossref_primary_10_1186_s12968_016_0224_7 crossref_primary_10_1007_s10554_017_1134_y crossref_primary_10_1007_s10554_022_02773_y crossref_primary_10_1186_s12968_015_0206_1 crossref_primary_10_1016_j_ijcard_2024_132716 crossref_primary_10_1148_radiol_2016141802 crossref_primary_10_1177_0284185116674501 crossref_primary_10_1016_j_ijcard_2015_10_199 crossref_primary_10_1007_s10334_017_0630_3 crossref_primary_10_1016_j_jcmg_2020_10_017 crossref_primary_10_1148_radiol_2018172613 crossref_primary_10_1186_s13256_021_02782_w crossref_primary_10_1148_ryct_2020190234 crossref_primary_10_1007_s12350_019_01810_z crossref_primary_10_1016_j_ijcha_2019_100389 crossref_primary_10_1016_j_jcmg_2018_06_016 crossref_primary_10_1055_a_1174_0537 crossref_primary_10_1161_CIRCIMAGING_122_014068 crossref_primary_10_1016_j_rxeng_2016_05_004 crossref_primary_10_1016_j_jjcc_2022_02_006 crossref_primary_10_1161_JAHA_118_009618 crossref_primary_10_13104_imri_2020_24_3_141 crossref_primary_10_1186_s43055_023_01042_9 crossref_primary_10_3390_diagnostics12020399 crossref_primary_10_1097_HJH_0000000000002504 crossref_primary_10_1002_nbm_4248 crossref_primary_10_1017_S2040174420001233 crossref_primary_10_1136_heartjnl_2018_313767 crossref_primary_10_1186_s12968_023_00954_9 crossref_primary_10_2139_ssrn_4175100 crossref_primary_10_1186_s12872_021_02086_3 crossref_primary_10_1007_s10554_022_02543_w crossref_primary_10_1186_s12968_015_0207_0 crossref_primary_10_1016_j_recesp_2016_02_032 crossref_primary_10_1016_j_jaccas_2022_101722 crossref_primary_10_1007_s11604_017_0611_5 crossref_primary_10_1148_ryct_220255 crossref_primary_10_1007_s12410_018_9451_7 crossref_primary_10_1186_s12968_019_0522_y crossref_primary_10_1002_mrm_28321 crossref_primary_10_1148_radiol_2017162732 crossref_primary_10_1111_liv_13870 crossref_primary_10_1007_s00330_019_06185_w crossref_primary_10_1161_CIRCIMAGING_116_005022 crossref_primary_10_1007_s10554_019_01717_3 crossref_primary_10_1007_s10334_017_0649_5 crossref_primary_10_1016_j_jcmg_2021_01_042 crossref_primary_10_1016_j_jacc_2017_12_020 crossref_primary_10_1136_annrheumdis_2018_213661 crossref_primary_10_1038_s41598_022_16696_0 crossref_primary_10_1002_jmri_26910 crossref_primary_10_1002_mrm_29084 crossref_primary_10_1161_CIRCIMAGING_115_003579 crossref_primary_10_1186_s40959_020_00061_z crossref_primary_10_1002_jmri_25268 crossref_primary_10_1007_s00380_019_01401_5 crossref_primary_10_1161_CIRCIMAGING_114_002504 crossref_primary_10_1016_j_crad_2020_05_013 crossref_primary_10_1186_s12968_016_0302_x crossref_primary_10_1161_CIRCULATIONAHA_121_057006 crossref_primary_10_1080_14779072_2016_1226130 crossref_primary_10_1002_clc_23360 crossref_primary_10_1016_j_ejrad_2018_10_011 crossref_primary_10_1186_s12968_015_0209_y crossref_primary_10_1007_s10554_020_02031_z crossref_primary_10_1002_mgg3_70024 crossref_primary_10_1161_CIRCULATIONAHA_122_059280 crossref_primary_10_1007_s11886_021_01607_y crossref_primary_10_3390_jcm9123810 crossref_primary_10_1002_mrm_25726 crossref_primary_10_1016_j_rec_2016_04_045 crossref_primary_10_22468_cvia_2016_00129 crossref_primary_10_1007_s10741_015_9509_4 crossref_primary_10_1016_j_jcmg_2021_03_026 crossref_primary_10_1016_j_jcct_2019_09_008 crossref_primary_10_1016_j_clinimag_2020_07_006 crossref_primary_10_1186_s12872_019_1255_4 crossref_primary_10_2459_JCM_0000000000000380 crossref_primary_10_1088_1361_6560_aafcca crossref_primary_10_1177_02841851211067149 crossref_primary_10_1007_s10741_018_9724_x crossref_primary_10_1161_JAHA_115_001895 crossref_primary_10_1002_nbm_4041 crossref_primary_10_1017_S1047951121003292 crossref_primary_10_1097_RTI_0000000000000656 crossref_primary_10_1002_jmri_25728 crossref_primary_10_1161_CIRCIMAGING_115_004325 crossref_primary_10_1007_s12194_020_00601_3 crossref_primary_10_1136_openhrt_2019_001115 crossref_primary_10_3390_jcm8111877 crossref_primary_10_1161_CIRCIMAGING_122_014158 crossref_primary_10_3348_kjr_2017_18_1_113 crossref_primary_10_1002_mrm_28577 crossref_primary_10_1016_j_ijcard_2020_03_002 crossref_primary_10_1097_RLI_0000000000000809 crossref_primary_10_1161_CIRCIMAGING_117_006182 crossref_primary_10_1007_s10554_017_1113_3 crossref_primary_10_1016_j_jchf_2021_01_007 crossref_primary_10_1016_j_jcmg_2018_11_026 crossref_primary_10_1038_s41598_023_29591_z crossref_primary_10_1586_14779072_2015_1051035 crossref_primary_10_1002_jmri_25754 crossref_primary_10_1186_s12968_015_0192_3 crossref_primary_10_15420_aer_2019_5_1 crossref_primary_10_1093_ehjci_jeae247 crossref_primary_10_1007_s10334_017_0631_2 crossref_primary_10_6009_jjrt_2021_JSRT_77_2_172 crossref_primary_10_13104_imri_2019_23_4_395 crossref_primary_10_1038_s41598_020_71722_3 crossref_primary_10_1016_j_diii_2019_08_006 crossref_primary_10_1016_j_kint_2016_07_014 crossref_primary_10_1038_s41598_018_21696_0 crossref_primary_10_1007_s12410_015_9355_8 crossref_primary_10_1016_j_ijcard_2018_10_023 crossref_primary_10_1002_jmri_27375 crossref_primary_10_1016_j_case_2017_01_012 crossref_primary_10_4103_ijri_IJRI_326_20 crossref_primary_10_1007_s00592_020_01528_2 crossref_primary_10_1002_jmri_26160 crossref_primary_10_31083_j_rcm2301030 crossref_primary_10_1016_j_ejrad_2018_03_020 crossref_primary_10_1136_openhrt_2017_000717 crossref_primary_10_1016_j_amjcard_2018_06_007 crossref_primary_10_1186_s12880_019_0320_x crossref_primary_10_1186_s12968_018_0518_z crossref_primary_10_1007_s13239_018_0362_1 crossref_primary_10_1186_s12968_017_0371_5 crossref_primary_10_1016_j_mri_2022_07_012 crossref_primary_10_1097_HJH_0000000000002726 crossref_primary_10_1016_j_repc_2021_04_005 crossref_primary_10_1007_s10554_021_02166_7 crossref_primary_10_1016_j_ebiom_2024_105055 crossref_primary_10_1038_s41398_019_0502_x crossref_primary_10_1002_jmri_26866 crossref_primary_10_1007_s00508_018_1411_3 crossref_primary_10_1016_j_ijcard_2021_04_024 crossref_primary_10_1093_ehjci_jeaa144 crossref_primary_10_1088_1361_6579_ad2c15 crossref_primary_10_1016_j_jcmg_2018_08_028 crossref_primary_10_1007_s10554_024_03241_5 crossref_primary_10_1007_s40336_017_0255_6 crossref_primary_10_1161_CIRCIMAGING_115_004232 crossref_primary_10_1038_s41598_018_19372_4 crossref_primary_10_1016_j_hlc_2016_03_011 crossref_primary_10_1007_s00246_020_02479_9 crossref_primary_10_1007_s00330_022_08936_8 crossref_primary_10_1016_j_ijcard_2016_07_182 crossref_primary_10_29001_2073_8552_2022_37_1_17_26 crossref_primary_10_1007_s00330_022_08839_8 crossref_primary_10_1186_s12968_021_00798_1 crossref_primary_10_1016_j_diii_2025_01_005 crossref_primary_10_1002_jmri_25885 crossref_primary_10_3390_jcm13164807 crossref_primary_10_1016_j_mri_2018_06_018 crossref_primary_10_1016_j_rccar_2018_09_006 crossref_primary_10_1007_s10334_017_0668_2 crossref_primary_10_1186_s12968_023_00951_y crossref_primary_10_1186_s12968_020_00666_4 crossref_primary_10_1016_j_jcmg_2019_10_016 crossref_primary_10_3390_jcm13195953 crossref_primary_10_1016_j_jcmg_2015_12_001 crossref_primary_10_1186_s12968_017_0419_6 crossref_primary_10_36290_vnl_2017_052 crossref_primary_10_1007_s12410_015_9360_y crossref_primary_10_1016_j_ijcard_2024_132440 crossref_primary_10_1186_s12968_015_0203_4 crossref_primary_10_1002_jmri_26886 crossref_primary_10_1186_s12968_015_0194_1 crossref_primary_10_1136_openhrt_2021_001919 crossref_primary_10_1161_CIRCIMAGING_115_003285 crossref_primary_10_4329_wjr_v12_i6_87 crossref_primary_10_1016_j_ijcard_2021_05_041 crossref_primary_10_1088_1361_6560_aae758 crossref_primary_10_1007_s10554_017_1216_x crossref_primary_10_47803_rjc_2021_31_1_122 crossref_primary_10_1002_nbm_3426 crossref_primary_10_1016_j_diii_2021_03_003 crossref_primary_10_3389_fcvm_2023_1085737 crossref_primary_10_1016_j_jcct_2019_12_032 crossref_primary_10_1016_j_recesp_2016_04_036 crossref_primary_10_1186_s12968_016_0305_7 crossref_primary_10_3389_fphys_2018_00140 crossref_primary_10_1002_mrm_28278 crossref_primary_10_1002_jmri_29228 crossref_primary_10_1155_2017_5453606 crossref_primary_10_1111_jce_13226 crossref_primary_10_4250_jcvi_2022_0068 crossref_primary_10_1007_s10334_016_0581_0 crossref_primary_10_1007_s10554_020_01910_9 crossref_primary_10_1186_s12933_024_02294_z crossref_primary_10_1016_j_jacc_2017_10_044 crossref_primary_10_1016_j_ijcha_2021_100947 crossref_primary_10_4070_kcj_2020_0157 |
Cites_doi | 10.1186/1532-429X-15-13 10.1016/j.jacc.2013.05.078 10.1186/1532-429X-15-78 10.1016/j.jcmg.2008.09.010 10.1007/s12410-013-9252-y 10.1136/bmj.b2393 10.2214/AJR.04.1868 10.1016/j.jacc.2010.11.013 10.1002/mrm.20110 10.1186/1532-429X-14-26 10.1001/jama.2013.1363 10.1186/1532-429X-13-75 10.1016/j.jcmg.2012.08.019 10.1186/1532-429X-15-53 10.1002/mrm.21272 10.1016/j.jcmg.2013.05.013 10.1186/1532-429X-12-69 10.1001/2012.jama.11089 10.1016/j.jcmg.2013.05.007 10.2217/fca.13.102 10.1093/eurheartj/eht193 10.1002/mrm.22716 10.1186/1532-429X-16-2 10.1093/ehjci/jeu082 10.1186/1532-429X-15-63 10.1161/CIRCIMAGING.113.000633 10.1002/jmri.22753 10.1161/CIRCIMAGING.112.000151 10.1186/1532-429X-13-16 10.1016/j.jacc.2010.06.062 10.1186/1532-429X-15-35 10.1148/radiol.2382041903 10.1002/jmri.21119 10.1002/mrm.24867 10.1161/HYPERTENSIONAHA.114.03928 10.1186/1532-429X-15-92 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2014 BioMed Central Ltd. 2014 Dabir et al.; licensee BioMed Central Ltd. Dabir et al.; licensee BioMed Central Ltd. 2014 |
Copyright_xml | – notice: COPYRIGHT 2014 BioMed Central Ltd. – notice: 2014 Dabir et al.; licensee BioMed Central Ltd. – notice: Dabir et al.; licensee BioMed Central Ltd. 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7SC 7SP 7U5 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K9. L7M LK8 L~C L~D M0S M1P M7P M7Z P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1186/s12968-014-0069-x |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Health & Medical Collection Medical Database Biological Science Database Biochemistry Abstracts 1 Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database Computer and Information Systems Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1532-429X |
EndPage | 69 |
ExternalDocumentID | PMC4203908 oai_biomedcentral_com_s12968_014_0069_x 3468289441 A539669878 25384607 10_1186_s12968_014_0069_x |
Genre | Multicenter Study Comparative Study Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | New South Wales Europe Canada |
GeographicLocations_xml | – name: Europe – name: New South Wales – name: Canada |
GrantInformation_xml | – fundername: British Heart Foundation grantid: FS/10/62/28409 – fundername: Department of Health |
GroupedDBID | --- .1- .FO 0R~ 29K 2VQ 2WC 36B 4.4 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AALRI AAWTL AAXUO AAYWO AAYXX ABDBF ABUWG ACGEJ ACGFO ACGFS ACIWK ACPRK ACUHS ACVFH ADBBV ADCNI ADCVX ADRAZ ADUKV ADVLN ADXPE AENEX AEUPX AFCTW AFJKZ AFKRA AFPKN AFPUW AFRAH AFRHN AHBYD AHMBA AHSBF AHYZX AIGII AITUG AJUYK AJWEG AKBMS AKRWK AKYEP ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMRAJ AMTXH AOIJS APXCP ARAPS AWYRJ BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CAG CCPQU CITATION COF CS3 D-I DIK DU5 E3Z EAP EBC EBD EBS EJD EMB EMK EMOBN EST ESX F5P FDB FRP FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE HZ~ IAO IHR IHW INR IPNFZ KQ8 LK8 M1P M41 M48 M7P O5R O5S O9- OK1 OVT P2P P62 P6G PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RIG RNS ROL RPM RSV SMD SOJ SV3 TDBHL TFW TR2 TUS UKHRP Z5R ZCN CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB PMFND 3V. 7SC 7SP 7U5 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ JQ2 K9. L7M L~C L~D M7Z P64 PKEHL PQEST PQUKI PRINS 7X8 -5E -5G -A0 -BR 0SF AAJSJ ABVAZ ACRMQ ADINQ AFGXO AFNRJ B0M C24 EAD EPL INH ITC M~E ZA5 ~8M 5PM |
ID | FETCH-LOGICAL-b685t-6aab54de8e345822d06aaabb05fb7ec210a81f13a0ce1b9a8f2856a8e1b9947c3 |
IEDL.DBID | RBZ |
ISSN | 1097-6647 1532-429X |
IngestDate | Thu Aug 21 18:18:17 EDT 2025 Wed May 22 07:12:09 EDT 2024 Fri Jul 11 11:08:59 EDT 2025 Fri Jul 11 05:05:23 EDT 2025 Fri Jul 25 19:09:07 EDT 2025 Tue Jun 17 22:05:29 EDT 2025 Tue Jun 10 21:03:04 EDT 2025 Thu May 22 21:23:57 EDT 2025 Mon Jul 21 06:03:02 EDT 2025 Thu Apr 24 22:53:30 EDT 2025 Tue Jul 01 02:54:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b685t-6aab54de8e345822d06aaabb05fb7ec210a81f13a0ce1b9a8f2856a8e1b9947c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1186/s12968-014-0069-x |
PMID | 25384607 |
PQID | 1615129547 |
PQPubID | 55371 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4203908 biomedcentral_primary_oai_biomedcentral_com_s12968_014_0069_x proquest_miscellaneous_1671541855 proquest_miscellaneous_1624935063 proquest_journals_1615129547 gale_infotracmisc_A539669878 gale_infotracacademiconefile_A539669878 gale_healthsolutions_A539669878 pubmed_primary_25384607 crossref_citationtrail_10_1186_s12968_014_0069_x crossref_primary_10_1186_s12968_014_0069_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-10-21 |
PublicationDateYYYYMMDD | 2014-10-21 |
PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: New York – name: London |
PublicationTitle | Journal of cardiovascular magnetic resonance |
PublicationTitleAlternate | J Cardiovasc Magn Reson |
PublicationYear | 2014 |
Publisher | BioMed Central Ltd BioMed Central |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central |
References | Schulz-Menger (10.1186/s12968-014-0069-x_bib6) 2013; 15 Mahmoud (10.1186/s12968-014-0069-x_bib24) 2014; 15 Piechnik (10.1186/s12968-014-0069-x_bib27) 2010; 12 Rogers (10.1186/s12968-014-0069-x_bib16) 2013; 15 Mascherbauer (10.1186/s12968-014-0069-x_bib23) 2013; 6 Neilan (10.1186/s12968-014-0069-x_bib3) 2013; 6 Kawel (10.1186/s12968-014-0069-x_bib30) 2012; 14 Liu (10.1186/s12968-014-0069-x_bib12) 2013; 62 Mewton (10.1186/s12968-014-0069-x_bib7) 2011; 57 Schelbert (10.1186/s12968-014-0069-x_bib19) 2011; 13 Lee (10.1186/s12968-014-0069-x_bib31) 2011; 13 Puntmann (10.1186/s12968-014-0069-x_bib14) 2013; 6 Nacif (10.1186/s12968-014-0069-x_bib29) 2011; 34 Piechnik (10.1186/s12968-014-0069-x_bib36) 2013; 15 Messroghli (10.1186/s12968-014-0069-x_bib13) 2004; 52 Kellman (10.1186/s12968-014-0069-x_bib37) 2013; 15 Gai (10.1186/s12968-014-0069-x_bib28) 2011; 65 Gulati (10.1186/s12968-014-0069-x_bib4) 2013; 309 Messroghli (10.1186/s12968-014-0069-x_bib25) 2006; 238 Kawel (10.1186/s12968-014-0069-x_bib33) 2012; 14 Kwon (10.1186/s12968-014-0069-x_bib1) 2009; 2 Cheitlin (10.1186/s12968-014-0069-x_bib18) 2003; 108 Iles (10.1186/s12968-014-0069-x_bib5) 2011; 15 Messroghli (10.1186/s12968-014-0069-x_bib20) 2007; 58 Von Knobelsdorff-Brenkenhoff (10.1186/s12968-014-0069-x_bib32) 2013; 15 Schelbert (10.1186/s12968-014-0069-x_bib2) 2012; 308 Sterne (10.1186/s12968-014-0069-x_bib21) 2009; 338 Hinojar (10.1186/s12968-014-0069-x_bib39) 2014; 10 Higgins (10.1186/s12968-014-0069-x_bib11) 2014; 7 Moon (10.1186/s12968-014-0069-x_bib9) 2013; 15 10.1186/s12968-014-0069-x_bib35 10.1186/s12968-014-0069-x_bib34 Wong (10.1186/s12968-014-0069-x_bib22) 2014; 35 Puntmann (10.1186/s12968-014-0069-x_bib15) 2013; 6 Robson (10.1186/s12968-014-0069-x_bib38) 2013; 670 Kellman (10.1186/s12968-014-0069-x_bib10) 2014; 16 Nagel (10.1186/s12968-014-0069-x_bib8) 2013; 6 Natori (10.1186/s12968-014-0069-x_bib17) 2006; 186 Messroghli (10.1186/s12968-014-0069-x_bib26) 2007; 26 |
References_xml | – volume: 15 start-page: 13 year: 2013 ident: 10.1186/s12968-014-0069-x_bib36 article-title: Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5 T using ShMOLLI publication-title: J Cardiovasc Magn Reson doi: 10.1186/1532-429X-15-13 – volume: 62 start-page: 1280 issue: 14 year: 2013 ident: 10.1186/s12968-014-0069-x_bib12 article-title: Evaluation of age-related interstitial myocardial fibrosis with cardiac magnetic resonance contrast-enhanced T1 mapping: MESA (Multi-Ethnic Study of Atherosclerosis) publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2013.05.078 – volume: 15 start-page: 78 year: 2013 ident: 10.1186/s12968-014-0069-x_bib16 article-title: Standardization of T1 measurements with MOLLI in differentiation between health and disease – the ConSept study publication-title: J Cardiovasc Magn Reson doi: 10.1186/1532-429X-15-78 – volume: 2 start-page: 34 issue: 1 year: 2009 ident: 10.1186/s12968-014-0069-x_bib1 article-title: Extent of left ventricular scar predicts outcomes in ischemic cardiomyopathy patients with significantly reduced systolic function: a delayed hyperenhancement cardiac magnetic resonance study publication-title: JACC Cardiovasc Imaging doi: 10.1016/j.jcmg.2008.09.010 – volume: 7 start-page: 9252 year: 2014 ident: 10.1186/s12968-014-0069-x_bib11 article-title: Review of T1 mapping methods: comparative effectiveness including reproducibility issues publication-title: Curr Cardiovasc Imaging Rep doi: 10.1007/s12410-013-9252-y – volume: 338 start-page: b2393 year: 2009 ident: 10.1186/s12968-014-0069-x_bib21 article-title: Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls publication-title: BMJ doi: 10.1136/bmj.b2393 – volume: 186 start-page: S357 year: 2006 ident: 10.1186/s12968-014-0069-x_bib17 article-title: Cardiovascular function in multi-ethnic study of atherosclerosis: normal values by age, sex, and ethnicity publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.04.1868 – volume: 15 start-page: 18 issue: S1 year: 2014 ident: 10.1186/s12968-014-0069-x_bib24 article-title: T1 values in discrimination between health and disease using different T1 sequences: comparison between 3L3L5-MOLLI, 3 L5-MOLLI, shMOLLI and SASHA publication-title: J Cardiovasc Magn Reson – volume: 57 start-page: 891 issue: 8 year: 2011 ident: 10.1186/s12968-014-0069-x_bib7 article-title: Assessment of myocardial fibrosis with cardiovascular magnetic resonance publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2010.11.013 – volume: 52 start-page: 141 year: 2004 ident: 10.1186/s12968-014-0069-x_bib13 article-title: Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart publication-title: Magn Reson Med doi: 10.1002/mrm.20110 – volume: 14 start-page: 27 year: 2012 ident: 10.1186/s12968-014-0069-x_bib33 article-title: T1 mapping of the myocardium: intra-individual assessment of the effect of field strength, cardiac cycle and variation by myocardial region publication-title: J Cardiovasc Magn Reson doi: 10.1186/1532-429X-14-26 – volume: 108 start-page: 1146 year: 2003 ident: 10.1186/s12968-014-0069-x_bib18 article-title: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASE Committee Update the 1997 Guidelines on the Clinical Application of Echocardiography) publication-title: Circulation – volume: 309 start-page: 896 issue: 9 year: 2013 ident: 10.1186/s12968-014-0069-x_bib4 article-title: Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy publication-title: JAMA doi: 10.1001/jama.2013.1363 – volume: 13 start-page: 75 year: 2011 ident: 10.1186/s12968-014-0069-x_bib31 article-title: Myocardial T1 and extracellular volume fraction mapping at 3 tesla publication-title: J Cardiovasc Magn Reson doi: 10.1186/1532-429X-13-75 – volume: 6 start-page: 475 year: 2013 ident: 10.1186/s12968-014-0069-x_bib15 article-title: Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy publication-title: JACC Cardiovasc Imaging doi: 10.1016/j.jcmg.2012.08.019 – volume: 14 start-page: 26 year: 2012 ident: 10.1186/s12968-014-0069-x_bib30 article-title: T1 mapping of the myocardium: intra-individual assessment of post-contrast T1 time evolution and extracellular volume fraction at 3 T for Gd-DTPA and Gd-BOPTA publication-title: J Cardiovasc Magn Reson doi: 10.1186/1532-429X-14-26 – volume: 15 start-page: 53 issue: 1 year: 2013 ident: 10.1186/s12968-014-0069-x_bib32 article-title: Myocardial T1 and T2 mapping at 3 T: reference values, influencing factors and implications publication-title: J Cardiovasc Magn Reson doi: 10.1186/1532-429X-15-53 – volume: 58 start-page: 34 issue: 1 year: 2007 ident: 10.1186/s12968-014-0069-x_bib20 article-title: Myocardial T1 mapping: application to patients with acute and chronic myocardial infarction publication-title: Magn Reson Med doi: 10.1002/mrm.21272 – volume: 6 start-page: 944 issue: 9 year: 2013 ident: 10.1186/s12968-014-0069-x_bib3 article-title: CMR quantification of myocardial scar provides additive prognostic information in nonischemic cardiomyopathy publication-title: JACC Cardiovasc Imaging doi: 10.1016/j.jcmg.2013.05.013 – volume: 12 start-page: 69 year: 2010 ident: 10.1186/s12968-014-0069-x_bib27 article-title: Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold publication-title: J Cardiovasc Magn Reson doi: 10.1186/1532-429X-12-69 – volume: 308 start-page: 890 issue: 9 year: 2012 ident: 10.1186/s12968-014-0069-x_bib2 article-title: Prevalence and prognosis of unrecognized myocardial infarction determined by cardiac magnetic resonance in older adults publication-title: JAMA doi: 10.1001/2012.jama.11089 – volume: 6 start-page: 837 issue: 7 year: 2013 ident: 10.1186/s12968-014-0069-x_bib8 article-title: Evolution and revolution in CMR imaging publication-title: JACC Cardiovasc Imaging doi: 10.1016/j.jcmg.2013.05.007 – volume: 10 start-page: 273 issue: 2 year: 2014 ident: 10.1186/s12968-014-0069-x_bib39 article-title: Individualized cardiovascular risk assessment by cardiovascular magnetic resonance publication-title: Future Cardiol doi: 10.2217/fca.13.102 – volume: 35 start-page: 657 issue: 10 year: 2014 ident: 10.1186/s12968-014-0069-x_bib22 article-title: Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission publication-title: Eur Heart J doi: 10.1093/eurheartj/eht193 – volume: 65 start-page: 1407 issue: 5 year: 2011 ident: 10.1186/s12968-014-0069-x_bib28 article-title: T1 mapping of the gadolinium-enhanced myocardium: adjustment for factors affecting interpatient comparison publication-title: Magn Reson Med doi: 10.1002/mrm.22716 – volume: 16 start-page: 2 issue: 1 year: 2014 ident: 10.1186/s12968-014-0069-x_bib10 article-title: T1-mapping in the heart: accuracy and precision publication-title: J Cardiovasc Magn Reson doi: 10.1186/1532-429X-16-2 – ident: 10.1186/s12968-014-0069-x_bib34 doi: 10.1093/ehjci/jeu082 – volume: 15 start-page: 63 year: 2013 ident: 10.1186/s12968-014-0069-x_bib37 article-title: Influence of Off-resonance in myocardial T1-mapping using SSFP based MOLLI method publication-title: J Cardiovasc Magn Reson doi: 10.1186/1532-429X-15-63 – volume: 6 start-page: 1056 issue: 6 year: 2013 ident: 10.1186/s12968-014-0069-x_bib23 article-title: Cardiac magnetic resonance postcontrast T1 time is associated with outcome in patients with heart failure and preserved ejection fraction publication-title: Circ Cardiovasc Imaging doi: 10.1161/CIRCIMAGING.113.000633 – volume: 34 start-page: 1367 issue: 6 year: 2011 ident: 10.1186/s12968-014-0069-x_bib29 article-title: Myocardial T1 mapping with MRI: comparison of look-locker and MOLLI sequences publication-title: J Magn Reson Imaging doi: 10.1002/jmri.22753 – volume: 6 start-page: 295 year: 2013 ident: 10.1186/s12968-014-0069-x_bib14 article-title: Native myocardial T1 mapping by cardiovascular magnetic resonance imaging in subclinical cardiomyopathy in patients with systemic lupus erythematosus publication-title: Circ Cardiovasc Imaging doi: 10.1161/CIRCIMAGING.112.000151 – volume: 13 start-page: 16 year: 2011 ident: 10.1186/s12968-014-0069-x_bib19 article-title: Myocardial extravascular extracellular volume fraction measurement by gadolinium cardiovascular magnetic resonance in humans: slow infusion versus bolus publication-title: J Cardiovasc Magn Reson doi: 10.1186/1532-429X-13-16 – volume: 15 start-page: 821 issue: 57(7) year: 2011 ident: 10.1186/s12968-014-0069-x_bib5 article-title: Myocardial fibrosis predicts appropriate device therapy in patients with implantable cardioverter-defibrillators for primary prevention of sudden cardiac death publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2010.06.062 – volume: 15 start-page: 35 year: 2013 ident: 10.1186/s12968-014-0069-x_bib6 article-title: Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) board of trustees task force on standardized post processing publication-title: J Cardiovasc Magn Reson doi: 10.1186/1532-429X-15-35 – volume: 238 start-page: 1004 issue: 3 year: 2006 ident: 10.1186/s12968-014-0069-x_bib25 article-title: Human myocardium: single-breath-hold MR T1 mapping with high spatial resolution-reproducibility study publication-title: Radiology doi: 10.1148/radiol.2382041903 – volume: 26 start-page: 1081 issue: 4 year: 2007 ident: 10.1186/s12968-014-0069-x_bib26 article-title: Optimization and validation of a fully-integrated pulse sequence for modified look-locker inversion-recovery (MOLLI) T1 mapping of the heart publication-title: J Magn Reson Imaging doi: 10.1002/jmri.21119 – volume: 670 start-page: 664 year: 2013 ident: 10.1186/s12968-014-0069-x_bib38 article-title: T1 measurements in the human myocardium: the effects of magnetization transfer on the SASHA and MOLLI sequences publication-title: Magn Reson Med doi: 10.1002/mrm.24867 – ident: 10.1186/s12968-014-0069-x_bib35 doi: 10.1161/HYPERTENSIONAHA.114.03928 – volume: 15 start-page: 92 year: 2013 ident: 10.1186/s12968-014-0069-x_bib9 article-title: Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement publication-title: J Cardiovasc Magn Reson doi: 10.1186/1532-429X-15-92 |
SSID | ssj0019707 |
Score | 2.525444 |
Snippet | T1 mapping is a robust and highly reproducible application to quantify myocardial relaxation of longitudinal magnetisation. Available T1 mapping methods are... Background T1 mapping is a robust and highly reproducible application to quantify myocardial relaxation of longitudinal magnetisation. Available T1 mapping... Doc number: 69 Abstract Background: T1 mapping is a robust and highly reproducible application to quantify myocardial relaxation of longitudinal magnetisation.... Background: T1 mapping is a robust and highly reproducible application to quantify myocardial relaxation of longitudinal magnetisation. Available T1 mapping... BACKGROUND: T1 mapping is a robust and highly reproducible application to quantify myocardial relaxation of longitudinal magnetisation. Available T1 mapping... |
SourceID | pubmedcentral biomedcentral proquest gale pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 69 |
SubjectTerms | Adolescent Adult Age Factors Aged Aged, 80 and over Biomedical research Contrast Media Control equipment Europe Family medical history Female Healthy Volunteers Heart Heart rate Human Humans Image Interpretation, Computer-Assisted Magnetic resonance Magnetic Resonance Imaging - standards Male Mapping Medical research Methodology Methods Middle Aged Myocardial Contraction Myocardium New South Wales Observer Variation Predictive Value of Tests Reference Values Reproducibility of Results Risk Routines Sex Factors Software Studies Ventricular Function, Left Ventricular Function, Right Young Adult |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA9aQXwRv12tGkEQhNBNdjebFUSKWIpQn1q4t5DNJWfhbrfeB7R_T__RzmRza1PkHu8ySXZ3JpOZzMwvhHwSuXd54TxrnXOstMYxJaaWCWe899yBV4SO4slveXxW_ppUk3jgtopplVudGBT1tLd4Rn6AlgnHoFT9_eIvw1ujMLoar9C4Tx4gdBmmdNWT0eHiTR3KpTHIyqQs6xjV5EoerGAsiWlcJUOwXnZ5p-B9nuxTd7X1re0qTaW8tTcdPSGPo1FJDwcpeEruue4ZeXgSw-bPyfUIJ0sR3NutKJiqdCiBvKLhmj66uIJdDaRls6CYCz-jhp5yujCI3zCjw0XT4Qj-KwUPfTNfwyDLfkHBgKTJsSJ2C2W9-LBuSW2S8QojzjosnMRRekT7cDRA3L4gZ0c_T38cs3g7A2ulqtZMGtNW5dQpV2DsTUxz-Me0bV75tnYWXEmjuOeFya3jbWOUF6qSRuGPpqxt8ZLsdX3nXhM6bW3jmxaVB3inSioOWk94-KpKOLBRM_It4Y2-GJA4NGJjpy0gMnrgrQbeauStvsxIvuWlthH6HG_gmOvgAin5vy5fxi7b2XYQf0AB0QPfRp2hD6sCvMlG1SojnwMFag2Y2ZpY_ADvj_hbCeV-Qgmr3abNWyHUUdus9L-1kZGPYzP2xAy6zvUbpAFHu6jAIt1FU4NFDRZclZFXg1yPLy9gZyxlDjPUicQnvEhbuvM_Aa-8FHnR5OrN7kd_Sx4JXI5gFwi-T_bWy417Bwbfun0fVvUNzJZZ3w priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_HCeKLnN_1To0gCEK0Tds0FQ45xOMQ1qdbuLeQZKersNvV_YDbv8d_1Jm0XS-y3IOPu5mkH_ORmU7mN4y9kWkDaQ6NcAAgCm9BaDnxQoJtmiYDjIooUBx9Uxfj4utVeXXAhvZW_Qtc7Q3tqJ_UeDl7f_1r-wkV_jQovFYfVrhnKTqSVQgC3hXoUt7BjakiPR0Vf5MKdRWqpynnKpQqqj7JuXcJAglGW1Ao6jMblcLPoh3sXzt-YyOLD1ne2LXOj9j93t3kZ518PGAH0D5kd0d9Qv0R-70DmuUE-w0rjk4s74ojtzw08OPzLe53KEebOadT8lNu-WXG55aQHaa8a0EdPs5_5Bi7b2ZrXGS5mHN0LXn0wZGmhYJfullYch-dhcUVpy2VVNIqC8IBAR7Abx-z8fmXy88Xou_bIJzS5Vooa11ZTEBDTlk5OUnxH-tcWjauAo9BptVZk-U29ZC52upG6lJZTT_qovL5E3bYLlp4xvjE-bqpHZkVjFu10hnaQ9ngW9US0HtN2GnEG_Ozw-gwhJodj6ACm47NBtlsiM3mOmHpwEvje1B06s0xMyE40mrflHe7KcPVbiF-RQJiOr7trIk5K3OMM2td6YS9DRQk4Xhlb_uyCHx-QuaKKE8iSrQDPh4ehNAMamTIn88olVsl7PVumGbS2boWFhuiwRA8L9FXvY2mQl8bfbsyYU87ud49_KAnCasiiY94EY-0P74HJPNCpnmd6uf_PfOY3ZOktOhMyOyEHa6XG3iBXuLavQy6_wch42pv priority: 102 providerName: Scholars Portal |
Title | Reference values for healthy human myocardium using a T1 mapping methodology: results from the International T1 Multicenter cardiovascular magnetic resonance study |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25384607 https://www.proquest.com/docview/1615129547 https://www.proquest.com/docview/1624935063 https://www.proquest.com/docview/1671541855 http://dx.doi.org/10.1186/s12968-014-0069-x https://pubmed.ncbi.nlm.nih.gov/PMC4203908 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dixMxEA96B-KL-O2eZ40gCEJwN_uVFXy4k6uH0EPkDoovIZtOqtBuj36A9_f4jzqT3a6XctyLLwttJkm3k8xHZuYXxt7K2EGcghM1AIjMGhBKTqyQYJxzCaBXRI7i6Kw4vci-jvPxP5ztnQh-oooPK9RIBSVcZYJgdQUajPsyQ0VIrvnxjz5kUJW-Nhp3sBQoZMddCPPGIXaq22eBUtoVzdd0U5g3eU0RDR-yB50FyY9alj9id6B5zO6Nuhj5E_anx47lhOQNK452KW_rHa-4v5OPz69QheHS2Mw5Jb5PueHnCZ8bAmuY8vZWaX_e_pGjO76ZrXGQ5WLO0VrkwRkidfM1vPRjYcltkN6KI04bqpKkURYE7QHc49k-ZRfDk_PPp6K7ikHUhcrXojCmzrMJKEgp0CYnMX5j6jrOXV2CRb_RqMQlqYktJHVllJMqL4yiD1VW2vQZ22sWDbxgfFLbylU1SQp0RVWhEhRx0uG_qiSgQRqxTwFv9GULu6EJCDtswT2pW95q5K0m3urfEYu3vNS2wzmn6zZm2vs7qripy_u-y3a2W4hf0wLRLd96AaGP8hRdx0qVKmLvPAWJCJzZmq7SAd-fwLYCysOAEre2DZu3i1B3omWlyURPKDpbRuxN30w9KV2ugcWGaNCrTnM0P2-jKdF8RnMtj9jzdl33Ly9RDWZFjDOUwYoPeBG2NL9-enDyTMZpFauD_-TiS3Zf0n5FK0Emh2xvvdzAKzT_1vWA3S3HJT7V8MuA7R-fnH37PvBHKfgcZWrgxcJf0mJhyg |
linkProvider | BioMedCentral |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BpDAl4Qn6MwmJFASEjREidxHKQJTcDUsXVPndQ34ziXgtSmox9i_T288xu5yxfzhPq2x9Znx8md78P3xdgb4Rfgh1B4GQB4kTXgKZFbT4ApiiIAtIrIUBycyf559HUUj7bYnzYXhsIqW55YMep8ZumOfJ80k4CcUsnHi58edY0i72rbQqMmixNY_0KTbXFw_Bnx-1aIoy_DT32v6SrgZVLFS08ak8VRDgpC8hmJ3Md_TJb5cZElYNEEMioogtD4FoIsNaoQKpZG0Y80SmyI695it1Hw-nSiklFn4AVpUqVnk1PXkzJKGi9qoOT-AvcuKWws8qg4sHd5LcF-4sjF69Lhinh0QzevyMKjB-x-o8Tyw5rqHrItKB-xO4PGTf-Y_e7K13IqJg4Ljqoxr1Mu17xqC8ina5SiSJ2rKafY-zE3fBjwqaF6EWNeN7aurvw_8DksVpMlLjKfTTkqrNy5xqRpVRoxbRbm3DoRtrjiuKRETVplRtVFgFcldZ-w8xvB21O2Xc5KeMZ4ntm0SDNiVmgNK6kC5LKiwK-qBKBO3GMHDm70RV35Q1MtbncESVTXuNWIW0241Zc95re41LYptU4dPya6MrmU_N-U992U9mkbgPeIQHSNt45H6cM4ROs1VYnqsXcVBHEpfLI1TbIFvj_V-3Igdx1I5C7WHW6JUDfcbaH_ncUee90N00yK2CthtiIYNOzDGDXgTTAJavCoMcY9tlPTdffyAiVxJH18QuJQvIMLd6T88b2qjx4JP0x99Xzz1vfY3f5wcKpPj89OXrB7go4m6iQi2GXby_kKXqKyucxeVSecs283zVL-AqCjl94 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Za9wwEBYlhdCX0vR0kzYqFAoFNbZ8yYU-pMeSHgmlJLD0RUiytCndtcMe0Pye_tHOyF6zCiEvfdtdjey1vtFoxpr5RMhLHjsbp9Yxba1lmVGWCV4bxq1yziUWoiIMFI9PiqOz7Ms4H_fZFlgL049g60yQjjlTkwaL-iAEbZGIwr7ZrE6fepMOH8zvg4vadZZAFAcLWMwKzNXKGDLyMvA1b5d5XuIE_vH-57DbUJW-rBomP2dgn8f97ue1l7hSGD8N1rOrVn1jWQtTLjfWsNE9crd3Pulhpy075JZt7pPt4357_QH5O9DOUiQBtwsKLi3tSiUvqT_Oj84uWz9oqxnFnPkJVfQ0oTOFPA8T2h1I7V_Vv6UwjKvpEi4yb2cUHE0avH7Ebr78F_-sndMQCrrGgg5gUE-F-5CcjT6dfjhi_SkOTBciX7JCKZ1ntRU2xT06Xsfwi9I6zp0urYGQU4nEJamKjU10pYTjIi-UwC9VVpr0Edlq2sY-IbTWpnKVRiMDUawoRALWkTsYVcEt-LIReRdgIy86xg6JHNphCyiM7LCVgK1EbOWfiMRrLKXpKdLxpI6p9KGSKK7r8nrosr7bDcL7qCCyw22wLfIwTyHqrEQpIvLKS6B1QX1WfZEEPD_ydAWSe4EkWAUTNq-VUPZzaiHRu09wY7eMyIuhGXtipl1j2xXKQECe5uC53iRTgucNnl4ekcedXg8Pz2EFzYoY7lAGGh9gEbY0v849r3nG47SKxdP_RHGfbH__OJLfPp983SV3OE5d8DV4ske2lvOVfQZO5FI_9xbgH7Bdd2U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reference+values+for+healthy+human+myocardium+using+a+T1+mapping+methodology%3A+results+from+the+International+T1+Multicenter+cardiovascular+magnetic+resonance+study&rft.jtitle=Journal+of+cardiovascular+magnetic+resonance&rft.au=Dabir%2C+Darius&rft.au=Child%2C+Nicholas&rft.au=Kalra%2C+Ashwin&rft.au=Rogers%2C+Toby&rft.date=2014-10-21&rft.pub=BioMed+Central&rft.issn=1097-6647&rft.eissn=1532-429X&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1186%2Fs12968-014-0069-x&rft_id=info%3Apmid%2F25384607&rft.externalDocID=PMC4203908 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-6647&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-6647&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-6647&client=summon |