Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens

Health-promoting polyunsaturated fatty acids (PUFA) are abundant in forages grazed by ruminants and in vegetable and fish oils used as dietary supplements, but only a small proportion of PUFA finds its way into meat and milk, because of biohydrogenation in the rumen. Butyrivibrio fibrisolvens plays...

Full description

Saved in:
Bibliographic Details
Published inBMC microbiology Vol. 10; no. 1; p. 52
Main Authors Maia, Margarida R G, Chaudhary, Lal C, Bestwick, Charles S, Richardson, Anthony J, McKain, Nest, Larson, Tony R, Graham, Ian A, Wallace, Robert J
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 18.02.2010
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Health-promoting polyunsaturated fatty acids (PUFA) are abundant in forages grazed by ruminants and in vegetable and fish oils used as dietary supplements, but only a small proportion of PUFA finds its way into meat and milk, because of biohydrogenation in the rumen. Butyrivibrio fibrisolvens plays a major role in this activity. The aim of this study was to investigate the mechanisms by which PUFA affect the growth of B. fibrisolvens, how PUFA are metabolized and the metabolic response to growth in the presence of PUFA. Linoleic acid (LA; cis-9, cis-12-18:2) and alpha-linolenic acid (LNA; cis-9, cis-12, cis-15-18:3) increased the lag phase of B. fibrisolvens JW11, LNA having the greater effect. Growth was initiated only when the PUFA had been converted to vaccenic acid (VA; trans-11-18:1). The major fish oil fatty acids, eicosapentaenoic acid (EPA; 20:5(n-3)) and docosahexaenoic acid (DHA; 22:6(n-3)), were not metabolized and prevented growth. Cellular integrity, as determined fluorimetrically by propidium iodide (PI) ingression, was affected as much by 18:1 fatty acids, including VA, as 18:2 fatty acids. The methyl esters of LNA, LA, EPA and DHA had no effect on growth or other measurements. The ATP pool decreased by 2/3 when LA was added to growing bacteria, whereas most acyl CoA pools decreased by >96%. It was concluded that biohydrogenation occurs to enable B. fibrisolvens to survive the bacteriostatic effects of PUFA, and that the toxicity of PUFA is probably mediated via a metabolic effect rather than disruption of membrane integrity.
AbstractList Background Health-promoting polyunsaturated fatty acids (PUFA) are abundant in forages grazed by ruminants and in vegetable and fish oils used as dietary supplements, but only a small proportion of PUFA finds its way into meat and milk, because of biohydrogenation in the rumen. Butyrivibrio fibrisolvens plays a major role in this activity. The aim of this study was to investigate the mechanisms by which PUFA affect the growth of B. fibrisolvens, how PUFA are metabolized and the metabolic response to growth in the presence of PUFA. Results Linoleic acid (LA; cis-9, cis-12-18:2) and [alpha]-linolenic acid (LNA; cis-9, cis-12, cis-15-18:3) increased the lag phase of B. fibrisolvens JW11, LNA having the greater effect. Growth was initiated only when the PUFA had been converted to vaccenic acid (VA; trans-11-18:1). The major fish oil fatty acids, eicosapentaenoic acid (EPA; 20:5(n-3)) and docosahexaenoic acid (DHA; 22:6(n-3)), were not metabolized and prevented growth. Cellular integrity, as determined fluorimetrically by propidium iodide (PI) ingression, was affected as much by 18:1 fatty acids, including VA, as 18:2 fatty acids. The methyl esters of LNA, LA, EPA and DHA had no effect on growth or other measurements. The ATP pool decreased by 2/3 when LA was added to growing bacteria, whereas most acyl CoA pools decreased by >96%. Conclusions It was concluded that biohydrogenation occurs to enable B. fibrisolvens to survive the bacteriostatic effects of PUFA, and that the toxicity of PUFA is probably mediated via a metabolic effect rather than disruption of membrane integrity.
: BACKGROUND: Health-promoting polyunsaturated fatty acids (PUFA) are abundant in forages grazed by ruminants and in vegetable and fish oils used as dietary supplements, but only a small proportion of PUFA finds its way into meat and milk, because of biohydrogenation in the rumen. Butyrivibrio fibrisolvens plays a major role in this activity. The aim of this study was to investigate the mechanisms by which PUFA affect the growth of B. fibrisolvens, how PUFA are metabolized and the metabolic response to growth in the presence of PUFA. RESULTS: Linoleic acid (LA; cis-9, cis-12-18:2) and α-linolenic acid (LNA; cis-9, cis-12, cis-15-18:3) increased the lag phase of B. fibrisolvens JW11, LNA having the greater effect. Growth was initiated only when the PUFA had been converted to vaccenic acid (VA; trans-11-18:1). The major fish oil fatty acids, eicosapentaenoic acid (EPA; 20:5(n-3)) and docosahexaenoic acid (DHA; 22:6(n-3)), were not metabolized and prevented growth. Cellular integrity, as determined fluorimetrically by propidium iodide (PI) ingression, was affected as much by 18:1 fatty acids, including VA, as 18:2 fatty acids. The methyl esters of LNA, LA, EPA and DHA had no effect on growth or other measurements. The ATP pool decreased by 2/3 when LA was added to growing bacteria, whereas most acyl CoA pools decreased by >96%. CONCLUSIONS: It was concluded that biohydrogenation occurs to enable B. fibrisolvens to survive the bacteriostatic effects of PUFA, and that the toxicity of PUFA is probably mediated via a metabolic effect rather than disruption of membrane integrity.
Health-promoting polyunsaturated fatty acids (PUFA) are abundant in forages grazed by ruminants and in vegetable and fish oils used as dietary supplements, but only a small proportion of PUFA finds its way into meat and milk, because of biohydrogenation in the rumen. Butyrivibrio fibrisolvens plays a major role in this activity. The aim of this study was to investigate the mechanisms by which PUFA affect the growth of B. fibrisolvens, how PUFA are metabolized and the metabolic response to growth in the presence of PUFA. Linoleic acid (LA; cis-9, cis-12-18:2) and alpha-linolenic acid (LNA; cis-9, cis-12, cis-15-18:3) increased the lag phase of B. fibrisolvens JW11, LNA having the greater effect. Growth was initiated only when the PUFA had been converted to vaccenic acid (VA; trans-11-18:1). The major fish oil fatty acids, eicosapentaenoic acid (EPA; 20:5(n-3)) and docosahexaenoic acid (DHA; 22:6(n-3)), were not metabolized and prevented growth. Cellular integrity, as determined fluorimetrically by propidium iodide (PI) ingression, was affected as much by 18:1 fatty acids, including VA, as 18:2 fatty acids. The methyl esters of LNA, LA, EPA and DHA had no effect on growth or other measurements. The ATP pool decreased by 2/3 when LA was added to growing bacteria, whereas most acyl CoA pools decreased by >96%. It was concluded that biohydrogenation occurs to enable B. fibrisolvens to survive the bacteriostatic effects of PUFA, and that the toxicity of PUFA is probably mediated via a metabolic effect rather than disruption of membrane integrity.
Background Health-promoting polyunsaturated fatty acids (PUFA) are abundant in forages grazed by ruminants and in vegetable and fish oils used as dietary supplements, but only a small proportion of PUFA finds its way into meat and milk, because of biohydrogenation in the rumen. Butyrivibrio fibrisolvens plays a major role in this activity. The aim of this study was to investigate the mechanisms by which PUFA affect the growth of B. fibrisolvens, how PUFA are metabolized and the metabolic response to growth in the presence of PUFA. Results Linoleic acid (LA; cis-9, cis-12-18:2) and α-linolenic acid (LNA; cis-9, cis-12, cis-15-18:3) increased the lag phase of B. fibrisolvens JW11, LNA having the greater effect. Growth was initiated only when the PUFA had been converted to vaccenic acid (VA; trans-11-18:1). The major fish oil fatty acids, eicosapentaenoic acid (EPA; 20:5(n-3)) and docosahexaenoic acid (DHA; 22:6(n-3)), were not metabolized and prevented growth. Cellular integrity, as determined fluorimetrically by propidium iodide (PI) ingression, was affected as much by 18:1 fatty acids, including VA, as 18:2 fatty acids. The methyl esters of LNA, LA, EPA and DHA had no effect on growth or other measurements. The ATP pool decreased by 2/3 when LA was added to growing bacteria, whereas most acyl CoA pools decreased by >96%. Conclusions It was concluded that biohydrogenation occurs to enable B. fibrisolvens to survive the bacteriostatic effects of PUFA, and that the toxicity of PUFA is probably mediated via a metabolic effect rather than disruption of membrane integrity.
Health-promoting polyunsaturated fatty acids (PUFA) are abundant in forages grazed by ruminants and in vegetable and fish oils used as dietary supplements, but only a small proportion of PUFA finds its way into meat and milk, because of biohydrogenation in the rumen. Butyrivibrio fibrisolvens plays a major role in this activity. The aim of this study was to investigate the mechanisms by which PUFA affect the growth of B. fibrisolvens, how PUFA are metabolized and the metabolic response to growth in the presence of PUFA. Linoleic acid (LA; cis-9, cis-12-18:2) and [alpha]-linolenic acid (LNA; cis-9, cis-12, cis-15-18:3) increased the lag phase of B. fibrisolvens JW11, LNA having the greater effect. Growth was initiated only when the PUFA had been converted to vaccenic acid (VA; trans-11-18:1). The major fish oil fatty acids, eicosapentaenoic acid (EPA; 20:5(n-3)) and docosahexaenoic acid (DHA; 22:6(n-3)), were not metabolized and prevented growth. Cellular integrity, as determined fluorimetrically by propidium iodide (PI) ingression, was affected as much by 18:1 fatty acids, including VA, as 18:2 fatty acids. The methyl esters of LNA, LA, EPA and DHA had no effect on growth or other measurements. The ATP pool decreased by 2/3 when LA was added to growing bacteria, whereas most acyl CoA pools decreased by >96%. It was concluded that biohydrogenation occurs to enable B. fibrisolvens to survive the bacteriostatic effects of PUFA, and that the toxicity of PUFA is probably mediated via a metabolic effect rather than disruption of membrane integrity.
Background Health-promoting polyunsaturated fatty acids (PUFA) are abundant in forages grazed by ruminants and in vegetable and fish oils used as dietary supplements, but only a small proportion of PUFA finds its way into meat and milk, because of biohydrogenation in the rumen. Butyrivibrio fibrisolvens plays a major role in this activity. The aim of this study was to investigate the mechanisms by which PUFA affect the growth of B. fibrisolvens , how PUFA are metabolized and the metabolic response to growth in the presence of PUFA. Results Linoleic acid (LA; cis -9, cis -12-18:2) and α-linolenic acid (LNA; cis -9, cis -12, cis -15-18:3) increased the lag phase of B. fibrisolvens JW11, LNA having the greater effect. Growth was initiated only when the PUFA had been converted to vaccenic acid (VA; trans- 11-18:1). The major fish oil fatty acids, eicosapentaenoic acid (EPA; 20:5( n- 3)) and docosahexaenoic acid (DHA; 22:6( n- 3)), were not metabolized and prevented growth. Cellular integrity, as determined fluorimetrically by propidium iodide (PI) ingression, was affected as much by 18:1 fatty acids, including VA, as 18:2 fatty acids. The methyl esters of LNA, LA, EPA and DHA had no effect on growth or other measurements. The ATP pool decreased by 2/3 when LA was added to growing bacteria, whereas most acyl CoA pools decreased by >96%. Conclusions It was concluded that biohydrogenation occurs to enable B. fibrisolvens to survive the bacteriostatic effects of PUFA, and that the toxicity of PUFA is probably mediated via a metabolic effect rather than disruption of membrane integrity.
BACKGROUNDHealth-promoting polyunsaturated fatty acids (PUFA) are abundant in forages grazed by ruminants and in vegetable and fish oils used as dietary supplements, but only a small proportion of PUFA finds its way into meat and milk, because of biohydrogenation in the rumen. Butyrivibrio fibrisolvens plays a major role in this activity. The aim of this study was to investigate the mechanisms by which PUFA affect the growth of B. fibrisolvens, how PUFA are metabolized and the metabolic response to growth in the presence of PUFA. RESULTSLinoleic acid (LA; cis-9, cis-12-18:2) and alpha-linolenic acid (LNA; cis-9, cis-12, cis-15-18:3) increased the lag phase of B. fibrisolvens JW11, LNA having the greater effect. Growth was initiated only when the PUFA had been converted to vaccenic acid (VA; trans-11-18:1). The major fish oil fatty acids, eicosapentaenoic acid (EPA; 20:5(n-3)) and docosahexaenoic acid (DHA; 22:6(n-3)), were not metabolized and prevented growth. Cellular integrity, as determined fluorimetrically by propidium iodide (PI) ingression, was affected as much by 18:1 fatty acids, including VA, as 18:2 fatty acids. The methyl esters of LNA, LA, EPA and DHA had no effect on growth or other measurements. The ATP pool decreased by 2/3 when LA was added to growing bacteria, whereas most acyl CoA pools decreased by >96%. CONCLUSIONSIt was concluded that biohydrogenation occurs to enable B. fibrisolvens to survive the bacteriostatic effects of PUFA, and that the toxicity of PUFA is probably mediated via a metabolic effect rather than disruption of membrane integrity.
ArticleNumber 52
Audience Academic
Author Maia, Margarida R G
Chaudhary, Lal C
McKain, Nest
Larson, Tony R
Graham, Ian A
Richardson, Anthony J
Wallace, Robert J
Bestwick, Charles S
AuthorAffiliation 3 Department of Biology, University of York, PO Box 373, York YO10 5YW, UK
5 Current address: Centre of Advanced Studies in Animal Nutrition, Indian Veterinary Research Institute, Izatnagar - 243 122, India
4 Current address: Requimte, ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão VC, Portugal
2 Unidade de Produção Animal, Instituto Nacional de Recursos Biológicos, Fonte Boa, 2005-048 Vale de Santarém, Portugal
1 Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen AB21 9SB, UK
AuthorAffiliation_xml – name: 4 Current address: Requimte, ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão VC, Portugal
– name: 2 Unidade de Produção Animal, Instituto Nacional de Recursos Biológicos, Fonte Boa, 2005-048 Vale de Santarém, Portugal
– name: 1 Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen AB21 9SB, UK
– name: 5 Current address: Centre of Advanced Studies in Animal Nutrition, Indian Veterinary Research Institute, Izatnagar - 243 122, India
– name: 3 Department of Biology, University of York, PO Box 373, York YO10 5YW, UK
Author_xml – sequence: 1
  givenname: Margarida R G
  surname: Maia
  fullname: Maia, Margarida R G
  organization: Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen AB21 9SB, UK
– sequence: 2
  givenname: Lal C
  surname: Chaudhary
  fullname: Chaudhary, Lal C
– sequence: 3
  givenname: Charles S
  surname: Bestwick
  fullname: Bestwick, Charles S
– sequence: 4
  givenname: Anthony J
  surname: Richardson
  fullname: Richardson, Anthony J
– sequence: 5
  givenname: Nest
  surname: McKain
  fullname: McKain, Nest
– sequence: 6
  givenname: Tony R
  surname: Larson
  fullname: Larson, Tony R
– sequence: 7
  givenname: Ian A
  surname: Graham
  fullname: Graham, Ian A
– sequence: 8
  givenname: Robert J
  surname: Wallace
  fullname: Wallace, Robert J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20167098$$D View this record in MEDLINE/PubMed
BookMark eNp1kktr3DAQgE1JaR7tubdi6KEU6kQPW5IvgST0EQgU2vQsZGnkVbCtVJKX7L-vtpsuMaToMGL06UMzmuPiYPITFMVbjE4xFuwM1xxXBAtUYVQ15EVxtM8cPNkfFscx3iGEuaD8VXFIEGYcteKoWN36B6dd2pTelvMUVZqDSmBKq1JOKu1MLJMv0wrKzvnVxgTfw6SSm_oyzKOb1FB2SicIbh4_lZdz2gS3dl1wvrTbEP2whim-Ll5aNUR48xhPil9fPt9efatuvn-9vrq4qTom6lRZqq1BlDesbaFpLBEYaaNVSwkXipEGE1YbSxmnukVAFEems7qxioFBqKEnxfXOa7y6k_fBjSpspFdO_k340EsVktMDSEE4QsRgZA2tRS0UYIsbW2MODGrQ2XW-c93P3QhGw5SCGhbS5cnkVrL3a0kEZRSjLLjcCXLr_iNYnmg_yu2vye2vSYxkQ7Lkw-Mrgv89Q0xydFHDMKgJ_Bwlp5S0mDY8k-93ZK9yeW6yPkv1lpYXhCDeUoZFpk6fofIyMDqd58u6nF9c-Li4kJkED6lXc4zy-uePJXu2Y3XwMQaw-2JzMduRfaa8d0-bvOf_zSj9A2wG6SU
CitedBy_id crossref_primary_10_1099_mgen_0_000216
crossref_primary_10_1590_S0102_09352012000200024
crossref_primary_10_1017_S0022029922000498
crossref_primary_10_3390_applmicrobiol2010004
crossref_primary_10_1016_j_smallrumres_2019_09_007
crossref_primary_10_1128_MMBR_00019_18
crossref_primary_10_1017_S175173111000042X
crossref_primary_10_3168_jds_2019_17167
crossref_primary_10_1016_j_meatsci_2013_04_062
crossref_primary_10_3168_jds_2020_19643
crossref_primary_10_1017_S1751731118001428
crossref_primary_10_3168_jds_2012_5690
crossref_primary_10_1016_j_meatsci_2014_08_006
crossref_primary_10_3168_jds_2011_4888
crossref_primary_10_3168_jds_2022_22165
crossref_primary_10_5433_1679_0359_2021v42n3Supl1p1853
crossref_primary_10_1071_AN17093
crossref_primary_10_3168_jds_2015_9712
crossref_primary_10_1038_s41598_018_33970_2
crossref_primary_10_3390_antiox12040814
crossref_primary_10_1002_ejlt_201400468
crossref_primary_10_1080_1745039X_2019_1595886
crossref_primary_10_3168_jds_2013_7243
crossref_primary_10_1128_AEM_01908_20
crossref_primary_10_3168_jds_2016_11500
crossref_primary_10_3390_microorganisms9071528
crossref_primary_10_1016_j_ijfoodmicro_2022_109593
crossref_primary_10_1016_j_anifeedsci_2015_05_023
crossref_primary_10_3389_fmicb_2021_636223
crossref_primary_10_1073_pnas_1914939117
crossref_primary_10_1194_jlr_M045450
crossref_primary_10_1016_j_anaerobe_2019_102143
crossref_primary_10_3168_jds_2016_11296
crossref_primary_10_3390_ani12111400
crossref_primary_10_1007_s12275_011_0365_1
crossref_primary_10_3168_jds_2016_11850
crossref_primary_10_3390_nu11020370
crossref_primary_10_1016_j_anifeedsci_2014_11_002
crossref_primary_10_1017_S0007114515001865
crossref_primary_10_1007_s11250_022_03209_4
crossref_primary_10_1002_jsfa_13556
crossref_primary_10_3168_jds_2013_7701
crossref_primary_10_1016_j_foodchem_2016_09_052
crossref_primary_10_3389_fvets_2020_575801
crossref_primary_10_1002_ejlt_201800036
crossref_primary_10_1016_j_algal_2019_101481
crossref_primary_10_1071_AN16820
crossref_primary_10_3389_fmicb_2015_00465
crossref_primary_10_3168_jds_2019_17662
crossref_primary_10_1186_s12866_016_0720_9
crossref_primary_10_3168_jds_2019_17389
crossref_primary_10_1007_s11745_011_3561_1
crossref_primary_10_1016_j_smallrumres_2019_04_009
crossref_primary_10_3390_fermentation9070596
crossref_primary_10_1371_journal_pone_0126473
crossref_primary_10_1016_j_livsci_2021_104489
crossref_primary_10_1111_j_1462_2920_2011_02452_x
crossref_primary_10_1128_Spectrum_01179_21
crossref_primary_10_5713_ajas_2011_11442
crossref_primary_10_2527_jas2017_1558
crossref_primary_10_1021_jf101145y
crossref_primary_10_1038_s41598_023_43749_9
crossref_primary_10_3389_fmicb_2023_1272691
crossref_primary_10_3389_fmicb_2017_01124
crossref_primary_10_1017_S1751731114000214
crossref_primary_10_1080_1828051X_2022_2104176
crossref_primary_10_3168_jds_2018_14675
crossref_primary_10_3390_microorganisms9061121
crossref_primary_10_1093_jas_skaa033
crossref_primary_10_1016_j_animal_2021_100243
crossref_primary_10_3168_jds_2022_22503
crossref_primary_10_1007_s11250_023_03846_3
crossref_primary_10_3168_jds_2015_9467
crossref_primary_10_1016_j_livsci_2020_104175
crossref_primary_10_3390_ani13030377
crossref_primary_10_3168_jds_2016_11911
crossref_primary_10_1071_AN19384
crossref_primary_10_1080_1828051X_2020_1816507
crossref_primary_10_3945_an_114_005835
crossref_primary_10_3389_fnut_2022_955846
crossref_primary_10_1016_j_anifeedsci_2017_01_021
crossref_primary_10_3390_ani11092553
crossref_primary_10_1111_jam_13501
crossref_primary_10_3390_su13020607
crossref_primary_10_1016_j_animal_2023_101046
crossref_primary_10_1038_s41598_019_48294_y
crossref_primary_10_1016_j_meatsci_2020_108342
crossref_primary_10_1016_j_anifeedsci_2023_115569
crossref_primary_10_3390_fermentation9040320
crossref_primary_10_1016_j_anaerobe_2012_02_004
crossref_primary_10_3168_jds_2023_24194
crossref_primary_10_4141_cjas_2014_051
crossref_primary_10_3168_jds_2016_12514
crossref_primary_10_3390_agronomy12071693
crossref_primary_10_3390_ani11092746
crossref_primary_10_1080_1828051X_2021_1884008
crossref_primary_10_3168_jds_2015_9636
crossref_primary_10_1007_s11745_014_3905_8
crossref_primary_10_3390_separations10050301
crossref_primary_10_1017_S1751731116000756
crossref_primary_10_2527_jas_2011_4670
crossref_primary_10_3390_foods13070975
crossref_primary_10_1016_j_anifeedsci_2018_09_019
crossref_primary_10_3168_jds_2015_9592
crossref_primary_10_1088_1755_1315_803_1_012009
crossref_primary_10_3390_microorganisms11102423
crossref_primary_10_1038_s41598_020_58401_z
crossref_primary_10_1016_j_biteb_2021_100861
crossref_primary_10_1093_jas_skac275
crossref_primary_10_1111_jam_12524
crossref_primary_10_1016_j_heliyon_2023_e20803
crossref_primary_10_1186_s12934_022_01777_6
crossref_primary_10_1007_s11250_024_03947_7
crossref_primary_10_1017_S0007114513000123
crossref_primary_10_1071_AN15684
crossref_primary_10_1002_ejlt_201700062
crossref_primary_10_1017_S175173111900137X
crossref_primary_10_2527_jas_2013_6868
crossref_primary_10_1155_2014_705359
crossref_primary_10_3390_ani9100755
crossref_primary_10_1016_j_foodres_2017_05_005
crossref_primary_10_1080_09291016_2019_1583504
crossref_primary_10_3390_foods12020303
crossref_primary_10_1080_10408398_2012_706243
crossref_primary_10_1021_acs_jafc_5b05310
crossref_primary_10_1186_s40168_022_01352_6
crossref_primary_10_5433_1679_0359_2019v40n6Supl3p3577
crossref_primary_10_3390_methane1040025
crossref_primary_10_3168_jds_2011_4618
crossref_primary_10_3168_jds_2018_15953
crossref_primary_10_5433_1679_0359_2019v40n5p2025
crossref_primary_10_1111_gfs_12326
crossref_primary_10_5713_ajas_2011_11242
crossref_primary_10_1016_j_animal_2021_100179
crossref_primary_10_1088_1755_1315_465_1_012020
crossref_primary_10_1017_S0021859615001094
crossref_primary_10_3390_antiox12101882
crossref_primary_10_1016_j_animal_2021_100216
crossref_primary_10_3168_jds_2020_18777
crossref_primary_10_4236_abb_2020_1112033
crossref_primary_10_3390_ani10040588
crossref_primary_10_1016_j_smallrumres_2021_106378
crossref_primary_10_1016_j_livsci_2023_105216
crossref_primary_10_1007_s11745_013_3793_3
crossref_primary_10_1080_15592324_2021_1989215
crossref_primary_10_1016_j_livsci_2017_08_012
crossref_primary_10_3168_jds_2022_23192
crossref_primary_10_2527_jas_2014_8754
crossref_primary_10_3168_jds_2015_10108
crossref_primary_10_3168_jds_2018_16095
crossref_primary_10_1016_j_livsci_2020_104121
crossref_primary_10_1371_journal_pone_0058386
crossref_primary_10_1080_1828051X_2021_1955626
crossref_primary_10_7717_peerj_10230
crossref_primary_10_1016_j_biotechadv_2019_107454
crossref_primary_10_1111_jam_13630
crossref_primary_10_3390_ani11030761
crossref_primary_10_1002_apj_2253
crossref_primary_10_1111_1574_6941_12011
crossref_primary_10_1038_s41598_020_62897_w
crossref_primary_10_3168_jds_2014_8990
crossref_primary_10_1021_acs_jafc_7b04173
crossref_primary_10_3382_ps_2012_02584
crossref_primary_10_1111_1751_7915_13702
crossref_primary_10_1016_j_aninu_2016_10_004
crossref_primary_10_24188_recia_v13_n2_2021_770
crossref_primary_10_1007_s13213_018_1368_5
crossref_primary_10_3168_jds_2023_23506
crossref_primary_10_1007_s11250_023_03530_6
Cites_doi 10.1007/978-94-009-1453-7_2
10.1016/B978-0-12-024908-4.50013-1
10.1007/s10482-006-9121-7
10.1079/BJN19840083
10.1111/j.1574-6968.2006.00487.x
10.1105/tpc.105.035162
10.1017/S0021859600058378
10.1007/BF02522611
10.1017/S0007114500000581
10.1126/science.388618
10.1079/BJN19760034
10.1128/aem.60.1.39-44.1994
10.1016/B978-1-4831-9940-5.50012-0
10.1021/bi00355a045
10.1080/004982599238047
10.1128/jb.88.4.1056-1064.1964
10.1128/jb.129.3.1506-1512.1977
10.1079/BJN2000223
10.1128/AEM.66.12.5226-5230.2000
10.22358/jafs/67904/2002
10.1016/S0021-9258(18)34828-2
10.1079/BJN20061783
10.1006/phrs.2000.0735
10.1016/0014-5793(86)80708-6
10.1099/00221287-78-2-253
10.1128/aem.45.6.1780-1784.1983
10.1099/00221287-90-1-100
10.1038/1751129a0
10.1007/s10482-006-9118-2
10.2323/jgam.51.105
10.1042/bj0251168
10.1099/ijs.0.65845-0
10.1111/j.1365-2672.1971.tb01019.x
10.1017/S1357729800058501
10.1042/bj1160767
10.1093/jn/124.suppl_8.1372S
10.1017/S1357729800053765
10.1007/978-94-009-1453-7_9
10.2527/1998.761275x
10.1023/A:1007529206050
10.1016/S0021-9258(18)96781-5
10.1046/j.1365-313x.2001.00929.x
ContentType Journal Article
Copyright COPYRIGHT 2010 BioMed Central Ltd.
Copyright ©2010 Maia et al; licensee BioMed Central Ltd. 2010 Maia et al; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2010 BioMed Central Ltd.
– notice: Copyright ©2010 Maia et al; licensee BioMed Central Ltd. 2010 Maia et al; licensee BioMed Central Ltd.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
ISR
7X8
5PM
DOA
DOI 10.1186/1471-2180-10-52
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE


CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2180
EndPage 52
ExternalDocumentID oai_doaj_org_article_827002d10fd34848ae1f15f417e6e4ec
oai_biomedcentral_com_1471_2180_10_52
A220793618
10_1186_1471_2180_10_52
20167098
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GroupedDBID ---
-A0
0R~
23N
2VQ
2WC
3V.
4.4
53G
5VS
6J9
7X7
88E
8FE
8FH
8FI
8FJ
A8Z
AAFWJ
AAJSJ
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACRMQ
ADBBV
ADINQ
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AGJBV
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C24
C6C
CCPQU
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
ECM
EIF
EJD
EMB
EMK
EMOBN
ESTFP
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
IPNFZ
ISR
ITC
KQ8
LK5
LK8
M1P
M48
M7P
M7R
MM.
M~E
NPM
O5R
O5S
OK1
P2P
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
~02
AAYXX
CITATION
AFGXO
ABVAZ
AFNRJ
7X8
5PM
ID FETCH-LOGICAL-b684t-f3cfd0375699e55f2810cdca93278a6251264df3673c90e2a70dbfc5fa6ed0053
IEDL.DBID RBZ
ISSN 1471-2180
IngestDate Sun Sep 29 07:13:41 EDT 2024
Tue Sep 17 21:20:30 EDT 2024
Wed May 22 07:12:26 EDT 2024
Sat Oct 05 04:40:02 EDT 2024
Thu Feb 22 23:29:28 EST 2024
Fri Feb 02 04:24:49 EST 2024
Thu Aug 01 19:57:50 EDT 2024
Thu Sep 12 18:01:03 EDT 2024
Sat Sep 28 07:46:42 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b684t-f3cfd0375699e55f2810cdca93278a6251264df3673c90e2a70dbfc5fa6ed0053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1186/1471-2180-10-52
PMID 20167098
PQID 733291357
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_827002d10fd34848ae1f15f417e6e4ec
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2836310
biomedcentral_primary_oai_biomedcentral_com_1471_2180_10_52
proquest_miscellaneous_733291357
gale_infotracmisc_A220793618
gale_infotracacademiconefile_A220793618
gale_incontextgauss_ISR_A220793618
crossref_primary_10_1186_1471_2180_10_52
pubmed_primary_20167098
PublicationCentury 2000
PublicationDate 2010-02-18
PublicationDateYYYYMMDD 2010-02-18
PublicationDate_xml – month: 02
  year: 2010
  text: 2010-02-18
  day: 18
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle BMC microbiology
PublicationTitleAlternate BMC Microbiol
PublicationYear 2010
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References 16744679 - Biochem J. 1931;25(4):1168-82
11097894 - Appl Environ Microbiol. 2000 Dec;66(12):5226-30
1236930 - J Gen Microbiol. 1975 Sep;90(1):100-14
8064386 - J Nutr. 1994 Aug;124(8 Suppl):1372S-1376G
15942871 - J Gen Appl Microbiol. 2005 Apr;51(2):105-13
11169187 - Plant J. 2001 Jan;25(1):115-25
11227040 - Br J Nutr. 2001 Jan;85(1):115-24
17147764 - FEMS Microbiol Lett. 2006 Dec;265(2):195-201
4929227 - Adv Lipid Res. 1970;8:267-346
16349164 - Appl Environ Microbiol. 1994 Jan;60(1):39-44
16055629 - Plant Cell. 2005 Sep;17(9):2587-600
4762918 - J Gen Microbiol. 1973 Oct;78(2):253-60
9464909 - J Anim Sci. 1998 Jan;76(1):275-86
18768601 - Int J Syst Evol Microbiol. 2008 Sep;58(Pt 9):2041-5
5435501 - Biochem J. 1970 Feb;116(4):767-8
10485342 - Eur J Epidemiol. 1999 Jul;15(6):507-15
14219019 - J Bacteriol. 1964 Oct;88:1056-64
5340804 - Adv Lipid Res. 1966;4:175-225
943177 - Br J Nutr. 1976 Mar;35(2):293-7
7061501 - J Biol Chem. 1982 Apr 10;257(7):3643-9
2423115 - Biochemistry. 1986 Apr 8;25(7):1747-55
16768845 - Br J Nutr. 2006 Jun;95(6):1199-211
10598751 - Xenobiotica. 1999 Nov;29(11):1181-9
17077990 - Antonie Van Leeuwenhoek. 2007 May;91(4):417-22
10953669 - Br J Nutr. 2000 May;83(5):459-65
14394127 - Nature. 1955 Jun 25;175(4469):1129-30
845122 - J Bacteriol. 1977 Mar;129(3):1506-12
8835399 - Lipids. 1996 Feb;31(2):129-37
2873057 - FEBS Lett. 1986 Jul 7;202(2):314-8
11058400 - Pharmacol Res. 2000 Dec;42(6):503-10
5936712 - J Biol Chem. 1966 Mar 25;241(6):1350-4
6881961 - Appl Environ Microbiol. 1983 Jun;45(6):1780-4
6743636 - Br J Nutr. 1984 Jul;52(1):165-70
17072533 - Antonie Van Leeuwenhoek. 2007 May;91(4):303-14
5004248 - J Appl Bacteriol. 1971 Dec;34(4):803-13
388618 - Science. 1979 Dec 7;206(4423):1148-59
ND Scollan (1008_CR5) 2001; 85
P Mitchell (1008_CR36) 1979; 206
C Henderson (1008_CR27) 1973; 81
D Kritchevsky (1008_CR6) 2000; 83
K Ishizaki (1008_CR47) 2005; 17
R Viviani (1008_CR4) 1970; 8
RJ Wallace (1008_CR21) 1985; 131
I Wąsowska (1008_CR11) 2006; 95
FN Owens (1008_CR42) 1998; 76
P Kemp (1008_CR30) 1984; 130
K-J Cheng (1008_CR35) 1977; 129
JK Nicholson (1008_CR41) 1999; 29
NW Offer (1008_CR9) 2001; 73
D Herbert (1008_CR48) 1971
A Menotti (1008_CR2) 1999; 15
D Paillard (1008_CR16) 2006; 91
CD Moon (1008_CR18) 2008; 58
A Banks (1008_CR1) 1931; 25
PN Hobson (1008_CR44) 1969
CR Kepler (1008_CR13) 1966; 241
H Rottenberg (1008_CR39) 1986; 202
M Marounek (1008_CR28) 2002; 11
KJ Shingfield (1008_CR10) 2003; 77
H Keweloh (1008_CR34) 1996; 31
RE Hungate (1008_CR43) 1969
MRG Maia (1008_CR17) 2006; 91
GP Hazlewood (1008_CR20) 1983; 45
P Kemp (1008_CR25) 1975; 90
PE Hughes (1008_CR33) 1982; 257
TR Larson (1008_CR46) 2001; 25
LD Whigham (1008_CR7) 2000; 42
TC Jenkins (1008_CR8) 1994; 124
CG Harfoot (1008_CR22) 1997
FB Shorland (1008_CR3) 1955; 175
RW White (1008_CR24) 1970; 116
CE Polan (1008_CR12) 1964; 88
H Galbraith (1008_CR29) 1971; 34
ZL Boynton (1008_CR40) 1994; 60
DG Nichols (1008_CR37) 1982
H Rottenberg (1008_CR38) 1986; 25
RJ Wallace (1008_CR23) 2006; 265
YJ Kim (1008_CR14) 2000; 66
S Fukuda (1008_CR15) 2005; 51
WJ Lennarz (1008_CR32) 1966; 4
CS Stewart (1008_CR19) 1997
C Roché (1008_CR45) 1973; 78
P Kemp (1008_CR31) 1984; 52
GP Hazlewood (1008_CR26) 1976; 35
References_xml – start-page: 10
  volume-title: The rumen microbial ecosystem
  year: 1997
  ident: 1008_CR19
  doi: 10.1007/978-94-009-1453-7_2
  contributor:
    fullname: CS Stewart
– volume: 8
  start-page: 267
  year: 1970
  ident: 1008_CR4
  publication-title: Adv Lipid Res
  doi: 10.1016/B978-0-12-024908-4.50013-1
  contributor:
    fullname: R Viviani
– volume: 91
  start-page: 417
  year: 2006
  ident: 1008_CR16
  publication-title: Ant van Leeuw
  doi: 10.1007/s10482-006-9121-7
  contributor:
    fullname: D Paillard
– start-page: 209
  volume-title: Methods in Microbiology
  year: 1971
  ident: 1008_CR48
  contributor:
    fullname: D Herbert
– volume: 52
  start-page: 165
  year: 1984
  ident: 1008_CR31
  publication-title: Br J Nutr
  doi: 10.1079/BJN19840083
  contributor:
    fullname: P Kemp
– volume: 265
  start-page: 195
  year: 2006
  ident: 1008_CR23
  publication-title: FEMS Microbiol Lett
  doi: 10.1111/j.1574-6968.2006.00487.x
  contributor:
    fullname: RJ Wallace
– volume: 17
  start-page: 2587
  year: 2005
  ident: 1008_CR47
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.035162
  contributor:
    fullname: K Ishizaki
– volume: 81
  start-page: 107
  year: 1973
  ident: 1008_CR27
  publication-title: J Agric Sci Camb
  doi: 10.1017/S0021859600058378
  contributor:
    fullname: C Henderson
– volume: 31
  start-page: 129
  year: 1996
  ident: 1008_CR34
  publication-title: Lipids
  doi: 10.1007/BF02522611
  contributor:
    fullname: H Keweloh
– volume: 131
  start-page: 821
  year: 1985
  ident: 1008_CR21
  publication-title: J Gen Microbiol
  contributor:
    fullname: RJ Wallace
– volume: 83
  start-page: 459
  year: 2000
  ident: 1008_CR6
  publication-title: Br J Nutr
  doi: 10.1017/S0007114500000581
  contributor:
    fullname: D Kritchevsky
– volume: 206
  start-page: 1148
  year: 1979
  ident: 1008_CR36
  publication-title: Science
  doi: 10.1126/science.388618
  contributor:
    fullname: P Mitchell
– volume: 35
  start-page: 293
  year: 1976
  ident: 1008_CR26
  publication-title: Br J Nutr
  doi: 10.1079/BJN19760034
  contributor:
    fullname: GP Hazlewood
– volume: 60
  start-page: 39
  year: 1994
  ident: 1008_CR40
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.60.1.39-44.1994
  contributor:
    fullname: ZL Boynton
– volume: 4
  start-page: 175
  year: 1966
  ident: 1008_CR32
  publication-title: Adv Lipid Res
  doi: 10.1016/B978-1-4831-9940-5.50012-0
  contributor:
    fullname: WJ Lennarz
– volume: 25
  start-page: 1747
  year: 1986
  ident: 1008_CR38
  publication-title: Biochemistry
  doi: 10.1021/bi00355a045
  contributor:
    fullname: H Rottenberg
– volume: 29
  start-page: 1181
  year: 1999
  ident: 1008_CR41
  publication-title: Xenobiotica
  doi: 10.1080/004982599238047
  contributor:
    fullname: JK Nicholson
– volume: 88
  start-page: 1056
  year: 1964
  ident: 1008_CR12
  publication-title: J Bacteriol
  doi: 10.1128/jb.88.4.1056-1064.1964
  contributor:
    fullname: CE Polan
– volume: 129
  start-page: 1506
  year: 1977
  ident: 1008_CR35
  publication-title: J Bacteriol
  doi: 10.1128/jb.129.3.1506-1512.1977
  contributor:
    fullname: K-J Cheng
– volume: 85
  start-page: 115
  year: 2001
  ident: 1008_CR5
  publication-title: Br J Nutr
  doi: 10.1079/BJN2000223
  contributor:
    fullname: ND Scollan
– volume: 66
  start-page: 5226
  year: 2000
  ident: 1008_CR14
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.66.12.5226-5230.2000
  contributor:
    fullname: YJ Kim
– volume: 11
  start-page: 507
  year: 2002
  ident: 1008_CR28
  publication-title: J Anim Feed Sci
  doi: 10.22358/jafs/67904/2002
  contributor:
    fullname: M Marounek
– volume: 257
  start-page: 3643
  year: 1982
  ident: 1008_CR33
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)34828-2
  contributor:
    fullname: PE Hughes
– volume: 95
  start-page: 1199
  year: 2006
  ident: 1008_CR11
  publication-title: Br J Nutr
  doi: 10.1079/BJN20061783
  contributor:
    fullname: I Wąsowska
– volume: 42
  start-page: 503
  year: 2000
  ident: 1008_CR7
  publication-title: Pharmacol Res
  doi: 10.1006/phrs.2000.0735
  contributor:
    fullname: LD Whigham
– volume: 202
  start-page: 314
  year: 1986
  ident: 1008_CR39
  publication-title: FEBS Lett
  doi: 10.1016/0014-5793(86)80708-6
  contributor:
    fullname: H Rottenberg
– start-page: 117
  volume-title: Methods in Microbiology
  year: 1969
  ident: 1008_CR43
  contributor:
    fullname: RE Hungate
– start-page: 190
  volume-title: Bioenergetics: an introduction to the chemiosmotic theory
  year: 1982
  ident: 1008_CR37
  contributor:
    fullname: DG Nichols
– volume: 78
  start-page: 253
  year: 1973
  ident: 1008_CR45
  publication-title: J Gen Microbiol
  doi: 10.1099/00221287-78-2-253
  contributor:
    fullname: C Roché
– volume: 45
  start-page: 1780
  year: 1983
  ident: 1008_CR20
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.45.6.1780-1784.1983
  contributor:
    fullname: GP Hazlewood
– volume: 90
  start-page: 100
  year: 1975
  ident: 1008_CR25
  publication-title: J Gen Microbiol
  doi: 10.1099/00221287-90-1-100
  contributor:
    fullname: P Kemp
– volume: 130
  start-page: 527
  year: 1984
  ident: 1008_CR30
  publication-title: J Gen Microbiol
  contributor:
    fullname: P Kemp
– volume: 175
  start-page: 1129
  year: 1955
  ident: 1008_CR3
  publication-title: Nature, Lond
  doi: 10.1038/1751129a0
  contributor:
    fullname: FB Shorland
– volume: 91
  start-page: 303
  year: 2006
  ident: 1008_CR17
  publication-title: Ant van Leeuw
  doi: 10.1007/s10482-006-9118-2
  contributor:
    fullname: MRG Maia
– volume: 51
  start-page: 105
  year: 2005
  ident: 1008_CR15
  publication-title: J Gen Appl Microbiol
  doi: 10.2323/jgam.51.105
  contributor:
    fullname: S Fukuda
– start-page: 133
  volume-title: Methods in Microbiology
  year: 1969
  ident: 1008_CR44
  contributor:
    fullname: PN Hobson
– volume: 25
  start-page: 1168
  year: 1931
  ident: 1008_CR1
  publication-title: Biochem J
  doi: 10.1042/bj0251168
  contributor:
    fullname: A Banks
– volume: 58
  start-page: 2041
  year: 2008
  ident: 1008_CR18
  publication-title: Int J System Evol Microbiol
  doi: 10.1099/ijs.0.65845-0
  contributor:
    fullname: CD Moon
– volume: 34
  start-page: 803
  year: 1971
  ident: 1008_CR29
  publication-title: J Appl Bacteriol
  doi: 10.1111/j.1365-2672.1971.tb01019.x
  contributor:
    fullname: H Galbraith
– volume: 73
  start-page: 533
  year: 2001
  ident: 1008_CR9
  publication-title: Anim Sci
  doi: 10.1017/S1357729800058501
  contributor:
    fullname: NW Offer
– volume: 116
  start-page: 767
  year: 1970
  ident: 1008_CR24
  publication-title: Biochem J
  doi: 10.1042/bj1160767
  contributor:
    fullname: RW White
– volume: 124
  start-page: 1372S
  year: 1994
  ident: 1008_CR8
  publication-title: J Nutr
  doi: 10.1093/jn/124.suppl_8.1372S
  contributor:
    fullname: TC Jenkins
– volume: 77
  start-page: 165
  year: 2003
  ident: 1008_CR10
  publication-title: Anim Sci
  doi: 10.1017/S1357729800053765
  contributor:
    fullname: KJ Shingfield
– start-page: 382
  volume-title: The rumen microbial ecosystem
  year: 1997
  ident: 1008_CR22
  doi: 10.1007/978-94-009-1453-7_9
  contributor:
    fullname: CG Harfoot
– volume: 76
  start-page: 275
  year: 1998
  ident: 1008_CR42
  publication-title: J Anim Sci
  doi: 10.2527/1998.761275x
  contributor:
    fullname: FN Owens
– volume: 15
  start-page: 507
  year: 1999
  ident: 1008_CR2
  publication-title: Eur J Epidemiol
  doi: 10.1023/A:1007529206050
  contributor:
    fullname: A Menotti
– volume: 241
  start-page: 1350
  year: 1966
  ident: 1008_CR13
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)96781-5
  contributor:
    fullname: CR Kepler
– volume: 25
  start-page: 115
  year: 2001
  ident: 1008_CR46
  publication-title: Plant
  doi: 10.1046/j.1365-313x.2001.00929.x
  contributor:
    fullname: TR Larson
SSID ssj0017837
Score 2.4207842
Snippet Health-promoting polyunsaturated fatty acids (PUFA) are abundant in forages grazed by ruminants and in vegetable and fish oils used as dietary supplements, but...
Background Health-promoting polyunsaturated fatty acids (PUFA) are abundant in forages grazed by ruminants and in vegetable and fish oils used as dietary...
Background Health-promoting polyunsaturated fatty acids (PUFA) are abundant in forages grazed by ruminants and in vegetable and fish oils used as dietary...
BACKGROUNDHealth-promoting polyunsaturated fatty acids (PUFA) are abundant in forages grazed by ruminants and in vegetable and fish oils used as dietary...
: BACKGROUND: Health-promoting polyunsaturated fatty acids (PUFA) are abundant in forages grazed by ruminants and in vegetable and fish oils used as dietary...
SourceID doaj
pubmedcentral
biomedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 52
SubjectTerms Acyl Coenzyme A - analysis
Adenosine Triphosphate - analysis
Animals
Butyrivibrio - drug effects
Butyrivibrio - metabolism
Cell Membrane - drug effects
Culture Media
Fatty Acids, Unsaturated - metabolism
Fatty Acids, Unsaturated - pharmacology
Flow Cytometry
Growth
Hydrogenation
Linoleic Acid - metabolism
Linoleic Acid - pharmacology
Lipid Metabolism
Microbial metabolism
Microbiota (Symbiotic organisms)
Physiological aspects
Research article
Sheep - microbiology
Sodium Lactate - pharmacology
Unsaturated fatty acids
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA-yIHgR18_RVYIIerBs89EkxdOuuKyCHnQX9hbSJnEG1lam7eL8977XdoYJe_DiNR-lyfvIL-S93yPkTURKFVG4TFYaLigiyMzlwWdcRJ5H0Chd44vu12_q_FJ-uSqu9kp9YUzYRA88bdyxwZdR7lkevZBGGhdYZEWUTAcVZKhH78uK7WVqfj_QZmTLZOB6MzjE8pnUhxl1vGtDD4T5Rkmi-3VyPo00_red9d5plUZS7h1NZw_I_RlT0pNpLYfkTmgekrtTlcnNI7K8aP-sakDbtI10aDqk8gSE6Wl0PTS6euU72rcUoCCFn1xu_LoFtXIYEE3Xw1j1i1YTq_Pw6z09HfrNenWDuQItjWPKQHsNPrN7TC7PPl18PM_mAgtZpYzssyjq6LEIrirLUBSRG5bXvnaA6bRxCqGPkj4KpUVd5oE7nfsq1kV0Kng03yfkoGmb8IxQw4IXsRCVVqWMJdLshbyqHOCRUEnOFuRDss3290SmYZHeOu0BS7MoJItCsnBJKfiCvNsKZTdxvL0YdXvoKQot-f7YAEplZ6Wy_1KqBXmNIrdIkNFgBM5PN3Sd_fzjuz3hHDkFFTML8nYeFFv48drNCQ2wIciplYw8SkaCBddJN91qlsUuDHtrQjt0VgvBSyYKvSBPJ0XbrYtj_khewmSdqGCy8LSnWS1H_nCwTgWo_vn_2KkX5N4UT8EzZo7IQb8ewkuAaX31arTIvyWAObI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: PubMed (Medline)
  dbid: RPM
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZJoNBL6btO0yJKoT3UWUuyZZmektCQFlJKm0BuQtYju7Brh127dP99Z_wIcXPrVZKNpJmRZtA33xDyPiClishMnJY5BCjCp7FJvIu5CDwJoFG5xRfd8-_y7DL9dpVd7ZBszIXpQPu2XBxWy9VhtZh32MqblZ2NOLHZj_MT-L0Et2S2S3ZzIcYQfXg6yCHkGjh8mJIzBqdvDPdYggdOhsVrOCLvk0L9k-K-nNxMHYH__WP6zj01xVDeuZROH5NHgzdJj_pZPyE7vnpKHvT1JbfPyPyi_rOw4GfTOtC22iCJJ_iWjgbTQKOxC7ehTU3BCaQwyfnWrWtQKINQaLpuu3pftOz5nNvVJ3rcNtv14jdmCdQ0dMkC9RJOy81zcnn65eLkLB5KK8SlVGkTB2GDw_K3sih8lgWuWGKdNeDN5cpIdHpk6oKQubBF4rnJE1cGmwUjvUPDfUH2qrryrwhVzDsRMlHmskhDgQR7PilLA56IL1POIvJ5ss36pqfR0EhsPe0BG9MoL43y0hCeZDwiH0eh3H7YxS1K3h96jEKb_L9rqNfXelAfrfChnTuWBCdSlSrjWWBZSFnupU-9jcg7FLlGaowKsTfXpt1s9NdfP_UR58gmKJmKyIdhUKhh4tYMqQywIcimNRl5MBkJtmsn3XTULI1dCHirfN1uNOg1L5jI8oi87BXtdl2j_kYkn6jgZOHTHjCkjjl8MJz9__7yNXnYwyd4zNQB2WvWrX8DXllTvu2s8C-gYTiU
  priority: 500
  providerName: National Library of Medicine
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQERIXxJuFgiyEBAcC8SOOI4RQi6gKUjlAV-rNcmK7u9I2afNA3X_PTJJuG9ob13gcJZ6HP8sz3xDyJiClikhsJPMUDijCy8jG3kVcBB4HsKi0wBvdg59qfy5_HCVHl-2AxgVsbjzaYT-peb36cH62_gIO_7l3eK0-MgiwEWxVMcaUBOLxbS6FRHM_kJdXCqnuCTQ3wiPPzw0v-Kf2fTXZsnpm_-vx-8oGNk2uvLJb7d0n90aYSXcGu3hAbvnyIbkzNJ5cPyKLw-p8WQAAp1WgXdkguyeATkeDbeGhLZauoW1FAR1S-MjF2tUVWJrFHGlad30jMJoPRM_dyXu627XrevkHywcqGvoqgmoFYbR5TOZ73w6_7kdjz4UoV1q2URBFcNgXV2WZT5LANYsLV1iAeam2CtGQki4IlYoiiz23aezyUCTBKu_Qo5-QrbIq_TNCNfNOhETkqcpkyJB5z8d5bgGi-FxyNiOfJstsTgd-DYOM19MRcD6DSjKoJAPnloTPyLsLpWwm9gcara6L7qLSJu_vH1T1sRkd1Gi8geeOxcEJqaW2ngWWBMlSr7z0xYy8RpUb5MwoMSnn2HZNY77__mV2OEeaQcX0jLwdhUIFH17YscYBFgRptiaS2xNJcOpiMkwvLMvgEGbClb7qGpMKwTMmknRGng6GtvkvjiUlcQaT04kJTn58OlIuFz2lODisAqD__L9U8oLcHXIreMT0Ntlq686_BMjW5q96V_wLNx4_vA
  priority: 102
  providerName: Scholars Portal
Title Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens
URI https://www.ncbi.nlm.nih.gov/pubmed/20167098
https://search.proquest.com/docview/733291357
http://dx.doi.org/10.1186/1471-2180-10-52
https://pubmed.ncbi.nlm.nih.gov/PMC2836310
https://doaj.org/article/827002d10fd34848ae1f15f417e6e4ec
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagFRIXxJuFsrIQEhyIiB-xHXHqolYFqRUqrbTiYjmxza5UErSbIPbfM5OkS9Ny45KDPbGSzMOf45nPhLyOSKkiMpfIQsMCRQSZuDT4hIvI0wgWpUvc0T0-UUfn8vM8m_8li762g8-Mes8gfCYwEaUYMTKItrscOc5xYT77tt0w0Kajx9wKDyw-_xjgWmX7xWhC6nj7b0bnK9PTOHXyylx0eJ_cG0Ak3e-1_oDcCtVDcqc_VnLziCzO6t_LEuA1rSNtqzVydwKk9DS6BhpdufRr2tQUsB-Fh1xs_KoGO3KYAU1XbXfMFy16Guf2xzs6a5vNavkLiwNqGrsagfoCguT6MTk_PDj7eJQMJyokhTKySaIoo8dTb1WehyyL3LC09KUDEKeNU4h1lPRRKC3KPA3c6dQXscyiU8Gjvz4hO1VdhWeEGha8iJkotMplzJFXL6RF4QCAhEJyNiEfRp_Z_uzZMyzyWY97wLUsKsmikiysSjI-IW8vlbK9sVuuGHVTdIZKG43fNYAR2cH9rMH9de5ZGr2QRhoXWGRZlEwHFWQoJ-QVqtwiI0aFKTffXbte209fT-0-50giqJiZkDeDUKzhwUs3VDDAB0ESrZHk3kgSXLYcddNLy7LYhXluVajbtdVC8JyJTE_I097Qtu_FsWAkzeFmPTLB0YuPe6rloiMMB3dUAOOf_5dKXpC7feYET5jZIzvNqg0vAZA1xZTc1nM9Jbuzg5Mvp9PutwZcj6WZdk467f6h_QGZpDeT
link.rule.ids 108,230,315,733,786,790,870,891,2115,2236,24346,24965,27957,27958,31755,33780,53827,53829,76169,76170
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLfQEIIL4pvCAAshwYFAYie2I04rYupg2wE2aeJiOf5YK7UJahNE_3veS9LSMG5c7ZfI9vvwz_J7PxPyKiClCs9MlBYSDijcp5GJvYsYDywOYFHS4o3uyamYnKefL7KLPv8Ja2GKhV3M_lAQvdstQp-3kXuTMNb5uxLvE4ivEexUMYaUDMLxdYks43hyH3_f3ihI1fJnboV7mp9__OCv0vf5YMdqif2vhu-d_WuYW7mzWR3eIbd7lEkPukncJdd8eY_c6N6dXN8n07Pq18wC_qZVoE25QnJPwJyOBlNDo7Ezt6J1RQEcUhjkdO2WFRiawRRpumzad8Bo0fE8N4u3dNzU6-XsJ1YPVDS0RQTVHKLo6gE5P_x09nES9U8uRIVQaR0FboPDZ3FFnvssC0wlsXXWAMqTyggEQyJ1gQvJbR57ZmTsimCzYIR36NAPyV5Zlf4xoSrxjoeMF1LkaciReM_HRWEAofgiZcmIfBgss_7R0WtoJLwe9oDaNSpJo5I0HFsyNiJvNkrZftieZ5S4KjpGpQ3-3zZUy0vdW5NWeAHPXBIHx1OVKuOTkGQhTaQXPvV2RF6iyjVSZpSYk3NpmtVKH337qg8YQ5ZBkagRed0LhQoGbk1f4gALgixbA8n9gST4tB10041laezCRLjSV81KS85ZnvBMjsijztC282JYURLn8LEcmOBg4sOecjZtGcXBXwXg_Cf_pZIX5Obk7ORYHx-dfnlKbnVpFixK1D7Zq5eNfwborS6et275G3sOQqs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQEYgLKu-lBSyEBAdCEztxHHHqAquWR4VKK1VcLMeP7ordpNokiP33zCTpsqHcuEXxJIozD3-WZ74h5IVHShWe6CDOU9igcBcHOnQ2YNyz0INFpQZPdL8ciYPT-ONZcta3A8JamHxhFrM_FERvNovQ523khgvzY-_C-s7hpdiLIMAGsFSFGFMSiMfXYW8u0MSPx9_XRwqpbAk018I9z88_XvBX7ft8sGS1zP5X4_fGAjZMrtxYrSbb5HYPM-l-Zxd3yDVX3CU3usaTq3tkelL-mhkA4LT0tCkqZPcE0Gmp1zXc1GZmK1qXFNAhhY-cruyyBEvTmCNNl03bCIzmHdFzs3hNx029Ws5-YvlASX1bRVDOIYxW98np5MPJu4Og77kQ5ELGdeC58Rb74oosc0nimYxCY40GmJdKLRANidh6LlJustAxnYY29ybxWjiLHv2AbBVl4R4RKiNnuU94noos9hky77kwzzVAFJfHLBqRt4PfrC46fg2FjNfDEdC7QiUpVJKCfUvCRuTVpVLWD7YbGimuio5RaYP3tzfK5bnqHVRJPIFnNgq95bGMpXaRjxIfR6kTLnZmRJ6jyhVyZhSYlHOum6pSh9-O1T5jSDMoIjkiL3shX6Kd6r7GAX4I0mwNJHcHkuDUZjBMLy1L4RBmwhWubCqVcs6yiCfpiDzsDG09L4YlJWEGD6cDExxMfDhSzKYtpTg4rACg__i_VPKM3Pz6fqI-Hx592iG3ujQLFkRyl2zVy8Y9AfRW509br_wNBPdCfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toxicity+of+unsaturated+fatty+acids+to+the+biohydrogenating+ruminal+bacterium%2C+Butyrivibrio+fibrisolvens&rft.jtitle=BMC+microbiology&rft.au=Maia%2C+Margarida&rft.au=Chaudhary%2C+Lal&rft.au=Bestwick%2C+Charles&rft.au=Richardson%2C+Anthony&rft.date=2010-02-18&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2180&rft.eissn=1471-2180&rft.volume=10&rft.issue=1&rft.spage=52&rft.epage=52&rft_id=info:doi/10.1186%2F1471-2180-10-52&rft.externalDBID=n%2Fa&rft.externalDocID=oai_biomedcentral_com_1471_2180_10_52
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2180&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2180&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2180&client=summon