Balancing selection and genetic drift at major histocompatibility complex class II genes in isolated populations of golden snub-nosed monkey (Rhinopithecus roxellana)

Small, isolated populations often experience loss of genetic variation due to random genetic drift. Unlike neutral or nearly neutral markers (such as mitochondrial genes or microsatellites), major histocompatibility complex (MHC) genes in these populations may retain high levels of polymorphism due...

Full description

Saved in:
Bibliographic Details
Published inBMC evolutionary biology Vol. 12; no. 1; p. 207
Main Authors Luo, Mao-Fang, Pan, Hui-Juan, Liu, Zhi-Jin, Li, Ming
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 19.10.2012
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Small, isolated populations often experience loss of genetic variation due to random genetic drift. Unlike neutral or nearly neutral markers (such as mitochondrial genes or microsatellites), major histocompatibility complex (MHC) genes in these populations may retain high levels of polymorphism due to balancing selection. The relative roles of balancing selection and genetic drift in either small isolated or bottlenecked populations remain controversial. In this study, we examined the mechanisms maintaining polymorphisms of MHC genes in small isolated populations of the endangered golden snub-nosed monkey (Rhinopithecus roxellana) by comparing genetic variation found in MHC and microsatellite loci. There are few studies of this kind conducted on highly endangered primate species. Two MHC genes were sequenced and sixteen microsatellite loci were genotyped from samples representing three isolated populations. We isolated nine DQA1 alleles and sixteen DQB1 alleles and validated expression of the alleles. Lowest genetic variation for both MHC and microsatellites was found in the Shennongjia (SNJ) population. Historical balancing selection was revealed at both the DQA1 and DQB1 loci, as revealed by excess non-synonymous substitutions at antigen binding sites (ABS) and maximum-likelihood-based random-site models. Patterns of microsatellite variation revealed population structure. FST outlier analysis showed that population differentiation at the two MHC loci was similar to the microsatellite loci. MHC genes and microsatellite loci showed the same allelic richness pattern with the lowest genetic variation occurring in SNJ, suggesting that genetic drift played a prominent role in these isolated populations. As MHC genes are subject to selective pressures, the maintenance of genetic variation is of particular interest in small, long-isolated populations. The results of this study may contribute to captive breeding and translocation programs for endangered species.
AbstractList Small, isolated populations often experience loss of genetic variation due to random genetic drift. Unlike neutral or nearly neutral markers (such as mitochondrial genes or microsatellites), major histocompatibility complex (MHC) genes in these populations may retain high levels of polymorphism due to balancing selection. The relative roles of balancing selection and genetic drift in either small isolated or bottlenecked populations remain controversial. In this study, we examined the mechanisms maintaining polymorphisms of MHC genes in small isolated populations of the endangered golden snub-nosed monkey (Rhinopithecus roxellana) by comparing genetic variation found in MHC and microsatellite loci. There are few studies of this kind conducted on highly endangered primate species.BACKGROUNDSmall, isolated populations often experience loss of genetic variation due to random genetic drift. Unlike neutral or nearly neutral markers (such as mitochondrial genes or microsatellites), major histocompatibility complex (MHC) genes in these populations may retain high levels of polymorphism due to balancing selection. The relative roles of balancing selection and genetic drift in either small isolated or bottlenecked populations remain controversial. In this study, we examined the mechanisms maintaining polymorphisms of MHC genes in small isolated populations of the endangered golden snub-nosed monkey (Rhinopithecus roxellana) by comparing genetic variation found in MHC and microsatellite loci. There are few studies of this kind conducted on highly endangered primate species.Two MHC genes were sequenced and sixteen microsatellite loci were genotyped from samples representing three isolated populations. We isolated nine DQA1 alleles and sixteen DQB1 alleles and validated expression of the alleles. Lowest genetic variation for both MHC and microsatellites was found in the Shennongjia (SNJ) population. Historical balancing selection was revealed at both the DQA1 and DQB1 loci, as revealed by excess non-synonymous substitutions at antigen binding sites (ABS) and maximum-likelihood-based random-site models. Patterns of microsatellite variation revealed population structure. FST outlier analysis showed that population differentiation at the two MHC loci was similar to the microsatellite loci.RESULTSTwo MHC genes were sequenced and sixteen microsatellite loci were genotyped from samples representing three isolated populations. We isolated nine DQA1 alleles and sixteen DQB1 alleles and validated expression of the alleles. Lowest genetic variation for both MHC and microsatellites was found in the Shennongjia (SNJ) population. Historical balancing selection was revealed at both the DQA1 and DQB1 loci, as revealed by excess non-synonymous substitutions at antigen binding sites (ABS) and maximum-likelihood-based random-site models. Patterns of microsatellite variation revealed population structure. FST outlier analysis showed that population differentiation at the two MHC loci was similar to the microsatellite loci.MHC genes and microsatellite loci showed the same allelic richness pattern with the lowest genetic variation occurring in SNJ, suggesting that genetic drift played a prominent role in these isolated populations. As MHC genes are subject to selective pressures, the maintenance of genetic variation is of particular interest in small, long-isolated populations. The results of this study may contribute to captive breeding and translocation programs for endangered species.CONCLUSIONSMHC genes and microsatellite loci showed the same allelic richness pattern with the lowest genetic variation occurring in SNJ, suggesting that genetic drift played a prominent role in these isolated populations. As MHC genes are subject to selective pressures, the maintenance of genetic variation is of particular interest in small, long-isolated populations. The results of this study may contribute to captive breeding and translocation programs for endangered species.
Small, isolated populations often experience loss of genetic variation due to random genetic drift. Unlike neutral or nearly neutral markers (such as mitochondrial genes or microsatellites), major histocompatibility complex (MHC) genes in these populations may retain high levels of polymorphism due to balancing selection. The relative roles of balancing selection and genetic drift in either small isolated or bottlenecked populations remain controversial. In this study, we examined the mechanisms maintaining polymorphisms of MHC genes in small isolated populations of the endangered golden snub-nosed monkey (Rhinopithecus roxellana) by comparing genetic variation found in MHC and microsatellite loci. There are few studies of this kind conducted on highly endangered primate species. Two MHC genes were sequenced and sixteen microsatellite loci were genotyped from samples representing three isolated populations. We isolated nine DQA1 alleles and sixteen DQB1 alleles and validated expression of the alleles. Lowest genetic variation for both MHC and microsatellites was found in the Shennongjia (SNJ) population. Historical balancing selection was revealed at both the DQA1 and DQB1 loci, as revealed by excess non-synonymous substitutions at antigen binding sites (ABS) and maximum-likelihood-based random-site models. Patterns of microsatellite variation revealed population structure. F.sub.ST outlier analysis showed that population differentiation at the two MHC loci was similar to the microsatellite loci. MHC genes and microsatellite loci showed the same allelic richness pattern with the lowest genetic variation occurring in SNJ, suggesting that genetic drift played a prominent role in these isolated populations. As MHC genes are subject to selective pressures, the maintenance of genetic variation is of particular interest in small, long-isolated populations. The results of this study may contribute to captive breeding and translocation programs for endangered species.
Small, isolated populations often experience loss of genetic variation due to random genetic drift. Unlike neutral or nearly neutral markers (such as mitochondrial genes or microsatellites), major histocompatibility complex (MHC) genes in these populations may retain high levels of polymorphism due to balancing selection. The relative roles of balancing selection and genetic drift in either small isolated or bottlenecked populations remain controversial. In this study, we examined the mechanisms maintaining polymorphisms of MHC genes in small isolated populations of the endangered golden snub-nosed monkey (Rhinopithecus roxellana) by comparing genetic variation found in MHC and microsatellite loci. There are few studies of this kind conducted on highly endangered primate species. Two MHC genes were sequenced and sixteen microsatellite loci were genotyped from samples representing three isolated populations. We isolated nine DQA1 alleles and sixteen DQB1 alleles and validated expression of the alleles. Lowest genetic variation for both MHC and microsatellites was found in the Shennongjia (SNJ) population. Historical balancing selection was revealed at both the DQA1 and DQB1 loci, as revealed by excess non-synonymous substitutions at antigen binding sites (ABS) and maximum-likelihood-based random-site models. Patterns of microsatellite variation revealed population structure. FST outlier analysis showed that population differentiation at the two MHC loci was similar to the microsatellite loci. MHC genes and microsatellite loci showed the same allelic richness pattern with the lowest genetic variation occurring in SNJ, suggesting that genetic drift played a prominent role in these isolated populations. As MHC genes are subject to selective pressures, the maintenance of genetic variation is of particular interest in small, long-isolated populations. The results of this study may contribute to captive breeding and translocation programs for endangered species.
Doc number: 207 Abstract Background: Small, isolated populations often experience loss of genetic variation due to random genetic drift. Unlike neutral or nearly neutral markers (such as mitochondrial genes or microsatellites), major histocompatibility complex (MHC) genes in these populations may retain high levels of polymorphism due to balancing selection. The relative roles of balancing selection and genetic drift in either small isolated or bottlenecked populations remain controversial. In this study, we examined the mechanisms maintaining polymorphisms of MHC genes in small isolated populations of the endangered golden snub-nosed monkey (Rhinopithecus roxellana ) by comparing genetic variation found in MHC and microsatellite loci. There are few studies of this kind conducted on highly endangered primate species. Results: Two MHC genes were sequenced and sixteen microsatellite loci were genotyped from samples representing three isolated populations. We isolated nine DQA1 alleles and sixteen DQB1 alleles and validated expression of the alleles. Lowest genetic variation for both MHC and microsatellites was found in the Shennongjia (SNJ) population. Historical balancing selection was revealed at both the DQA1 and DQB1 loci, as revealed by excess non-synonymous substitutions at antigen binding sites (ABS) and maximum-likelihood-based random-site models. Patterns of microsatellite variation revealed population structure. F ST outlier analysis showed that population differentiation at the two MHC loci was similar to the microsatellite loci. Conclusions: MHC genes and microsatellite loci showed the same allelic richness pattern with the lowest genetic variation occurring in SNJ, suggesting that genetic drift played a prominent role in these isolated populations. As MHC genes are subject to selective pressures, the maintenance of genetic variation is of particular interest in small, long-isolated populations. The results of this study may contribute to captive breeding and translocation programs for endangered species.
Background Small, isolated populations often experience loss of genetic variation due to random genetic drift. Unlike neutral or nearly neutral markers (such as mitochondrial genes or microsatellites), major histocompatibility complex (MHC) genes in these populations may retain high levels of polymorphism due to balancing selection. The relative roles of balancing selection and genetic drift in either small isolated or bottlenecked populations remain controversial. In this study, we examined the mechanisms maintaining polymorphisms of MHC genes in small isolated populations of the endangered golden snub-nosed monkey (Rhinopithecus roxellana) by comparing genetic variation found in MHC and microsatellite loci. There are few studies of this kind conducted on highly endangered primate species. Results Two MHC genes were sequenced and sixteen microsatellite loci were genotyped from samples representing three isolated populations. We isolated nine DQA1 alleles and sixteen DQB1 alleles and validated expression of the alleles. Lowest genetic variation for both MHC and microsatellites was found in the Shennongjia (SNJ) population. Historical balancing selection was revealed at both the DQA1 and DQB1 loci, as revealed by excess non-synonymous substitutions at antigen binding sites (ABS) and maximum-likelihood-based random-site models. Patterns of microsatellite variation revealed population structure. F.sub.ST outlier analysis showed that population differentiation at the two MHC loci was similar to the microsatellite loci. Conclusions MHC genes and microsatellite loci showed the same allelic richness pattern with the lowest genetic variation occurring in SNJ, suggesting that genetic drift played a prominent role in these isolated populations. As MHC genes are subject to selective pressures, the maintenance of genetic variation is of particular interest in small, long-isolated populations. The results of this study may contribute to captive breeding and translocation programs for endangered species. Keywords: Balancing selection, Conservation genetics, Gene drift, MHC, Rhinopithecus roxellana
BACKGROUND: Small, isolated populations often experience loss of genetic variation due to random genetic drift. Unlike neutral or nearly neutral markers (such as mitochondrial genes or microsatellites), major histocompatibility complex (MHC) genes in these populations may retain high levels of polymorphism due to balancing selection. The relative roles of balancing selection and genetic drift in either small isolated or bottlenecked populations remain controversial. In this study, we examined the mechanisms maintaining polymorphisms of MHC genes in small isolated populations of the endangered golden snub-nosed monkey (Rhinopithecus roxellana) by comparing genetic variation found in MHC and microsatellite loci. There are few studies of this kind conducted on highly endangered primate species. RESULTS: Two MHC genes were sequenced and sixteen microsatellite loci were genotyped from samples representing three isolated populations. We isolated nine DQA1 alleles and sixteen DQB1 alleles and validated expression of the alleles. Lowest genetic variation for both MHC and microsatellites was found in the Shennongjia (SNJ) population. Historical balancing selection was revealed at both the DQA1 and DQB1 loci, as revealed by excess non-synonymous substitutions at antigen binding sites (ABS) and maximum-likelihood-based random-site models. Patterns of microsatellite variation revealed population structure. FST outlier analysis showed that population differentiation at the two MHC loci was similar to the microsatellite loci. CONCLUSIONS: MHC genes and microsatellite loci showed the same allelic richness pattern with the lowest genetic variation occurring in SNJ, suggesting that genetic drift played a prominent role in these isolated populations. As MHC genes are subject to selective pressures, the maintenance of genetic variation is of particular interest in small, long-isolated populations. The results of this study may contribute to captive breeding and translocation programs for endangered species.
Abstract Background Small, isolated populations often experience loss of genetic variation due to random genetic drift. Unlike neutral or nearly neutral markers (such as mitochondrial genes or microsatellites), major histocompatibility complex (MHC) genes in these populations may retain high levels of polymorphism due to balancing selection. The relative roles of balancing selection and genetic drift in either small isolated or bottlenecked populations remain controversial. In this study, we examined the mechanisms maintaining polymorphisms of MHC genes in small isolated populations of the endangered golden snub-nosed monkey (Rhinopithecus roxellana) by comparing genetic variation found in MHC and microsatellite loci. There are few studies of this kind conducted on highly endangered primate species. Results Two MHC genes were sequenced and sixteen microsatellite loci were genotyped from samples representing three isolated populations. We isolated nine DQA1 alleles and sixteen DQB1 alleles and validated expression of the alleles. Lowest genetic variation for both MHC and microsatellites was found in the Shennongjia (SNJ) population. Historical balancing selection was revealed at both the DQA1 and DQB1 loci, as revealed by excess non-synonymous substitutions at antigen binding sites (ABS) and maximum-likelihood-based random-site models. Patterns of microsatellite variation revealed population structure. FST outlier analysis showed that population differentiation at the two MHC loci was similar to the microsatellite loci. Conclusions MHC genes and microsatellite loci showed the same allelic richness pattern with the lowest genetic variation occurring in SNJ, suggesting that genetic drift played a prominent role in these isolated populations. As MHC genes are subject to selective pressures, the maintenance of genetic variation is of particular interest in small, long-isolated populations. The results of this study may contribute to captive breeding and translocation programs for endangered species.
Background: Small, isolated populations often experience loss of genetic variation due to random genetic drift. Unlike neutral or nearly neutral markers (such as mitochondrial genes or microsatellites), major histocompatibility complex (MHC) genes in these populations may retain high levels of polymorphism due to balancing selection. The relative roles of balancing selection and genetic drift in either small isolated or bottlenecked populations remain controversial. In this study, we examined the mechanisms maintaining polymorphisms of MHC genes in small isolated populations of the endangered golden snub-nosed monkey (Rhinopithecus roxellana) by comparing genetic variation found in MHC and microsatellite loci. There are few studies of this kind conducted on highly endangered primate species. Results: Two MHC genes were sequenced and sixteen microsatellite loci were genotyped from samples representing three isolated populations. We isolated nine DQA1 alleles and sixteen DQB1 alleles and validated expression of the alleles. Lowest genetic variation for both MHC and microsatellites was found in the Shennongjia (SNJ) population. Historical balancing selection was revealed at both the DQA1 and DQB1 loci, as revealed by excess non-synonymous substitutions at antigen binding sites (ABS) and maximum-likelihood-based random-site models. Patterns of microsatellite variation revealed population structure. F sub(ST) outlier analysis showed that population differentiation at the two MHC loci was similar to the microsatellite loci. Conclusions: MHC genes and microsatellite loci showed the same allelic richness pattern with the lowest genetic variation occurring in SNJ, suggesting that genetic drift played a prominent role in these isolated populations. As MHC genes are subject to selective pressures, the maintenance of genetic variation is of particular interest in small, long-isolated populations. The results of this study may contribute to captive breeding and translocation programs for endangered species.
ArticleNumber 207
Audience Academic
Author Liu, Zhi-Jin
Pan, Hui-Juan
Luo, Mao-Fang
Li, Ming
AuthorAffiliation 4 College of Nature Conservation, Beijing Forestry University, Beijing, 100083, China
3 Graduate School of the Chinese Academy of Sciences, Beijing, 100049, China
2 Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
1 Key laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beixhenxi Road, Chaoyang, Beijing, 100101, China
AuthorAffiliation_xml – name: 3 Graduate School of the Chinese Academy of Sciences, Beijing, 100049, China
– name: 4 College of Nature Conservation, Beijing Forestry University, Beijing, 100083, China
– name: 2 Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
– name: 1 Key laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beixhenxi Road, Chaoyang, Beijing, 100101, China
Author_xml – sequence: 1
  givenname: Mao-Fang
  surname: Luo
  fullname: Luo, Mao-Fang
– sequence: 2
  givenname: Hui-Juan
  surname: Pan
  fullname: Pan, Hui-Juan
– sequence: 3
  givenname: Zhi-Jin
  surname: Liu
  fullname: Liu, Zhi-Jin
– sequence: 4
  givenname: Ming
  surname: Li
  fullname: Li, Ming
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23083308$$D View this record in MEDLINE/PubMed
BookMark eNqFk0tr3DAQx01JaR7tvaci6CU5ONXDD_lSSJY-FgKFtD0LSZa92trS1pLL7hfq5-x4N91mQ0IxxuPRf34M_xmdJkfOO5Mkrwm-JIQX70hWkpSSjKeEphSXz5KTferoXnycnIawxJiUnJIXyTFlmDN4T5Lf17KTTlvXomA6o6P1DklXo9Y4E61G9WCbiGREvVz6AS1siF77fiWjVbazcYOmv86ske5kCGg-35YGZB2ywXcymhqt_GqECNgB-Qa1vquNQ8GNKnU-gKD37ofZoPPbhXV-ZePC6DGgwa9NB-3Ji5fJ80Z2wby6-54l3z9--Db7nN58-TSfXd2kquBZTDWppGRFo7SSLM8wkzyjeVVxrHSuacZKrSsli5wTWmSqwpxg1XDMG8YrRTk7S-Y7bu3lUqwG28thI7y0YpvwQyvkALZ0RpSALmWtGKtVhisJAamzpgBfDQU2sN7vWKtR9abWxsVBdgfQwxNnF6L1vwTLGaWMAGC2AyjrnwAcnsAkxDRzMc1cECpgJYByftfG4H-OJkTR26C3vho_BkEYyQucVzz_v5SWDPaOVxikbx9Il34cHMwGVAUpKMkr9k_VSnDMusZDn3qCiqucgWtFlU1GXT6igqc2vdWw8Y2F_EHBxUEBaKJZx1aOIYj519tD7Zv7U9i79_cKgADvBHrwIQym2UsIFtMte8zS4kGJtnG73tC47Z4u_ANDvyqv
CitedBy_id crossref_primary_10_1111_1749_4877_12084
crossref_primary_10_1111_eva_12410
crossref_primary_10_1186_s12862_020_01669_6
crossref_primary_10_1007_s00251_015_0866_x
crossref_primary_10_1016_j_bse_2016_07_014
crossref_primary_10_1007_s00251_017_0996_4
crossref_primary_10_3390_ani14152276
crossref_primary_10_1007_s10329_016_0544_0
crossref_primary_10_3389_fgene_2020_609414
crossref_primary_10_1016_j_biocon_2019_06_021
crossref_primary_10_1111_mec_13545
crossref_primary_10_1007_s10592_016_0876_8
crossref_primary_10_3390_genes14050985
crossref_primary_10_1002_ece3_3317
crossref_primary_10_3389_fmars_2024_1396411
crossref_primary_10_1002_ece3_4815
crossref_primary_10_1093_cz_zoad043
crossref_primary_10_1093_jue_juz002
crossref_primary_10_1016_j_ympev_2017_03_009
crossref_primary_10_1007_s10709_019_00073_3
crossref_primary_10_1007_s12686_013_0005_7
crossref_primary_10_1186_1471_2148_14_130
crossref_primary_10_3389_fevo_2022_898581
Cites_doi 10.1111/j.1365-294X.2011.05009.x
10.1007/s00239-010-9357-8
10.1093/genetics/155.1.431
10.1007/s10592-007-9336-9
10.1038/267275a0
10.1111/j.1365-294X.2004.02368.x
10.1007/s10592-008-9547-8
10.1093/genetics/152.4.1701
10.1111/j.1399-0039.2010.01591.x
10.1007/s10709-012-9662-9
10.1016/j.tree.2004.01.009
10.1098/rspb.2009.2084
10.1007/s00251-003-0590-9
10.1016/j.biocon.2010.05.012
10.1093/molbev/msm092
10.1016/j.biocon.2005.05.002
10.1007/s00251-005-0784-4
10.1098/rspb.1996.0237
10.1007/s11434-011-4872-6
10.1111/j.1471-8286.2007.01931.x
10.1111/j.1365-294X.2005.02553.x
10.1111/j.1365-294X.2006.02843.x
10.1111/j.1365-294X.2011.05107.x
10.1098/rspb.2005.3325
10.1016/S0022-2836(03)00750-2
10.1111/j.1365-294X.2007.03584.x
10.1016/j.autrev.2007.11.010
10.1023/A:1013716020351
10.1098/rspb.2002.2184
10.1038/sj.hdy.6801031
10.1111/j.1365-294X.2006.03148.x
10.1111/j.1600-065X.1999.tb01390.x
10.1111/j.1471-8286.2004.00684.x
10.1111/j.1365-294X.2008.03955.x
10.1093/genetics/160.3.1231
10.1016/j.biocon.2009.07.026
10.1177/117693430500100003
10.1017/CBO9780511809002
10.1016/j.tree.2004.07.003
10.1111/j.1600-065X.1995.tb00667.x
10.1073/pnas.86.3.958
10.1093/bioinformatics/14.9.817
10.1186/1471-2105-9-323
10.1093/oxfordjournals.molbev.a026036
10.1002/ajp.21006
10.1111/j.0014-3820.2003.tb00580.x
10.1038/335167a0
10.1080/10635150390235520
10.1093/genetics/155.2.945
10.1186/1742-9994-2-16
10.1017/S0016672303006347
10.1111/j.1365-294X.2011.05292.x
10.1146/annurev.genet.41.110306.130137
10.1038/ng0398-237
10.1093/genetics/89.3.583
10.1093/molbev/msi097
10.1111/j.1365-294X.2004.02095.x
10.1007/s10592-009-9993-y
10.1007/s10764-009-9347-0
10.1002/ajp.20425
10.1111/j.1365-294X.2004.02353.x
10.1038/364033a0
10.1111/j.1365-294X.2008.04015.x
10.1038/nrg1346
10.1016/j.tig.2010.01.001
10.2307/2529947
10.7589/0090-3558-39.4.909
10.1111/j.1399-0039.2010.01528.x
10.1093/genetics/159.4.1805
10.1007/s00251-010-0475-7
10.1016/S0065-2660(03)50015-3
10.1017/CBO9780511623486
10.1007/s004420050341
10.1007/s00251-002-0465-5
10.1554/06-286.1
10.3390/ijms12085168
10.1093/genetics/164.4.1567
10.1046/j.1420-9101.2000.00177.x
10.1111/j.0014-3820.2001.tb00673.x
10.1111/j.1365-294X.2010.04771.x
10.1093/molbev/msm088
10.1111/j.1365-294X.2008.04057.x
10.1016/j.biocon.2004.01.022
10.1093/jhered/esr097
10.1007/s10592-006-9219-5
ContentType Journal Article
Copyright COPYRIGHT 2012 BioMed Central Ltd.
2012 Luo et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright ©2012 Luo et al.; licensee BioMed Central Ltd. 2012 Luo et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2012 BioMed Central Ltd.
– notice: 2012 Luo et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright ©2012 Luo et al.; licensee BioMed Central Ltd. 2012 Luo et al.; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QP
7QR
7SN
7SS
7TK
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PATMY
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1186/1471-2148-12-207
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central Database Suite (ProQuest)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database (ProQuest)
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Publicly Available Content Database




Genetics Abstracts
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2148
EndPage 207
ExternalDocumentID oai_doaj_org_article_78427adb33db409ab331d4f6330e24b9
PMC3532231
oai_biomedcentral_com_1471_2148_12_207
2852488261
A534096949
23083308
10_1186_1471_2148_12_207
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
China
Beijing China
GeographicLocations_xml – name: China
– name: United States
– name: Beijing China
GroupedDBID ---
0R~
23N
2VQ
2WC
2XV
4.4
53G
5VS
6J9
7X7
7XC
88E
8CJ
8FE
8FH
8FI
8FJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1J
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
IPNFZ
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OVT
P2P
PATMY
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PYCSY
RBZ
RIG
RNS
ROL
RPM
SBL
SV3
TR2
TUS
U2A
UKHRP
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
3V.
7QP
7QR
7SN
7SS
7TK
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
-A0
ADINQ
AFGXO
BMC
C24
C6C
OK1
RSV
SOJ
5PM
PUEGO
ID FETCH-LOGICAL-b684t-c19aa36fbcba35403a84259980bc5c2437cc9ba6581264b90810bf808f389b283
IEDL.DBID RBZ
ISSN 1471-2148
IngestDate Wed Aug 27 01:29:20 EDT 2025
Thu Aug 21 14:02:12 EDT 2025
Tue Apr 16 22:43:59 EDT 2024
Fri Jul 11 02:26:28 EDT 2025
Mon Jul 21 11:02:21 EDT 2025
Fri Jul 25 10:32:36 EDT 2025
Tue Jun 17 22:04:50 EDT 2025
Mon Jul 21 10:57:36 EDT 2025
Fri Jun 27 05:57:27 EDT 2025
Mon Jul 21 05:45:10 EDT 2025
Thu Apr 24 22:54:03 EDT 2025
Tue Jul 01 04:27:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b684t-c19aa36fbcba35403a84259980bc5c2437cc9ba6581264b90810bf808f389b283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink http://dx.doi.org/10.1186/1471-2148-12-207
PMID 23083308
PQID 1261621593
PQPubID 44659
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_78427adb33db409ab331d4f6330e24b9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3532231
biomedcentral_primary_oai_biomedcentral_com_1471_2148_12_207
proquest_miscellaneous_1315605985
proquest_miscellaneous_1273118890
proquest_journals_1261621593
gale_infotracmisc_A534096949
gale_infotracacademiconefile_A534096949
gale_incontextgauss_ISR_A534096949
pubmed_primary_23083308
crossref_primary_10_1186_1471_2148_12_207
crossref_citationtrail_10_1186_1471_2148_12_207
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-10-19
PublicationDateYYYYMMDD 2012-10-19
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-19
  day: 19
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC evolutionary biology
PublicationTitleAlternate BMC Evol Biol
PublicationYear 2012
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References JL Bouzat (2170_CR65) 2009; 10
M Li (2170_CR27) 2007; 69
RR Hudson (2170_CR81) 2001; 159
C Vilà (2170_CR63) 2003; 270
J Radwan (2170_CR24) 2010; 143
R Agudo (2170_CR58) 2011; 20
MF Luo (2170_CR34) 2012; 74
JH Brown (2170_CR86) 1993; 364
BP Maureen (2170_CR57) 2008; 9
K Kuduk (2170_CR87) 2012
JK Pritchard (2170_CR75) 2000; 155
A Kloch (2170_CR88) 2012
D Pan (2170_CR28) 2009; 30
DA Tallmon (2170_CR61) 2004; 19
N Goldman (2170_CR90) 1994; 11
NJ Ouborg (2170_CR6) 2010; 26
M Nei (2170_CR67) 1978; 89
S Guindon (2170_CR78) 2003; 52
BS Weir (2170_CR71) 1979; 35
JT Sutton (2170_CR14) 2011; 20
R Bijlsma (2170_CR35) 2000; 13
RZ Zhang (2170_CR26) 2002
LJ Kennedy (2170_CR39) 2010; 77
AL Hughes (2170_CR43) 1988; 335
L Excoffier (2170_CR68) 2005; 1
A Aguilar (2170_CR25) 2006; 15
F Rousset (2170_CR70) 2008; 8
D Falush (2170_CR76) 2003; 164
S Sommer (2170_CR2) 2005; 2
D Garrigan (2170_CR10) 2003; 57
S Edmands (2170_CR62) 2007; 16
J Klein (2170_CR46) 2007; 41
MK Oliver (2170_CR59) 2009; 18
B Ujvari (2170_CR60) 2011; 12
LJ Kennedy (2170_CR74) 2002; 54
AL Hughes (2170_CR45) 2007; 99
AD Richman (2170_CR83) 2003; 82
GGM Doxiadis (2170_CR66) 2003; 55
R Frankham (2170_CR5) 2010
J Bryja (2170_CR47) 2007; 16
T Madsen (2170_CR64) 2004; 120
DS Weber (2170_CR19) 2004; 13
G Evanno (2170_CR77) 2005; 14
Z Yang (2170_CR92) 2005; 22
Z Yang (2170_CR91) 2000; 155
M Kimura (2170_CR42) 1977; 267
C Bonneaud (2170_CR52) 2006; 273
J Klein (2170_CR32) 1990; 31
LG Spurgin (2170_CR9) 2010; 277
HS Li (2170_CR48) 2008; 7
N Godala (2170_CR38) 2010; 76
CA Muirhead (2170_CR53) 2001; 55
HC Miller (2170_CR55) 2004; 13
R Frankham (2170_CR4) 2005; 126
H Schaschl (2170_CR49) 2005; 57
RAB Mason (2170_CR21) 2011; 12
ZF Chang (2170_CR29) 2012; 140
ZF Chang (2170_CR33) 2011; 57
S Mikko (2170_CR18) 1999; 167
A Biedrzycka (2170_CR22) 2008; 17
D Posada (2170_CR79) 1998; 14
C Van Oosterhout (2170_CR13) 2006; 60
C Van Oosterhout (2170_CR72) 2004; 4
K Tamura (2170_CR73) 2007; 24
W Babik (2170_CR20) 2009; 18
KM Miller (2170_CR15) 2001; 111
J Goudet (2170_CR69) 2001
Z Yang (2170_CR89) 2007; 24
PA Morin (2170_CR8) 2004; 19
TF Bergstrom (2170_CR12) 1998; 18
J Radwan (2170_CR40) 2010; 143
M Nei (2170_CR84) 1986; 3
FW Allendorf (2170_CR3) 2007
D Lukas (2170_CR37) 2004; 13
S Boessenkool (2170_CR30) 2007; 8
A Castro-Prieto (2170_CR17) 2011; 102
M Kimura (2170_CR56) 1983
HC Miller (2170_CR7) 2010; 19
L Andersson (2170_CR11) 1995; 143
MA Beaumont (2170_CR23) 1996; 263
SX Xu (2170_CR50) 2010; 71
PA Reche (2170_CR85) 2003; 331
MM Peacock (2170_CR1) 1997; 112
L Kauppi (2170_CR51) 2004; 5
AL Hughes (2170_CR44) 1989; 86
G McVean (2170_CR82) 2002; 160
PW Hedrick (2170_CR16) 2003; 39
AD Richman (2170_CR54) 2003; 164
PW Hedrick (2170_CR31) 2001; 152
HJ Bandelt (2170_CR80) 1999; 16
M Thoß (2170_CR36) 2011; 20
I Pokorny (2170_CR41) 2010; 62
T Antao (2170_CR93) 2008; 9
References_xml – volume: 20
  start-page: 1546
  year: 2011
  ident: 2170_CR36
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2011.05009.x
– volume: 71
  start-page: 6
  year: 2010
  ident: 2170_CR50
  publication-title: J Mol Ecol
  doi: 10.1007/s00239-010-9357-8
– volume: 155
  start-page: 431
  year: 2000
  ident: 2170_CR91
  publication-title: Genetics
  doi: 10.1093/genetics/155.1.431
– volume: 31
  start-page: 217
  year: 1990
  ident: 2170_CR32
  publication-title: Immunogenetics
– volume: 9
  start-page: 257
  year: 2008
  ident: 2170_CR57
  publication-title: Conserv Genet
  doi: 10.1007/s10592-007-9336-9
– volume: 267
  start-page: 275
  year: 1977
  ident: 2170_CR42
  publication-title: Nature
  doi: 10.1038/267275a0
– volume: 13
  start-page: 3709
  year: 2004
  ident: 2170_CR55
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2004.02368.x
– volume: 10
  start-page: 191
  year: 2009
  ident: 2170_CR65
  publication-title: Conserv Genet
  doi: 10.1007/s10592-008-9547-8
– volume: 152
  start-page: 1701
  year: 2001
  ident: 2170_CR31
  publication-title: Genetics
  doi: 10.1093/genetics/152.4.1701
– volume: 77
  start-page: 118
  year: 2010
  ident: 2170_CR39
  publication-title: Tissue Antigens
  doi: 10.1111/j.1399-0039.2010.01591.x
– volume: 140
  start-page: 105
  year: 2012
  ident: 2170_CR29
  publication-title: Genetica
  doi: 10.1007/s10709-012-9662-9
– volume: 19
  start-page: 208
  year: 2004
  ident: 2170_CR8
  publication-title: Trends Ecol Evo
  doi: 10.1016/j.tree.2004.01.009
– volume: 277
  start-page: 979
  year: 2010
  ident: 2170_CR9
  publication-title: Proc R Soc B
  doi: 10.1098/rspb.2009.2084
– volume: 55
  start-page: 540
  year: 2003
  ident: 2170_CR66
  publication-title: Immunogenetics
  doi: 10.1007/s00251-003-0590-9
– volume: 143
  start-page: 2049
  year: 2010
  ident: 2170_CR40
  publication-title: Biol Conserv
  doi: 10.1016/j.biocon.2010.05.012
– volume: 24
  start-page: 1596
  year: 2007
  ident: 2170_CR73
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msm092
– volume: 126
  start-page: 131
  year: 2005
  ident: 2170_CR4
  publication-title: Biol Conserv
  doi: 10.1016/j.biocon.2005.05.002
– volume: 57
  start-page: 108
  year: 2005
  ident: 2170_CR49
  publication-title: Immunogenetics
  doi: 10.1007/s00251-005-0784-4
– volume: 263
  start-page: 1619
  year: 1996
  ident: 2170_CR23
  publication-title: Proc R Soc B
  doi: 10.1098/rspb.1996.0237
– volume: 57
  start-page: 1135
  year: 2011
  ident: 2170_CR33
  publication-title: Chinese Sci Bull
  doi: 10.1007/s11434-011-4872-6
– volume: 8
  start-page: 103
  year: 2008
  ident: 2170_CR70
  publication-title: Mol Ecol Res
  doi: 10.1111/j.1471-8286.2007.01931.x
– volume: 14
  start-page: 2611
  year: 2005
  ident: 2170_CR77
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2005.02553.x
– volume: 15
  start-page: 923
  year: 2006
  ident: 2170_CR25
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2006.02843.x
– volume: 20
  start-page: 2329
  year: 2011
  ident: 2170_CR58
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2011.05107.x
– volume: 273
  start-page: 1111
  year: 2006
  ident: 2170_CR52
  publication-title: Proc R Soc B
  doi: 10.1098/rspb.2005.3325
– volume: 331
  start-page: 623
  year: 2003
  ident: 2170_CR85
  publication-title: J Mol Biol
  doi: 10.1016/S0022-2836(03)00750-2
– volume: 16
  start-page: 5084
  year: 2007
  ident: 2170_CR47
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2007.03584.x
– volume: 7
  start-page: 168
  year: 2008
  ident: 2170_CR48
  publication-title: Autoimm reviews
  doi: 10.1016/j.autrev.2007.11.010
– volume: 111
  start-page: 237
  year: 2001
  ident: 2170_CR15
  publication-title: Genetica
  doi: 10.1023/A:1013716020351
– volume: 270
  start-page: 91
  year: 2003
  ident: 2170_CR63
  publication-title: Proc R Soc Lond B
  doi: 10.1098/rspb.2002.2184
– volume: 99
  start-page: 364
  year: 2007
  ident: 2170_CR45
  publication-title: Heredity
  doi: 10.1038/sj.hdy.6801031
– volume: 16
  start-page: 463
  year: 2007
  ident: 2170_CR62
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2006.03148.x
– volume: 167
  start-page: 169
  year: 1999
  ident: 2170_CR18
  publication-title: Immunol Rev
  doi: 10.1111/j.1600-065X.1999.tb01390.x
– volume: 4
  start-page: 535
  year: 2004
  ident: 2170_CR72
  publication-title: Mol Ecol Notes
  doi: 10.1111/j.1471-8286.2004.00684.x
– volume: 17
  start-page: 4801
  year: 2008
  ident: 2170_CR22
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2008.03955.x
– volume: 160
  start-page: 1231
  year: 2002
  ident: 2170_CR82
  publication-title: Genetics
  doi: 10.1093/genetics/160.3.1231
– volume: 143
  start-page: 537
  year: 2010
  ident: 2170_CR24
  publication-title: Biol Conserv
  doi: 10.1016/j.biocon.2009.07.026
– volume: 1
  start-page: 47
  year: 2005
  ident: 2170_CR68
  publication-title: Evol Bioinform
  doi: 10.1177/117693430500100003
– start-page: 1
  volume-title: Introduction to Conservation Genetics (2nd edn)
  year: 2010
  ident: 2170_CR5
  doi: 10.1017/CBO9780511809002
– volume: 19
  start-page: 489
  year: 2004
  ident: 2170_CR61
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2004.07.003
– volume: 143
  start-page: 5
  year: 1995
  ident: 2170_CR11
  publication-title: Immunol Rev
  doi: 10.1111/j.1600-065X.1995.tb00667.x
– volume: 86
  start-page: 958
  year: 1989
  ident: 2170_CR44
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.86.3.958
– volume: 14
  start-page: 817
  year: 1998
  ident: 2170_CR79
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/14.9.817
– volume: 9
  start-page: 323
  year: 2008
  ident: 2170_CR93
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-323
– volume: 16
  start-page: 37
  year: 1999
  ident: 2170_CR80
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a026036
– volume: 74
  start-page: 91
  year: 2012
  ident: 2170_CR34
  publication-title: Am J Primatol
  doi: 10.1002/ajp.21006
– volume: 57
  start-page: 1707
  year: 2003
  ident: 2170_CR10
  publication-title: Evolution
  doi: 10.1111/j.0014-3820.2003.tb00580.x
– volume: 335
  start-page: 167
  year: 1988
  ident: 2170_CR43
  publication-title: Nature
  doi: 10.1038/335167a0
– volume: 52
  start-page: 696
  year: 2003
  ident: 2170_CR78
  publication-title: Syst Biol
  doi: 10.1080/10635150390235520
– volume: 155
  start-page: 945
  year: 2000
  ident: 2170_CR75
  publication-title: Genetics
  doi: 10.1093/genetics/155.2.945
– volume: 2
  start-page: 16
  year: 2005
  ident: 2170_CR2
  publication-title: Front Zool
  doi: 10.1186/1742-9994-2-16
– volume: 82
  start-page: 89
  year: 2003
  ident: 2170_CR83
  publication-title: Genet Res
  doi: 10.1017/S0016672303006347
– volume-title: Evol Ecol
  year: 2012
  ident: 2170_CR88
– volume: 20
  start-page: 4408
  year: 2011
  ident: 2170_CR14
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2011.05292.x
– volume: 41
  start-page: 281
  year: 2007
  ident: 2170_CR46
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev.genet.41.110306.130137
– volume: 18
  start-page: 237
  year: 1998
  ident: 2170_CR12
  publication-title: Nat Genet
  doi: 10.1038/ng0398-237
– volume: 89
  start-page: 583
  year: 1978
  ident: 2170_CR67
  publication-title: Genetics
  doi: 10.1093/genetics/89.3.583
– volume: 22
  start-page: 1107
  year: 2005
  ident: 2170_CR92
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msi097
– volume: 13
  start-page: 711
  year: 2004
  ident: 2170_CR19
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2004.02095.x
– volume: 12
  start-page: 91
  year: 2011
  ident: 2170_CR21
  publication-title: Conserv Genet
  doi: 10.1007/s10592-009-9993-y
– volume: 30
  start-page: 337
  year: 2009
  ident: 2170_CR28
  publication-title: Int J Primatol
  doi: 10.1007/s10764-009-9347-0
– volume: 69
  start-page: 1195
  year: 2007
  ident: 2170_CR27
  publication-title: Am J Primatol
  doi: 10.1002/ajp.20425
– volume: 13
  start-page: 3389
  year: 2004
  ident: 2170_CR37
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2004.02353.x
– volume: 364
  start-page: 33
  year: 1993
  ident: 2170_CR86
  publication-title: Nature
  doi: 10.1038/364033a0
– volume-title: FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3)
  year: 2001
  ident: 2170_CR69
– volume: 18
  start-page: 80
  year: 2009
  ident: 2170_CR59
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2008.04015.x
– volume: 5
  start-page: 413
  year: 2004
  ident: 2170_CR51
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg1346
– volume: 26
  start-page: 177
  year: 2010
  ident: 2170_CR6
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2010.01.001
– volume: 35
  start-page: 235
  year: 1979
  ident: 2170_CR71
  publication-title: Biometrics
  doi: 10.2307/2529947
– volume: 39
  start-page: 909
  year: 2003
  ident: 2170_CR16
  publication-title: J Wildlife Dis
  doi: 10.7589/0090-3558-39.4.909
– volume: 76
  start-page: 404
  year: 2010
  ident: 2170_CR38
  publication-title: Tissue Antigens
  doi: 10.1111/j.1399-0039.2010.01528.x
– volume: 159
  start-page: 1805
  year: 2001
  ident: 2170_CR81
  publication-title: Genetics
  doi: 10.1093/genetics/159.4.1805
– volume: 62
  start-page: 667
  year: 2010
  ident: 2170_CR41
  publication-title: Immunogenetics
  doi: 10.1007/s00251-010-0475-7
– volume: 164
  start-page: 289
  year: 2003
  ident: 2170_CR54
  publication-title: Genetics
  doi: 10.1016/S0065-2660(03)50015-3
– volume: 11
  start-page: 725
  year: 1994
  ident: 2170_CR90
  publication-title: Mol Biol Evol
– volume-title: The Neutral Theory of Molecular Evolution
  year: 1983
  ident: 2170_CR56
  doi: 10.1017/CBO9780511623486
– volume: 112
  start-page: 524
  year: 1997
  ident: 2170_CR1
  publication-title: Oecol
  doi: 10.1007/s004420050341
– volume: 54
  start-page: 348
  year: 2002
  ident: 2170_CR74
  publication-title: Immunogenetics
  doi: 10.1007/s00251-002-0465-5
– start-page: 380
  volume-title: Units of conservation. In: Conservation and the genetics of populations
  year: 2007
  ident: 2170_CR3
– volume: 60
  start-page: 2562
  year: 2006
  ident: 2170_CR13
  publication-title: Evolution
  doi: 10.1554/06-286.1
– volume: 12
  start-page: 5168
  year: 2011
  ident: 2170_CR60
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms12085168
– volume: 164
  start-page: 1567
  year: 2003
  ident: 2170_CR76
  publication-title: Genetics
  doi: 10.1093/genetics/164.4.1567
– volume: 13
  start-page: 502
  year: 2000
  ident: 2170_CR35
  publication-title: J Evolution Biol
  doi: 10.1046/j.1420-9101.2000.00177.x
– volume: 55
  start-page: 1532
  year: 2001
  ident: 2170_CR53
  publication-title: Evolution
  doi: 10.1111/j.0014-3820.2001.tb00673.x
– volume: 3
  start-page: 418
  year: 1986
  ident: 2170_CR84
  publication-title: Mol Biol Evol
– volume: 19
  start-page: 3894
  year: 2010
  ident: 2170_CR7
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2010.04771.x
– volume: 24
  start-page: 1586
  year: 2007
  ident: 2170_CR89
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msm088
– volume: 18
  start-page: 769
  year: 2009
  ident: 2170_CR20
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2008.04057.x
– volume: 120
  start-page: 145
  year: 2004
  ident: 2170_CR64
  publication-title: Biol Conserv
  doi: 10.1016/j.biocon.2004.01.022
– volume: 102
  start-page: 653
  year: 2011
  ident: 2170_CR17
  publication-title: Heredity
  doi: 10.1093/jhered/esr097
– volume-title: The primates of China: biogeography and conservation status—past, present and future
  year: 2002
  ident: 2170_CR26
– volume-title: J Evolutiona Biol
  year: 2012
  ident: 2170_CR87
– volume: 8
  start-page: 705
  year: 2007
  ident: 2170_CR30
  publication-title: Conserv Genet
  doi: 10.1007/s10592-006-9219-5
SSID ssj0017821
Score 2.1846619
Snippet Small, isolated populations often experience loss of genetic variation due to random genetic drift. Unlike neutral or nearly neutral markers (such as...
Background Small, isolated populations often experience loss of genetic variation due to random genetic drift. Unlike neutral or nearly neutral markers (such...
Doc number: 207 Abstract Background: Small, isolated populations often experience loss of genetic variation due to random genetic drift. Unlike neutral or...
Background: Small, isolated populations often experience loss of genetic variation due to random genetic drift. Unlike neutral or nearly neutral markers (such...
BACKGROUND: Small, isolated populations often experience loss of genetic variation due to random genetic drift. Unlike neutral or nearly neutral markers (such...
Abstract Background Small, isolated populations often experience loss of genetic variation due to random genetic drift. Unlike neutral or nearly neutral...
SourceID doaj
pubmedcentral
biomedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 207
SubjectTerms Alleles
Amino Acid Sequence
Analysis
Animal models
Animals
Antigens
Balancing selection
Biotechnology industry
Breeding
Captive breeding
Captive wild animals
Colobinae - genetics
Confidence intervals
Conservation genetics
DQA1 protein
Endangered & extinct species
Endangered animals
Endangered Species
Evolution & development
Gene drift
Gene polymorphism
Genes
Genetic aspects
Genetic diversity
Genetic Drift
Genetic polymorphisms
Genetic research
Genetic Variation
Genetics, Population
Haplotypes
Histocompatibility Antigens Class II - classification
Histocompatibility Antigens Class II - genetics
Major histocompatibility complex
Maximum likelihood method
MHC
Microsatellite Repeats - genetics
Microsatellites
Mitochondria
Mitochondrial DNA
Molecular Sequence Data
Phylogeny
Physiological aspects
Population
Population differentiation
Population genetics
Population structure
Primates
Rhinopithecus roxellana
Selection, Genetic
Sequence Analysis, DNA
Sequence Homology, Amino Acid
Studies
Translocation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9F23aVFLoc3BrG3Jsgy9JKUhW2gPaQO5CUm2Eoetvay9kPyh_s7OyN5lRV-X3hZrxFoz45lv7HkQ8qbgtTM1t7EUhsXcWhtrXrk4q9NaO26d1Fic_PmLODnjn87z851RX5gTNrYHHhk3KyTPCl0ZxioDsYiGH2nFnYA4vM648aV74PM2wdT0_QD8ng-1wPTGGSD-zQdKKWbba5iUkOEY2aDSfRE4KN_H_1drveOuwlTKHd90fI_cnUAlPRwPc5_cqtsH5PY4ZvLmIflxhPmLFpwU7f3YG5AF1W1FQXmwhpFWq8YNVA_0u77qVtT3IPbJ6cOYO3tDfeZ5fU0tgm06n_utPW1a2oDyAl6t6HI7CqynnaMX3QJMGu3btYnbrgcCUHiwGPTd6WXTdkusBbHrnq66a0zAavXBI3J2_PHbh5N4ms8QGyH5ENu01JoJZ6zR-PqIafymB_FbYmxusdOhtaXRgHFSgF2mBPSRGCcT6QAlGcA1j8le27X1U0KdgDiWV0WZVAnXQuiyKoTBut3CJSavI_I-EJJajr04FHbHDleAIQplrFDGKs0UyDgis41MlZ16n-MIjoXyMZAUv9lxsN2x-a8_0x6hmgT35C-AHqtJj9W_9Dgir1HJFPbkaDHp50Kv-17Nv56qw5zBDlFyIHo7EbkO7t_qqYYCmIhtvALK_YASjIYNlze6rCaj1cNpRCoAApYsIq-2y7jT60HdrZGmYMAEWSZ_oWFYnp-XMo_Ik_Hx2PIGIl4JR5YRKYIHJ2BeuNI2l77tOcvB-bD02f_g9nNyB5BvhiAkLffJ3rBa1y8AXQ7mpTckPwFTsneQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1db9Mw0IIhJF4Q32QMZBAS7CFqHDtOIiGhDTGtSPAwmNQ3y3bsrqgkXZNK2y_ib3LnpmXhY29Vfae6d-f7sO-DkNe5cN44YeNCGh4La22sReXj1DGnvbC-0Fic_PmLPD4VnybZpL9wa_u0yo1ODIq6aizekY8YuPoS7FPJ3y_OY5waha-r_QiNm-QWti7DlK58sg24GFg_tnmaLOSIgSKOU7xBYylIR_5Hjft8YJpCB_-_9fQVQzVMorxilY7ukbu9O0kP1vy_T264-gG5vR4wefmQ_DzEzEUL5om2YeANcIHquqIgNli9SKvlzHdUd_SH_t4saeg-HNLSu3XW7CUNOefuglp0s-l4HFBbOqvpDMQWPNWKLrZDwFraeDpt5qDMaFuvTFw3LQAA7UBX0LcnZ7O6WWAViF21dNlcYOpVren-I3J69PHbh-O4H80QG1mILras1JpLb6zReHPENT7nQeiWGJtZbHJobWk0uDfAN2FKcDwS44uk8OAgGXBpHpOduqndU0K9hBBWVHmZVInQUuqyyqXBkt3cJyZzEXk34JJarNtwKGyMPVwBiihkskImK5YqYHJERhumKtu3PcfpG3MVwp9C_gNjf4ux-a3_wx6inAz2FL5ollPVn32VA21yXRnOKwPhtIYPrBJecp64FIgTkVcoZQrbcdSY7zPVq7ZV468n6iDjgCFLAUBveiDfwP6t7ssngIjYwWsAuTeABH1hh8sbYVa9vmrV79MVkZfbZcQMguCaFcLkHIhQlMk1MBwr87OyyCLyZH0-trSBYLeAv1xEJB-cnAHxhiv17Cx0POcZ2B3Odq_f-jNyB9zZFD0LVu6RnW65cs_BZezMi6AXfgH7PW2w
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgCIkXxPcCAxmEBHsIS2LHSSQQ2hDTijQeBpX2ZtlO3BWVpCSp1P5D_J3cuUm3QOGFt6o-t8l9_i65OxPyMuGF1QU3fio087kxxlc8t35UhIWy3NhUYXPy6WdxMuafzuPzy_bojoHN1tQOz5Ma17M3yx-r92Dw75zBp-IgBAfrR_hkLIxA6sl1cgPiUoJmesov3ylALHTpV0_dv7Tc8gu_db_PBkHLzfb_04NfCWHD8sor8er4DrndAU16uNaMu-RaUd4jN9dHT67uk59HWNNoIHDRxh2FA_KhqswpKBT2NdK8ntqWqpZ-V9-qmrq5xK5gvV3X066oq0YvltQgAKejkdva0GlJp6DQgGFzOt8cD9bQytJJNQM3R5tyof2yaoAAjAC8CH19djEtqzn2h5hFQ-tqiUVZpdp_QMbHH79-OPG7Mxt8LVLe-ibMlGLCaqMVPlJiCt_zQU4XaBMbnH5oTKYV4J4QoJjOAJEE2qZBagE5acA6D8lOWZXFLqFWQG7L8yQL8oArIVSWJ0JjL29iAx0XHnk7EJKcr-dzSJyYPVwBhkiUsUQZyzCSIGOPHPQylaabh47Hcsyky4tSsWXH_mZH_19_pz1CNRlck_uiqieycwoyAd4kKteM5RrybAUfwpxbwVhQRMAcj7xAJZM4p6PEQqCJWjSNHH05k4cxgx0i40D0qiOyFVy_UV1fBTARR3sNKPcGlOBIzHC512XZ2yHcjQgFwMKMeeT5Zhl3Oj0oqgXSJAyYkGbBP2gYtuzHWRp75NHaPDa8gSw4hVtOPZIMDGfAvOFKOb1wo9BZDAGJhY__TxWekFuAgyOEJGG2R3baelE8BazZ6mfOhfwCeJl-FQ
  priority: 102
  providerName: Scholars Portal
Title Balancing selection and genetic drift at major histocompatibility complex class II genes in isolated populations of golden snub-nosed monkey (Rhinopithecus roxellana)
URI https://www.ncbi.nlm.nih.gov/pubmed/23083308
https://www.proquest.com/docview/1261621593
https://www.proquest.com/docview/1273118890
https://www.proquest.com/docview/1315605985
http://dx.doi.org/10.1186/1471-2148-12-207
https://pubmed.ncbi.nlm.nih.gov/PMC3532231
https://doaj.org/article/78427adb33db409ab331d4f6330e24b9
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwELfYJiReEP8JjMogJNhDtCR2HEfiZUWbVqRNqDCp4sWynXgrKknVpNL2hfic3LlpWcbghZeqqs9Ncne5-519dybkbcZLZ0puQykMC7m1NtS8cGFSxqV23DqpsTj55FQcn_FPk3Tyu03OjR38WIr9GMxnmOC6V5yATLMtspNw8IMYmQ-_bXYMwNP54GpNvd6SvOUfbtS2z3ouyXfu_9M-X3NQ_eTJa97o6AG538FIerCS-0Nyp6wekburgyWvHpOfQ8xYtOCWaOMPugHuU10VFNQFqxZpsZi6luqW_tDf6wX1XYd9Onq7ypa9oj7XvLykFuE1HY381IZOKzoFdQWEWtD55vCvhtaOntczMGK0qZYmrOoGCEDFwUbQ9-OLaVXPsfrDLhu6qC8x5arSe0_I2dHh14_HYXciQ2iE5G1o41xrJpyxRuOCEdO4iwcRW2RsarG3obW50YBqYgBaJge8ERknI-kAFxlAMk_JdlVX5XNCnYDIlRdZHhUR10LovMiEwUrdzEUmLQPyoSckNV9131DYD7s_AgxRKGOFMlZxokDGAdlfy1TZrts5HroxUz7qkeKWGXubGetr_Z12iGrSuyf_Ayiu6l55lQFvMl0YxgoDUbSGL3HBnWAsKhNgTkDeoJIp7MJRYZrPuV42jRp9GauDlMEMkXMgetcRuRru3-quagKYiI27epS7PUowE7Y_vNZl1ZmpBp5GxAJAX84C8nozjDO9HpT1EmkyBkyQefQPGoYF-Wku04A8W70eG95AjCvhkWVAst6L02Nef6SaXvhG5ywFd8PiF_-nCi_JPUC5CQKOON8l2-1iWb4CJNmaAdnKJtmA7AwPTz-PB349Bj5PuBx44_ILo-Z02A
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BqdELwgPkdhgEEg2EPUJHacRAKhFTa1bKvQ2KS9GduJu6KSlKYV6y_ijd_IXZqUhY-97S2qz4l7d74P-z4IeR7y1OqUGycSmjncGOMonljHT71UWW5spDA5-WAgesf8w0lwskZ-1rkwGFZZy8RSUCe5wTPyjgemvgD9FLO3k28Odo3C29W6hcaSLfbSxXdw2Yo3_fdA3xe-v7tz9K7nVF0FHC0iPnOMFyvFhNVGKzz0YApvosDrcLUJDNbnMybWCjQzfJLrGHSmq23kRhZ0uwZtDO-9QtY5A1emRda7O4OPh6t7C9C3Xn0ZGomOB6Lf8fHMzvOBH8M_surHDWVY9gz4WzOcU43NsM1zenD3JrlRGbB0e8lxt8hamt0mV5ctLRd3yI8uxkoaUIi0KFvsAN2pyhIKjIr5kjSZjuyMqhn9qr7kU1rWOy4D4WfLON0FLaPc0zNq0LCn_X45taCjjI5go4BtnNDJqu1YQXNLh_kYxCctsrl2srwAAKAWSCf66vB0lOUTzDsx84JO8zMM9soU3bpLji-FbPdIK8uz9D6hVoDTzJMwdhOXKyFUnIRCY5JwaF0dpG3yukElOVkW_pBYirs5AhiRSGSJRJaeL4HIbdKpiSpNVWgd-32MZelwReIfM7ZWM-pv_R-2i3zSWFP5Qz4dykrayBBwE6pEM5ZocOAVPHgJt4IxN_UBOW3yDLlMYgGQDCOMhmpeFLL_6VBuBwxmiJgD0MsKyOawfqOqhA1AItYMa0BuNiBBQpnmcM3MspKQhfy9n9vk6WoYZ5aMkOZzhAkZICGK3QtgGNYCCOIoaJON5f5Y4Qbc6wj-ctQmYWPnNJDXHMlGp2WNdRaApmPeg4uX_oRc6x0d7Mv9_mDvIbkOxrSPdo0Xb5LWbDpPH4HBOtOPKylByefLFky_ABC6qp0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZgEYgL4k1gAYOQYA-hSZw4icRlC1RbHitUWGnFxbKduFvoJlWSou0f4ncy46RVAwsXblE9bpt5fpPMjAl5Foe5UXmo3YQr5oZaa1eGmXGD3M-lCbVJJDYnfzzkB0fhu-PouOusw14YdarzHx3TZbXqJhG93O5Fn1sHDhf6-2CRmdbuEz7wwc-6AT4g8wMQfnyRXIqjKEZrnQy_bl4tQEi0Wdiaev3u8pxv-K0Jft6LXXbE_5-OfCuS9asst8LW6Dq51uFNut8qyA1yIS9uksvtCZSrW-TnEEsbNcQvWtsTcYAhVBYZBb3C9kaaVTPTUNnQU_mtrKgdT2zr1pu2rHZFbVF6fkY14nA6HtutNZ0VdAZ6DVA2o4vNKWE1LQ2dlnPwdrQulsotyhoIwBbAmdAXk5NZUS6wTUQva1qVZ1ibVci92-Ro9PbL6wO3O7rBVTwJG1f7qZSMG6WVxCdLTOLrPkjtPKUjjUMQtU6VBPjjAyJTKQATT5nESwwAKAWQ5w7ZKcoiv0eo4ZDihlmcepkXSs5lmsVcYUtvbDwV5Q551ROSWLRjOgQOzu6vAEMEyligjIUfCJCxQwZrmQrdjUXH0znmwqZHCT9nx95mx_q3_k47RDXp_Sf7QVlNRecbRAy8iWWmGMsUpNsSLvwsNJwxLw-AOQ55ikomcFxHgfVAU7msazH-PBH7EYMdPA2B6HlHZEq0Ddm1VwATccJXj3K3Rwn-RPeX17osOn9Ww91wnwM6TJlDnmyWcafVg7xcIk3MgAlJ6v2DhmHnfpQmkUPutuax4Q0kwwnccuKQuGc4Peb1V4rZiZ2IziKIS8y__3-q8Jhc-fRmJD6MD98_IFcBGQcIUvx0l-w01TJ_COizUY-sN_kF4oqD9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Balancing+selection+and+genetic+drift+at+major+histocompatibility+complex+class+II+genes+in+isolated+populations+of+golden+snub-nosed+monkey+%28Rhinopithecus+roxellana%29&rft.jtitle=BMC+evolutionary+biology&rft.au=Luo%2C+Mao-Fang&rft.au=Pan%2C+Hui-Juan&rft.au=Liu%2C+Zhi-Jin&rft.au=Li%2C+Ming&rft.date=2012-10-19&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2148&rft.eissn=1471-2148&rft.volume=12&rft.issue=1&rft.spage=207&rft.epage=207&rft_id=info:doi/10.1186%2F1471-2148-12-207&rft.externalDBID=n%2Fa&rft.externalDocID=oai_biomedcentral_com_1471_2148_12_207
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2148&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2148&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2148&client=summon