Machine learning methods for metabolic pathway prediction

A key challenge in systems biology is the reconstruction of an organism's metabolic network from its genome sequence. One strategy for addressing this problem is to predict which metabolic pathways, from a reference database of known pathways, are present in the organism, based on the annotated...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 11; no. 1; p. 15
Main Authors Dale, Joseph M, Popescu, Liviu, Karp, Peter D
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 08.01.2010
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A key challenge in systems biology is the reconstruction of an organism's metabolic network from its genome sequence. One strategy for addressing this problem is to predict which metabolic pathways, from a reference database of known pathways, are present in the organism, based on the annotated genome of the organism. To quantitatively validate methods for pathway prediction, we developed a large "gold standard" dataset of 5,610 pathway instances known to be present or absent in curated metabolic pathway databases for six organisms. We defined a collection of 123 pathway features, whose information content we evaluated with respect to the gold standard. Feature data were used as input to an extensive collection of machine learning (ML) methods, including naïve Bayes, decision trees, and logistic regression, together with feature selection and ensemble methods. We compared the ML methods to the previous PathoLogic algorithm for pathway prediction using the gold standard dataset. We found that ML-based prediction methods can match the performance of the PathoLogic algorithm. PathoLogic achieved an accuracy of 91% and an F-measure of 0.786. The ML-based prediction methods achieved accuracy as high as 91.2% and F-measure as high as 0.787. The ML-based methods output a probability for each predicted pathway, whereas PathoLogic does not, which provides more information to the user and facilitates filtering of predicted pathways. ML methods for pathway prediction perform as well as existing methods, and have qualitative advantages in terms of extensibility, tunability, and explainability. More advanced prediction methods and/or more sophisticated input features may improve the performance of ML methods. However, pathway prediction performance appears to be limited largely by the ability to correctly match enzymes to the reactions they catalyze based on genome annotations.
AbstractList Background A key challenge in systems biology is the reconstruction of an organism's metabolic network from its genome sequence. One strategy for addressing this problem is to predict which metabolic pathways, from a reference database of known pathways, are present in the organism, based on the annotated genome of the organism. Results To quantitatively validate methods for pathway prediction, we developed a large "gold standard" dataset of 5,610 pathway instances known to be present or absent in curated metabolic pathway databases for six organisms. We defined a collection of 123 pathway features, whose information content we evaluated with respect to the gold standard. Feature data were used as input to an extensive collection of machine learning (ML) methods, including naïve Bayes, decision trees, and logistic regression, together with feature selection and ensemble methods. We compared the ML methods to the previous PathoLogic algorithm for pathway prediction using the gold standard dataset. We found that ML-based prediction methods can match the performance of the PathoLogic algorithm. PathoLogic achieved an accuracy of 91% and an F-measure of 0.786. The ML-based prediction methods achieved accuracy as high as 91.2% and F-measure as high as 0.787. The ML-based methods output a probability for each predicted pathway, whereas PathoLogic does not, which provides more information to the user and facilitates filtering of predicted pathways. Conclusions ML methods for pathway prediction perform as well as existing methods, and have qualitative advantages in terms of extensibility, tunability, and explainability. More advanced prediction methods and/or more sophisticated input features may improve the performance of ML methods. However, pathway prediction performance appears to be limited largely by the ability to correctly match enzymes to the reactions they catalyze based on genome annotations.
A key challenge in systems biology is the reconstruction of an organism's metabolic network from its genome sequence. One strategy for addressing this problem is to predict which metabolic pathways, from a reference database of known pathways, are present in the organism, based on the annotated genome of the organism. To quantitatively validate methods for pathway prediction, we developed a large "gold standard" dataset of 5,610 pathway instances known to be present or absent in curated metabolic pathway databases for six organisms. We defined a collection of 123 pathway features, whose information content we evaluated with respect to the gold standard. Feature data were used as input to an extensive collection of machine learning (ML) methods, including naïve Bayes, decision trees, and logistic regression, together with feature selection and ensemble methods. We compared the ML methods to the previous PathoLogic algorithm for pathway prediction using the gold standard dataset. We found that ML-based prediction methods can match the performance of the PathoLogic algorithm. PathoLogic achieved an accuracy of 91% and an F-measure of 0.786. The ML-based prediction methods achieved accuracy as high as 91.2% and F-measure as high as 0.787. The ML-based methods output a probability for each predicted pathway, whereas PathoLogic does not, which provides more information to the user and facilitates filtering of predicted pathways. ML methods for pathway prediction perform as well as existing methods, and have qualitative advantages in terms of extensibility, tunability, and explainability. More advanced prediction methods and/or more sophisticated input features may improve the performance of ML methods. However, pathway prediction performance appears to be limited largely by the ability to correctly match enzymes to the reactions they catalyze based on genome annotations.
A key challenge in systems biology is the reconstruction of an organism's metabolic network from its genome sequence. One strategy for addressing this problem is to predict which metabolic pathways, from a reference database of known pathways, are present in the organism, based on the annotated genome of the organism. To quantitatively validate methods for pathway prediction, we developed a large "gold standard" dataset of 5,610 pathway instances known to be present or absent in curated metabolic pathway databases for six organisms. We defined a collection of 123 pathway features, whose information content we evaluated with respect to the gold standard. Feature data were used as input to an extensive collection of machine learning (ML) methods, including naïve Bayes, decision trees, and logistic regression, together with feature selection and ensemble methods. We compared the ML methods to the previous PathoLogic algorithm for pathway prediction using the gold standard dataset. We found that ML-based prediction methods can match the performance of the PathoLogic algorithm. PathoLogic achieved an accuracy of 91% and an F-measure of 0.786. The ML-based prediction methods achieved accuracy as high as 91.2% and F-measure as high as 0.787. The ML-based methods output a probability for each predicted pathway, whereas PathoLogic does not, which provides more information to the user and facilitates filtering of predicted pathways. ML methods for pathway prediction perform as well as existing methods, and have qualitative advantages in terms of extensibility, tunability, and explainability. More advanced prediction methods and/or more sophisticated input features may improve the performance of ML methods. However, pathway prediction performance appears to be limited largely by the ability to correctly match enzymes to the reactions they catalyze based on genome annotations.
BACKGROUNDA key challenge in systems biology is the reconstruction of an organism's metabolic network from its genome sequence. One strategy for addressing this problem is to predict which metabolic pathways, from a reference database of known pathways, are present in the organism, based on the annotated genome of the organism. RESULTSTo quantitatively validate methods for pathway prediction, we developed a large "gold standard" dataset of 5,610 pathway instances known to be present or absent in curated metabolic pathway databases for six organisms. We defined a collection of 123 pathway features, whose information content we evaluated with respect to the gold standard. Feature data were used as input to an extensive collection of machine learning (ML) methods, including naïve Bayes, decision trees, and logistic regression, together with feature selection and ensemble methods. We compared the ML methods to the previous PathoLogic algorithm for pathway prediction using the gold standard dataset. We found that ML-based prediction methods can match the performance of the PathoLogic algorithm. PathoLogic achieved an accuracy of 91% and an F-measure of 0.786. The ML-based prediction methods achieved accuracy as high as 91.2% and F-measure as high as 0.787. The ML-based methods output a probability for each predicted pathway, whereas PathoLogic does not, which provides more information to the user and facilitates filtering of predicted pathways. CONCLUSIONSML methods for pathway prediction perform as well as existing methods, and have qualitative advantages in terms of extensibility, tunability, and explainability. More advanced prediction methods and/or more sophisticated input features may improve the performance of ML methods. However, pathway prediction performance appears to be limited largely by the ability to correctly match enzymes to the reactions they catalyze based on genome annotations.
Abstract Background A key challenge in systems biology is the reconstruction of an organism's metabolic network from its genome sequence. One strategy for addressing this problem is to predict which metabolic pathways, from a reference database of known pathways, are present in the organism, based on the annotated genome of the organism. Results To quantitatively validate methods for pathway prediction, we developed a large "gold standard" dataset of 5,610 pathway instances known to be present or absent in curated metabolic pathway databases for six organisms. We defined a collection of 123 pathway features, whose information content we evaluated with respect to the gold standard. Feature data were used as input to an extensive collection of machine learning (ML) methods, including naïve Bayes, decision trees, and logistic regression, together with feature selection and ensemble methods. We compared the ML methods to the previous PathoLogic algorithm for pathway prediction using the gold standard dataset. We found that ML-based prediction methods can match the performance of the PathoLogic algorithm. PathoLogic achieved an accuracy of 91% and an F-measure of 0.786. The ML-based prediction methods achieved accuracy as high as 91.2% and F-measure as high as 0.787. The ML-based methods output a probability for each predicted pathway, whereas PathoLogic does not, which provides more information to the user and facilitates filtering of predicted pathways. Conclusions ML methods for pathway prediction perform as well as existing methods, and have qualitative advantages in terms of extensibility, tunability, and explainability. More advanced prediction methods and/or more sophisticated input features may improve the performance of ML methods. However, pathway prediction performance appears to be limited largely by the ability to correctly match enzymes to the reactions they catalyze based on genome annotations.
Abstract Background A key challenge in systems biology is the reconstruction of an organism's metabolic network from its genome sequence. One strategy for addressing this problem is to predict which metabolic pathways, from a reference database of known pathways, are present in the organism, based on the annotated genome of the organism. Results To quantitatively validate methods for pathway prediction, we developed a large "gold standard" dataset of 5,610 pathway instances known to be present or absent in curated metabolic pathway databases for six organisms. We defined a collection of 123 pathway features, whose information content we evaluated with respect to the gold standard. Feature data were used as input to an extensive collection of machine learning (ML) methods, including naïve Bayes, decision trees, and logistic regression, together with feature selection and ensemble methods. We compared the ML methods to the previous PathoLogic algorithm for pathway prediction using the gold standard dataset. We found that ML-based prediction methods can match the performance of the PathoLogic algorithm. PathoLogic achieved an accuracy of 91% and an F-measure of 0.786. The ML-based prediction methods achieved accuracy as high as 91.2% and F-measure as high as 0.787. The ML-based methods output a probability for each predicted pathway, whereas PathoLogic does not, which provides more information to the user and facilitates filtering of predicted pathways. Conclusions ML methods for pathway prediction perform as well as existing methods, and have qualitative advantages in terms of extensibility, tunability, and explainability. More advanced prediction methods and/or more sophisticated input features may improve the performance of ML methods. However, pathway prediction performance appears to be limited largely by the ability to correctly match enzymes to the reactions they catalyze based on genome annotations.
ArticleNumber 15
Audience Academic
Author Popescu, Liviu
Dale, Joseph M
Karp, Peter D
AuthorAffiliation 1 Bioinformatics Research Group, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025, USA
AuthorAffiliation_xml – name: 1 Bioinformatics Research Group, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025, USA
Author_xml – sequence: 1
  givenname: Joseph M
  surname: Dale
  fullname: Dale, Joseph M
  organization: Bioinformatics Research Group, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
– sequence: 2
  givenname: Liviu
  surname: Popescu
  fullname: Popescu, Liviu
– sequence: 3
  givenname: Peter D
  surname: Karp
  fullname: Karp, Peter D
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20064214$$D View this record in MEDLINE/PubMed
BookMark eNp1kstv1DAQhyNURB9w5oYicUAc0nps53VBKhWPlYqQeJytiT3Jukrixc4C_e9xSFk1UpEPHs385vOMZ06To9GNlCTPgZ0DVMUFyBIyDizPADLIHyUnB8_RPfs4OQ3hhjEoK5Y_SY45Y4XkIE-S-hPqrR0p7Qn9aMcuHWjaOhPS1vnZxsb1Vqc7nLa_8DbdeTJWT9aNT5PHLfaBnt3dZ8n39---XX3Mrj9_2FxdXmdNUckpy3OQmomCG84IhQZNjZZ5g9rwEkAKURYYXZywxlq0RVkIWeWSgGQZE8RZslm4xuGN2nk7oL9VDq3663C-U-gnq3tSkkxeVbpmNTeyRULDOFJbmyavRSEpst4srN2-GchoGieP_Qq6jox2qzr3UwmQBSt5BLxdAI11_wGsI9oNah6DmsegABTkEfLqrgrvfuwpTGqwQVPf40huH1QpRHyvEiwqXy7KDmN7dmxdhOpZrS451LJilZyLOn9AFY-hweq4MK2N_lXC61VC1Ez0e-pwH4LafP2y1l4sWu1dCJ7aQ7PA1LyDD7T34v4nH_T_lk78AcPl10M
CitedBy_id crossref_primary_10_1021_acssynbio_0c00129
crossref_primary_10_1016_j_biotechadv_2016_03_001
crossref_primary_10_1186_s12934_019_1132_y
crossref_primary_10_1093_bioinformatics_btv578
crossref_primary_10_1186_s12859_024_05666_0
crossref_primary_10_1016_j_scitotenv_2020_137894
crossref_primary_10_1038_s42003_019_0440_4
crossref_primary_10_1002_cjoc_202100273
crossref_primary_10_1155_2014_371397
crossref_primary_10_1093_bib_bbs070
crossref_primary_10_1016_j_copbio_2019_11_007
crossref_primary_10_1007_s00253_014_5987_x
crossref_primary_10_1371_journal_pone_0024495
crossref_primary_10_1016_j_csbj_2023_03_045
crossref_primary_10_3390_metabo8010004
crossref_primary_10_1089_cmb_2021_0258
crossref_primary_10_18632_oncotarget_9132
crossref_primary_10_1016_j_biosystems_2018_09_003
crossref_primary_10_1016_j_copbio_2012_03_009
crossref_primary_10_1002_biot_201800416
crossref_primary_10_1093_bib_bbt031
crossref_primary_10_1021_acs_jctc_7b00993
crossref_primary_10_18632_oncotarget_20537
crossref_primary_10_3390_pr10112226
crossref_primary_10_1002_cben_201500024
crossref_primary_10_1038_ismej_2015_54
crossref_primary_10_1093_nar_gkr1014
crossref_primary_10_1371_journal_pone_0025297
crossref_primary_10_1016_j_tibtech_2010_07_002
crossref_primary_10_1016_j_csbj_2022_04_016
crossref_primary_10_1371_journal_pcbi_1004838
crossref_primary_10_1016_j_mec_2022_e00209
crossref_primary_10_1016_j_jmb_2012_10_014
crossref_primary_10_1093_bioinformatics_btz954
crossref_primary_10_3390_ijms20102476
crossref_primary_10_1186_1471_2105_12_176
crossref_primary_10_3389_fchem_2018_00199
crossref_primary_10_1016_j_jbiotec_2014_03_029
crossref_primary_10_1016_j_tibtech_2019_07_009
crossref_primary_10_1016_j_jtbi_2023_111684
crossref_primary_10_1155_2014_845479
crossref_primary_10_1007_s12257_014_0172_8
crossref_primary_10_1080_10409238_2017_1290043
crossref_primary_10_1039_C7MO00051K
crossref_primary_10_1016_j_meteno_2016_03_003
crossref_primary_10_1007_s00204_011_0705_2
crossref_primary_10_1038_s41598_017_17842_9
crossref_primary_10_1186_1752_0509_5_122
crossref_primary_10_1002_aps3_11376
crossref_primary_10_1021_acssynbio_8b00049
crossref_primary_10_1016_j_bej_2021_108054
crossref_primary_10_4056_sigs_1794338
crossref_primary_10_1093_bioinformatics_btr428
crossref_primary_10_1093_jxb_err371
crossref_primary_10_1089_cmb_2011_0193
crossref_primary_10_1186_1480_9222_16_8
crossref_primary_10_1016_j_ymben_2014_07_009
crossref_primary_10_1371_journal_pcbi_1003126
crossref_primary_10_1016_j_copbio_2014_02_011
crossref_primary_10_1186_1471_2105_14_202
crossref_primary_10_3390_ijms21165686
crossref_primary_10_1155_2014_891945
crossref_primary_10_1016_j_biotechadv_2018_04_008
crossref_primary_10_1016_j_biotechadv_2020_107631
crossref_primary_10_3390_horticulturae9030389
crossref_primary_10_1038_sdata_2017_35
crossref_primary_10_1093_bib_bbz104
crossref_primary_10_1021_acs_chemrev_2c00403
crossref_primary_10_3389_fmicb_2017_00534
crossref_primary_10_1016_j_cbpa_2015_06_025
crossref_primary_10_1093_bioinformatics_btr681
crossref_primary_10_1371_journal_pone_0158896
crossref_primary_10_1111_1574_6968_12194
crossref_primary_10_1186_1471_2105_12_141
crossref_primary_10_1016_j_csbj_2020_10_011
crossref_primary_10_1093_femsec_fiy068
crossref_primary_10_1016_j_cels_2016_04_017
crossref_primary_10_1186_1471_2164_15_619
crossref_primary_10_1128_AEM_01487_15
crossref_primary_10_1021_ci500517v
crossref_primary_10_1016_j_biotechadv_2021_107858
crossref_primary_10_1093_bib_bbaa136
crossref_primary_10_1093_nar_gkv1164
crossref_primary_10_1016_j_scitotenv_2020_144561
crossref_primary_10_3389_fnins_2018_00670
crossref_primary_10_3389_fbioe_2021_666858
crossref_primary_10_1186_1752_0509_6_35
crossref_primary_10_1021_acs_jcim_9b00689
crossref_primary_10_1093_database_bay035
crossref_primary_10_1186_1471_2105_14_114
crossref_primary_10_1093_bib_bbad120
crossref_primary_10_3390_ijms22062903
crossref_primary_10_1186_1471_2105_14_112
crossref_primary_10_1080_07388551_2023_2237183
crossref_primary_10_34133_2022_9898461
crossref_primary_10_1093_bioinformatics_btaa906
crossref_primary_10_1021_acssynbio_1c00189
crossref_primary_10_1002_jctb_5319
crossref_primary_10_1093_nar_gkt1103
Cites_doi 10.1093/bioinformatics/18.suppl_1.S225
10.1093/nar/gkn863
10.1186/1471-2105-5-112
10.1023/A:1010933404324
10.1093/bioinformatics/btm409
10.1109/CIBCB.2005.1594924
10.1093/bioinformatics/btn302
10.1104/pp.105.060376
10.1093/nar/gkl228
10.1109/TAC.1974.1100705
10.1093/nar/gkn751
10.1093/bioinformatics/18.5.715
10.1007/BF01889584
10.1093/nar/gki285
10.1093/nar/gkn282
10.1093/bioinformatics/bti1052
10.1038/msb4100155
10.1093/bioinformatics/bti1012
10.1186/1471-2105-5-76
10.1186/1471-2105-8-139
10.1038/nbt1094-994
10.1093/nar/gkl438
10.1093/bioinformatics/btg217
10.1186/1752-0509-3-33
10.1214/aos/1176344136
10.1093/nar/gki866
10.1186/gb-2009-10-3-r28
10.1093/nar/gkm900
ContentType Journal Article
Copyright COPYRIGHT 2010 BioMed Central Ltd.
Copyright ©2010 Dale et al; licensee BioMed Central Ltd. 2010 Dale et al; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2010 BioMed Central Ltd.
– notice: Copyright ©2010 Dale et al; licensee BioMed Central Ltd. 2010 Dale et al; licensee BioMed Central Ltd.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
ISR
7X8
5PM
DOA
DOI 10.1186/1471-2105-11-15
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE

MEDLINE - Academic
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 15
ExternalDocumentID oai_doaj_org_article_4ed588c9092d4faead02aef9db59364e
oai_biomedcentral_com_1471_2105_11_15
A219480842
10_1186_1471_2105_11_15
20064214
Genre Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NLM NIH HHS
  grantid: R01 LM009651
– fundername: NLM NIH HHS
  grantid: R01 LM009651-02
– fundername: NLM NIH HHS
  grantid: LM009651
GroupedDBID ---
-A0
0R~
23N
2VQ
2WC
3V.
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACRMQ
ADBBV
ADINQ
ADRAZ
ADUKV
AEAQA
AENEX
AFGXO
AFKRA
AFNRJ
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C24
C6C
CCPQU
CGR
CS3
CUY
CVF
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBS
ECM
EIF
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
IPNFZ
ISR
ITC
K6V
K7-
KQ8
LK8
M0N
M1P
M48
M7P
MK~
ML0
M~E
NPM
O5R
O5S
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
ALIPV
CITATION
EBLON
H13
PGMZT
7X8
ABVAZ
5PM
ID FETCH-LOGICAL-b684t-5514c0362d20ea3c1cebc45bacd271143376aebc2ea9a93f67634854e1e47ea33
IEDL.DBID RBZ
ISSN 1471-2105
IngestDate Mon Sep 09 06:04:11 EDT 2024
Tue Sep 17 21:22:41 EDT 2024
Wed May 22 07:12:23 EDT 2024
Fri Aug 16 09:24:37 EDT 2024
Wed Jul 24 18:22:37 EDT 2024
Tue Jul 23 04:32:42 EDT 2024
Wed Sep 25 21:14:08 EDT 2024
Thu Sep 12 19:56:42 EDT 2024
Thu May 23 23:13:49 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b684t-5514c0362d20ea3c1cebc45bacd271143376aebc2ea9a93f67634854e1e47ea33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1186/1471-2105-11-15
PMID 20064214
PQID 733314830
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_4ed588c9092d4faead02aef9db59364e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3146072
biomedcentral_primary_oai_biomedcentral_com_1471_2105_11_15
proquest_miscellaneous_733314830
gale_infotracmisc_A219480842
gale_infotracacademiconefile_A219480842
gale_incontextgauss_ISR_A219480842
crossref_primary_10_1186_1471_2105_11_15
pubmed_primary_20064214
PublicationCentury 2000
PublicationDate 2010-01-08
PublicationDateYYYYMMDD 2010-01-08
PublicationDate_xml – month: 01
  year: 2010
  text: 2010-01-08
  day: 08
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle BMC bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2010
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References 18689840 - Bioinformatics. 2008 Aug 15;24(16):i56-62
16893953 - Nucleic Acids Res. 2006;34(13):3687-97
12169551 - Bioinformatics. 2002;18 Suppl 1:S225-32
18974181 - Nucleic Acids Res. 2009 Jan;37(Database issue):D464-70
19284550 - Genome Biol. 2009;10(3):R28
19284618 - BMC Syst Biol. 2009;3:33
17766269 - Bioinformatics. 2007 Oct 15;23(20):2775-83
18477636 - Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W423-6
16845105 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W714-9
12050068 - Bioinformatics. 2002 May;18(5):715-24
15189570 - BMC Bioinformatics. 2004 Jun 9;5:76
17593909 - Mol Syst Biol. 2007;3:121
15961494 - Bioinformatics. 2005 Jun;21 Suppl 1:i478-86
16214803 - Nucleic Acids Res. 2005;33(17):5691-702
15745999 - Nucleic Acids Res. 2005;33(4):1399-409
12967966 - Bioinformatics. 2003 Sep 1;19(13):1692-8
15312235 - BMC Bioinformatics. 2004 Aug 16;5:112
18981052 - Nucleic Acids Res. 2009 Jan;37(Database issue):D619-22
15888675 - Plant Physiol. 2005 May;138(1):27-37
17965431 - Nucleic Acids Res. 2008 Jan;36(Database issue):D623-31
15961492 - Bioinformatics. 2005 Jun;21 Suppl 1:i468-77
17462086 - BMC Bioinformatics. 2007;8:139
3472_CR9
S Okuda (3472_CR24) 2008; 36
3472_CR8
G Kastenmuller (3472_CR28) 2008; 24
3472_CR7
Y Yamanishi (3472_CR36) 2005; 21
L Breiman (3472_CR18) 1996; 24
S Paley (3472_CR3) 2002; 18
L Pireddu (3472_CR32) 2005
R Caspi (3472_CR4) 2008; 36
H Akaike (3472_CR16) 1974; 19
A Feist (3472_CR2) 2007; 3
P Zhang (3472_CR6) 2005; 138
A Cakmak (3472_CR35) 2007; 23
3472_CR23
A Varma (3472_CR26) 1994; 12
L Liao (3472_CR27) 2002
P Karp (3472_CR11) 2002; 18
J Sun (3472_CR30) 2004; 5
G Schwarz (3472_CR17) 1978; 6
Y Ye (3472_CR22) 2005; 21
M Green (3472_CR5) 2004; 5
G Kastenmuller (3472_CR29) 2009; 10
CJ Stone (3472_CR15) 1996
D McShan (3472_CR34) 2003; 19
W Buntine (3472_CR12) 1991
L Pireddu (3472_CR33) 2006; 34
I Keseler (3472_CR1) 2009; 37
R Overbeek (3472_CR20) 2005; 33
M DeJongh (3472_CR21) 2007; 8
L Breiman (3472_CR19) 2001; 45
M Green (3472_CR25) 2006; 34
W Buntine (3472_CR14) 1992; 2
S Seo (3472_CR10) 2009; 3
JW Pinney (3472_CR31) 2005; 33
3472_CR13
References_xml – volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 3472_CR18
  publication-title: Machine Learning
  contributor:
    fullname: L Breiman
– volume: 18
  start-page: S225
  year: 2002
  ident: 3472_CR11
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.suppl_1.S225
  contributor:
    fullname: P Karp
– ident: 3472_CR23
  doi: 10.1093/nar/gkn863
– volume: 5
  start-page: 112
  year: 2004
  ident: 3472_CR30
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-5-112
  contributor:
    fullname: J Sun
– ident: 3472_CR13
– volume: 45
  start-page: 5
  year: 2001
  ident: 3472_CR19
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
  contributor:
    fullname: L Breiman
– volume-title: A Course in Probability and Statistics
  year: 1996
  ident: 3472_CR15
  contributor:
    fullname: CJ Stone
– volume: 23
  start-page: 2775
  issue: 20
  year: 2007
  ident: 3472_CR35
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm409
  contributor:
    fullname: A Cakmak
– start-page: 1
  volume-title: Computational Intelligence in Bioinformatics and Computational Biology, 2005. CIBCB '05. Proceedings of the 2005 IEEE Symposium on
  year: 2005
  ident: 3472_CR32
  doi: 10.1109/CIBCB.2005.1594924
  contributor:
    fullname: L Pireddu
– ident: 3472_CR8
– volume: 24
  start-page: i56
  issue: 16
  year: 2008
  ident: 3472_CR28
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn302
  contributor:
    fullname: G Kastenmuller
– volume: 138
  start-page: 27
  year: 2005
  ident: 3472_CR6
  publication-title: Plant Physiol
  doi: 10.1104/pp.105.060376
  contributor:
    fullname: P Zhang
– volume: 34
  start-page: W714
  issue: suppl 2
  year: 2006
  ident: 3472_CR33
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkl228
  contributor:
    fullname: L Pireddu
– volume: 19
  start-page: 716
  issue: 6
  year: 1974
  ident: 3472_CR16
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.1974.1100705
  contributor:
    fullname: H Akaike
– volume: 37
  start-page: D464
  year: 2009
  ident: 3472_CR1
  publication-title: Nuc Acids Res
  doi: 10.1093/nar/gkn751
  contributor:
    fullname: I Keseler
– volume: 18
  start-page: 715
  issue: 5
  year: 2002
  ident: 3472_CR3
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.5.715
  contributor:
    fullname: S Paley
– volume: 2
  start-page: 63
  year: 1992
  ident: 3472_CR14
  publication-title: Statistics and Computing
  doi: 10.1007/BF01889584
  contributor:
    fullname: W Buntine
– volume: 33
  start-page: 1399
  issue: 4
  year: 2005
  ident: 3472_CR31
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gki285
  contributor:
    fullname: JW Pinney
– volume: 36
  start-page: W423
  year: 2008
  ident: 3472_CR24
  publication-title: Nuc Acids Res
  doi: 10.1093/nar/gkn282
  contributor:
    fullname: S Okuda
– start-page: 469
  volume-title: Proceedings of the 6th International Conference on Knowledge-Based Intelligent Information and Engineering Systems (KES 02)
  year: 2002
  ident: 3472_CR27
  contributor:
    fullname: L Liao
– volume: 21
  start-page: i478
  issue: Suppl 1
  year: 2005
  ident: 3472_CR22
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti1052
  contributor:
    fullname: Y Ye
– volume: 3
  start-page: 121
  year: 2007
  ident: 3472_CR2
  publication-title: Mol Syst Biol
  doi: 10.1038/msb4100155
  contributor:
    fullname: A Feist
– volume: 21
  start-page: i468
  issue: suppl 1
  year: 2005
  ident: 3472_CR36
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti1012
  contributor:
    fullname: Y Yamanishi
– volume-title: Tech. Rep. FIA-91-28, NASA Ames Research Center
  year: 1991
  ident: 3472_CR12
  contributor:
    fullname: W Buntine
– volume: 5
  start-page: 76
  year: 2004
  ident: 3472_CR5
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-5-76
  contributor:
    fullname: M Green
– volume: 8
  start-page: 139
  year: 2007
  ident: 3472_CR21
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-139
  contributor:
    fullname: M DeJongh
– ident: 3472_CR9
– volume: 12
  start-page: 994
  year: 1994
  ident: 3472_CR26
  publication-title: Bio/Technology
  doi: 10.1038/nbt1094-994
  contributor:
    fullname: A Varma
– volume: 34
  start-page: 3687
  year: 2006
  ident: 3472_CR25
  publication-title: Nuc Acids Res
  doi: 10.1093/nar/gkl438
  contributor:
    fullname: M Green
– volume: 19
  start-page: 1692
  issue: 13
  year: 2003
  ident: 3472_CR34
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg217
  contributor:
    fullname: D McShan
– volume: 3
  start-page: 33
  year: 2009
  ident: 3472_CR10
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-3-33
  contributor:
    fullname: S Seo
– ident: 3472_CR7
– volume: 6
  start-page: 461
  issue: 2
  year: 1978
  ident: 3472_CR17
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176344136
  contributor:
    fullname: G Schwarz
– volume: 33
  start-page: 5691
  issue: 17
  year: 2005
  ident: 3472_CR20
  publication-title: Nuc Acids Res
  doi: 10.1093/nar/gki866
  contributor:
    fullname: R Overbeek
– volume: 10
  start-page: R28
  issue: 3
  year: 2009
  ident: 3472_CR29
  publication-title: Genome Biol
  doi: 10.1186/gb-2009-10-3-r28
  contributor:
    fullname: G Kastenmuller
– volume: 36
  start-page: D623
  year: 2008
  ident: 3472_CR4
  publication-title: Nuc Acids Res
  doi: 10.1093/nar/gkm900
  contributor:
    fullname: R Caspi
SSID ssj0017805
Score 2.4044273
Snippet A key challenge in systems biology is the reconstruction of an organism's metabolic network from its genome sequence. One strategy for addressing this problem...
Abstract Background A key challenge in systems biology is the reconstruction of an organism's metabolic network from its genome sequence. One strategy for...
Background A key challenge in systems biology is the reconstruction of an organism's metabolic network from its genome sequence. One strategy for addressing...
BACKGROUNDA key challenge in systems biology is the reconstruction of an organism's metabolic network from its genome sequence. One strategy for addressing...
BACKGROUND: A key challenge in systems biology is the reconstruction of an organism's metabolic network from its genome sequence. One strategy for addressing...
Abstract Background A key challenge in systems biology is the reconstruction of an organism's metabolic network from its genome sequence. One strategy for...
SourceID doaj
pubmedcentral
biomedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 15
SubjectTerms Artificial Intelligence
Computational Biology - methods
Databases, Factual
DNA sequencing
Genetic algorithms
Genome
Machine learning
Metabolic Networks and Pathways
Nucleotide sequencing
Software
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1dSxwxMIhQ8KVoq-36xVKE-rK4H8kmwadr8bCCPlQF30I2O1FB9sS7Q_z3zmT3jgs-9KVvu0n2YybzmUxmGDtqZW6tb0RWWGkzjhZ2ZlEGZr5C5QxNAzys6V5e1ee3_OJO3K2U-qKYsD49cI-4Ew6tUMrpXJct9xYBz0sLXrcN1aLjEKRvIRbO1LB_QJn6w7ki_Cw6NWJI6lOo-mTZRifKqBpudND9KdJPIY3_R2G9oq3iSMoV1TTeZJ8HmzId9bBssTXovrBPfZXJt69MX4aASUiHChH3aV82epqiwUrXSAdPjy6l4sSv9i19fqHNG5qwbXY7Prv5fZ4NFROyplZ8lpH540gntWUOtnKFg8Zx0VjXlhI9nwrFicWmEqy2uvI1SheuBIcCuMQHqh223k06-M5S6VUBoGvhc8XBSa153Xrr8FY6ZPKEnUZ4M899dgxD-arjHmQdQ1g3hHV0OUwhEna8wPLyweCOqPrj0F80C9H7QwNSiRmoxPyLShL2g-bQUMaLjkJq7u18OjV_rv-aEcpsrhDIMmE_h0F-gj_u7HBCARFCSbKikfvRSGRJF3WnC1Ix1EVxbB1M5lMjqwqZQFWIvm895SzhorUdXhY8YTKiqQjwuKd7fAgJwfGVdS7L3f-BqT220QdI0Mr5PlufvczhAO2uWXMYWOwdaCUqXA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: PubMed Central
  dbid: RPM
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3bahQxNLQFwRfx7miVQQR9me5ckkmCT7VYqrAiaqFvIckk68J2dtkLpX_fczKZ0tg332Yml0ly7snJOYR86HiptTesqDTXBQUNu9DAAwvfgHB2xjga9nSnP9qzc_r9gl3sETbehQlO-9bMj_rF5VE__xt8K1eXdjL6iU1-Tk-gn7bk9WSf7POmGU30eHSAQfpjDJ9KtJMK_wx2DcMLZBUmqkEjmtbVv1fcF4lkCgH877PpO3Iq9aG8I5ROH5NHUZvMj4dRPyF7rn9KHgz5Ja-fETkNrpIuj7khZvmQMHqTg6qKz4ABi7nNMS3xlb7OV2s8tkFQPSfnp1__nJwVMVdCYVpBtwUqPhalUVeXTje2ss5Yyoy2Xc3B5mmAkWj4VDsttWx8C3yFCkZd5SiHBs0LctAve_eK5NyLyjnZMl8K6iyXkrad1xZeuQXyzsjnZN3UaoiLoTBSdVoCRKMQAAoBAMaGqlhGPo2rfNswGCKivV_1C0Ih6T98WK5nKuKDoq5jQlhZyrqjXgNhlLV2XnYGcxVSl5H3CEOFsS56dKaZ6d1mo779_qWOgVtTAZOsM_IxVvJLGLjV8W4CLAiGx0pqHiY1gRhtUpyPqKKwCD3YerfcbRQgKqCtaGD5Xg6YczuvESEzwhOcSiaelgBlhFDgkRJe_3fLN-Th4A-BG-WH5GC73rm3oGZtzbtAVjdijCeR
  priority: 500
  providerName: National Library of Medicine
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdR1da9RAcJGK4IvU-hWtJYigL9Eku8nuIiJVLFU4H9SDvi2bzexZOHLt5Q69f-_MJtd2bX1Lsh9k53uS-WDsZStza31TZYWVNhNoYWcWZWDmOSpnaBoQ4Zvu5Ft9PBVfT6qTy3ZAIwD7G1076ic1Xc7f_DnffECGfx8YXtVvC9ocXZeKcsQo4fx2Kbggcp-Iy18KVLx_rO1zwyIqCpyHrM9_U9_nkcYKhf2vi-8r-iuOrbyirI522b3RykwPB7K4z25Bt8fuDH0nNw-YnoQQSkjHnhGzdGgk3adowtI1Usb81KXUrvi33aRnS_qdQyh8yKZHn39-Os7GHgpZUyuxysggcqSl2jIHy13hoHGiaqxrS4m-EEcBY_FRCVZbzX2N8kaoSkABQuIC_ojtdIsOnrBUelUA6LryuRLgpNaibr11eCsdsn3C3kVwM2dDvQxDFazjEWQmQwgwhAB0QkxRJez1FsoXC4ODourrUz8SFqL9w4PFcmZGhjMC2kopp3NdtsJbZJi8tOB121APQwEJe0E4NFQDo6Mgm5ld97358uO7OUQpLhQeskzYq3GSX-CLOzvmLCBAqGxWNHM_molM6qLhdEsqhoYosq2Dxbo3knNkC8URfI8Hyrk415YgEyYjmooOHo90p79CiXDcss5l-fS_ez5jd4c4CPpAvs92Vss1PEfzatUcBLb5CyFnIL0
  priority: 102
  providerName: Scholars Portal
Title Machine learning methods for metabolic pathway prediction
URI https://www.ncbi.nlm.nih.gov/pubmed/20064214
https://search.proquest.com/docview/733314830
http://dx.doi.org/10.1186/1471-2105-11-15
https://pubmed.ncbi.nlm.nih.gov/PMC3146072
https://doaj.org/article/4ed588c9092d4faead02aef9db59364e
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBdby2AvY-u-vHXGjMH2YmbLsiWzp2Q07QIpo10h7EXI8qkrFKc0CaP__e5kN6vavvXFSawPojud7k46_Y6xT63MjHFNmeZGmlSghZ0aXANTV6ByhqYB4fd0Z4fVwYmYzsv5f7DoWyf4uaq-5tQUHZOSboDRdfJtThjn5JiPf28ODAia318kGioPKD73dHDrZvt5oJA8bv_d1fmGegpDJ2_ooslz9mwwIpNRz_UX7BF0O-xJn1by6iWrZz5CEpIhJcRp0ueJXiZoodJ3ZPz5mU0oG_Ffc5VcXNJpDXHoFTuZ7P36fpAOKRLSplJilZK9Y0kJtTwDU9jcQmNF2RjbcomuToHrh8FXHExt6sJVuJwIVQrIQUhsULxmW92ig7cskU7lAEhZlykBVta1qFpnLP6UFqU6Yt8CuumLHg5DE0B1WIKyoonqmqiOPobOy4h9uabypqH3P1R1t-qYuBD071_grNCDPGkBbamUrbOat8IZlIeMG3B121CKQgER-0g81ARx0VEMzalZL5f6x_GRHuEiLRQOkkfs81DJLfCPWzNcSUCCECpWUHM3qIkyaIPi5HqqaCqiwLUOFuullkWBs14VSL43_czZjIs2cwTPRcRkMKeCgYcl3dkfjwCOXVaZ5O8exJL37GkfCkF75Ltsa3W5hg9oYa2amD2Wc4lPNdmP2fZoND2e4ud47_DnUex3LfA5Eyr2Mhj7LbJ_cdIpBw
link.rule.ids 108,230,315,733,786,790,870,891,2115,2236,24346,24965,27957,27958,31755,33409,33780,53827,53829,76169,76170
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQKwSXqrwDBSKEBJdAHk5si1OLqLbQ7QFaqeJi2Y69rLRNqn0I9d8z43hXa8qNWxI7Vjyeh8eZ-YaQty3LlXK6zgrFVEZhh50p0IGZq8A4W60t9We647NmdEG_XtaXIT0ac2H0ldHTPoCGIlDxh-009JnX3euQsUHiefOxwNHBd6kxSQwzzncZ4oyj7370c_NPAdH7fa5R6ByAfv4xwF_J77PIZnlo_9sKfMuCxdGVW-bqeJ_shX1mejhM4gG5Y7uH5O5QefLmERFjH0Rp01A1YpIOpaQXKZAEr4E3ZlOTYsHi3-omvZ7jDx1cxMfk4vjL-edRFqooZLrhdJnhlsignWrL3KrKFMZqQ2utTFsy8IYqUDEKHpVWCSUq14DGobymtrCUwQvVE7LT9Z19RlLmeGGtaGqXc2oNE4I2rVMGbpkBwU_Ip4hu8npAzJCIYR23wDpKpLpEqoMbIos6Ie_XVN686F0U3tzueoSrEI3vH_TziQzsIalta86NyEXZUqdAZPJSWSdajVUMqU3IG1xDiSgYHYbZTNRqsZAnP77LQ9DjlMMky4S8C51cDx9uVMhaAIIgcFbU8yDqCWJqouZ0zSoSmzC2rbP9aiFZVYFg8ArI93TgnM288LyHlgVNCIt4Kpp43NJNf3mQcBiyyVn5_L-W5DW5Nzofn8rTk7NvL8j9IXICj9QPyM5yvrIvYUO21K-8nP0BKKgyeQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQw0KqKQFyq8k5bIEJIcAnNw7EdcWqBVQtshQqVKi6W7djLqttktQ-h_j0ziXe1pty4JfHEkufpsedByOuap0o5XSaZ4iqhsMNOFOjAxBVgnK3WlnZnusMzdnJBP1-Wl1tkuMqF0ddGj1tfNBQLFb_bTEOfdLobHszV4bR2vcgLdpjh9OC8lJglhinnd8A7Z8jk58c_15cKWL6_SzbywL7Szz8m-Cv7fRIYra62_20NvmHCwvDKDXs12CU7fqMZH_Wc8YBs2eYhudu3nrx5RKphF0VpY982YhT3vaTnMeAEn4E5JmMTY8fi3-omns7wRgep-JhcDD79-HCS-DYKiWaCLhLcExk0VHWeWlWYzFhtaKmVqXMO7lABOkbBp9yqSlWFY6ByqCipzSzl8EPxhGw3bWOfkZg7kVlbsdKlglrDq4qy2ikDr9yA5EfkfYA3Oe1LZkgsYh2OACElYl0i1sEPkVkZkbcrLK9_7HwUwW6DHiMVgvm7D-1sJL3MSWrrUghTpVVeU6dAZtJcWVfVGtsYUhuRV0hDiWUwGoyzGanlfC5Pv5_LI1DkVMAi84i88UCuRcZTPm0BEIKVswLIgwAS5NQEw_GKVSQOYXBbY9vlXPKiAMkQBaDvac8563XhgQ_NMxoRHvBUsPBwpBn_6qqEw5Qs5fnef5HkJbn37eNAfj09-7JP7veRE3ikfkC2F7OlfQ4bsoV-0YnZH7s_Mk0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+methods+for+metabolic+pathway+prediction&rft.jtitle=BMC+bioinformatics&rft.au=Dale%2C+Joseph+M&rft.au=Popescu%2C+Liviu&rft.au=Karp%2C+Peter+D&rft.date=2010-01-08&rft.eissn=1471-2105&rft.volume=11&rft.spage=15&rft_id=info:doi/10.1186%2F1471-2105-11-15&rft_id=info%3Apmid%2F20064214&rft.externalDocID=20064214
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon