Selection of DDX5 as a novel internal control for Q-RT-PCR from microarray data using a block bootstrap re-sampling scheme
The development of microarrays permits us to monitor transcriptomes on a genome-wide scale. To validate microarray measurements, quantitative-real time-reverse transcription PCR (Q-RT-PCR) is one of the most robust and commonly used approaches. The new challenge in gene quantification analysis is ho...
Saved in:
Published in | BMC genomics Vol. 8; no. 1; p. 140 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
01.06.2007
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1471-2164 1471-2164 |
DOI | 10.1186/1471-2164-8-140 |
Cover
Loading…
Abstract | The development of microarrays permits us to monitor transcriptomes on a genome-wide scale. To validate microarray measurements, quantitative-real time-reverse transcription PCR (Q-RT-PCR) is one of the most robust and commonly used approaches. The new challenge in gene quantification analysis is how to explicitly incorporate statistical estimation in such studies. In the realm of statistical analysis, the various available methods of the probe level normalization for microarray analysis may result in distinctly different target selections and variation in the scores for the correlation between microarray and Q-RT-PCR. Moreover, it remains a major challenge to identify a proper internal control for Q-RT-PCR when confirming microarray measurements.
Sixty-six Affymetrix microarray slides using lung adenocarcinoma tissue RNAs were analyzed by a statistical re-sampling method in order to detect genes with minimal variation in gene expression. By this approach, we identified DDX5 as a novel internal control for Q-RT-PCR. Twenty-three genes, which were differentially expressed between adjacent normal and tumor samples, were selected and analyzed using 24 paired lung adenocarcinoma samples by Q-RT-PCR using two internal controls, DDX5 and GAPDH. The percentage correlation between Q-RT-PCR and microarray were 70% and 48% by using DDX5 and GAPDH as internal controls, respectively.
Together, these quantification strategies for Q-RT-PCR data processing procedure, which focused on minimal variation, ought to significantly facilitate internal control evaluation and selection for Q-RT-PCR when corroborating microarray data. |
---|---|
AbstractList | Abstract Background The development of microarrays permits us to monitor transcriptomes on a genome-wide scale. To validate microarray measurements, quantitative-real time-reverse transcription PCR (Q-RT-PCR) is one of the most robust and commonly used approaches. The new challenge in gene quantification analysis is how to explicitly incorporate statistical estimation in such studies. In the realm of statistical analysis, the various available methods of the probe level normalization for microarray analysis may result in distinctly different target selections and variation in the scores for the correlation between microarray and Q-RT-PCR. Moreover, it remains a major challenge to identify a proper internal control for Q-RT-PCR when confirming microarray measurements. Results Sixty-six Affymetrix microarray slides using lung adenocarcinoma tissue RNAs were analyzed by a statistical re-sampling method in order to detect genes with minimal variation in gene expression. By this approach, we identified DDX5 as a novel internal control for Q-RT-PCR. Twenty-three genes, which were differentially expressed between adjacent normal and tumor samples, were selected and analyzed using 24 paired lung adenocarcinoma samples by Q-RT-PCR using two internal controls, DDX5 and GAPDH. The percentage correlation between Q-RT-PCR and microarray were 70% and 48% by using DDX5 and GAPDH as internal controls, respectively. Conclusion Together, these quantification strategies for Q-RT-PCR data processing procedure, which focused on minimal variation, ought to significantly facilitate internal control evaluation and selection for Q-RT-PCR when corroborating microarray data. The development of microarrays permits us to monitor transcriptomes on a genome-wide scale. To validate microarray measurements, quantitative-real time-reverse transcription PCR (Q-RT-PCR) is one of the most robust and commonly used approaches. The new challenge in gene quantification analysis is how to explicitly incorporate statistical estimation in such studies. In the realm of statistical analysis, the various available methods of the probe level normalization for microarray analysis may result in distinctly different target selections and variation in the scores for the correlation between microarray and Q-RT-PCR. Moreover, it remains a major challenge to identify a proper internal control for Q-RT-PCR when confirming microarray measurements. Sixty-six Affymetrix microarray slides using lung adenocarcinoma tissue RNAs were analyzed by a statistical re-sampling method in order to detect genes with minimal variation in gene expression. By this approach, we identified DDX5 as a novel internal control for Q-RT-PCR. Twenty-three genes, which were differentially expressed between adjacent normal and tumor samples, were selected and analyzed using 24 paired lung adenocarcinoma samples by Q-RT-PCR using two internal controls, DDX5 and GAPDH. The percentage correlation between Q-RT-PCR and microarray were 70% and 48% by using DDX5 and GAPDH as internal controls, respectively. Together, these quantification strategies for Q-RT-PCR data processing procedure, which focused on minimal variation, ought to significantly facilitate internal control evaluation and selection for Q-RT-PCR when corroborating microarray data. The development of microarrays permits us to monitor transcriptomes on a genome-wide scale. To validate microarray measurements, quantitative-real time-reverse transcription PCR (Q-RT-PCR) is one of the most robust and commonly used approaches. The new challenge in gene quantification analysis is how to explicitly incorporate statistical estimation in such studies. In the realm of statistical analysis, the various available methods of the probe level normalization for microarray analysis may result in distinctly different target selections and variation in the scores for the correlation between microarray and Q-RT-PCR. Moreover, it remains a major challenge to identify a proper internal control for Q-RT-PCR when confirming microarray measurements.BACKGROUNDThe development of microarrays permits us to monitor transcriptomes on a genome-wide scale. To validate microarray measurements, quantitative-real time-reverse transcription PCR (Q-RT-PCR) is one of the most robust and commonly used approaches. The new challenge in gene quantification analysis is how to explicitly incorporate statistical estimation in such studies. In the realm of statistical analysis, the various available methods of the probe level normalization for microarray analysis may result in distinctly different target selections and variation in the scores for the correlation between microarray and Q-RT-PCR. Moreover, it remains a major challenge to identify a proper internal control for Q-RT-PCR when confirming microarray measurements.Sixty-six Affymetrix microarray slides using lung adenocarcinoma tissue RNAs were analyzed by a statistical re-sampling method in order to detect genes with minimal variation in gene expression. By this approach, we identified DDX5 as a novel internal control for Q-RT-PCR. Twenty-three genes, which were differentially expressed between adjacent normal and tumor samples, were selected and analyzed using 24 paired lung adenocarcinoma samples by Q-RT-PCR using two internal controls, DDX5 and GAPDH. The percentage correlation between Q-RT-PCR and microarray were 70% and 48% by using DDX5 and GAPDH as internal controls, respectively.RESULTSSixty-six Affymetrix microarray slides using lung adenocarcinoma tissue RNAs were analyzed by a statistical re-sampling method in order to detect genes with minimal variation in gene expression. By this approach, we identified DDX5 as a novel internal control for Q-RT-PCR. Twenty-three genes, which were differentially expressed between adjacent normal and tumor samples, were selected and analyzed using 24 paired lung adenocarcinoma samples by Q-RT-PCR using two internal controls, DDX5 and GAPDH. The percentage correlation between Q-RT-PCR and microarray were 70% and 48% by using DDX5 and GAPDH as internal controls, respectively.Together, these quantification strategies for Q-RT-PCR data processing procedure, which focused on minimal variation, ought to significantly facilitate internal control evaluation and selection for Q-RT-PCR when corroborating microarray data.CONCLUSIONTogether, these quantification strategies for Q-RT-PCR data processing procedure, which focused on minimal variation, ought to significantly facilitate internal control evaluation and selection for Q-RT-PCR when corroborating microarray data. BACKGROUND: The development of microarrays permits us to monitor transcriptomes on a genome-wide scale. To validate microarray measurements, quantitative-real time-reverse transcription PCR (Q-RT-PCR) is one of the most robust and commonly used approaches. The new challenge in gene quantification analysis is how to explicitly incorporate statistical estimation in such studies. In the realm of statistical analysis, the various available methods of the probe level normalization for microarray analysis may result in distinctly different target selections and variation in the scores for the correlation between microarray and Q-RT-PCR. Moreover, it remains a major challenge to identify a proper internal control for Q-RT-PCR when confirming microarray measurements. RESULTS: Sixty-six Affymetrix microarray slides using lung adenocarcinoma tissue RNAs were analyzed by a statistical re-sampling method in order to detect genes with minimal variation in gene expression. By this approach, we identified DDX5 as a novel internal control for Q-RT-PCR. Twenty-three genes, which were differentially expressed between adjacent normal and tumor samples, were selected and analyzed using 24 paired lung adenocarcinoma samples by Q-RT-PCR using two internal controls, DDX5 and GAPDH. The percentage correlation between Q-RT-PCR and microarray were 70% and 48% by using DDX5 and GAPDH as internal controls, respectively. CONCLUSION: Together, these quantification strategies for Q-RT-PCR data processing procedure, which focused on minimal variation, ought to significantly facilitate internal control evaluation and selection for Q-RT-PCR when corroborating microarray data. |
ArticleNumber | 140 |
Audience | Academic |
Author | Lin, Chi-Hung Hsu, Shih-Lan Huang, Chi-Ying F Whang-Peng, Jacqueline Wu, Yu-Chung Su, Li-Jen Chang, Ching-Wei Chen, Kuang-Chi Liang, Shu-Ching Chen, Chen-Hsin Lin, Chien-Ju |
AuthorAffiliation | 2 Department of Surgery, Veterans General Hospital, Taipei 112, Taiwan 6 Department of Education and Research, Taichung Veterans General Hospital, Taichung 407, Taiwan 10 Department of Computer Science and Information Engineering, National Taiwan University, Taipei 106, Taiwan 5 Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan 1 Institute of Cancer Research, National Health Research Institutes, Taipei 114, Taiwan 3 Institute of Statistical Science, Academia Sinica, Taipei 115, Taiwan 4 Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621, Taiwan 7 Institute of Epidemiology, National Taiwan University, Taipei 100, Taiwan 8 Institute of Bio-Pharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan 9 Institute of Biotechnology in Medicine, National Yang-Ming University, Taipei 112, Taiwan |
AuthorAffiliation_xml | – name: 4 Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621, Taiwan – name: 2 Department of Surgery, Veterans General Hospital, Taipei 112, Taiwan – name: 3 Institute of Statistical Science, Academia Sinica, Taipei 115, Taiwan – name: 9 Institute of Biotechnology in Medicine, National Yang-Ming University, Taipei 112, Taiwan – name: 1 Institute of Cancer Research, National Health Research Institutes, Taipei 114, Taiwan – name: 7 Institute of Epidemiology, National Taiwan University, Taipei 100, Taiwan – name: 8 Institute of Bio-Pharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan – name: 6 Department of Education and Research, Taichung Veterans General Hospital, Taichung 407, Taiwan – name: 5 Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan – name: 10 Department of Computer Science and Information Engineering, National Taiwan University, Taipei 106, Taiwan |
Author_xml | – sequence: 1 givenname: Li-Jen surname: Su fullname: Su, Li-Jen – sequence: 2 givenname: Ching-Wei surname: Chang fullname: Chang, Ching-Wei – sequence: 3 givenname: Yu-Chung surname: Wu fullname: Wu, Yu-Chung – sequence: 4 givenname: Kuang-Chi surname: Chen fullname: Chen, Kuang-Chi – sequence: 5 givenname: Chien-Ju surname: Lin fullname: Lin, Chien-Ju – sequence: 6 givenname: Shu-Ching surname: Liang fullname: Liang, Shu-Ching – sequence: 7 givenname: Chi-Hung surname: Lin fullname: Lin, Chi-Hung – sequence: 8 givenname: Jacqueline surname: Whang-Peng fullname: Whang-Peng, Jacqueline – sequence: 9 givenname: Shih-Lan surname: Hsu fullname: Hsu, Shih-Lan – sequence: 10 givenname: Chen-Hsin surname: Chen fullname: Chen, Chen-Hsin – sequence: 11 givenname: Chi-Ying F surname: Huang fullname: Huang, Chi-Ying F |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17540040$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk1v1DAQhiNURD_gzA1ZQkLikNZO7MS5IJVtgZUqAdsicbMmzmTr4sRbO1vR_noctqwa1MoHWzPvPLZn3v1kp3c9JslrRg8Zk8UR4yVLM1bwVKaM02fJ3jay8-C8m-yHcEUpK2UmXiS7rBScUk73krtztKgH43riWnJy8lMQCARI727QEtMP6HuwRLt-8M6S1nnyPV1cpN9mC9J615HOaO_Ae7glDQxA1sH0ywiordO_SO3cEAYPK-IxDdCt7JgN-hI7fJk8b8EGfHW_HyQ_Pp1ezL6kZ18_z2fHZ2ldyHxIG8EkMopNWVGdFVihxpbpimlaN1JSKppW8rIp2gwYipprBKRAKW14xniVHyTzDbdxcKVW3nTgb5UDo_4GnF8q8IPRFpXOQRaRB6Bz3nBeQ1tRITIoi5xWWEfWhw1rta47bDTGtoCdQKeZ3lyqpbtRTFa8KkUEfNwAauOeAEwz2nVqnKMa56hkPNMIeXf_Cu-u1xgG1Zmg0Vro0a2DKmlRsKIab3u7ES4h_s70rYtMPYrVMStELiRjo-rwEVVcDcbpRsO1JsYnBe8nBaM78PewhHUIan6-mGrfPOzY9qf_LBgFYiOIPgrBY6u0GWB0ZHyFsYpRNVr9kSYc_Ve3RT9R8QcI0_6- |
CitedBy_id | crossref_primary_10_1098_rsif_2014_0937 crossref_primary_10_18632_oncotarget_8713 crossref_primary_10_1371_journal_pone_0128190 crossref_primary_10_1155_2021_5005459 crossref_primary_10_1002_ijc_30851 crossref_primary_10_3389_fgene_2021_757169 crossref_primary_10_18632_oncotarget_4352 crossref_primary_10_1038_nature14122 crossref_primary_10_3892_ol_2020_11478 crossref_primary_10_1016_j_ceca_2022_102527 crossref_primary_10_1093_jnci_djr290 crossref_primary_10_1038_srep04351 crossref_primary_10_1186_s12967_016_1038_y crossref_primary_10_1016_j_imbio_2022_152239 crossref_primary_10_3892_or_2014_3701 crossref_primary_10_1007_s00280_009_1151_1 crossref_primary_10_1158_0008_5472_CAN_12_1842 crossref_primary_10_1371_journal_pone_0184902 crossref_primary_10_1042_BSR20193075 crossref_primary_10_1155_2020_6412593 crossref_primary_10_1098_rspb_2007_1761 crossref_primary_10_1155_2015_312047 crossref_primary_10_1038_srep13044 crossref_primary_10_1074_jbc_M112_373084 crossref_primary_10_1186_1471_2164_12_S3_S24 crossref_primary_10_7717_peerj_8625 crossref_primary_10_1038_onc_2016_265 crossref_primary_10_1016_j_bcp_2013_07_025 crossref_primary_10_1007_s11010_015_2542_8 crossref_primary_10_1007_s11060_015_1897_8 crossref_primary_10_1186_s12859_017_1794_6 crossref_primary_10_7717_peerj_10320 crossref_primary_10_1186_1755_8794_3_52 crossref_primary_10_1093_bioinformatics_btq104 crossref_primary_10_3892_ol_2019_10236 crossref_primary_10_3892_ijo_2020_5040 crossref_primary_10_3389_fonc_2019_01503 crossref_primary_10_1038_onc_2012_101 crossref_primary_10_3390_ijms21228479 crossref_primary_10_1007_s00432_020_03288_6 crossref_primary_10_1158_1535_7163_MCT_12_0030 crossref_primary_10_1158_0008_5472_CAN_19_0842 crossref_primary_10_3389_fonc_2021_670218 crossref_primary_10_3892_ol_2017_6594 crossref_primary_10_3892_ijmm_2018_3826 crossref_primary_10_3892_ijo_2019_4899 crossref_primary_10_1074_jbc_M112_380865 crossref_primary_10_1093_bioinformatics_btu811 crossref_primary_10_1155_2022_1560199 crossref_primary_10_1111_cpr_12343 crossref_primary_10_1186_1471_2407_12_75 crossref_primary_10_7554_eLife_09419 crossref_primary_10_1371_journal_pone_0139165 crossref_primary_10_1038_s41598_022_05728_4 crossref_primary_10_1016_j_prp_2022_153809 crossref_primary_10_18632_oncotarget_11884 crossref_primary_10_1016_j_bbrc_2012_10_123 crossref_primary_10_1186_s12967_017_1302_9 crossref_primary_10_1155_2014_345106 crossref_primary_10_1183_09031936_00015710 crossref_primary_10_1097_MD_0000000000023052 crossref_primary_10_1093_pcmedi_pbac017 crossref_primary_10_1016_j_jbi_2017_07_019 crossref_primary_10_1074_mcp_M114_045914 crossref_primary_10_1093_nar_gkw797 crossref_primary_10_1111_cas_15005 crossref_primary_10_1016_j_bbadis_2011_01_009 crossref_primary_10_1158_0008_5472_CAN_12_1097 crossref_primary_10_1097_MD_0000000000026439 crossref_primary_10_1089_cbr_2019_2782 crossref_primary_10_1371_journal_pone_0092395 crossref_primary_10_1371_journal_pone_0222298 crossref_primary_10_18632_aging_204386 crossref_primary_10_1097_MD_0000000000026474 crossref_primary_10_1016_j_bbrc_2016_11_100 crossref_primary_10_1088_1748_6041_6_2_025012 crossref_primary_10_1186_s12859_015_0845_0 crossref_primary_10_18632_aging_101441 crossref_primary_10_1016_j_cllc_2013_04_010 crossref_primary_10_1002_cam4_4386 crossref_primary_10_3389_fonc_2021_754290 crossref_primary_10_1186_1755_8794_1_64 crossref_primary_10_1172_JCI42275 crossref_primary_10_1007_s11033_020_05372_z crossref_primary_10_18632_aging_202292 crossref_primary_10_1016_j_gene_2021_145689 crossref_primary_10_1111_j_1349_7006_2011_02197_x crossref_primary_10_1186_s12890_020_1079_0 crossref_primary_10_1186_1471_2105_12_403 crossref_primary_10_1038_s41419_021_03763_z crossref_primary_10_3233_CBM_210242 crossref_primary_10_3389_fgene_2020_00547 crossref_primary_10_1371_journal_pone_0024829 crossref_primary_10_18632_oncotarget_19938 crossref_primary_10_1016_j_ccr_2012_03_045 crossref_primary_10_1002_sam_11180 crossref_primary_10_1007_s11033_012_2026_9 crossref_primary_10_1097_JTO_0b013e318212692e crossref_primary_10_1517_14728222_2010_504718 crossref_primary_10_18632_oncotarget_13153 crossref_primary_10_1126_sciadv_abg7073 crossref_primary_10_1016_j_bbrc_2019_09_032 crossref_primary_10_3389_fcell_2022_853596 crossref_primary_10_1038_onc_2017_352 crossref_primary_10_1016_j_canlet_2011_02_004 crossref_primary_10_1038_s41388_018_0603_7 crossref_primary_10_1371_journal_pgen_1004289 crossref_primary_10_1155_2021_6663990 crossref_primary_10_3390_jpm13010049 crossref_primary_10_1083_jcb_201209151 crossref_primary_10_3109_03602532_2011_560606 crossref_primary_10_1007_s13258_020_00948_2 crossref_primary_10_1038_nm_3909 crossref_primary_10_1007_s12253_018_0552_z crossref_primary_10_1371_journal_pone_0125766 crossref_primary_10_1007_s10528_023_10370_4 crossref_primary_10_18632_oncotarget_24070 crossref_primary_10_1186_s13000_016_0591_2 crossref_primary_10_3390_biomedicines8020019 crossref_primary_10_1073_pnas_1802973116 crossref_primary_10_2147_OTT_S325203 crossref_primary_10_1016_j_ygeno_2009_05_003 crossref_primary_10_1002_mgg3_528 crossref_primary_10_1158_0008_5472_CAN_18_4080 crossref_primary_10_1371_journal_pgen_1002650 crossref_primary_10_4161_cc_27267 crossref_primary_10_1177_1533034616657977 crossref_primary_10_1038_nmeth_3337 crossref_primary_10_1016_j_ebiom_2020_102689 crossref_primary_10_1073_pnas_1319269111 crossref_primary_10_1038_cddis_2015_418 crossref_primary_10_3389_fmolb_2021_663011 crossref_primary_10_1007_s10549_012_2068_7 crossref_primary_10_1158_1940_6207_CAPR_17_0295 crossref_primary_10_1097_JTO_0b013e3181fd6b04 crossref_primary_10_3390_genes12020269 crossref_primary_10_3390_ijms25179154 crossref_primary_10_1158_0008_5472_CAN_08_4210 crossref_primary_10_1007_s10142_023_01274_y crossref_primary_10_3390_genes10010036 crossref_primary_10_3389_fgene_2022_845373 crossref_primary_10_1002_pmic_201400233 crossref_primary_10_1097_PAI_0b013e3182233f9f crossref_primary_10_1371_journal_pone_0011847 crossref_primary_10_18632_oncotarget_21022 crossref_primary_10_3389_fgene_2020_00247 crossref_primary_10_7717_peerj_7125 crossref_primary_10_1038_ng_527 crossref_primary_10_3892_etm_2023_12069 crossref_primary_10_1016_j_gene_2018_11_022 crossref_primary_10_1186_1752_0509_4_162 crossref_primary_10_1007_s13238_014_0082_8 crossref_primary_10_1155_2014_193817 crossref_primary_10_1158_1940_6207_CAPR_10_0170 crossref_primary_10_3390_cancers11081134 crossref_primary_10_1515_med_2019_0053 crossref_primary_10_1593_neo_10390 crossref_primary_10_3389_fonc_2021_665388 crossref_primary_10_1080_21655979_2021_1964193 crossref_primary_10_3389_fonc_2021_680402 crossref_primary_10_1155_2022_7848771 crossref_primary_10_1186_1471_2105_11_483 crossref_primary_10_3389_fonc_2022_911316 crossref_primary_10_1016_S1470_2045_10_70042_5 crossref_primary_10_1016_j_cbpa_2009_12_008 crossref_primary_10_1038_emboj_2010_37 crossref_primary_10_1186_1755_8794_5_48 crossref_primary_10_1186_s12920_021_00967_2 crossref_primary_10_3389_fcell_2021_621147 crossref_primary_10_3109_15419061_2013_876017 crossref_primary_10_3390_data7050064 crossref_primary_10_1097_JTO_0b013e3181898774 crossref_primary_10_3390_ijms21093227 crossref_primary_10_1186_1471_2105_13_126 crossref_primary_10_3389_fcell_2021_633927 crossref_primary_10_1371_journal_pone_0013696 crossref_primary_10_1371_journal_pgen_1009899 crossref_primary_10_1038_onc_2011_419 crossref_primary_10_1093_bioinformatics_btu449 crossref_primary_10_1186_s12943_017_0682_z crossref_primary_10_1016_j_artmed_2017_03_010 crossref_primary_10_1186_1471_2164_10_26 crossref_primary_10_1038_onc_2012_325 crossref_primary_10_3390_cancers12102792 crossref_primary_10_18632_oncotarget_1970 crossref_primary_10_4137_CIN_S3899 crossref_primary_10_1158_1055_9965_EPI_10_0332 crossref_primary_10_1093_bioinformatics_btu679 crossref_primary_10_1371_journal_pgen_1008439 crossref_primary_10_1007_s11596_021_2378_2 crossref_primary_10_3390_jpm12030393 crossref_primary_10_1016_j_cellsig_2017_06_016 crossref_primary_10_1186_s12967_020_02474_x crossref_primary_10_1158_0008_5472_CAN_13_2775 crossref_primary_10_1186_2043_9113_3_10 crossref_primary_10_1080_01902148_2020_1844345 crossref_primary_10_3389_fbioe_2022_993820 crossref_primary_10_18632_oncotarget_7163 crossref_primary_10_1016_j_lungcan_2012_11_004 crossref_primary_10_2217_fon_2022_0319 crossref_primary_10_1155_2022_4338793 crossref_primary_10_1200_PO_23_00495 crossref_primary_10_3892_or_2021_8154 crossref_primary_10_3389_fimmu_2021_724741 crossref_primary_10_1016_j_bbrc_2008_12_093 crossref_primary_10_18632_oncotarget_1738 crossref_primary_10_3892_ijo_2013_2200 crossref_primary_10_18632_aging_203540 crossref_primary_10_1038_cddis_2013_204 crossref_primary_10_1186_s12920_016_0231_4 crossref_primary_10_1371_journal_pone_0017347 crossref_primary_10_1089_dna_2010_1128 crossref_primary_10_7717_peerj_7313 crossref_primary_10_1016_j_cbi_2022_109796 crossref_primary_10_18632_oncotarget_16701 crossref_primary_10_1128_MCB_01489_14 crossref_primary_10_1158_1078_0432_CCR_10_0138 crossref_primary_10_3389_fgene_2021_721021 crossref_primary_10_1245_s10434_010_0911_9 crossref_primary_10_1371_journal_pone_0071177 |
Cites_doi | 10.1038/4447 10.1016/j.ygyno.2004.08.021 10.1093/nar/gkl400 10.1016/S0168-1656(99)00163-7 10.3727/000000006783991872 10.1006/abio.2001.5369 10.1186/1471-2105-6-80 10.1093/nar/21.16.3761 10.1093/biostatistics/4.2.249 10.1016/S0301-472X(02)00806-8 10.1165/ajrcmb.17.3.2837 10.1089/cmb.2005.12.882 10.1038/nm733 10.1091/mbc.02-02-0030. 10.2144/04361ST04 10.1016/S0167-4781(01)00291-3 10.1186/gb-2002-3-7-research0034 10.1006/bbrc.1995.2785 10.1186/1471-2199-5-11 10.1093/bioinformatics/18.12.1585 10.1016/S0966-3274(03)00010-8 10.1101/gr.4.6.357 10.2144/00292rv02 10.1186/gb-2004-5-8-r59 10.1073/pnas.191502998 10.1023/A:1026298032009 10.1677/jme.0.0250169 10.3727/000000006783991962 10.1111/j.2517-6161.1995.tb02031.x 10.1214/aos/1176344552 10.1017/CBO9780511802843 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2007 BioMed Central Ltd. Copyright © 2007 Su et al; licensee BioMed Central Ltd. 2007 Su et al; licensee BioMed Central Ltd. |
Copyright_xml | – notice: COPYRIGHT 2007 BioMed Central Ltd. – notice: Copyright © 2007 Su et al; licensee BioMed Central Ltd. 2007 Su et al; licensee BioMed Central Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 5PM DOA |
DOI | 10.1186/1471-2164-8-140 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2164 |
EndPage | 140 |
ExternalDocumentID | oai_doaj_org_article_c3a865dfaac34d44baf90552a76309eb PMC1894975 oai_biomedcentral_com_1471_2164_8_140 A165358115 17540040 10_1186_1471_2164_8_140 |
Genre | Comparative Study Evaluation Studies Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Taiwan |
GeographicLocations_xml | – name: Taiwan |
GroupedDBID | --- 0R~ 23N 2VQ 2WC 2XV 4.4 53G 5VS 6J9 AAFWJ AAHBH AAJSJ AASML AAYXX ABDBF ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC C1A C6C CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P GROUPED_DOAJ GX1 H13 HYE IAO IGS IHR INH INR IPNFZ ISR ITC KQ8 M48 M~E O5R O5S OK1 OVT P2P PGMZT PIMPY PQQKQ RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A W2D WOQ WOW XSB -A0 ACRMQ ADINQ AIXEN C24 CGR CUY CVF ECM EIF NPM 7X8 ABVAZ AFGXO AFNRJ 5PM |
ID | FETCH-LOGICAL-b683t-d518e10ed790c26e9ecef1c91c0bd88005df847d6f2a1e5b4ceae0a000d421493 |
IEDL.DBID | RBZ |
ISSN | 1471-2164 |
IngestDate | Wed Aug 27 01:32:14 EDT 2025 Thu Aug 21 17:25:22 EDT 2025 Wed May 22 07:11:46 EDT 2024 Fri Jul 11 06:25:32 EDT 2025 Tue Jun 17 22:22:30 EDT 2025 Tue Jun 10 21:20:42 EDT 2025 Fri Jun 27 06:11:42 EDT 2025 Thu Jan 02 22:03:45 EST 2025 Thu Apr 24 23:04:22 EDT 2025 Tue Jul 01 03:42:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b683t-d518e10ed790c26e9ecef1c91c0bd88005df847d6f2a1e5b4ceae0a000d421493 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | http://dx.doi.org/10.1186/1471-2164-8-140 |
PMID | 17540040 |
PQID | 70661695 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c3a865dfaac34d44baf90552a76309eb pubmedcentral_primary_oai_pubmedcentral_nih_gov_1894975 biomedcentral_primary_oai_biomedcentral_com_1471_2164_8_140 proquest_miscellaneous_70661695 gale_infotracmisc_A165358115 gale_infotracacademiconefile_A165358115 gale_incontextgauss_ISR_A165358115 pubmed_primary_17540040 crossref_citationtrail_10_1186_1471_2164_8_140 crossref_primary_10_1186_1471_2164_8_140 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-06-01 2007-Jun-01 20070601 |
PublicationDateYYYYMMDD | 2007-06-01 |
PublicationDate_xml | – month: 06 year: 2007 text: 2007-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC genomics |
PublicationTitleAlternate | BMC Genomics |
PublicationYear | 2007 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | Y Benjamini (853_CR26) 1995; 57 KJ Livak (853_CR6) 1995; 4 M Jung (853_CR22) 2002; 4 SA Bustin (853_CR3) 2000; 25 Z Wu (853_CR41) 2005; 12 HK Hamalainen (853_CR14) 2001; 299 DJ Moore (853_CR16) 2001; 1521 PJ Gibbs (853_CR13) 2003; 12 JJ Chen (853_CR34) 2001; 61 YS Lin (853_CR11) 2006; 13 A Bhattacharjee (853_CR24) 2001; 98 A Szabo (853_CR18) 2004; 5 853_CR37 EL Lehmann (853_CR42) 1975 E Hubbell (853_CR38) 2002; 18 RJ Lipshutz (853_CR2) 1999; 21 853_CR39 853_CR36 LG Lee (853_CR5) 1993; 21 BJ Wilson (853_CR19) 2004; 5 LJ Su (853_CR35) 2006; 13 853_CR30 853_CR31 DG Ginzinger (853_CR17) 2002; 30 YW Chu (853_CR33) 1997; 17 RA Irizarry (853_CR40) 2003; 4 SN Lahiri (853_CR46) 2003 O Thellin (853_CR10) 1999; 75 J Vandesompele (853_CR15) 2002; 3 BR Kim (853_CR8) 2003; 25 AC Davison (853_CR45) 1997 JL Aerts (853_CR7) 2004; 36 A Ploner (853_CR25) 2005; 6 ML Whitfield (853_CR32) 2002; 13 KK Jain (853_CR1) 2004; 7 853_CR27 853_CR29 853_CR28 T Suzuki (853_CR9) 2000; 29 853_CR47 SA Contag (853_CR43) 2004; 95 J Bereta (853_CR12) 1995; 217 853_CR21 DG Beer (853_CR23) 2002; 8 853_CR20 B Efron (853_CR44) 1979; 7 JJ Yun (853_CR4) 2006; 34 10617337 - J Biotechnol. 1999 Oct 8;75(2-3):291-5 12490442 - Bioinformatics. 2002 Dec;18(12):1585-92 12184808 - Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 15216931 - Curr Opin Drug Discov Devel. 2004 May;7(3):285-9 15799785 - BMC Bioinformatics. 2005;6:80 15581972 - Gynecol Oncol. 2004 Dec;95(3):610-7 16108723 - J Comput Biol. 2005 Jul-Aug;12(6):882-93 14551036 - Transpl Immunol. 2003 Oct-Nov;12(1):89-97 11707567 - Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13790-5 15287981 - Genome Biol. 2004;5(8):R59 11726185 - Anal Biochem. 2001 Dec 1;299(1):63-70 11013345 - J Mol Endocrinol. 2000 Oct;25(2):169-93 9915496 - Nat Genet. 1999 Jan;21(1 Suppl):20-4 12925520 - Biostatistics. 2003 Apr;4(2):249-64 17017125 - Gene Expr. 2006;13(2):107-32 8526935 - Biochem Biophys Res Commun. 1995 Dec 5;217(1):363-9 14740490 - Biotechniques. 2004 Jan;36(1):84-6, 88, 90-1 12063017 - Exp Hematol. 2002 Jun;30(6):503-12 12118244 - Nat Med. 2002 Aug;8(8):816-24 8367293 - Nucleic Acids Res. 1993 Aug 11;21(16):3761-6 11690642 - Biochim Biophys Acta. 2001 Oct 31;1521(1-3):107-19 7580930 - PCR Methods Appl. 1995 Jun;4(6):357-62 12058064 - Mol Biol Cell. 2002 Jun;13(6):1977-2000 14677714 - Biotechnol Lett. 2003 Nov;25(21):1869-72 9308922 - Am J Respir Cell Mol Biol. 1997 Sep;17(3):353-60 16572587 - Gene Expr. 2006;13(1):15-26 11431363 - Cancer Res. 2001 Jul 1;61(13):5223-30 16840529 - Nucleic Acids Res. 2006;34(12):e85 15298701 - BMC Mol Biol. 2004 Aug 6;5:11 10948434 - Biotechniques. 2000 Aug;29(2):332-7 |
References_xml | – volume: 21 start-page: 20 issue: 1 Suppl year: 1999 ident: 853_CR2 publication-title: Nat Genet doi: 10.1038/4447 – ident: 853_CR39 – volume: 95 start-page: 610 issue: 3 year: 2004 ident: 853_CR43 publication-title: Gynecol Oncol doi: 10.1016/j.ygyno.2004.08.021 – volume: 34 start-page: e85 issue: 12 year: 2006 ident: 853_CR4 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl400 – volume: 75 start-page: 291 issue: 2-3 year: 1999 ident: 853_CR10 publication-title: J Biotechnol doi: 10.1016/S0168-1656(99)00163-7 – volume: 13 start-page: 107 issue: 2 year: 2006 ident: 853_CR35 publication-title: Gene Expr doi: 10.3727/000000006783991872 – volume: 299 start-page: 63 issue: 1 year: 2001 ident: 853_CR14 publication-title: Anal Biochem doi: 10.1006/abio.2001.5369 – volume: 6 start-page: 80 issue: 1 year: 2005 ident: 853_CR25 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-6-80 – ident: 853_CR20 – volume: 4 start-page: 9 year: 2002 ident: 853_CR22 publication-title: Biochemica – volume: 21 start-page: 3761 issue: 16 year: 1993 ident: 853_CR5 publication-title: Nucleic Acids Res doi: 10.1093/nar/21.16.3761 – volume: 4 start-page: 249 issue: 2 year: 2003 ident: 853_CR40 publication-title: Biostatistics doi: 10.1093/biostatistics/4.2.249 – ident: 853_CR47 – volume: 30 start-page: 503 issue: 6 year: 2002 ident: 853_CR17 publication-title: Exp Hematol doi: 10.1016/S0301-472X(02)00806-8 – ident: 853_CR29 – volume-title: Nonparametrics: Statistical Methods Based on Ranks year: 1975 ident: 853_CR42 – ident: 853_CR27 – volume: 17 start-page: 353 issue: 3 year: 1997 ident: 853_CR33 publication-title: Am J Respir Cell Mol Biol doi: 10.1165/ajrcmb.17.3.2837 – volume: 12 start-page: 882 issue: 6 year: 2005 ident: 853_CR41 publication-title: J Comput Biol doi: 10.1089/cmb.2005.12.882 – volume: 8 start-page: 816 issue: 8 year: 2002 ident: 853_CR23 publication-title: Nat Med doi: 10.1038/nm733 – volume: 13 start-page: 1977 issue: 6 year: 2002 ident: 853_CR32 publication-title: Mol Biol Cell doi: 10.1091/mbc.02-02-0030. – volume-title: Springer-Verlag, New York year: 2003 ident: 853_CR46 – volume: 36 start-page: 84 issue: 1 year: 2004 ident: 853_CR7 publication-title: Biotechniques doi: 10.2144/04361ST04 – volume: 1521 start-page: 107 issue: 1-3 year: 2001 ident: 853_CR16 publication-title: Biochim Biophys Acta doi: 10.1016/S0167-4781(01)00291-3 – volume: 61 start-page: 5223 issue: 13 year: 2001 ident: 853_CR34 publication-title: Cancer Res – volume: 7 start-page: 285 issue: 3 year: 2004 ident: 853_CR1 publication-title: Curr Opin Drug Discov Devel – ident: 853_CR31 – volume: 3 start-page: RESEARCH0034 issue: 7 year: 2002 ident: 853_CR15 publication-title: Genome Biol doi: 10.1186/gb-2002-3-7-research0034 – volume: 217 start-page: 363 issue: 1 year: 1995 ident: 853_CR12 publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.1995.2785 – volume: 5 start-page: 11 year: 2004 ident: 853_CR19 publication-title: BMC Mol Biol doi: 10.1186/1471-2199-5-11 – ident: 853_CR37 – volume: 18 start-page: 1585 issue: 12 year: 2002 ident: 853_CR38 publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.12.1585 – volume: 12 start-page: 89 issue: 1 year: 2003 ident: 853_CR13 publication-title: Transpl Immunol doi: 10.1016/S0966-3274(03)00010-8 – volume: 4 start-page: 357 issue: 6 year: 1995 ident: 853_CR6 publication-title: PCR Methods Appl doi: 10.1101/gr.4.6.357 – ident: 853_CR21 – volume: 29 start-page: 332 issue: 2 year: 2000 ident: 853_CR9 publication-title: Biotechniques doi: 10.2144/00292rv02 – volume: 5 start-page: R59 issue: 8 year: 2004 ident: 853_CR18 publication-title: Genome Biol doi: 10.1186/gb-2004-5-8-r59 – volume: 98 start-page: 13790 issue: 24 year: 2001 ident: 853_CR24 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.191502998 – volume: 25 start-page: 1869 issue: 21 year: 2003 ident: 853_CR8 publication-title: Biotechnol Lett doi: 10.1023/A:1026298032009 – ident: 853_CR28 – volume: 25 start-page: 169 issue: 2 year: 2000 ident: 853_CR3 publication-title: J Mol Endocrinol doi: 10.1677/jme.0.0250169 – volume: 13 start-page: 15 issue: 1 year: 2006 ident: 853_CR11 publication-title: Gene Expr doi: 10.3727/000000006783991962 – volume: 57 start-page: 289 issue: 1 year: 1995 ident: 853_CR26 publication-title: J R Statist Soc B doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 7 start-page: 1 year: 1979 ident: 853_CR44 publication-title: Ann Stat, doi: 10.1214/aos/1176344552 – ident: 853_CR30 – ident: 853_CR36 – volume-title: Bootstrap Methods and Their Application. year: 1997 ident: 853_CR45 doi: 10.1017/CBO9780511802843 – reference: 15581972 - Gynecol Oncol. 2004 Dec;95(3):610-7 – reference: 9915496 - Nat Genet. 1999 Jan;21(1 Suppl):20-4 – reference: 12058064 - Mol Biol Cell. 2002 Jun;13(6):1977-2000 – reference: 10948434 - Biotechniques. 2000 Aug;29(2):332-7 – reference: 11707567 - Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13790-5 – reference: 15799785 - BMC Bioinformatics. 2005;6:80 – reference: 17017125 - Gene Expr. 2006;13(2):107-32 – reference: 12925520 - Biostatistics. 2003 Apr;4(2):249-64 – reference: 14551036 - Transpl Immunol. 2003 Oct-Nov;12(1):89-97 – reference: 15287981 - Genome Biol. 2004;5(8):R59 – reference: 11726185 - Anal Biochem. 2001 Dec 1;299(1):63-70 – reference: 16840529 - Nucleic Acids Res. 2006;34(12):e85 – reference: 10617337 - J Biotechnol. 1999 Oct 8;75(2-3):291-5 – reference: 12118244 - Nat Med. 2002 Aug;8(8):816-24 – reference: 11690642 - Biochim Biophys Acta. 2001 Oct 31;1521(1-3):107-19 – reference: 12063017 - Exp Hematol. 2002 Jun;30(6):503-12 – reference: 15216931 - Curr Opin Drug Discov Devel. 2004 May;7(3):285-9 – reference: 8526935 - Biochem Biophys Res Commun. 1995 Dec 5;217(1):363-9 – reference: 14740490 - Biotechniques. 2004 Jan;36(1):84-6, 88, 90-1 – reference: 7580930 - PCR Methods Appl. 1995 Jun;4(6):357-62 – reference: 9308922 - Am J Respir Cell Mol Biol. 1997 Sep;17(3):353-60 – reference: 16572587 - Gene Expr. 2006;13(1):15-26 – reference: 16108723 - J Comput Biol. 2005 Jul-Aug;12(6):882-93 – reference: 15298701 - BMC Mol Biol. 2004 Aug 6;5:11 – reference: 8367293 - Nucleic Acids Res. 1993 Aug 11;21(16):3761-6 – reference: 11431363 - Cancer Res. 2001 Jul 1;61(13):5223-30 – reference: 12184808 - Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 – reference: 12490442 - Bioinformatics. 2002 Dec;18(12):1585-92 – reference: 11013345 - J Mol Endocrinol. 2000 Oct;25(2):169-93 – reference: 14677714 - Biotechnol Lett. 2003 Nov;25(21):1869-72 |
SSID | ssj0017825 |
Score | 2.3662734 |
Snippet | The development of microarrays permits us to monitor transcriptomes on a genome-wide scale. To validate microarray measurements, quantitative-real time-reverse... BACKGROUND: The development of microarrays permits us to monitor transcriptomes on a genome-wide scale. To validate microarray measurements, quantitative-real... Abstract Background The development of microarrays permits us to monitor transcriptomes on a genome-wide scale. To validate microarray measurements,... |
SourceID | doaj pubmedcentral biomedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 140 |
SubjectTerms | Adenocarcinoma - genetics Adenocarcinoma - pathology Algorithms Calibration Cell Line, Transformed Data Interpretation, Statistical DEAD-box RNA Helicases - genetics DNA microarrays Gene expression Gene Expression Profiling Gene Expression Regulation, Neoplastic Genetic research Humans Lung Neoplasms - genetics Lung Neoplasms - pathology Methodology Methods Oligonucleotide Array Sequence Analysis Reference Standards Reverse Transcriptase Polymerase Chain Reaction - standards Specimen Handling - methods Statistical sampling |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDcLBSyEBBfTOLGdRJxKS1WQQLBtpb1Zjj0uFdtstQ-k8uuZSbJlrQpx4bbKTLKxZzwP5_MMY69CnpUR_YTwuvZCSZcLF2IhTAMQoczAdJD_z1_M4Yn6NNGTjVZfhAnrywP3E7fjC1cZHaJzvlBBqcbFOtM6d7gwshoasr7o89bJ1PD9AP2e7s4VlVLkmBEMRX1kZXaurglMn2jPIznoPk38U1fG_7qx3vBWKZJywzUd3GG3h5iS7_ZjuctuQHuP3ey7TF7eZ7-Oul43KAA-i3x_f6K5W3DH29lPmPKzfktwygfQOscoln8T42PxdW_M6fQJPyfQnpvP3SUnQCknrPwpPqBBR_iDY5i-pP2SCz4HsXCEUEcqJs1wDg_YycGH471DMbRcEI2piqUIWlYgMwhlnfncQA0eovS19FkTcKlnKAn0Z8HE3EnQjfLgIHNoV4PKMdkqHrKtdtbCY8YxzwxFDDVAHZXLy0ZVRgaKR0oVm9iM2Ltk4u1FX17DUsHrlIJrz5LYLInNVvg7G7G3azFZP1Qzp6YaU9tlNZW5fsObqxvW__RX1vck9-SFuguol3bQS_svvRyxl6Q1lmpstATiOXWrxcJ-PBrbXWk0lZ2TesReD0xxhm_v3XAmAmeQynIlnNsJJxoBn5BfrJXTEomQcy3MVgtbYkwpTY0cj3pV_TP6UpMBx-GWiRIn404p7dn3rgK5rGpVl_rJ_5iop-zWGoOZyW22tZyv4BkGesvmebemfwMT5U_q priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals (OA) dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1db9Mw0EJDSLwgvikbYCEkePGIE9tJhBAaG9NAGoJulfpmOfa5THTJlrSI8us5pyld2OAt6l0S-74vPd8R8sLFUerRTzArc8sENzEzzidMFQAe0ghUW_J_-FkdjMSnsRyvxwF1BGyuTO3CPKlRPd3-eb54hwr_tlX4TL3maGBZjHE_w4RIYP5-Hd1SGrT0UKz_UkBXKNujRh1y1-fnigf8dfZ92nNZbWf_y_b7ggPrF1de8Fb7t8mtLsykO0u5uEOuQXmX3FgOnlzcI7-O2vE3yBNaebq3N5bUNNTQsvoBU3qy_Eo4pV0dO8XAln5lw2P2ZXdIw4EUehrq-ExdmwUNNaY0lM9P8AEF-sbvFCP3WfiEckZrYI0JResIRWLDKdwno_0Px7sHrJvCwAqVJTPmJM-AR-DSPLKxghwseG5zbqPCofZH0nl0cU752HCQhbBgIDJoap2IMf9KHpCNsirhEaGYerrEuxwg98LEaSEyxV0IUVLhC18MyJse4fXZsuOGDj2w-xBURx3YpgPbdIbX0YBsr9ikbdfgPMzZmOo20cnU5Rte_blh9aZ_or4PfO8tqP2hqie603FtE5MppIYxNhFOiML4PJIyNmjDoxxwe8-D1OjQdqMMdT0TM28a_fFoqHe4kqETHZcD8rJD8hWu3prumARSMHTq6mFu9TDRLtge-NlKOHUAhWK6Eqp5o1MMM7nKEePhUlTXu09lsOm43bQnxL199yHlybe2KTnPcpGn8vH_F7VJbq4KLiO-RTZm9RyeYFQ3K5622vobdv1Iog priority: 102 providerName: Scholars Portal |
Title | Selection of DDX5 as a novel internal control for Q-RT-PCR from microarray data using a block bootstrap re-sampling scheme |
URI | https://www.ncbi.nlm.nih.gov/pubmed/17540040 https://www.proquest.com/docview/70661695 http://dx.doi.org/10.1186/1471-2164-8-140 https://pubmed.ncbi.nlm.nih.gov/PMC1894975 https://doaj.org/article/c3a865dfaac34d44baf90552a76309eb |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFA5SEXwR767WGkTQl2gyk2Qm-NSLpQoV3bZQfAmZ5KQtbmfLXoT66z2ZnW2bVp98WZY9Z2YnOffMyRdC3oSCVxHjBPPKeCaFK5gLsWS6AYhQcdBdy__uV71zIL8cqsNLsOhrb_BFrT8IdJ-swKyeYbkjsTq_XUgMg6kw3_hx8cIAA53qNhL1zD2Kz19ucG1n-ygLSB1u_03vfCU85a2TV2LR9n1yr08i6fpC6g_ILWgfkjuLYyXPH5Hfe93hNjjjdBzp1tahom5KHW3Hv2BETxZrgCPad6lTTFvpdzbcZ982hzRtN6GnqUvPTSbunKYOUpqa44_wBg1Gvp8U8_JZWiA5oxNgU5da0pGKVTKcwmNysP1pf3OH9WcssEbX5YwFJWoQHEJluC80GPAQhTfC8yagbXMVIgawoGPhBKhGenDAHTrSIAusrsonZKUdt_CMUCwsQxmDATBRuqJqZK1FSAlIJWMTmwH5mE28PVvgadiEcJ1T0NhsEptNYrM1fucD8n4pJut7-PJ0isbIdmVMrW9e8O7iguU__ZN1I8k9e6DuB9RD21uw9aWrNc6Gc76UQcrGRcOVKhx6aG4Ah_c6aY1NoBpt6to5cvPp1H7eG9p1oVXCmRNqQN72THGMT-9dvwkCZzDhcGWcqxknWr3PyK-WymkTKbXKtTCeT22FSaTQBjmeLlT1cvSVSh4bh1tlSpyNO6e0J8cd5LiojTSVev5fInxB7i67LblYJSuzyRxeYko3a9a6pRD83JX1WmfYfwCIFkkj |
linkProvider | BioMedCentral |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemIQQviPG1wtgshAQvHnFiO4l42gdVB9sEXSdVvFiOP0pFm0xNizT-es75GA2DJ96q-pLmfOf7SH93h9BrEwaxAz9BNE81YVSFRBkXEZFZ62wcWFFB_s_OxeCSfRzz8Qbqt7Uw2Vz75qTzqS731wvQZ5XVbsFi9VlPxDsKtpWEEPITyIUYpO53Ys5jP8lgePj15t8E8IK8qjJqiJsWP3-5wR9l77OOt6qa-t823Wu-q4urXHNU_YfoQRNh4oOaiS20YfNH6G49c_L6Mfp5UU2-AXHgwuHj4zHHqsQK58UPO8PT-gXhDDcQdgwxLf5ChiPy-WiIfS0KnnsIn1os1DX28FLskfMTuEEGbvE7hqB96d-eXOGFJaXyeHVYhRTazu0TdNn_MDoakGYAA8lEEi2J4TSxNLAmTgMdCptabR3VKdVBZuDgB9w48G5GuFBRyzOmrbKBAitrWAipV_QUbeZFbrcRhqzTRM6k1qaOqTDOWCKo8dFJzFzmsh5639l4eVU325C-_XV3BRRBerFJLzaZwOegh_ZbMUnd9Db3IzZmsspxEnH7grc3F7S_9E_SQy_3zgNVXxSLiWwUUupIJQJ2QykdMcNYplwacB4qMN9BaoG9V15rpO-4kXtIz0StylKeXAzlARXcN6GjvIfeNESugKfXqqmQgB30Tbo6lDsdSjAJurO81yqn9EseR5fbYlXKGCJMKlKgeFar6m_uY-7NObAbd5S4w3d3JZ9-q_qR0yRlacyf_5cI99C9wejsVJ6enH96ge63sMyA7qDN5WJlX0Lst8x2q4P9C-9MVhs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLamIRAviDuFwSyEBC_e4sR2EvG0rZSNyzS6Tar2Yjm-lGppUjUt0vj1HCfpaBg88Rb1nKS1zz39zjFCb0wYxA7iBNE81YRRFRJlXEREZq2zcWBFDfn_eiwOz9mnER9toI-rXphsqv1w0ulEVzvrDeh57bXhQl_uzoxrjD0RuxScKwkh5ydQDDGo3W_FnMfeQof7F9d_J0AY5HWbUcvczvj5ywP-6HvPO-Gqnup_03evBa8usHItUg3uo3ttion3Gp14gDZs8RDdbg6dvHqEfp7WR9-APHDpcL8_4lhVWOGi_GFzPGneEOa4xbBjSGrxNzI8IycHQ-ybUfDUY_jUfK6usMeXYg-dH8MDMoiLlxiy9oV_fTLDc0sq5QHrQIUa2k7tY3Q--HB2cEjaExhIJpJoQQyniaWBNXEa6FDY1GrrqE6pDjIDlh9w4yC8GeFCRS3PmLbKBgrcrGEh1F7RE7RZlIV9hjCUnSZyJrU2dUyFccYSQY1PT2LmMpf10PvOxstZM21D-vnXXQpogvRik15sMoHroId2VmKSuh1u7s_YyGVd5CTi5g3vrm9YfdM_Wfe93Ds_qP6gnI9la99SRyoRsBtK6YgZxjLl0oDzUIH_DlILy3vttUb6kRuFx_SM1bKq5NHpUO5Rwf0UOsp76G3L5Eqv6qptkYAd9FO6OpxbHU7wCbpD3l4pp_QkD6QrbLmsZAwpJhUpcDxtVPX36mPu_TksN-4ocWfdXUox-V4PJKdJytKYP_8vEW6jOyf9gfxydPz5Bbq7gmUGdAttLuZL-xJyv0X2qrbrX05hVeY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selection+of+DDX5+as+a+novel+internal+control+for+Q-RT-PCR+from+microarray+data+using+a+block+bootstrap+re-sampling+scheme&rft.jtitle=BMC+genomics&rft.au=Su%2C+Li-Jen&rft.au=Chang%2C+Ching-Wei&rft.au=Wu%2C+Yu-Chung&rft.au=Chen%2C+Kuang-Chi&rft.date=2007-06-01&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=8&rft.spage=140&rft_id=info:doi/10.1186%2F1471-2164-8-140&rft.externalDocID=A165358115 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |