Selection of DDX5 as a novel internal control for Q-RT-PCR from microarray data using a block bootstrap re-sampling scheme

The development of microarrays permits us to monitor transcriptomes on a genome-wide scale. To validate microarray measurements, quantitative-real time-reverse transcription PCR (Q-RT-PCR) is one of the most robust and commonly used approaches. The new challenge in gene quantification analysis is ho...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 8; no. 1; p. 140
Main Authors Su, Li-Jen, Chang, Ching-Wei, Wu, Yu-Chung, Chen, Kuang-Chi, Lin, Chien-Ju, Liang, Shu-Ching, Lin, Chi-Hung, Whang-Peng, Jacqueline, Hsu, Shih-Lan, Chen, Chen-Hsin, Huang, Chi-Ying F
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 01.06.2007
BioMed Central
BMC
Subjects
Online AccessGet full text
ISSN1471-2164
1471-2164
DOI10.1186/1471-2164-8-140

Cover

Loading…
Abstract The development of microarrays permits us to monitor transcriptomes on a genome-wide scale. To validate microarray measurements, quantitative-real time-reverse transcription PCR (Q-RT-PCR) is one of the most robust and commonly used approaches. The new challenge in gene quantification analysis is how to explicitly incorporate statistical estimation in such studies. In the realm of statistical analysis, the various available methods of the probe level normalization for microarray analysis may result in distinctly different target selections and variation in the scores for the correlation between microarray and Q-RT-PCR. Moreover, it remains a major challenge to identify a proper internal control for Q-RT-PCR when confirming microarray measurements. Sixty-six Affymetrix microarray slides using lung adenocarcinoma tissue RNAs were analyzed by a statistical re-sampling method in order to detect genes with minimal variation in gene expression. By this approach, we identified DDX5 as a novel internal control for Q-RT-PCR. Twenty-three genes, which were differentially expressed between adjacent normal and tumor samples, were selected and analyzed using 24 paired lung adenocarcinoma samples by Q-RT-PCR using two internal controls, DDX5 and GAPDH. The percentage correlation between Q-RT-PCR and microarray were 70% and 48% by using DDX5 and GAPDH as internal controls, respectively. Together, these quantification strategies for Q-RT-PCR data processing procedure, which focused on minimal variation, ought to significantly facilitate internal control evaluation and selection for Q-RT-PCR when corroborating microarray data.
AbstractList Abstract Background The development of microarrays permits us to monitor transcriptomes on a genome-wide scale. To validate microarray measurements, quantitative-real time-reverse transcription PCR (Q-RT-PCR) is one of the most robust and commonly used approaches. The new challenge in gene quantification analysis is how to explicitly incorporate statistical estimation in such studies. In the realm of statistical analysis, the various available methods of the probe level normalization for microarray analysis may result in distinctly different target selections and variation in the scores for the correlation between microarray and Q-RT-PCR. Moreover, it remains a major challenge to identify a proper internal control for Q-RT-PCR when confirming microarray measurements. Results Sixty-six Affymetrix microarray slides using lung adenocarcinoma tissue RNAs were analyzed by a statistical re-sampling method in order to detect genes with minimal variation in gene expression. By this approach, we identified DDX5 as a novel internal control for Q-RT-PCR. Twenty-three genes, which were differentially expressed between adjacent normal and tumor samples, were selected and analyzed using 24 paired lung adenocarcinoma samples by Q-RT-PCR using two internal controls, DDX5 and GAPDH. The percentage correlation between Q-RT-PCR and microarray were 70% and 48% by using DDX5 and GAPDH as internal controls, respectively. Conclusion Together, these quantification strategies for Q-RT-PCR data processing procedure, which focused on minimal variation, ought to significantly facilitate internal control evaluation and selection for Q-RT-PCR when corroborating microarray data.
The development of microarrays permits us to monitor transcriptomes on a genome-wide scale. To validate microarray measurements, quantitative-real time-reverse transcription PCR (Q-RT-PCR) is one of the most robust and commonly used approaches. The new challenge in gene quantification analysis is how to explicitly incorporate statistical estimation in such studies. In the realm of statistical analysis, the various available methods of the probe level normalization for microarray analysis may result in distinctly different target selections and variation in the scores for the correlation between microarray and Q-RT-PCR. Moreover, it remains a major challenge to identify a proper internal control for Q-RT-PCR when confirming microarray measurements. Sixty-six Affymetrix microarray slides using lung adenocarcinoma tissue RNAs were analyzed by a statistical re-sampling method in order to detect genes with minimal variation in gene expression. By this approach, we identified DDX5 as a novel internal control for Q-RT-PCR. Twenty-three genes, which were differentially expressed between adjacent normal and tumor samples, were selected and analyzed using 24 paired lung adenocarcinoma samples by Q-RT-PCR using two internal controls, DDX5 and GAPDH. The percentage correlation between Q-RT-PCR and microarray were 70% and 48% by using DDX5 and GAPDH as internal controls, respectively. Together, these quantification strategies for Q-RT-PCR data processing procedure, which focused on minimal variation, ought to significantly facilitate internal control evaluation and selection for Q-RT-PCR when corroborating microarray data.
The development of microarrays permits us to monitor transcriptomes on a genome-wide scale. To validate microarray measurements, quantitative-real time-reverse transcription PCR (Q-RT-PCR) is one of the most robust and commonly used approaches. The new challenge in gene quantification analysis is how to explicitly incorporate statistical estimation in such studies. In the realm of statistical analysis, the various available methods of the probe level normalization for microarray analysis may result in distinctly different target selections and variation in the scores for the correlation between microarray and Q-RT-PCR. Moreover, it remains a major challenge to identify a proper internal control for Q-RT-PCR when confirming microarray measurements.BACKGROUNDThe development of microarrays permits us to monitor transcriptomes on a genome-wide scale. To validate microarray measurements, quantitative-real time-reverse transcription PCR (Q-RT-PCR) is one of the most robust and commonly used approaches. The new challenge in gene quantification analysis is how to explicitly incorporate statistical estimation in such studies. In the realm of statistical analysis, the various available methods of the probe level normalization for microarray analysis may result in distinctly different target selections and variation in the scores for the correlation between microarray and Q-RT-PCR. Moreover, it remains a major challenge to identify a proper internal control for Q-RT-PCR when confirming microarray measurements.Sixty-six Affymetrix microarray slides using lung adenocarcinoma tissue RNAs were analyzed by a statistical re-sampling method in order to detect genes with minimal variation in gene expression. By this approach, we identified DDX5 as a novel internal control for Q-RT-PCR. Twenty-three genes, which were differentially expressed between adjacent normal and tumor samples, were selected and analyzed using 24 paired lung adenocarcinoma samples by Q-RT-PCR using two internal controls, DDX5 and GAPDH. The percentage correlation between Q-RT-PCR and microarray were 70% and 48% by using DDX5 and GAPDH as internal controls, respectively.RESULTSSixty-six Affymetrix microarray slides using lung adenocarcinoma tissue RNAs were analyzed by a statistical re-sampling method in order to detect genes with minimal variation in gene expression. By this approach, we identified DDX5 as a novel internal control for Q-RT-PCR. Twenty-three genes, which were differentially expressed between adjacent normal and tumor samples, were selected and analyzed using 24 paired lung adenocarcinoma samples by Q-RT-PCR using two internal controls, DDX5 and GAPDH. The percentage correlation between Q-RT-PCR and microarray were 70% and 48% by using DDX5 and GAPDH as internal controls, respectively.Together, these quantification strategies for Q-RT-PCR data processing procedure, which focused on minimal variation, ought to significantly facilitate internal control evaluation and selection for Q-RT-PCR when corroborating microarray data.CONCLUSIONTogether, these quantification strategies for Q-RT-PCR data processing procedure, which focused on minimal variation, ought to significantly facilitate internal control evaluation and selection for Q-RT-PCR when corroborating microarray data.
BACKGROUND: The development of microarrays permits us to monitor transcriptomes on a genome-wide scale. To validate microarray measurements, quantitative-real time-reverse transcription PCR (Q-RT-PCR) is one of the most robust and commonly used approaches. The new challenge in gene quantification analysis is how to explicitly incorporate statistical estimation in such studies. In the realm of statistical analysis, the various available methods of the probe level normalization for microarray analysis may result in distinctly different target selections and variation in the scores for the correlation between microarray and Q-RT-PCR. Moreover, it remains a major challenge to identify a proper internal control for Q-RT-PCR when confirming microarray measurements. RESULTS: Sixty-six Affymetrix microarray slides using lung adenocarcinoma tissue RNAs were analyzed by a statistical re-sampling method in order to detect genes with minimal variation in gene expression. By this approach, we identified DDX5 as a novel internal control for Q-RT-PCR. Twenty-three genes, which were differentially expressed between adjacent normal and tumor samples, were selected and analyzed using 24 paired lung adenocarcinoma samples by Q-RT-PCR using two internal controls, DDX5 and GAPDH. The percentage correlation between Q-RT-PCR and microarray were 70% and 48% by using DDX5 and GAPDH as internal controls, respectively. CONCLUSION: Together, these quantification strategies for Q-RT-PCR data processing procedure, which focused on minimal variation, ought to significantly facilitate internal control evaluation and selection for Q-RT-PCR when corroborating microarray data.
ArticleNumber 140
Audience Academic
Author Lin, Chi-Hung
Hsu, Shih-Lan
Huang, Chi-Ying F
Whang-Peng, Jacqueline
Wu, Yu-Chung
Su, Li-Jen
Chang, Ching-Wei
Chen, Kuang-Chi
Liang, Shu-Ching
Chen, Chen-Hsin
Lin, Chien-Ju
AuthorAffiliation 2 Department of Surgery, Veterans General Hospital, Taipei 112, Taiwan
6 Department of Education and Research, Taichung Veterans General Hospital, Taichung 407, Taiwan
10 Department of Computer Science and Information Engineering, National Taiwan University, Taipei 106, Taiwan
5 Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan
1 Institute of Cancer Research, National Health Research Institutes, Taipei 114, Taiwan
3 Institute of Statistical Science, Academia Sinica, Taipei 115, Taiwan
4 Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621, Taiwan
7 Institute of Epidemiology, National Taiwan University, Taipei 100, Taiwan
8 Institute of Bio-Pharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan
9 Institute of Biotechnology in Medicine, National Yang-Ming University, Taipei 112, Taiwan
AuthorAffiliation_xml – name: 4 Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621, Taiwan
– name: 2 Department of Surgery, Veterans General Hospital, Taipei 112, Taiwan
– name: 3 Institute of Statistical Science, Academia Sinica, Taipei 115, Taiwan
– name: 9 Institute of Biotechnology in Medicine, National Yang-Ming University, Taipei 112, Taiwan
– name: 1 Institute of Cancer Research, National Health Research Institutes, Taipei 114, Taiwan
– name: 7 Institute of Epidemiology, National Taiwan University, Taipei 100, Taiwan
– name: 8 Institute of Bio-Pharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan
– name: 6 Department of Education and Research, Taichung Veterans General Hospital, Taichung 407, Taiwan
– name: 5 Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan
– name: 10 Department of Computer Science and Information Engineering, National Taiwan University, Taipei 106, Taiwan
Author_xml – sequence: 1
  givenname: Li-Jen
  surname: Su
  fullname: Su, Li-Jen
– sequence: 2
  givenname: Ching-Wei
  surname: Chang
  fullname: Chang, Ching-Wei
– sequence: 3
  givenname: Yu-Chung
  surname: Wu
  fullname: Wu, Yu-Chung
– sequence: 4
  givenname: Kuang-Chi
  surname: Chen
  fullname: Chen, Kuang-Chi
– sequence: 5
  givenname: Chien-Ju
  surname: Lin
  fullname: Lin, Chien-Ju
– sequence: 6
  givenname: Shu-Ching
  surname: Liang
  fullname: Liang, Shu-Ching
– sequence: 7
  givenname: Chi-Hung
  surname: Lin
  fullname: Lin, Chi-Hung
– sequence: 8
  givenname: Jacqueline
  surname: Whang-Peng
  fullname: Whang-Peng, Jacqueline
– sequence: 9
  givenname: Shih-Lan
  surname: Hsu
  fullname: Hsu, Shih-Lan
– sequence: 10
  givenname: Chen-Hsin
  surname: Chen
  fullname: Chen, Chen-Hsin
– sequence: 11
  givenname: Chi-Ying F
  surname: Huang
  fullname: Huang, Chi-Ying F
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17540040$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1v1DAQhiNURD_gzA1ZQkLikNZO7MS5IJVtgZUqAdsicbMmzmTr4sRbO1vR_noctqwa1MoHWzPvPLZn3v1kp3c9JslrRg8Zk8UR4yVLM1bwVKaM02fJ3jay8-C8m-yHcEUpK2UmXiS7rBScUk73krtztKgH43riWnJy8lMQCARI727QEtMP6HuwRLt-8M6S1nnyPV1cpN9mC9J615HOaO_Ae7glDQxA1sH0ywiordO_SO3cEAYPK-IxDdCt7JgN-hI7fJk8b8EGfHW_HyQ_Pp1ezL6kZ18_z2fHZ2ldyHxIG8EkMopNWVGdFVihxpbpimlaN1JSKppW8rIp2gwYipprBKRAKW14xniVHyTzDbdxcKVW3nTgb5UDo_4GnF8q8IPRFpXOQRaRB6Bz3nBeQ1tRITIoi5xWWEfWhw1rta47bDTGtoCdQKeZ3lyqpbtRTFa8KkUEfNwAauOeAEwz2nVqnKMa56hkPNMIeXf_Cu-u1xgG1Zmg0Vro0a2DKmlRsKIab3u7ES4h_s70rYtMPYrVMStELiRjo-rwEVVcDcbpRsO1JsYnBe8nBaM78PewhHUIan6-mGrfPOzY9qf_LBgFYiOIPgrBY6u0GWB0ZHyFsYpRNVr9kSYc_Ve3RT9R8QcI0_6-
CitedBy_id crossref_primary_10_1098_rsif_2014_0937
crossref_primary_10_18632_oncotarget_8713
crossref_primary_10_1371_journal_pone_0128190
crossref_primary_10_1155_2021_5005459
crossref_primary_10_1002_ijc_30851
crossref_primary_10_3389_fgene_2021_757169
crossref_primary_10_18632_oncotarget_4352
crossref_primary_10_1038_nature14122
crossref_primary_10_3892_ol_2020_11478
crossref_primary_10_1016_j_ceca_2022_102527
crossref_primary_10_1093_jnci_djr290
crossref_primary_10_1038_srep04351
crossref_primary_10_1186_s12967_016_1038_y
crossref_primary_10_1016_j_imbio_2022_152239
crossref_primary_10_3892_or_2014_3701
crossref_primary_10_1007_s00280_009_1151_1
crossref_primary_10_1158_0008_5472_CAN_12_1842
crossref_primary_10_1371_journal_pone_0184902
crossref_primary_10_1042_BSR20193075
crossref_primary_10_1155_2020_6412593
crossref_primary_10_1098_rspb_2007_1761
crossref_primary_10_1155_2015_312047
crossref_primary_10_1038_srep13044
crossref_primary_10_1074_jbc_M112_373084
crossref_primary_10_1186_1471_2164_12_S3_S24
crossref_primary_10_7717_peerj_8625
crossref_primary_10_1038_onc_2016_265
crossref_primary_10_1016_j_bcp_2013_07_025
crossref_primary_10_1007_s11010_015_2542_8
crossref_primary_10_1007_s11060_015_1897_8
crossref_primary_10_1186_s12859_017_1794_6
crossref_primary_10_7717_peerj_10320
crossref_primary_10_1186_1755_8794_3_52
crossref_primary_10_1093_bioinformatics_btq104
crossref_primary_10_3892_ol_2019_10236
crossref_primary_10_3892_ijo_2020_5040
crossref_primary_10_3389_fonc_2019_01503
crossref_primary_10_1038_onc_2012_101
crossref_primary_10_3390_ijms21228479
crossref_primary_10_1007_s00432_020_03288_6
crossref_primary_10_1158_1535_7163_MCT_12_0030
crossref_primary_10_1158_0008_5472_CAN_19_0842
crossref_primary_10_3389_fonc_2021_670218
crossref_primary_10_3892_ol_2017_6594
crossref_primary_10_3892_ijmm_2018_3826
crossref_primary_10_3892_ijo_2019_4899
crossref_primary_10_1074_jbc_M112_380865
crossref_primary_10_1093_bioinformatics_btu811
crossref_primary_10_1155_2022_1560199
crossref_primary_10_1111_cpr_12343
crossref_primary_10_1186_1471_2407_12_75
crossref_primary_10_7554_eLife_09419
crossref_primary_10_1371_journal_pone_0139165
crossref_primary_10_1038_s41598_022_05728_4
crossref_primary_10_1016_j_prp_2022_153809
crossref_primary_10_18632_oncotarget_11884
crossref_primary_10_1016_j_bbrc_2012_10_123
crossref_primary_10_1186_s12967_017_1302_9
crossref_primary_10_1155_2014_345106
crossref_primary_10_1183_09031936_00015710
crossref_primary_10_1097_MD_0000000000023052
crossref_primary_10_1093_pcmedi_pbac017
crossref_primary_10_1016_j_jbi_2017_07_019
crossref_primary_10_1074_mcp_M114_045914
crossref_primary_10_1093_nar_gkw797
crossref_primary_10_1111_cas_15005
crossref_primary_10_1016_j_bbadis_2011_01_009
crossref_primary_10_1158_0008_5472_CAN_12_1097
crossref_primary_10_1097_MD_0000000000026439
crossref_primary_10_1089_cbr_2019_2782
crossref_primary_10_1371_journal_pone_0092395
crossref_primary_10_1371_journal_pone_0222298
crossref_primary_10_18632_aging_204386
crossref_primary_10_1097_MD_0000000000026474
crossref_primary_10_1016_j_bbrc_2016_11_100
crossref_primary_10_1088_1748_6041_6_2_025012
crossref_primary_10_1186_s12859_015_0845_0
crossref_primary_10_18632_aging_101441
crossref_primary_10_1016_j_cllc_2013_04_010
crossref_primary_10_1002_cam4_4386
crossref_primary_10_3389_fonc_2021_754290
crossref_primary_10_1186_1755_8794_1_64
crossref_primary_10_1172_JCI42275
crossref_primary_10_1007_s11033_020_05372_z
crossref_primary_10_18632_aging_202292
crossref_primary_10_1016_j_gene_2021_145689
crossref_primary_10_1111_j_1349_7006_2011_02197_x
crossref_primary_10_1186_s12890_020_1079_0
crossref_primary_10_1186_1471_2105_12_403
crossref_primary_10_1038_s41419_021_03763_z
crossref_primary_10_3233_CBM_210242
crossref_primary_10_3389_fgene_2020_00547
crossref_primary_10_1371_journal_pone_0024829
crossref_primary_10_18632_oncotarget_19938
crossref_primary_10_1016_j_ccr_2012_03_045
crossref_primary_10_1002_sam_11180
crossref_primary_10_1007_s11033_012_2026_9
crossref_primary_10_1097_JTO_0b013e318212692e
crossref_primary_10_1517_14728222_2010_504718
crossref_primary_10_18632_oncotarget_13153
crossref_primary_10_1126_sciadv_abg7073
crossref_primary_10_1016_j_bbrc_2019_09_032
crossref_primary_10_3389_fcell_2022_853596
crossref_primary_10_1038_onc_2017_352
crossref_primary_10_1016_j_canlet_2011_02_004
crossref_primary_10_1038_s41388_018_0603_7
crossref_primary_10_1371_journal_pgen_1004289
crossref_primary_10_1155_2021_6663990
crossref_primary_10_3390_jpm13010049
crossref_primary_10_1083_jcb_201209151
crossref_primary_10_3109_03602532_2011_560606
crossref_primary_10_1007_s13258_020_00948_2
crossref_primary_10_1038_nm_3909
crossref_primary_10_1007_s12253_018_0552_z
crossref_primary_10_1371_journal_pone_0125766
crossref_primary_10_1007_s10528_023_10370_4
crossref_primary_10_18632_oncotarget_24070
crossref_primary_10_1186_s13000_016_0591_2
crossref_primary_10_3390_biomedicines8020019
crossref_primary_10_1073_pnas_1802973116
crossref_primary_10_2147_OTT_S325203
crossref_primary_10_1016_j_ygeno_2009_05_003
crossref_primary_10_1002_mgg3_528
crossref_primary_10_1158_0008_5472_CAN_18_4080
crossref_primary_10_1371_journal_pgen_1002650
crossref_primary_10_4161_cc_27267
crossref_primary_10_1177_1533034616657977
crossref_primary_10_1038_nmeth_3337
crossref_primary_10_1016_j_ebiom_2020_102689
crossref_primary_10_1073_pnas_1319269111
crossref_primary_10_1038_cddis_2015_418
crossref_primary_10_3389_fmolb_2021_663011
crossref_primary_10_1007_s10549_012_2068_7
crossref_primary_10_1158_1940_6207_CAPR_17_0295
crossref_primary_10_1097_JTO_0b013e3181fd6b04
crossref_primary_10_3390_genes12020269
crossref_primary_10_3390_ijms25179154
crossref_primary_10_1158_0008_5472_CAN_08_4210
crossref_primary_10_1007_s10142_023_01274_y
crossref_primary_10_3390_genes10010036
crossref_primary_10_3389_fgene_2022_845373
crossref_primary_10_1002_pmic_201400233
crossref_primary_10_1097_PAI_0b013e3182233f9f
crossref_primary_10_1371_journal_pone_0011847
crossref_primary_10_18632_oncotarget_21022
crossref_primary_10_3389_fgene_2020_00247
crossref_primary_10_7717_peerj_7125
crossref_primary_10_1038_ng_527
crossref_primary_10_3892_etm_2023_12069
crossref_primary_10_1016_j_gene_2018_11_022
crossref_primary_10_1186_1752_0509_4_162
crossref_primary_10_1007_s13238_014_0082_8
crossref_primary_10_1155_2014_193817
crossref_primary_10_1158_1940_6207_CAPR_10_0170
crossref_primary_10_3390_cancers11081134
crossref_primary_10_1515_med_2019_0053
crossref_primary_10_1593_neo_10390
crossref_primary_10_3389_fonc_2021_665388
crossref_primary_10_1080_21655979_2021_1964193
crossref_primary_10_3389_fonc_2021_680402
crossref_primary_10_1155_2022_7848771
crossref_primary_10_1186_1471_2105_11_483
crossref_primary_10_3389_fonc_2022_911316
crossref_primary_10_1016_S1470_2045_10_70042_5
crossref_primary_10_1016_j_cbpa_2009_12_008
crossref_primary_10_1038_emboj_2010_37
crossref_primary_10_1186_1755_8794_5_48
crossref_primary_10_1186_s12920_021_00967_2
crossref_primary_10_3389_fcell_2021_621147
crossref_primary_10_3109_15419061_2013_876017
crossref_primary_10_3390_data7050064
crossref_primary_10_1097_JTO_0b013e3181898774
crossref_primary_10_3390_ijms21093227
crossref_primary_10_1186_1471_2105_13_126
crossref_primary_10_3389_fcell_2021_633927
crossref_primary_10_1371_journal_pone_0013696
crossref_primary_10_1371_journal_pgen_1009899
crossref_primary_10_1038_onc_2011_419
crossref_primary_10_1093_bioinformatics_btu449
crossref_primary_10_1186_s12943_017_0682_z
crossref_primary_10_1016_j_artmed_2017_03_010
crossref_primary_10_1186_1471_2164_10_26
crossref_primary_10_1038_onc_2012_325
crossref_primary_10_3390_cancers12102792
crossref_primary_10_18632_oncotarget_1970
crossref_primary_10_4137_CIN_S3899
crossref_primary_10_1158_1055_9965_EPI_10_0332
crossref_primary_10_1093_bioinformatics_btu679
crossref_primary_10_1371_journal_pgen_1008439
crossref_primary_10_1007_s11596_021_2378_2
crossref_primary_10_3390_jpm12030393
crossref_primary_10_1016_j_cellsig_2017_06_016
crossref_primary_10_1186_s12967_020_02474_x
crossref_primary_10_1158_0008_5472_CAN_13_2775
crossref_primary_10_1186_2043_9113_3_10
crossref_primary_10_1080_01902148_2020_1844345
crossref_primary_10_3389_fbioe_2022_993820
crossref_primary_10_18632_oncotarget_7163
crossref_primary_10_1016_j_lungcan_2012_11_004
crossref_primary_10_2217_fon_2022_0319
crossref_primary_10_1155_2022_4338793
crossref_primary_10_1200_PO_23_00495
crossref_primary_10_3892_or_2021_8154
crossref_primary_10_3389_fimmu_2021_724741
crossref_primary_10_1016_j_bbrc_2008_12_093
crossref_primary_10_18632_oncotarget_1738
crossref_primary_10_3892_ijo_2013_2200
crossref_primary_10_18632_aging_203540
crossref_primary_10_1038_cddis_2013_204
crossref_primary_10_1186_s12920_016_0231_4
crossref_primary_10_1371_journal_pone_0017347
crossref_primary_10_1089_dna_2010_1128
crossref_primary_10_7717_peerj_7313
crossref_primary_10_1016_j_cbi_2022_109796
crossref_primary_10_18632_oncotarget_16701
crossref_primary_10_1128_MCB_01489_14
crossref_primary_10_1158_1078_0432_CCR_10_0138
crossref_primary_10_3389_fgene_2021_721021
crossref_primary_10_1245_s10434_010_0911_9
crossref_primary_10_1371_journal_pone_0071177
Cites_doi 10.1038/4447
10.1016/j.ygyno.2004.08.021
10.1093/nar/gkl400
10.1016/S0168-1656(99)00163-7
10.3727/000000006783991872
10.1006/abio.2001.5369
10.1186/1471-2105-6-80
10.1093/nar/21.16.3761
10.1093/biostatistics/4.2.249
10.1016/S0301-472X(02)00806-8
10.1165/ajrcmb.17.3.2837
10.1089/cmb.2005.12.882
10.1038/nm733
10.1091/mbc.02-02-0030.
10.2144/04361ST04
10.1016/S0167-4781(01)00291-3
10.1186/gb-2002-3-7-research0034
10.1006/bbrc.1995.2785
10.1186/1471-2199-5-11
10.1093/bioinformatics/18.12.1585
10.1016/S0966-3274(03)00010-8
10.1101/gr.4.6.357
10.2144/00292rv02
10.1186/gb-2004-5-8-r59
10.1073/pnas.191502998
10.1023/A:1026298032009
10.1677/jme.0.0250169
10.3727/000000006783991962
10.1111/j.2517-6161.1995.tb02031.x
10.1214/aos/1176344552
10.1017/CBO9780511802843
ContentType Journal Article
Copyright COPYRIGHT 2007 BioMed Central Ltd.
Copyright © 2007 Su et al; licensee BioMed Central Ltd. 2007 Su et al; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2007 BioMed Central Ltd.
– notice: Copyright © 2007 Su et al; licensee BioMed Central Ltd. 2007 Su et al; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
DOA
DOI 10.1186/1471-2164-8-140
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage 140
ExternalDocumentID oai_doaj_org_article_c3a865dfaac34d44baf90552a76309eb
PMC1894975
oai_biomedcentral_com_1471_2164_8_140
A165358115
17540040
10_1186_1471_2164_8_140
Genre Comparative Study
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GroupedDBID ---
0R~
23N
2VQ
2WC
2XV
4.4
53G
5VS
6J9
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABDBF
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
C1A
C6C
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
GROUPED_DOAJ
GX1
H13
HYE
IAO
IGS
IHR
INH
INR
IPNFZ
ISR
ITC
KQ8
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PIMPY
PQQKQ
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
W2D
WOQ
WOW
XSB
-A0
ACRMQ
ADINQ
AIXEN
C24
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ABVAZ
AFGXO
AFNRJ
5PM
ID FETCH-LOGICAL-b683t-d518e10ed790c26e9ecef1c91c0bd88005df847d6f2a1e5b4ceae0a000d421493
IEDL.DBID RBZ
ISSN 1471-2164
IngestDate Wed Aug 27 01:32:14 EDT 2025
Thu Aug 21 17:25:22 EDT 2025
Wed May 22 07:11:46 EDT 2024
Fri Jul 11 06:25:32 EDT 2025
Tue Jun 17 22:22:30 EDT 2025
Tue Jun 10 21:20:42 EDT 2025
Fri Jun 27 06:11:42 EDT 2025
Thu Jan 02 22:03:45 EST 2025
Thu Apr 24 23:04:22 EDT 2025
Tue Jul 01 03:42:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b683t-d518e10ed790c26e9ecef1c91c0bd88005df847d6f2a1e5b4ceae0a000d421493
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
OpenAccessLink http://dx.doi.org/10.1186/1471-2164-8-140
PMID 17540040
PQID 70661695
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_c3a865dfaac34d44baf90552a76309eb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1894975
biomedcentral_primary_oai_biomedcentral_com_1471_2164_8_140
proquest_miscellaneous_70661695
gale_infotracmisc_A165358115
gale_infotracacademiconefile_A165358115
gale_incontextgauss_ISR_A165358115
pubmed_primary_17540040
crossref_citationtrail_10_1186_1471_2164_8_140
crossref_primary_10_1186_1471_2164_8_140
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-06-01
2007-Jun-01
20070601
PublicationDateYYYYMMDD 2007-06-01
PublicationDate_xml – month: 06
  year: 2007
  text: 2007-06-01
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2007
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References Y Benjamini (853_CR26) 1995; 57
KJ Livak (853_CR6) 1995; 4
M Jung (853_CR22) 2002; 4
SA Bustin (853_CR3) 2000; 25
Z Wu (853_CR41) 2005; 12
HK Hamalainen (853_CR14) 2001; 299
DJ Moore (853_CR16) 2001; 1521
PJ Gibbs (853_CR13) 2003; 12
JJ Chen (853_CR34) 2001; 61
YS Lin (853_CR11) 2006; 13
A Bhattacharjee (853_CR24) 2001; 98
A Szabo (853_CR18) 2004; 5
853_CR37
EL Lehmann (853_CR42) 1975
E Hubbell (853_CR38) 2002; 18
RJ Lipshutz (853_CR2) 1999; 21
853_CR39
853_CR36
LG Lee (853_CR5) 1993; 21
BJ Wilson (853_CR19) 2004; 5
LJ Su (853_CR35) 2006; 13
853_CR30
853_CR31
DG Ginzinger (853_CR17) 2002; 30
YW Chu (853_CR33) 1997; 17
RA Irizarry (853_CR40) 2003; 4
SN Lahiri (853_CR46) 2003
O Thellin (853_CR10) 1999; 75
J Vandesompele (853_CR15) 2002; 3
BR Kim (853_CR8) 2003; 25
AC Davison (853_CR45) 1997
JL Aerts (853_CR7) 2004; 36
A Ploner (853_CR25) 2005; 6
ML Whitfield (853_CR32) 2002; 13
KK Jain (853_CR1) 2004; 7
853_CR27
853_CR29
853_CR28
T Suzuki (853_CR9) 2000; 29
853_CR47
SA Contag (853_CR43) 2004; 95
J Bereta (853_CR12) 1995; 217
853_CR21
DG Beer (853_CR23) 2002; 8
853_CR20
B Efron (853_CR44) 1979; 7
JJ Yun (853_CR4) 2006; 34
10617337 - J Biotechnol. 1999 Oct 8;75(2-3):291-5
12490442 - Bioinformatics. 2002 Dec;18(12):1585-92
12184808 - Genome Biol. 2002 Jun 18;3(7):RESEARCH0034
15216931 - Curr Opin Drug Discov Devel. 2004 May;7(3):285-9
15799785 - BMC Bioinformatics. 2005;6:80
15581972 - Gynecol Oncol. 2004 Dec;95(3):610-7
16108723 - J Comput Biol. 2005 Jul-Aug;12(6):882-93
14551036 - Transpl Immunol. 2003 Oct-Nov;12(1):89-97
11707567 - Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13790-5
15287981 - Genome Biol. 2004;5(8):R59
11726185 - Anal Biochem. 2001 Dec 1;299(1):63-70
11013345 - J Mol Endocrinol. 2000 Oct;25(2):169-93
9915496 - Nat Genet. 1999 Jan;21(1 Suppl):20-4
12925520 - Biostatistics. 2003 Apr;4(2):249-64
17017125 - Gene Expr. 2006;13(2):107-32
8526935 - Biochem Biophys Res Commun. 1995 Dec 5;217(1):363-9
14740490 - Biotechniques. 2004 Jan;36(1):84-6, 88, 90-1
12063017 - Exp Hematol. 2002 Jun;30(6):503-12
12118244 - Nat Med. 2002 Aug;8(8):816-24
8367293 - Nucleic Acids Res. 1993 Aug 11;21(16):3761-6
11690642 - Biochim Biophys Acta. 2001 Oct 31;1521(1-3):107-19
7580930 - PCR Methods Appl. 1995 Jun;4(6):357-62
12058064 - Mol Biol Cell. 2002 Jun;13(6):1977-2000
14677714 - Biotechnol Lett. 2003 Nov;25(21):1869-72
9308922 - Am J Respir Cell Mol Biol. 1997 Sep;17(3):353-60
16572587 - Gene Expr. 2006;13(1):15-26
11431363 - Cancer Res. 2001 Jul 1;61(13):5223-30
16840529 - Nucleic Acids Res. 2006;34(12):e85
15298701 - BMC Mol Biol. 2004 Aug 6;5:11
10948434 - Biotechniques. 2000 Aug;29(2):332-7
References_xml – volume: 21
  start-page: 20
  issue: 1 Suppl
  year: 1999
  ident: 853_CR2
  publication-title: Nat Genet
  doi: 10.1038/4447
– ident: 853_CR39
– volume: 95
  start-page: 610
  issue: 3
  year: 2004
  ident: 853_CR43
  publication-title: Gynecol Oncol
  doi: 10.1016/j.ygyno.2004.08.021
– volume: 34
  start-page: e85
  issue: 12
  year: 2006
  ident: 853_CR4
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl400
– volume: 75
  start-page: 291
  issue: 2-3
  year: 1999
  ident: 853_CR10
  publication-title: J Biotechnol
  doi: 10.1016/S0168-1656(99)00163-7
– volume: 13
  start-page: 107
  issue: 2
  year: 2006
  ident: 853_CR35
  publication-title: Gene Expr
  doi: 10.3727/000000006783991872
– volume: 299
  start-page: 63
  issue: 1
  year: 2001
  ident: 853_CR14
  publication-title: Anal Biochem
  doi: 10.1006/abio.2001.5369
– volume: 6
  start-page: 80
  issue: 1
  year: 2005
  ident: 853_CR25
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-80
– ident: 853_CR20
– volume: 4
  start-page: 9
  year: 2002
  ident: 853_CR22
  publication-title: Biochemica
– volume: 21
  start-page: 3761
  issue: 16
  year: 1993
  ident: 853_CR5
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/21.16.3761
– volume: 4
  start-page: 249
  issue: 2
  year: 2003
  ident: 853_CR40
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/4.2.249
– ident: 853_CR47
– volume: 30
  start-page: 503
  issue: 6
  year: 2002
  ident: 853_CR17
  publication-title: Exp Hematol
  doi: 10.1016/S0301-472X(02)00806-8
– ident: 853_CR29
– volume-title: Nonparametrics: Statistical Methods Based on Ranks
  year: 1975
  ident: 853_CR42
– ident: 853_CR27
– volume: 17
  start-page: 353
  issue: 3
  year: 1997
  ident: 853_CR33
  publication-title: Am J Respir Cell Mol Biol
  doi: 10.1165/ajrcmb.17.3.2837
– volume: 12
  start-page: 882
  issue: 6
  year: 2005
  ident: 853_CR41
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2005.12.882
– volume: 8
  start-page: 816
  issue: 8
  year: 2002
  ident: 853_CR23
  publication-title: Nat Med
  doi: 10.1038/nm733
– volume: 13
  start-page: 1977
  issue: 6
  year: 2002
  ident: 853_CR32
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.02-02-0030.
– volume-title: Springer-Verlag, New York
  year: 2003
  ident: 853_CR46
– volume: 36
  start-page: 84
  issue: 1
  year: 2004
  ident: 853_CR7
  publication-title: Biotechniques
  doi: 10.2144/04361ST04
– volume: 1521
  start-page: 107
  issue: 1-3
  year: 2001
  ident: 853_CR16
  publication-title: Biochim Biophys Acta
  doi: 10.1016/S0167-4781(01)00291-3
– volume: 61
  start-page: 5223
  issue: 13
  year: 2001
  ident: 853_CR34
  publication-title: Cancer Res
– volume: 7
  start-page: 285
  issue: 3
  year: 2004
  ident: 853_CR1
  publication-title: Curr Opin Drug Discov Devel
– ident: 853_CR31
– volume: 3
  start-page: RESEARCH0034
  issue: 7
  year: 2002
  ident: 853_CR15
  publication-title: Genome Biol
  doi: 10.1186/gb-2002-3-7-research0034
– volume: 217
  start-page: 363
  issue: 1
  year: 1995
  ident: 853_CR12
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.1995.2785
– volume: 5
  start-page: 11
  year: 2004
  ident: 853_CR19
  publication-title: BMC Mol Biol
  doi: 10.1186/1471-2199-5-11
– ident: 853_CR37
– volume: 18
  start-page: 1585
  issue: 12
  year: 2002
  ident: 853_CR38
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.12.1585
– volume: 12
  start-page: 89
  issue: 1
  year: 2003
  ident: 853_CR13
  publication-title: Transpl Immunol
  doi: 10.1016/S0966-3274(03)00010-8
– volume: 4
  start-page: 357
  issue: 6
  year: 1995
  ident: 853_CR6
  publication-title: PCR Methods Appl
  doi: 10.1101/gr.4.6.357
– ident: 853_CR21
– volume: 29
  start-page: 332
  issue: 2
  year: 2000
  ident: 853_CR9
  publication-title: Biotechniques
  doi: 10.2144/00292rv02
– volume: 5
  start-page: R59
  issue: 8
  year: 2004
  ident: 853_CR18
  publication-title: Genome Biol
  doi: 10.1186/gb-2004-5-8-r59
– volume: 98
  start-page: 13790
  issue: 24
  year: 2001
  ident: 853_CR24
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.191502998
– volume: 25
  start-page: 1869
  issue: 21
  year: 2003
  ident: 853_CR8
  publication-title: Biotechnol Lett
  doi: 10.1023/A:1026298032009
– ident: 853_CR28
– volume: 25
  start-page: 169
  issue: 2
  year: 2000
  ident: 853_CR3
  publication-title: J Mol Endocrinol
  doi: 10.1677/jme.0.0250169
– volume: 13
  start-page: 15
  issue: 1
  year: 2006
  ident: 853_CR11
  publication-title: Gene Expr
  doi: 10.3727/000000006783991962
– volume: 57
  start-page: 289
  issue: 1
  year: 1995
  ident: 853_CR26
  publication-title: J R Statist Soc B
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 7
  start-page: 1
  year: 1979
  ident: 853_CR44
  publication-title: Ann Stat,
  doi: 10.1214/aos/1176344552
– ident: 853_CR30
– ident: 853_CR36
– volume-title: Bootstrap Methods and Their Application.
  year: 1997
  ident: 853_CR45
  doi: 10.1017/CBO9780511802843
– reference: 15581972 - Gynecol Oncol. 2004 Dec;95(3):610-7
– reference: 9915496 - Nat Genet. 1999 Jan;21(1 Suppl):20-4
– reference: 12058064 - Mol Biol Cell. 2002 Jun;13(6):1977-2000
– reference: 10948434 - Biotechniques. 2000 Aug;29(2):332-7
– reference: 11707567 - Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13790-5
– reference: 15799785 - BMC Bioinformatics. 2005;6:80
– reference: 17017125 - Gene Expr. 2006;13(2):107-32
– reference: 12925520 - Biostatistics. 2003 Apr;4(2):249-64
– reference: 14551036 - Transpl Immunol. 2003 Oct-Nov;12(1):89-97
– reference: 15287981 - Genome Biol. 2004;5(8):R59
– reference: 11726185 - Anal Biochem. 2001 Dec 1;299(1):63-70
– reference: 16840529 - Nucleic Acids Res. 2006;34(12):e85
– reference: 10617337 - J Biotechnol. 1999 Oct 8;75(2-3):291-5
– reference: 12118244 - Nat Med. 2002 Aug;8(8):816-24
– reference: 11690642 - Biochim Biophys Acta. 2001 Oct 31;1521(1-3):107-19
– reference: 12063017 - Exp Hematol. 2002 Jun;30(6):503-12
– reference: 15216931 - Curr Opin Drug Discov Devel. 2004 May;7(3):285-9
– reference: 8526935 - Biochem Biophys Res Commun. 1995 Dec 5;217(1):363-9
– reference: 14740490 - Biotechniques. 2004 Jan;36(1):84-6, 88, 90-1
– reference: 7580930 - PCR Methods Appl. 1995 Jun;4(6):357-62
– reference: 9308922 - Am J Respir Cell Mol Biol. 1997 Sep;17(3):353-60
– reference: 16572587 - Gene Expr. 2006;13(1):15-26
– reference: 16108723 - J Comput Biol. 2005 Jul-Aug;12(6):882-93
– reference: 15298701 - BMC Mol Biol. 2004 Aug 6;5:11
– reference: 8367293 - Nucleic Acids Res. 1993 Aug 11;21(16):3761-6
– reference: 11431363 - Cancer Res. 2001 Jul 1;61(13):5223-30
– reference: 12184808 - Genome Biol. 2002 Jun 18;3(7):RESEARCH0034
– reference: 12490442 - Bioinformatics. 2002 Dec;18(12):1585-92
– reference: 11013345 - J Mol Endocrinol. 2000 Oct;25(2):169-93
– reference: 14677714 - Biotechnol Lett. 2003 Nov;25(21):1869-72
SSID ssj0017825
Score 2.3662734
Snippet The development of microarrays permits us to monitor transcriptomes on a genome-wide scale. To validate microarray measurements, quantitative-real time-reverse...
BACKGROUND: The development of microarrays permits us to monitor transcriptomes on a genome-wide scale. To validate microarray measurements, quantitative-real...
Abstract Background The development of microarrays permits us to monitor transcriptomes on a genome-wide scale. To validate microarray measurements,...
SourceID doaj
pubmedcentral
biomedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 140
SubjectTerms Adenocarcinoma - genetics
Adenocarcinoma - pathology
Algorithms
Calibration
Cell Line, Transformed
Data Interpretation, Statistical
DEAD-box RNA Helicases - genetics
DNA microarrays
Gene expression
Gene Expression Profiling
Gene Expression Regulation, Neoplastic
Genetic research
Humans
Lung Neoplasms - genetics
Lung Neoplasms - pathology
Methodology
Methods
Oligonucleotide Array Sequence Analysis
Reference Standards
Reverse Transcriptase Polymerase Chain Reaction - standards
Specimen Handling - methods
Statistical sampling
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDcLBSyEBBfTOLGdRJxKS1WQQLBtpb1Zjj0uFdtstQ-k8uuZSbJlrQpx4bbKTLKxZzwP5_MMY69CnpUR_YTwuvZCSZcLF2IhTAMQoczAdJD_z1_M4Yn6NNGTjVZfhAnrywP3E7fjC1cZHaJzvlBBqcbFOtM6d7gwshoasr7o89bJ1PD9AP2e7s4VlVLkmBEMRX1kZXaurglMn2jPIznoPk38U1fG_7qx3vBWKZJywzUd3GG3h5iS7_ZjuctuQHuP3ey7TF7eZ7-Oul43KAA-i3x_f6K5W3DH29lPmPKzfktwygfQOscoln8T42PxdW_M6fQJPyfQnpvP3SUnQCknrPwpPqBBR_iDY5i-pP2SCz4HsXCEUEcqJs1wDg_YycGH471DMbRcEI2piqUIWlYgMwhlnfncQA0eovS19FkTcKlnKAn0Z8HE3EnQjfLgIHNoV4PKMdkqHrKtdtbCY8YxzwxFDDVAHZXLy0ZVRgaKR0oVm9iM2Ltk4u1FX17DUsHrlIJrz5LYLInNVvg7G7G3azFZP1Qzp6YaU9tlNZW5fsObqxvW__RX1vck9-SFuguol3bQS_svvRyxl6Q1lmpstATiOXWrxcJ-PBrbXWk0lZ2TesReD0xxhm_v3XAmAmeQynIlnNsJJxoBn5BfrJXTEomQcy3MVgtbYkwpTY0cj3pV_TP6UpMBx-GWiRIn404p7dn3rgK5rGpVl_rJ_5iop-zWGoOZyW22tZyv4BkGesvmebemfwMT5U_q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals (OA)
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1db9Mw0EJDSLwgvikbYCEkePGIE9tJhBAaG9NAGoJulfpmOfa5THTJlrSI8us5pyld2OAt6l0S-74vPd8R8sLFUerRTzArc8sENzEzzidMFQAe0ghUW_J_-FkdjMSnsRyvxwF1BGyuTO3CPKlRPd3-eb54hwr_tlX4TL3maGBZjHE_w4RIYP5-Hd1SGrT0UKz_UkBXKNujRh1y1-fnigf8dfZ92nNZbWf_y_b7ggPrF1de8Fb7t8mtLsykO0u5uEOuQXmX3FgOnlzcI7-O2vE3yBNaebq3N5bUNNTQsvoBU3qy_Eo4pV0dO8XAln5lw2P2ZXdIw4EUehrq-ExdmwUNNaY0lM9P8AEF-sbvFCP3WfiEckZrYI0JResIRWLDKdwno_0Px7sHrJvCwAqVJTPmJM-AR-DSPLKxghwseG5zbqPCofZH0nl0cU752HCQhbBgIDJoap2IMf9KHpCNsirhEaGYerrEuxwg98LEaSEyxV0IUVLhC18MyJse4fXZsuOGDj2w-xBURx3YpgPbdIbX0YBsr9ikbdfgPMzZmOo20cnU5Rte_blh9aZ_or4PfO8tqP2hqie603FtE5MppIYxNhFOiML4PJIyNmjDoxxwe8-D1OjQdqMMdT0TM28a_fFoqHe4kqETHZcD8rJD8hWu3prumARSMHTq6mFu9TDRLtge-NlKOHUAhWK6Eqp5o1MMM7nKEePhUlTXu09lsOm43bQnxL199yHlybe2KTnPcpGn8vH_F7VJbq4KLiO-RTZm9RyeYFQ3K5622vobdv1Iog
  priority: 102
  providerName: Scholars Portal
Title Selection of DDX5 as a novel internal control for Q-RT-PCR from microarray data using a block bootstrap re-sampling scheme
URI https://www.ncbi.nlm.nih.gov/pubmed/17540040
https://www.proquest.com/docview/70661695
http://dx.doi.org/10.1186/1471-2164-8-140
https://pubmed.ncbi.nlm.nih.gov/PMC1894975
https://doaj.org/article/c3a865dfaac34d44baf90552a76309eb
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFA5SEXwR767WGkTQl2gyk2Qm-NSLpQoV3bZQfAmZ5KQtbmfLXoT66z2ZnW2bVp98WZY9Z2YnOffMyRdC3oSCVxHjBPPKeCaFK5gLsWS6AYhQcdBdy__uV71zIL8cqsNLsOhrb_BFrT8IdJ-swKyeYbkjsTq_XUgMg6kw3_hx8cIAA53qNhL1zD2Kz19ucG1n-ygLSB1u_03vfCU85a2TV2LR9n1yr08i6fpC6g_ILWgfkjuLYyXPH5Hfe93hNjjjdBzp1tahom5KHW3Hv2BETxZrgCPad6lTTFvpdzbcZ982hzRtN6GnqUvPTSbunKYOUpqa44_wBg1Gvp8U8_JZWiA5oxNgU5da0pGKVTKcwmNysP1pf3OH9WcssEbX5YwFJWoQHEJluC80GPAQhTfC8yagbXMVIgawoGPhBKhGenDAHTrSIAusrsonZKUdt_CMUCwsQxmDATBRuqJqZK1FSAlIJWMTmwH5mE28PVvgadiEcJ1T0NhsEptNYrM1fucD8n4pJut7-PJ0isbIdmVMrW9e8O7iguU__ZN1I8k9e6DuB9RD21uw9aWrNc6Gc76UQcrGRcOVKhx6aG4Ah_c6aY1NoBpt6to5cvPp1H7eG9p1oVXCmRNqQN72THGMT-9dvwkCZzDhcGWcqxknWr3PyK-WymkTKbXKtTCeT22FSaTQBjmeLlT1cvSVSh4bh1tlSpyNO6e0J8cd5LiojTSVev5fInxB7i67LblYJSuzyRxeYko3a9a6pRD83JX1WmfYfwCIFkkj
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemIQQviPG1wtgshAQvHnFiO4l42gdVB9sEXSdVvFiOP0pFm0xNizT-es75GA2DJ96q-pLmfOf7SH93h9BrEwaxAz9BNE81YVSFRBkXEZFZ62wcWFFB_s_OxeCSfRzz8Qbqt7Uw2Vz75qTzqS731wvQZ5XVbsFi9VlPxDsKtpWEEPITyIUYpO53Ys5jP8lgePj15t8E8IK8qjJqiJsWP3-5wR9l77OOt6qa-t823Wu-q4urXHNU_YfoQRNh4oOaiS20YfNH6G49c_L6Mfp5UU2-AXHgwuHj4zHHqsQK58UPO8PT-gXhDDcQdgwxLf5ChiPy-WiIfS0KnnsIn1os1DX28FLskfMTuEEGbvE7hqB96d-eXOGFJaXyeHVYhRTazu0TdNn_MDoakGYAA8lEEi2J4TSxNLAmTgMdCptabR3VKdVBZuDgB9w48G5GuFBRyzOmrbKBAitrWAipV_QUbeZFbrcRhqzTRM6k1qaOqTDOWCKo8dFJzFzmsh5639l4eVU325C-_XV3BRRBerFJLzaZwOegh_ZbMUnd9Db3IzZmsspxEnH7grc3F7S_9E_SQy_3zgNVXxSLiWwUUupIJQJ2QykdMcNYplwacB4qMN9BaoG9V15rpO-4kXtIz0StylKeXAzlARXcN6GjvIfeNESugKfXqqmQgB30Tbo6lDsdSjAJurO81yqn9EseR5fbYlXKGCJMKlKgeFar6m_uY-7NObAbd5S4w3d3JZ9-q_qR0yRlacyf_5cI99C9wejsVJ6enH96ge63sMyA7qDN5WJlX0Lst8x2q4P9C-9MVhs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLamIRAviDuFwSyEBC_e4sR2EvG0rZSNyzS6Tar2Yjm-lGppUjUt0vj1HCfpaBg88Rb1nKS1zz39zjFCb0wYxA7iBNE81YRRFRJlXEREZq2zcWBFDfn_eiwOz9mnER9toI-rXphsqv1w0ulEVzvrDeh57bXhQl_uzoxrjD0RuxScKwkh5ydQDDGo3W_FnMfeQof7F9d_J0AY5HWbUcvczvj5ywP-6HvPO-Gqnup_03evBa8usHItUg3uo3ttion3Gp14gDZs8RDdbg6dvHqEfp7WR9-APHDpcL8_4lhVWOGi_GFzPGneEOa4xbBjSGrxNzI8IycHQ-ybUfDUY_jUfK6usMeXYg-dH8MDMoiLlxiy9oV_fTLDc0sq5QHrQIUa2k7tY3Q--HB2cEjaExhIJpJoQQyniaWBNXEa6FDY1GrrqE6pDjIDlh9w4yC8GeFCRS3PmLbKBgrcrGEh1F7RE7RZlIV9hjCUnSZyJrU2dUyFccYSQY1PT2LmMpf10PvOxstZM21D-vnXXQpogvRik15sMoHroId2VmKSuh1u7s_YyGVd5CTi5g3vrm9YfdM_Wfe93Ds_qP6gnI9la99SRyoRsBtK6YgZxjLl0oDzUIH_DlILy3vttUb6kRuFx_SM1bKq5NHpUO5Rwf0UOsp76G3L5Eqv6qptkYAd9FO6OpxbHU7wCbpD3l4pp_QkD6QrbLmsZAwpJhUpcDxtVPX36mPu_TksN-4ocWfdXUox-V4PJKdJytKYP_8vEW6jOyf9gfxydPz5Bbq7gmUGdAttLuZL-xJyv0X2qrbrX05hVeY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selection+of+DDX5+as+a+novel+internal+control+for+Q-RT-PCR+from+microarray+data+using+a+block+bootstrap+re-sampling+scheme&rft.jtitle=BMC+genomics&rft.au=Su%2C+Li-Jen&rft.au=Chang%2C+Ching-Wei&rft.au=Wu%2C+Yu-Chung&rft.au=Chen%2C+Kuang-Chi&rft.date=2007-06-01&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=8&rft.spage=140&rft_id=info:doi/10.1186%2F1471-2164-8-140&rft.externalDocID=A165358115
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon