Cerebellum morphogenesis: the foliation pattern is orchestrated by multi-cellular anchoring centers

The cerebellum has a striking morphology consisting of folia separated by fissures of different lengths. Since folia in mammals likely serve as a broad platform on which the anterior-posterior organization of the sensory-motor circuits of the cerebellum are built, it is important to understand how s...

Full description

Saved in:
Bibliographic Details
Published inNeural development Vol. 2; no. 1; p. 26
Main Authors Sudarov, Anamaria, Joyner, Alexandra L
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 03.12.2007
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The cerebellum has a striking morphology consisting of folia separated by fissures of different lengths. Since folia in mammals likely serve as a broad platform on which the anterior-posterior organization of the sensory-motor circuits of the cerebellum are built, it is important to understand how such complex morphology arises. Using a combination of genetic inducible fate mapping, high-resolution cellular analysis and mutant studies in mouse, we demonstrate that a key event in initiation of foliation is the acquisition of a distinct cytoarchitecture in the regions that will become the base of each fissure. We term these regions 'anchoring centers'. We show that the first manifestation of anchoring centers when the cerebellar outer surface is smooth is an increase in proliferation and inward thickening of the granule cell precursors, which likely causes an associated slight invagination of the Purkinje cell layer. Thereafter, granule cell precursors within anchoring centers become distinctly elongated along the axis of the forming fissure. As the outer cerebellar surface begins to fold inwards, Bergmann glial fibers radiate in towards the base of the immature fissure in a fan shape. Once the anchoring center is formed, outgrowth of folia seems to proceed in a self-sustaining manner driven by granule cell migration along Bergmann glial fibers. Finally, by analyzing a cerebellum foliation mutant (Engrailed 2), we demonstrate that changing the timing of anchoring center formation leads to predictable changes in the shape and size of the surrounding folia. We present a new cellular model of the initial formation of cerebellar fissures with granule cells providing the driving physical force. Both the precise timing of the appearance of anchoring centers at the prospective base of each fissure and the subsequent coordinated action of granule cells and Bergmann glial fibers within the anchoring centers dictates the shape of the folia.
AbstractList The cerebellum has a striking morphology consisting of folia separated by fissures of different lengths. Since folia in mammals likely serve as a broad platform on which the anterior-posterior organization of the sensory-motor circuits of the cerebellum are built, it is important to understand how such complex morphology arises. Using a combination of genetic inducible fate mapping, high-resolution cellular analysis and mutant studies in mouse, we demonstrate that a key event in initiation of foliation is the acquisition of a distinct cytoarchitecture in the regions that will become the base of each fissure. We term these regions 'anchoring centers'. We show that the first manifestation of anchoring centers when the cerebellar outer surface is smooth is an increase in proliferation and inward thickening of the granule cell precursors, which likely causes an associated slight invagination of the Purkinje cell layer. Thereafter, granule cell precursors within anchoring centers become distinctly elongated along the axis of the forming fissure. As the outer cerebellar surface begins to fold inwards, Bergmann glial fibers radiate in towards the base of the immature fissure in a fan shape. Once the anchoring center is formed, outgrowth of folia seems to proceed in a self-sustaining manner driven by granule cell migration along Bergmann glial fibers. Finally, by analyzing a cerebellum foliation mutant (Engrailed 2), we demonstrate that changing the timing of anchoring center formation leads to predictable changes in the shape and size of the surrounding folia. We present a new cellular model of the initial formation of cerebellar fissures with granule cells providing the driving physical force. Both the precise timing of the appearance of anchoring centers at the prospective base of each fissure and the subsequent coordinated action of granule cells and Bergmann glial fibers within the anchoring centers dictates the shape of the folia.
Abstract Background The cerebellum has a striking morphology consisting of folia separated by fissures of different lengths. Since folia in mammals likely serve as a broad platform on which the anterior-posterior organization of the sensory-motor circuits of the cerebellum are built, it is important to understand how such complex morphology arises. Results Using a combination of genetic inducible fate mapping, high-resolution cellular analysis and mutant studies in mouse, we demonstrate that a key event in initiation of foliation is the acquisition of a distinct cytoarchitecture in the regions that will become the base of each fissure. We term these regions 'anchoring centers'. We show that the first manifestation of anchoring centers when the cerebellar outer surface is smooth is an increase in proliferation and inward thickening of the granule cell precursors, which likely causes an associated slight invagination of the Purkinje cell layer. Thereafter, granule cell precursors within anchoring centers become distinctly elongated along the axis of the forming fissure. As the outer cerebellar surface begins to fold inwards, Bergmann glial fibers radiate in towards the base of the immature fissure in a fan shape. Once the anchoring center is formed, outgrowth of folia seems to proceed in a self-sustaining manner driven by granule cell migration along Bergmann glial fibers. Finally, by analyzing a cerebellum foliation mutant (Engrailed 2), we demonstrate that changing the timing of anchoring center formation leads to predictable changes in the shape and size of the surrounding folia. Conclusion We present a new cellular model of the initial formation of cerebellar fissures with granule cells providing the driving physical force. Both the precise timing of the appearance of anchoring centers at the prospective base of each fissure and the subsequent coordinated action of granule cells and Bergmann glial fibers within the anchoring centers dictates the shape of the folia.
BACKGROUND: The cerebellum has a striking morphology consisting of folia separated by fissures of different lengths. Since folia in mammals likely serve as a broad platform on which the anterior-posterior organization of the sensory-motor circuits of the cerebellum are built, it is important to understand how such complex morphology arises. RESULTS: Using a combination of genetic inducible fate mapping, high-resolution cellular analysis and mutant studies in mouse, we demonstrate that a key event in initiation of foliation is the acquisition of a distinct cytoarchitecture in the regions that will become the base of each fissure. We term these regions 'anchoring centers'. We show that the first manifestation of anchoring centers when the cerebellar outer surface is smooth is an increase in proliferation and inward thickening of the granule cell precursors, which likely causes an associated slight invagination of the Purkinje cell layer. Thereafter, granule cell precursors within anchoring centers become distinctly elongated along the axis of the forming fissure. As the outer cerebellar surface begins to fold inwards, Bergmann glial fibers radiate in towards the base of the immature fissure in a fan shape. Once the anchoring center is formed, outgrowth of folia seems to proceed in a self-sustaining manner driven by granule cell migration along Bergmann glial fibers. Finally, by analyzing a cerebellum foliation mutant (Engrailed 2), we demonstrate that changing the timing of anchoring center formation leads to predictable changes in the shape and size of the surrounding folia. CONCLUSION: We present a new cellular model of the initial formation of cerebellar fissures with granule cells providing the driving physical force. Both the precise timing of the appearance of anchoring centers at the prospective base of each fissure and the subsequent coordinated action of granule cells and Bergmann glial fibers within the anchoring centers dictates the shape of the folia.
BACKGROUNDThe cerebellum has a striking morphology consisting of folia separated by fissures of different lengths. Since folia in mammals likely serve as a broad platform on which the anterior-posterior organization of the sensory-motor circuits of the cerebellum are built, it is important to understand how such complex morphology arises. RESULTSUsing a combination of genetic inducible fate mapping, high-resolution cellular analysis and mutant studies in mouse, we demonstrate that a key event in initiation of foliation is the acquisition of a distinct cytoarchitecture in the regions that will become the base of each fissure. We term these regions 'anchoring centers'. We show that the first manifestation of anchoring centers when the cerebellar outer surface is smooth is an increase in proliferation and inward thickening of the granule cell precursors, which likely causes an associated slight invagination of the Purkinje cell layer. Thereafter, granule cell precursors within anchoring centers become distinctly elongated along the axis of the forming fissure. As the outer cerebellar surface begins to fold inwards, Bergmann glial fibers radiate in towards the base of the immature fissure in a fan shape. Once the anchoring center is formed, outgrowth of folia seems to proceed in a self-sustaining manner driven by granule cell migration along Bergmann glial fibers. Finally, by analyzing a cerebellum foliation mutant (Engrailed 2), we demonstrate that changing the timing of anchoring center formation leads to predictable changes in the shape and size of the surrounding folia. CONCLUSIONWe present a new cellular model of the initial formation of cerebellar fissures with granule cells providing the driving physical force. Both the precise timing of the appearance of anchoring centers at the prospective base of each fissure and the subsequent coordinated action of granule cells and Bergmann glial fibers within the anchoring centers dictates the shape of the folia.
Audience Academic
Author Sudarov, Anamaria
Joyner, Alexandra L
AuthorAffiliation 1 Department of Cell Biology, New York University School of Medicine, 1st Avenue, NY, NY 10016, USA
2 Developmental Biology Program, Sloan-Kettering Institute, York Avenue, New York, NY 10021, USA
AuthorAffiliation_xml – name: 2 Developmental Biology Program, Sloan-Kettering Institute, York Avenue, New York, NY 10021, USA
– name: 1 Department of Cell Biology, New York University School of Medicine, 1st Avenue, NY, NY 10016, USA
Author_xml – sequence: 1
  givenname: Anamaria
  surname: Sudarov
  fullname: Sudarov, Anamaria
  email: sudarova@mskcc.org
  organization: Developmental Biology Program, Sloan-Kettering Institute, York Avenue, New York, NY 10021, USA. sudarova@mskcc.org
– sequence: 2
  givenname: Alexandra L
  surname: Joyner
  fullname: Joyner, Alexandra L
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18053187$$D View this record in MEDLINE/PubMed
BookMark eNp1kstr3DAQh01JaR7ttcdiKBRycCrJsiz3UFiWPhYChT7OYiSPvQq2tZXk0vz3lbNLmqUpOmiY-c3HvM6zk8lNmGUvKbmiVIq3tOZNISnhBSuYeJKd3TtOHtin2XkIN4RUhAn5LDulklQllfVZZtboUeMwzGM-Or_buh4nDDa8y-MW884NFqJ1U76DGNFPuQ2582aLIXqI2Ob6Nh_nIdrCLJABfA6T2Tpvpz43OKWc8Dx72sEQ8MXhv8h-fPzwff25uP7yabNeXRda1E0sZEcokawUFKgE1nFOuZFVRQCw6WrNBHbYtEiB0RKaWmAyZNcy3WpTCV1eZJs9t3Vwo3bejuBvlQOr7hzO9wp8tGZABUYT3ghmmhJ5W3HAklNDSk2kLlE0ifV-z9rNesR26cTDcAQ9jkx2q3r3SzHGBWUyAVZ7gLbuP4DjiHGjWhamloUppphIjDeHIrz7OaeRq9GGZc4woZuDqtPA6oYv1b7eC3tIzdmpcwlpFrFaLUxZ87pOqqtHVOm1OFqT7qqzyX-UcHmUkDQRf8ce5hDU5tvXR-HGuxA8dvetUqKWU_23uVcPJ_xXfrjN8g_KiOcT
CitedBy_id crossref_primary_10_3389_fcell_2021_702832
crossref_primary_10_1111_ejn_13219
crossref_primary_10_1007_s12311_014_0628_6
crossref_primary_10_1093_hmg_ddv137
crossref_primary_10_1007_s00429_020_02147_x
crossref_primary_10_1038_s41598_017_19116_w
crossref_primary_10_1016_j_ydbio_2017_09_036
crossref_primary_10_7554_eLife_20898
crossref_primary_10_1093_genetics_iyad182
crossref_primary_10_1016_j_nbd_2023_106163
crossref_primary_10_1371_journal_pone_0032970
crossref_primary_10_1016_j_neulet_2018_05_013
crossref_primary_10_3389_fcell_2020_613557
crossref_primary_10_3390_toxics3020224
crossref_primary_10_1088_1367_2630_ac03ce
crossref_primary_10_7554_eLife_23253
crossref_primary_10_1002_cne_22301
crossref_primary_10_1126_sciadv_abf7262
crossref_primary_10_1080_03079457_2014_889277
crossref_primary_10_1002_hsr2_2233
crossref_primary_10_1016_j_expneurol_2018_05_015
crossref_primary_10_1111_bpa_13162
crossref_primary_10_1126_scisignal_aau5147
crossref_primary_10_1007_s00429_017_1436_9
crossref_primary_10_1242_dev_120287
crossref_primary_10_3389_fnsys_2021_646052
crossref_primary_10_4199_C00096ED1V01Y201310DBR011
crossref_primary_10_3389_fnbeh_2015_00265
crossref_primary_10_1007_s12311_019_01046_0
crossref_primary_10_1016_j_ydbio_2009_02_011
crossref_primary_10_3389_fncel_2018_00484
crossref_primary_10_1002_dvdy_22013
crossref_primary_10_1016_j_ydbio_2022_08_002
crossref_primary_10_1083_jcb_201310136
crossref_primary_10_1016_j_expneurol_2020_113537
crossref_primary_10_1186_s13064_016_0072_z
crossref_primary_10_1186_s13578_022_00869_5
crossref_primary_10_1242_dev_185587
crossref_primary_10_1209_0295_5075_97_68008
crossref_primary_10_3390_cells10061453
crossref_primary_10_1002_dneu_22236
crossref_primary_10_1039_C6SM00526H
crossref_primary_10_3389_fncir_2018_00083
crossref_primary_10_1103_PhysRevX_8_041053
crossref_primary_10_1242_bio_009886
crossref_primary_10_7554_eLife_45019
crossref_primary_10_1007_s00018_015_2065_1
crossref_primary_10_1111_j_1471_4159_2011_07524_x
crossref_primary_10_1073_pnas_0908790107
crossref_primary_10_1523_JNEUROSCI_1282_12_2012
crossref_primary_10_1038_s42003_023_05294_z
crossref_primary_10_1016_j_neuroscience_2015_01_026
crossref_primary_10_1016_j_ydbio_2022_10_006
crossref_primary_10_1039_C8SM02231C
crossref_primary_10_1016_j_brainres_2013_03_037
crossref_primary_10_1089_ars_2014_6043
crossref_primary_10_1016_j_devcel_2018_02_012
crossref_primary_10_1016_j_ydbio_2012_04_018
crossref_primary_10_1016_j_neuroscience_2017_04_020
crossref_primary_10_1038_srep07827
crossref_primary_10_1242_dev_202184
crossref_primary_10_1371_journal_pone_0064451
crossref_primary_10_4161_cam_25140
crossref_primary_10_1007_s12311_017_0892_3
crossref_primary_10_1016_j_ydbio_2011_07_030
crossref_primary_10_1016_j_neuroscience_2020_06_010
crossref_primary_10_1523_JNEUROSCI_2059_08_2008
crossref_primary_10_1002_ijch_202200071
crossref_primary_10_1007_s12311_011_0251_8
crossref_primary_10_1016_j_ydbio_2010_11_018
crossref_primary_10_1136_jmedgenet_2021_108115
crossref_primary_10_1242_dev_027045
crossref_primary_10_1038_s41583_019_0152_2
crossref_primary_10_1080_19475411_2019_1631899
crossref_primary_10_1523_JNEUROSCI_2158_16_2017
crossref_primary_10_1007_s00429_015_0998_7
crossref_primary_10_1126_science_aam8999
crossref_primary_10_3389_fcell_2020_00231
crossref_primary_10_1038_s41598_019_41940_5
crossref_primary_10_1016_j_pneurobio_2013_08_001
crossref_primary_10_1111_j_1750_3639_2010_00459_x
crossref_primary_10_1007_s12311_010_0208_3
crossref_primary_10_1093_hmg_ddt277
crossref_primary_10_1007_s12311_022_01429_w
crossref_primary_10_1159_000509068
crossref_primary_10_3389_fphy_2022_837600
crossref_primary_10_1016_j_diff_2022_12_004
crossref_primary_10_1093_hmg_ddp110
crossref_primary_10_1371_journal_pone_0087518
crossref_primary_10_15547_tjs_2023_03_007
crossref_primary_10_1152_jn_00586_2014
crossref_primary_10_1073_pnas_2016830117
crossref_primary_10_1007_s12311_015_0744_y
crossref_primary_10_1016_j_freeradbiomed_2017_07_026
crossref_primary_10_1038_s41467_021_25846_3
crossref_primary_10_3389_fncel_2022_903729
crossref_primary_10_1016_j_ydbio_2019_10_002
crossref_primary_10_1038_cdd_2015_39
crossref_primary_10_1016_j_gpb_2016_04_003
crossref_primary_10_1016_j_ydbio_2015_10_007
crossref_primary_10_1007_s12264_018_0228_4
crossref_primary_10_1299_jbse_20_00516
crossref_primary_10_1016_j_expneurol_2013_01_021
crossref_primary_10_1080_1028415X_2024_2312304
crossref_primary_10_1002_dvdy_24526
crossref_primary_10_1007_s12311_015_0724_2
crossref_primary_10_1523_JNEUROSCI_5255_14_2015
crossref_primary_10_1016_j_neuroscience_2015_09_025
crossref_primary_10_1371_journal_pone_0221914
crossref_primary_10_1093_hmg_ddv042
crossref_primary_10_1523_JNEUROSCI_3476_13_2014
crossref_primary_10_1007_s12031_011_9494_6
crossref_primary_10_1523_JNEUROSCI_2674_17_2018
crossref_primary_10_1007_s10646_020_02270_9
crossref_primary_10_1002_ajmg_c_31595
crossref_primary_10_1515_rns_2011_037
crossref_primary_10_1002_cne_25616
crossref_primary_10_1016_j_neuroimage_2015_05_029
crossref_primary_10_1016_j_brainres_2019_146358
crossref_primary_10_1371_journal_pone_0017884
crossref_primary_10_1007_s12311_011_0254_5
crossref_primary_10_1038_cddis_2017_326
crossref_primary_10_1039_C2BM00060A
crossref_primary_10_1093_brain_awt340
crossref_primary_10_7554_eLife_39879
crossref_primary_10_1016_j_mad_2013_04_001
crossref_primary_10_1007_s12311_017_0904_3
crossref_primary_10_1084_jem_20182037
crossref_primary_10_3389_fped_2014_00070
crossref_primary_10_1097_NEN_0000000000000171
crossref_primary_10_1038_srep16232
crossref_primary_10_1002_wdev_65
crossref_primary_10_1177_0192623317728134
crossref_primary_10_1016_j_neulet_2018_05_032
crossref_primary_10_1080_10253890_2017_1378637
crossref_primary_10_1159_000446904
crossref_primary_10_1007_s11538_016_0163_3
crossref_primary_10_1016_j_ydbio_2008_11_001
crossref_primary_10_1016_j_neuroscience_2019_03_061
crossref_primary_10_1242_dev_124180
crossref_primary_10_1038_s41598_023_47098_5
crossref_primary_10_1186_s43042_022_00307_8
crossref_primary_10_1038_nn_4020
crossref_primary_10_1016_j_jneuroim_2022_577870
crossref_primary_10_7554_eLife_63668
crossref_primary_10_1016_j_ijdevneu_2017_10_003
crossref_primary_10_1016_j_nbd_2023_106336
crossref_primary_10_1155_2011_315418
crossref_primary_10_7554_eLife_60554
crossref_primary_10_1155_2013_948587
crossref_primary_10_3389_fnmol_2023_1236015
crossref_primary_10_1016_j_ydbio_2011_03_008
crossref_primary_10_7554_eLife_34042
crossref_primary_10_1096_fj_12_205807
crossref_primary_10_1186_s13064_019_0130_4
crossref_primary_10_1016_j_ydbio_2014_08_004
crossref_primary_10_1523_JNEUROSCI_0612_18_2018
crossref_primary_10_1007_s11055_022_01231_5
crossref_primary_10_1186_s13064_017_0096_z
crossref_primary_10_1016_j_brainres_2013_08_003
crossref_primary_10_1074_jbc_M112_413500
crossref_primary_10_1002_ar_21082
ContentType Journal Article
Copyright COPYRIGHT 2007 BioMed Central Ltd.
Copyright © 2007 Sudarov and Joyner; licensee BioMed Central Ltd. 2007 Sudarov and Joyner; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2007 BioMed Central Ltd.
– notice: Copyright © 2007 Sudarov and Joyner; licensee BioMed Central Ltd. 2007 Sudarov and Joyner; licensee BioMed Central Ltd.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
ISR
7X8
5PM
DOA
DOI 10.1186/1749-8104-2-26
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Science in Context
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1749-8104
EndPage 26
ExternalDocumentID oai_doaj_org_article_acb04962c93e4d54ae341c03b08b3e69
oai_biomedcentral_com_1749_8104_2_26
A174987477
10_1186_1749_8104_2_26
18053187
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
-56
-5G
-A0
-BR
0R~
123
29N
2VQ
2WC
4.4
53G
5VS
AAFWJ
AAJSJ
ABDBF
ABIVO
ACGFO
ACGFS
ACIHN
ACMJI
ACPRK
ACRMQ
ADBBV
ADINQ
ADRAZ
ADUKV
AEAQA
AENEX
AFPKN
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BFQNJ
BMC
C24
C6C
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBLON
EBS
ECM
EIF
EJD
EMOBN
ESX
F5P
GROUPED_DOAJ
GX1
H13
HYE
IAO
IHR
INH
INR
IPNFZ
IPY
ISR
ITC
KQ8
M~E
NPM
O5R
O5S
OK1
P2P
P6G
PGMZT
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
WOQ
WOW
~8M
3V.
7X7
88E
8FI
8FJ
AAYXX
ABUWG
AFKRA
AZQEC
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
DWQXO
EBD
FYUFA
GNUQQ
HMCUK
LGEZI
LOTEE
M1P
M2M
M48
NADUK
NXXTH
PIMPY
PQQKQ
PROAC
PSQYO
PSYQQ
UKHRP
ABVAZ
AFGXO
AFNRJ
7X8
5PM
ID FETCH-LOGICAL-b679t-8f01082361a18a2f4414c8550aae9f7b26efe9de1a213a976ea218fd2bdbc56b3
IEDL.DBID RPM
ISSN 1749-8104
IngestDate Thu Jul 04 21:11:45 EDT 2024
Tue Sep 17 21:10:32 EDT 2024
Wed May 22 07:12:52 EDT 2024
Fri Aug 16 02:15:00 EDT 2024
Fri Feb 23 00:22:01 EST 2024
Fri Feb 02 04:39:52 EST 2024
Sat Sep 28 21:15:08 EDT 2024
Thu Sep 12 19:28:27 EDT 2024
Sat Sep 28 07:55:19 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b679t-8f01082361a18a2f4414c8550aae9f7b26efe9de1a213a976ea218fd2bdbc56b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2246128/
PMID 18053187
PQID 70107949
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_acb04962c93e4d54ae341c03b08b3e69
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2246128
biomedcentral_primary_oai_biomedcentral_com_1749_8104_2_26
proquest_miscellaneous_70107949
gale_infotracmisc_A174987477
gale_infotracacademiconefile_A174987477
gale_incontextgauss_ISR_A174987477
crossref_primary_10_1186_1749_8104_2_26
pubmed_primary_18053187
PublicationCentury 2000
PublicationDate 2007-12-03
PublicationDateYYYYMMDD 2007-12-03
PublicationDate_xml – month: 12
  year: 2007
  text: 2007-12-03
  day: 03
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Neural development
PublicationTitleAlternate Neural Dev
PublicationYear 2007
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References 9733080 - J Comp Neurol. 1998 Sep 28;399(3):306-20
14473282 - Exp Neurol. 1961 Oct;4:277-96
10226030 - Curr Biol. 1999 Apr 22;9(8):445-8
2892757 - Genes Dev. 1987 Mar;1(1):29-38
1726564 - Development. 1991 Nov;113(3):841-50
8602221 - Nature. 1996 Feb 22;379(6567):736-9
4844095 - Brain Res. 1974 Aug 9;76(1):33-40
15024754 - J Comp Neurol. 2004 Apr 19;472(1):87-99
11160432 - J Neurosci. 2001 Jan 15;21(2):527-40
12012426 - J Comp Neurol. 2002 Jun 24;448(2):138-49
17314475 - Brain Behav Evol. 2007;69(4):280-300
2199841 - Neuroscience. 1990;35(2):375-475
2215915 - Neuroscience. 1990;36(1):121-44
2319628 - J Neurosci Res. 1990 Feb;25(2):194-203
17392791 - Nature. 2007 Apr 12;446(7137):797-800
17506688 - Annu Rev Cell Dev Biol. 2007;23:549-77
17311471 - PLoS Biol. 2007 Mar;5(3):e53
17507571 - J Neurosci. 2007 May 16;27(20):5495-505
15102908 - J Neurosci. 2004 Apr 21;24(16):3926-32
16002452 - J Physiol. 2005 Sep 15;567(Pt 3):829-50
8161459 - Neuron. 1994 Apr;12(4):895-908
17872929 - Brain. 2007 Oct;130(Pt 10):2646-60
1672471 - Science. 1991 Mar 8;251(4998):1239-43
15157725 - Prog Neurobiol. 2004 Apr;72(5):295-339
15836427 - PLoS Biol. 2005 May;3(5):e159
5788129 - J Comp Neurol. 1969 Jul;136(3):269-93
7381062 - J Comp Neurol. 1980 Mar 15;190(2):357-62
16871622 - Dev Dyn. 2006 Sep;235(9):2376-85
4165738 - J Comp Neurol. 1966 Oct;128(2):245-54
8469990 - Science. 1993 Apr 16;260(5106):367-9
16571625 - Development. 2006 May;133(9):1811-21
15254551 - Nature. 2004 Aug 5;430(7000):689-93
15496441 - Development. 2004 Nov;131(22):5581-90
15737927 - Dev Cell. 2005 Mar;8(3):305-20
16202705 - Neuron. 2005 Oct 6;48(1):17-24
17537797 - Development. 2007 Jun;134(12):2325-35
2268185 - Arch Ital Biol. 1990 Jul;128(2-4):87-109
10700185 - Nat Genet. 2000 Mar;24(3):287-90
9002514 - Nature. 1997 Jan 23;385(6614):313-8
2209800 - Experientia. 1990 Sep 15;46(9):907-16
16205717 - Nat Neurosci. 2005 Nov;8(11):1516-24
6799550 - J Comp Neurol. 1981 Dec 20;203(4):751-69
15800897 - Glia. 2005 Aug 15;51(3):229-34
4128371 - J Comp Neurol. 1973 Nov 15;152(2):103-32
6479439 - Dev Biol. 1984 Oct;105(2):257-72
7909289 - Development. 1994 Mar;120(3):695-706
11433373 - Nat Rev Neurosci. 2001 Jul;2(7):484-91
9315908 - J Neurosci. 1997 Oct 15;17(20):7881-9
9204478 - Mol Cell Neurosci. 1997 Jan;9(1):26-41
10409504 - Development. 1999 Aug;126(16):3585-96
16604528 - Genesis. 2006 Apr;44(4):202-18
15377747 - J Neuropsychiatry Clin Neurosci. 2004 Summer;16(3):367-78
7600988 - Development. 1995 Jun;121(6):1719-30
5478302 - Brain Res. 1970 Oct 28;23(3):343-52
9043067 - Development. 1997 Feb;124(4):861-70
1786652 - Brain Res Dev Brain Res. 1991 Dec 17;64(1-2):95-114
15183722 - Dev Biol. 2004 Jun 15;270(2):393-410
11299042 - BMC Dev Biol. 2001;1:4
References_xml
SSID ssj0050268
Score 2.2871819
Snippet The cerebellum has a striking morphology consisting of folia separated by fissures of different lengths. Since folia in mammals likely serve as a broad...
BACKGROUNDThe cerebellum has a striking morphology consisting of folia separated by fissures of different lengths. Since folia in mammals likely serve as a...
BACKGROUND: The cerebellum has a striking morphology consisting of folia separated by fissures of different lengths. Since folia in mammals likely serve as a...
Abstract Background The cerebellum has a striking morphology consisting of folia separated by fissures of different lengths. Since folia in mammals likely...
SourceID doaj
pubmedcentral
biomedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 26
SubjectTerms Animals
Body Patterning - physiology
Cell Communication - physiology
Cell Differentiation - physiology
Cell Movement - physiology
Cell Proliferation
Cerebellar Cortex - cytology
Cerebellar Cortex - embryology
Cerebellar Cortex - metabolism
Cerebellum
Cerebellum - cytology
Cerebellum - embryology
Cerebellum - metabolism
Female
Gene Expression Regulation, Developmental - physiology
Homeodomain Proteins - genetics
Homeodomain Proteins - metabolism
Male
Mice
Mitotic Index
Models, Neurological
Morphogenesis
Nerve Tissue Proteins - genetics
Nerve Tissue Proteins - metabolism
Neuroglia - cytology
Neuroglia - metabolism
Neurological research
Neurons - cytology
Neurons - metabolism
Purkinje Cells - cytology
Purkinje Cells - metabolism
Stem Cells - cytology
Stem Cells - metabolism
Structure
SummonAdditionalLinks – databaseName: BioMedCentral Open Access (Free Resource)
  dbid: RBZ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSIgLgpbHQgELIThFrO3EdnrbVlQFCQ5ApYqL5VfalbpJtdk99N8z42Rp3T1yW8XjrON5eGY8_kzIh8rW2ikXCs81BChOgR0MoHiqrERgJUOnHastfsiT0_LbWXV2k--4s4PPtPwMLjMmqqZlwQsu75MHHCHOMS4__LOxuRVEEno4-jjQjvCM2_3vnGu_zJajhNq_bZtvLU554eStlej4CXk8upB0NvD8KbkX212yN2shfF5c0480FXWmbPkuefh93DvfI_4oLiNuM6wXdNHB9HbnaOfm_QEFJ5A23eXAJXqVIDdbOu9pt0z3aSGcRKDumqbywwKT_Vi9SkFiLlIBH8WhgiP5jJwef_l9dFKMVywUTqp6VegG4jG885xZpi1vwDkqPWKcWRvrRjkuYxPrEJnlTFhwXSL80E3gLjhfSSeek522a-NLQplQzIUpNFhZSum0FVXjgg0KPDSl44QcZDNvrgY4DYMA13kL6JpBthlkm-GGywn5tGHTv34pfNFyi_IQuZi9PT0AmTKjNhrrHURGkvtaxDJUpY2wmPupcFPtRJT1hLxHGTAIkNFiBc65Xfe9-frrp5nh32kIwhSMaSRqOhi2t-OBBpgOxNTKKPczStBgnzW_24iawSYse2tjt-6NAu6AwYTxvBgE7-bjNVpPDX1VJpLZd-ct7fwiwYcnCEGuX_0PP16TRynJjXU9Yp_srJbr-Aa8s5V7mxTzL3iRN-g
  priority: 500
  providerName: BioMedCentral
– databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtQwELVQD4gLgrbAQgGrQnCKurYT2-ltqajaSnAAKvVm2bHTrtRNqs3uoX_PjJ0ta_XAhVsUO4k9Mx7POM_PhHyqbK2dcr5ouIYExSnwgx4Gnior4VnJMGhHtMUPeXZZXlxVV1tHfSEmLNEDJ8Ed2cZBECt5U4tQ-qq0AfxuMxVuqp0IMm3dY9UmmUo-uILMQqetkLjINS1Hukam5dHDvYIXSKmQ7XO_zaanyOL_2FdvTVY5kHJrZjp9QZ6PISWdpa68JE9Ct0v2Zh2k04t7-plGkGdcPd8lT7-P_9L3SHMSlgF_O6wXdNGDuPtr9Hvz4ZhCUEjb_jZpjd5FCs6OzgfaL-P5Wkgv4am7pxGOWODiP6JZKVjQTQT0UWwqBJb75PL02--Ts2I8cqFwUtWrQreQn-EZ6MwybXkLwVLZIOeZtaFuleMytKH2gVnOhIVQJsCFbj133jWVdOIV2en6LrwhlAnFnJ9CgZWllE5bUbXOW68gYlM6TMhxJnlzl-g1DBJe5yUw9gyqzaDaDDdcTsiXjZoenovpjJaPan5FLWZvjzfAyMxoZOZfRjYhh2gDBgkzOkTkXNv1MJjzXz_NDD-nISlT0KaxUttDsxs7bnAAcSDHVlbzIKsJI7rJij9uTM1gEcLgutCvB6NAO-BAoT2vk-H97bxGb6rhWZWZZNbvvKSb30Q68UgpyPXb_yGod-RZXPxGvI84IDur5Tq8h6ht5T7EAfoHsuFAAw
  priority: 102
  providerName: Directory of Open Access Journals
Title Cerebellum morphogenesis: the foliation pattern is orchestrated by multi-cellular anchoring centers
URI https://www.ncbi.nlm.nih.gov/pubmed/18053187
https://search.proquest.com/docview/70107949
http://dx.doi.org/10.1186/1749-8104-2-26
https://pubmed.ncbi.nlm.nih.gov/PMC2246128
https://doaj.org/article/acb04962c93e4d54ae341c03b08b3e69
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe2ISEuCDY-CqNYCMEpa2MntrNbVzGNSkNoY9LExbJjp6vUJFU_Dvvvec9NYdZuXKqqdhrH78Pvvfz8MyGfc1MoK61LSqYgQbES_KADw5NZzl2apRi0I9rih7i4ySa3-e0eyXd7YQJov7Szk2ZenzSzu4CtXNTlYIcTG_y8HAcSNKYG-2Rfcr5L0bfuN4ekQnXsjKkSA4i4sc41zBKWsHBgkUK9QwhdtMN9Hi1Mgb__sZd-sEzFEMoHa9L5C_K8CybpaDvol2TPN4fkaNRAIl3f0y80wDtD3fyQPL3s3qIfkXLslx5fOGxqWrcw0e0UPd5sdUohHKRVO9_Kiy4C-WZDZyvaLsPJWkgs4ai9pwGImGDZH3GsFHTnLkD5KA4VQspX5Ob826_xRdIdtpBYIYt1oirIzPD089SkyrAKwqSsRLYzY3xRScuEr3zhfGpYyg0EMR6-qMox62yZC8tfk4OmbfxbQlMuU-uG0GBEJoRVhueVdcZJiNWk8j1yGs28XmyJNTRSXcctYHUaJahRgpppJnrk605Mf68LiYwSj3qeoRSjfw8_tMup7tRJm9JCjiRYWXCfuTwzHpb1csjtUFnuRdEjn1AHNFJlNIjFmZrNaqW_X1_pEd5OQTomYUxdp6qFYZem29oA04HsWlHP46gn2HIZNX_cqZrGJgTANb7drLQE6YDrhPG82Srev4fv9LlHZKSS0XPHLWBXgUi8s6N3_33le_Is1LoR3sOPycF6ufEfIEhb2z55MhpNrif9UOSAz6uz3_1gqH8AIAZCHQ
link.rule.ids 108,230,315,733,786,790,870,891,2115,24965,27957,27958,53827,53829,76169,76170
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbGkIALPzYGhcEshOCUtnES29mtVEwbrBOCDe1m2Y7TVbRJ1R-H8dfznpPCzE5wq_qc1o4_P79nf_5MyNtM59IIU0SWSUhQjAA_WMDAE2mWFHEaY9CObIszfnyRfrrMLrdItjkL40n71ky61XTWrSZXnls5n9nehifW-zIaehE0Jnt3yF0Yr0xskvTGAWeQVshWnzGWvAcxN6509dOIRcxfWSQReUiiC864T4OpySv43_bTNyaqkER5Y1Y6ekS-b9rTkFF-dNcr07U__5J6_OcGPyYP2ziVDhrzE7Llqh2yO6ggR59d03fUM0f9kvwOuTdqN-h3iR26hcO9jPWMzmrow3qMznSyPKQQadKynjZQoHOv61nRyZLWC39pF2pWFNRcU89xjHBHASmyFGB55VmCFN8BRKtPycXRx_PhcdTe4xAZLvJVJEtI-vBi9VjHUrMSIrDUopCa1i4vhWHclS4vXKxZnGiIjxx8kGXBTGFsxk2yR7arunLPCY0TEZuiDwbNU86N1ElWmkIXAsJAIV2HHAZdquaNZodCFe3QAgNaITQUQkMxxXiHvN_0_-_nfI4k-a2SHxAewa_7L-rFWLUdp7Q1kH5xZvPEpUWWagcRg-0npi9N4njeIW8QXApVOCqk-Yz1erlUJ9--qgH-nYRMT0Cd2kJlDdW2uj01Aa8DhbuCkvtBSXATNjAfbDCs0ITcusrV66US0DvglaE-zxpE_2l8O1A6RARYD9odWgDBXqO8ReyL_37ygNw_Ph-dqtOTs88vyQO_pI4somSfbK8Wa_cKYsGVee1H_i_WGmB-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgSBMvXDYuhcEshOApbeMkjrO3Uqg2YNMETJp4sXxLV9EmVS8P49dzjpNCzd72VsUnqR1_Pj7H_vKZkLeZKoTOtY0ME5Cg6Bz8oIWBl6dZYuM0xqAd2RZn_Pgi_XyZXW4d9eVJ-0ZPutV01q0mV55bOZ-Z3oYn1js_HXoRNCZ6c1v27pJ7MGZZsUnUGyecQWohWo3GWPAexN242tVPIxYxf2yRQPQhkS74zn0aTE9exf-mr96arEIi5dbMNHpIfm7a1BBSfnXXK901v_-Te7xVox-RB228SgeNyWNyx1V7ZH9QQa4-u6bvqGeQ-qX5PbJ72m7U7xMzdAuHexrrGZ3V0Jf1GJ3qZHlEIeKkZT1tIEHnXt-zopMlrRf-8C7UrrBUX1PPdYxwZwGpshTgeeXZghTfA0StT8jF6NOP4XHUnucQaZ4Xq0iUkPzhAeuxioViJURiqUFBNaVcUeaacVe6wrpYsThRECc5-CFKy7TVJuM6eUp2qrpyzwmNkzzWtg8Fiqeca6GSrNRW2RzCwVy4DjkKulXOG-0OiWraYQkMbInwkAgPySTjHfJ-g4G_9_lcSfAblh8QIsHT_YV6MZZt50llNKRhnJkicanNUuUgcjD9RPeFThwvOuQNAkyiGkeFdJ-xWi-X8uT7NznAvxOQ8eVQp9aorKHaRrVfT8DrQAGvwPIgsAR3YYLiww2OJRYhx65y9Xopc-gd8M5Qn2cNqv81vh0sHZIHeA_aHZYAir1WeYvaF7e-85Dsnn8cya8nZ19ekvt-ZR3JRMkB2Vkt1u4VhIQr_doP_j-lImL-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cerebellum+morphogenesis%3A+the+foliation+pattern+is+orchestrated+by+multi-cellular+anchoring+centers&rft.jtitle=Neural+development&rft.au=Sudarov%2C+Anamaria&rft.au=Joyner%2C+Alexandra+L&rft.date=2007-12-03&rft.pub=BioMed+Central&rft.eissn=1749-8104&rft.volume=2&rft.spage=26&rft.epage=26&rft_id=info:doi/10.1186%2F1749-8104-2-26&rft_id=info%3Apmid%2F18053187&rft.externalDBID=PMC2246128
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1749-8104&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1749-8104&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1749-8104&client=summon