Sulphur metabolism and cellulase gene expression are connected processes in the filamentous fungus Hypocrea jecorina (anamorph Trichoderma reesei)

Sulphur compounds like cysteine, methionine and S-adenosylmethionine are essential for the viability of most cells. Thus many organisms have developed a complex regulatory circuit that governs the expression of enzymes involved in sulphur assimilation and metabolism. In the filamentous fungus Hypocr...

Full description

Saved in:
Bibliographic Details
Published inBMC microbiology Vol. 8; no. 1; p. 174
Main Authors Gremel, Gabriela, Dorrer, Marcel, Schmoll, Monika
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 08.10.2008
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sulphur compounds like cysteine, methionine and S-adenosylmethionine are essential for the viability of most cells. Thus many organisms have developed a complex regulatory circuit that governs the expression of enzymes involved in sulphur assimilation and metabolism. In the filamentous fungus Hypocrea jecorina (anamorph Trichoderma reesei) little is known about the participants in this circuit. Analyses of proteins binding to the cellulase activating element (CAE) within the promotor of the cellobiohydrolase cbh2 gene led to the identification of a putative E3 ubiquitin ligase protein named LIMPET (LIM1), which is an orthologue of the sulphur regulators SCON-2 of Neurospora crassa and Met30p of Saccharomyces cerevisiae. Transcription of lim1 is specifically up-regulated upon sulphur limitation and responds to cellulase inducing conditions. In addition, light dependent stimulation/shut down of cellulase gene transcription by methionine in the presence of sulphate was observed. Further, lim1 transcriptionally reacts to a switch from constant darkness to constant light and is subject to regulation by the light regulatory protein ENVOY. Thus lim1, despite its function in sulphur metabolite repression, responds both to light as well as sulphur- and carbon source. Upon growth on cellulose, the uptake of sulphate is dependent on the light status and essential for growth in light. Unlike other fungi, growth of H. jecorina is not inhibited by selenate under low sulphur conditions, suggesting altered regulation of sulphur metabolism. Phylogenetic analysis of the five sulphate permeases found in the genome of H. jecorina revealed that the predominantly mycelial sulphate permease is lacking, thus supporting this hypothesis. Our data indicate that the significance of the sulphate/methionine-related signal with respect to cellulase gene expression is dependent on the light status and reaches beyond detection of sulphur availability.
AbstractList Sulphur compounds like cysteine, methionine and S-adenosylmethionine are essential for the viability of most cells. Thus many organisms have developed a complex regulatory circuit that governs the expression of enzymes involved in sulphur assimilation and metabolism. In the filamentous fungus Hypocrea jecorina (anamorph Trichoderma reesei) little is known about the participants in this circuit.BACKGROUNDSulphur compounds like cysteine, methionine and S-adenosylmethionine are essential for the viability of most cells. Thus many organisms have developed a complex regulatory circuit that governs the expression of enzymes involved in sulphur assimilation and metabolism. In the filamentous fungus Hypocrea jecorina (anamorph Trichoderma reesei) little is known about the participants in this circuit.Analyses of proteins binding to the cellulase activating element (CAE) within the promotor of the cellobiohydrolase cbh2 gene led to the identification of a putative E3 ubiquitin ligase protein named LIMPET (LIM1), which is an orthologue of the sulphur regulators SCON-2 of Neurospora crassa and Met30p of Saccharomyces cerevisiae. Transcription of lim1 is specifically up-regulated upon sulphur limitation and responds to cellulase inducing conditions. In addition, light dependent stimulation/shut down of cellulase gene transcription by methionine in the presence of sulphate was observed. Further, lim1 transcriptionally reacts to a switch from constant darkness to constant light and is subject to regulation by the light regulatory protein ENVOY. Thus lim1, despite its function in sulphur metabolite repression, responds both to light as well as sulphur- and carbon source. Upon growth on cellulose, the uptake of sulphate is dependent on the light status and essential for growth in light. Unlike other fungi, growth of H. jecorina is not inhibited by selenate under low sulphur conditions, suggesting altered regulation of sulphur metabolism. Phylogenetic analysis of the five sulphate permeases found in the genome of H. jecorina revealed that the predominantly mycelial sulphate permease is lacking, thus supporting this hypothesis.RESULTSAnalyses of proteins binding to the cellulase activating element (CAE) within the promotor of the cellobiohydrolase cbh2 gene led to the identification of a putative E3 ubiquitin ligase protein named LIMPET (LIM1), which is an orthologue of the sulphur regulators SCON-2 of Neurospora crassa and Met30p of Saccharomyces cerevisiae. Transcription of lim1 is specifically up-regulated upon sulphur limitation and responds to cellulase inducing conditions. In addition, light dependent stimulation/shut down of cellulase gene transcription by methionine in the presence of sulphate was observed. Further, lim1 transcriptionally reacts to a switch from constant darkness to constant light and is subject to regulation by the light regulatory protein ENVOY. Thus lim1, despite its function in sulphur metabolite repression, responds both to light as well as sulphur- and carbon source. Upon growth on cellulose, the uptake of sulphate is dependent on the light status and essential for growth in light. Unlike other fungi, growth of H. jecorina is not inhibited by selenate under low sulphur conditions, suggesting altered regulation of sulphur metabolism. Phylogenetic analysis of the five sulphate permeases found in the genome of H. jecorina revealed that the predominantly mycelial sulphate permease is lacking, thus supporting this hypothesis.Our data indicate that the significance of the sulphate/methionine-related signal with respect to cellulase gene expression is dependent on the light status and reaches beyond detection of sulphur availability.CONCLUSIONOur data indicate that the significance of the sulphate/methionine-related signal with respect to cellulase gene expression is dependent on the light status and reaches beyond detection of sulphur availability.
Sulphur compounds like cysteine, methionine and S-adenosylmethionine are essential for the viability of most cells. Thus many organisms have developed a complex regulatory circuit that governs the expression of enzymes involved in sulphur assimilation and metabolism. In the filamentous fungus Hypocrea jecorina (anamorph Trichoderma reesei) little is known about the participants in this circuit. Analyses of proteins binding to the cellulase activating element (CAE) within the promotor of the cellobiohydrolase cbh2 gene led to the identification of a putative E3 ubiquitin ligase protein named LIMPET (LIM1), which is an orthologue of the sulphur regulators SCON-2 of Neurospora crassa and Met30p of Saccharomyces cerevisiae. Transcription of lim1 is specifically up-regulated upon sulphur limitation and responds to cellulase inducing conditions. In addition, light dependent stimulation/shut down of cellulase gene transcription by methionine in the presence of sulphate was observed. Further, lim1 transcriptionally reacts to a switch from constant darkness to constant light and is subject to regulation by the light regulatory protein ENVOY. Thus lim1, despite its function in sulphur metabolite repression, responds both to light as well as sulphur- and carbon source. Upon growth on cellulose, the uptake of sulphate is dependent on the light status and essential for growth in light. Unlike other fungi, growth of H. jecorina is not inhibited by selenate under low sulphur conditions, suggesting altered regulation of sulphur metabolism. Phylogenetic analysis of the five sulphate permeases found in the genome of H. jecorina revealed that the predominantly mycelial sulphate permease is lacking, thus supporting this hypothesis. Our data indicate that the significance of the sulphate/methionine-related signal with respect to cellulase gene expression is dependent on the light status and reaches beyond detection of sulphur availability.
Background: Sulphur compounds like cysteine, methionine and S-adenosylmethionine are essential for the viability of most cells. Thus many organisms have developed a complex regulatory circuit that governs the expression of enzymes involved in sulphur assimilation and metabolism. In the filamentous fungus Hypocrea jecorina (anamorph Trichoderma reesei) little is known about the participants in this circuit. Results: Analyses of proteins binding to the cellulase activating element (CAE) within the promotor of the cellobiohydrolase cbh2 gene led to the identification of a putative E3 ubiquitin ligase protein named LIMPET (LIM1), which is an orthologue of the sulphur regulators SCON-2 of Neurospora crassa and Met30p of Saccharomyces cerevisiae. Transcription of lim1 is specifically upregulated upon sulphur limitation and responds to cellulase inducing conditions. In addition, light dependent stimulation/shut down of cellulase gene transcription by methionine in the presence of sulphate was observed. Further, lim1 transcriptionally reacts to a switch from constant darkness to constant light and is subject to regulation by the light regulatory protein ENVOY. Thus lim1, despite its function in sulphur metabolite repression, responds both to light as well as sulphur- and carbon source. Upon growth on cellulose, the uptake of sulphate is dependent on the light status and essential for growth in light. Unlike other fungi, growth of H. jecorina is not inhibited by selenate under low sulphur conditions, suggesting altered regulation of sulphur metabolism. Phylogenetic analysis of the five sulphate permeases found in the genome of H. jecorina revealed that the predominantly mycelial sulphate permease is lacking, thus supporting this hypothesis. Conclusion: Our data indicate that the significance of the sulphate/methionine-related signal with respect to cellulase gene expression is dependent on the light status and reaches beyond detection of sulphur availability.
Abstract Background Sulphur compounds like cysteine, methionine and S-adenosylmethionine are essential for the viability of most cells. Thus many organisms have developed a complex regulatory circuit that governs the expression of enzymes involved in sulphur assimilation and metabolism. In the filamentous fungus Hypocrea jecorina (anamorph Trichoderma reesei) little is known about the participants in this circuit. Results Analyses of proteins binding to the cellulase activating element (CAE) within the promotor of the cellobiohydrolase cbh2 gene led to the identification of a putative E3 ubiquitin ligase protein named LIMPET (LIM1), which is an orthologue of the sulphur regulators SCON-2 of Neurospora crassa and Met30p of Saccharomyces cerevisiae. Transcription of lim1 is specifically up-regulated upon sulphur limitation and responds to cellulase inducing conditions. In addition, light dependent stimulation/shut down of cellulase gene transcription by methionine in the presence of sulphate was observed. Further, lim1 transcriptionally reacts to a switch from constant darkness to constant light and is subject to regulation by the light regulatory protein ENVOY. Thus lim1, despite its function in sulphur metabolite repression, responds both to light as well as sulphur- and carbon source. Upon growth on cellulose, the uptake of sulphate is dependent on the light status and essential for growth in light. Unlike other fungi, growth of H. jecorina is not inhibited by selenate under low sulphur conditions, suggesting altered regulation of sulphur metabolism. Phylogenetic analysis of the five sulphate permeases found in the genome of H. jecorina revealed that the predominantly mycelial sulphate permease is lacking, thus supporting this hypothesis. Conclusion Our data indicate that the significance of the sulphate/methionine-related signal with respect to cellulase gene expression is dependent on the light status and reaches beyond detection of sulphur availability.
Background Sulphur compounds like cysteine, methionine and S-adenosylmethionine are essential for the viability of most cells. Thus many organisms have developed a complex regulatory circuit that governs the expression of enzymes involved in sulphur assimilation and metabolism. In the filamentous fungus Hypocrea jecorina (anamorph Trichoderma reesei) little is known about the participants in this circuit. Results Analyses of proteins binding to the cellulase activating element (CAE) within the promotor of the cellobiohydrolase cbh2 gene led to the identification of a putative E3 ubiquitin ligase protein named LIMPET (LIM1), which is an orthologue of the sulphur regulators SCON-2 of Neurospora crassa and Met30p of Saccharomyces cerevisiae. Transcription of lim1 is specifically up-regulated upon sulphur limitation and responds to cellulase inducing conditions. In addition, light dependent stimulation/shut down of cellulase gene transcription by methionine in the presence of sulphate was observed. Further, lim1 transcriptionally reacts to a switch from constant darkness to constant light and is subject to regulation by the light regulatory protein ENVOY. Thus lim1, despite its function in sulphur metabolite repression, responds both to light as well as sulphur- and carbon source. Upon growth on cellulose, the uptake of sulphate is dependent on the light status and essential for growth in light. Unlike other fungi, growth of H. jecorina is not inhibited by selenate under low sulphur conditions, suggesting altered regulation of sulphur metabolism. Phylogenetic analysis of the five sulphate permeases found in the genome of H. jecorina revealed that the predominantly mycelial sulphate permease is lacking, thus supporting this hypothesis. Conclusion Our data indicate that the significance of the sulphate/methionine-related signal with respect to cellulase gene expression is dependent on the light status and reaches beyond detection of sulphur availability.
ArticleNumber 174
Audience Academic
Author Dorrer, Marcel
Gremel, Gabriela
Schmoll, Monika
AuthorAffiliation 1 Research Area of Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9/1665, A-1060 Wien, Austria
AuthorAffiliation_xml – name: 1 Research Area of Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9/1665, A-1060 Wien, Austria
Author_xml – sequence: 1
  givenname: Gabriela
  surname: Gremel
  fullname: Gremel, Gabriela
– sequence: 2
  givenname: Marcel
  surname: Dorrer
  fullname: Dorrer, Marcel
– sequence: 3
  givenname: Monika
  surname: Schmoll
  fullname: Schmoll, Monika
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18842142$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1626494$$D View this record in Osti.gov
BookMark eNqFk09v1DAQxSNURP_AmRuyQEL0sG0m68TOBalUQFeqhETL2ZrYk11XiZ3aCWq_Bp8YL1uqLmqFcnDk-c0b5_llP9tx3lGWvYb8CEBWx8AFzAqQ-UzOQPBn2d79zs6D991sP8arPAch5-JFtgtS8gJ4sZf9upi6YTUF1tOIje9s7Bk6wzR13dRhJLYkR4xuhkAxWu8YBmLaO0d6JMOG4HUqUGTWsXFFrLUd9uRGP0XWTm6ZlrPbwetAyK5I-2Adsg_osPdhWLHLYPXKGwo9skAUyR6-zJ632EV6dbceZD--fL48PZudf_u6OD05nzWVKMcZtWVRV7lB2QggIQyKUooGoYSmEUbkyAsxN2S4wXpeGANN1VZSEy8qaOpmfpAtNrrG45Uagu0x3CqPVv3Z8GGpMIxWd6QIyrpE0tDwnFeIco5Ul1IaMFxyCUnr40ZrmJqejE4GBOy2RLcrzq7U0v9URSk5QJUE3m4EfBytitqOpFd3NiuoiorXPEGfNlBj_RNTtiva92odArUOgZIqRSSJvL87avDXE8VR9TaurxsdpUtTVS1qIXL5X7DIBYe8KBL4bgMuMXllXevTcL2G1QnIOmFpfKKOHqHSY6i36UspJYe2Gw63GhIz0s24xClGtbj4vs2-eej_vSV_g56AcgPo4GMM1KpkMY4p0OkUtlOQq_UP9Yhbx__03Us_0fEbpx8jHQ
CitedBy_id crossref_primary_10_1016_j_fgb_2010_04_010
crossref_primary_10_1007_s00284_021_02568_9
crossref_primary_10_1146_annurev_micro_092611_150044
crossref_primary_10_1371_journal_pgen_1004500
crossref_primary_10_1007_s00344_022_10699_x
crossref_primary_10_1128_AEM_02922_16
crossref_primary_10_3390_agronomy14010190
crossref_primary_10_1016_j_scib_2020_11_001
crossref_primary_10_1186_s40694_018_0052_7
crossref_primary_10_1186_s12918_015_0224_5
crossref_primary_10_3389_fbioe_2018_00135
crossref_primary_10_3390_toxins11100553
crossref_primary_10_1186_1471_2164_12_613
crossref_primary_10_1186_1471_2164_15_425
crossref_primary_10_1186_1756_0500_3_330
crossref_primary_10_1016_j_rser_2015_10_132
crossref_primary_10_1016_j_funbio_2017_10_007
crossref_primary_10_1016_j_fgb_2014_06_012
crossref_primary_10_1007_s00253_009_2320_1
crossref_primary_10_1016_j_soilbio_2015_04_004
crossref_primary_10_1128_EC_00386_08
crossref_primary_10_3389_fmicb_2019_02317
crossref_primary_10_3390_jof9020215
crossref_primary_10_1016_j_crbiot_2022_04_001
crossref_primary_10_1186_s13068_016_0547_5
crossref_primary_10_1186_1475_2859_10_40
crossref_primary_10_1186_s12934_015_0308_3
crossref_primary_10_1080_01490451_2021_1877854
crossref_primary_10_1186_1471_2164_14_657
crossref_primary_10_1128_AEM_00513_11
crossref_primary_10_1128_mSphere_00089_17
crossref_primary_10_1128_MMBR_00040_15
crossref_primary_10_1016_j_tibtech_2016_06_003
Cites_doi 10.1093/jxb/erh175
10.1038/sj.emboj.7600556
10.1007/BF00352009
10.1007/s00253-003-1336-1
10.1139/m93-048
10.1073/pnas.83.16.5889
10.1016/S0092-8674(00)80435-3
10.1007/s004380050646
10.1128/MCB.15.12.6526
10.1128/EC.5.3.447-456.2006
10.1016/S0079-6107(99)00010-3
10.1093/nar/26.9.2230
10.1016/S0092-8674(00)80098-7
10.1073/pnas.92.8.3343
10.1128/aem.63.4.1298-1306.1997
10.1016/j.fgb.2004.06.002
10.1074/jbc.M304750200
10.1096/fasebj.11.11.9285490
10.2307/2408678
10.1038/371297a0
10.1046/j.1365-2958.2000.01890.x
10.1016/0003-2697(87)90021-2
10.1074/jbc.M003624200
10.1016/S1087-1845(02)00534-0
10.1007/s004380100518
10.1128/EC.00211-06
10.1016/0378-1119(85)90120-9
10.1091/mbc.E05-07-0699
10.1128/MCB.12.4.1719
10.1016/S1097-2765(02)00500-2
10.1016/j.femsre.2004.11.006
10.1128/MCB.8.4.1504
10.1186/gb-2004-5-12-r95
10.1016/0378-1119(88)90005-4
10.1128/MMBR.68.1.1-108.2004
10.1007/BF00279546
10.1038/nbt1403
10.1074/jbc.273.51.34463
10.1093/nar/25.24.4876
10.1091/mbc.E04-12-1130
10.1146/annurev.micro.51.1.73
10.1126/science.1925541
10.1556/AMicr.50.2003.2-3.3
10.1006/meth.1993.1017
10.1016/j.biochi.2006.03.001
10.1128/MCB.10.10.5207
10.1128/EC.4.12.1998-2007.2005
10.1128/jb.132.1.224-232.1977
10.1128/jb.139.3.761-769.1979
10.1016/S0092-8674(88)80034-5
10.1128/MCB.7.7.2506
10.1073/pnas.95.5.2417
10.1016/S0076-6879(02)50957-5
10.1038/nrmicro797
10.2323/jgam.49.271
10.1016/j.mrfmmm.2007.08.009
10.1128/jb.102.3.716-721.1970
10.1002/(SICI)1097-0061(19970315)13:3<225::AID-YEA87>3.0.CO;2-I
10.1186/1471-2164-8-449
ContentType Journal Article
Copyright COPYRIGHT 2008 BioMed Central Ltd.
Copyright © 2008 Gremel et al; licensee BioMed Central Ltd. 2008 Gremel et al; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2008 BioMed Central Ltd.
– notice: Copyright © 2008 Gremel et al; licensee BioMed Central Ltd. 2008 Gremel et al; licensee BioMed Central Ltd.
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7QO
7T7
8FD
C1K
FR3
M7N
P64
RC3
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1186/1471-2180-8-174
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Genetics Abstracts

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journal Collection
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2180
EndPage 174
ExternalDocumentID oai_doaj_org_article_e1595aec1b4046aa83ae9588d1d48481
PMC2584116
1626494
oai_biomedcentral_com_1471_2180_8_174
A189074218
18842142
10_1186_1471_2180_8_174
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Austrian Science Fund FWF
  grantid: P 20004
GroupedDBID ---
0R~
23N
2VQ
2WC
4.4
53G
5VS
6J9
A8Z
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BFQNJ
BMC
C1A
C6C
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
GROUPED_DOAJ
GX1
H13
HYE
IAO
IGS
IHR
INH
INR
IPNFZ
ISR
ITC
KQ8
M48
MM.
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PQQKQ
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
W2D
WOQ
WOW
XSB
~02
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7T7
8FD
C1K
FR3
M7N
P64
RC3
7X8
-A0
ABVAZ
ACRMQ
ADINQ
AFGXO
AFNRJ
AGJBV
C24
ESTFP
AAPBV
ABPTK
OIOZB
OTOTI
PQEST
5PM
ID FETCH-LOGICAL-b675t-ef52960da8b71e77da7587ba151bb7d70a4273ded4da932dd1b6f68ce4261b9b3
IEDL.DBID RBZ
ISSN 1471-2180
IngestDate Wed Aug 27 01:30:51 EDT 2025
Thu Aug 21 14:07:03 EDT 2025
Mon Jul 10 02:30:58 EDT 2023
Wed May 22 07:11:20 EDT 2024
Fri Jul 11 10:29:52 EDT 2025
Fri Jul 11 04:04:12 EDT 2025
Tue Jun 17 22:21:07 EDT 2025
Tue Jun 10 21:20:18 EDT 2025
Fri Jun 27 05:55:20 EDT 2025
Mon Jul 21 05:47:15 EDT 2025
Thu Apr 24 23:01:50 EDT 2025
Tue Jul 01 04:31:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b675t-ef52960da8b71e77da7587ba151bb7d70a4273ded4da932dd1b6f68ce4261b9b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Australian Science Fund (FWF)
USDOE Office of Science (SC), Biological and Environmental Research (BER). Biological Systems Science Division
AC02-05CH11231; FWP-P17325
OpenAccessLink http://dx.doi.org/10.1186/1471-2180-8-174
PMID 18842142
PQID 20741022
PQPubID 23462
ParticipantIDs doaj_primary_oai_doaj_org_article_e1595aec1b4046aa83ae9588d1d48481
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2584116
osti_scitechconnect_1626494
biomedcentral_primary_oai_biomedcentral_com_1471_2180_8_174
proquest_miscellaneous_69797708
proquest_miscellaneous_20741022
gale_infotracmisc_A189074218
gale_infotracacademiconefile_A189074218
gale_incontextgauss_ISR_A189074218
pubmed_primary_18842142
crossref_citationtrail_10_1186_1471_2180_8_174
crossref_primary_10_1186_1471_2180_8_174
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-10-08
PublicationDateYYYYMMDD 2008-10-08
PublicationDate_xml – month: 10
  year: 2008
  text: 2008-10-08
  day: 08
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
– name: United States
PublicationTitle BMC microbiology
PublicationTitleAlternate BMC Microbiol
PublicationYear 2008
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References D Martinez (607_CR19) 2008; 26
Y Galante (607_CR17) 1998
S Zeilinger (607_CR23) 1998; 273
607_CR39
KA Borkovich (607_CR57) 2004; 68
R Natorff (607_CR4) 1993; 238
P Baudouin-Cornu (607_CR11) 2006; 88
AR Stricker (607_CR28) 2006; 5
J Schouten (607_CR47) 2000; 263
L Letavayova (607_CR56) 2008; 638
GA Marzluf (607_CR1) 1997; 51
B Pinson (607_CR15) 2000; 36
D Thomas (607_CR3) 1992; 12
A Schuster (607_CR22) 2007; 8
S Sestak (607_CR69) 1993; 39
R Natorff (607_CR5) 1998; 257
M Schmoll (607_CR21) 2005; 4
P Chomczynski (607_CR36) 1987; 162
JD Thompson (607_CR42) 1997; 25
GE Harman (607_CR67) 2004; 2
TE Wilson (607_CR33) 1991; 252
EJ Neer (607_CR72) 1994; 371
T Scheibel (607_CR66) 1997; 11
JS Ketter (607_CR58) 1988; 8
KB Kaplan (607_CR62) 1997; 91
607_CR48
A Reinhardt (607_CR49) 1998; 26
A Kumar (607_CR6) 1995; 92
Y Galante (607_CR18) 1998
C Yanisch-Perron (607_CR34) 1985; 33
MA Lachance (607_CR65) 1997; 13
S Zeilinger (607_CR24) 2001; 266
A Breton (607_CR64) 1977; 132
H Stangl (607_CR41) 1993; 23
M Mandels (607_CR29) 1978; 13
N Aro (607_CR26) 2001; 276
M Schmoll (607_CR31) 2004; 41
GA Marzluf (607_CR63) 2001
A Maruyama-Nakashita (607_CR10) 2004; 55
T Benitez (607_CR68) 2004; 7
JV Paietta (607_CR51) 1990; 10
GA Marzluf (607_CR53) 1970; 102
M Fauchon (607_CR13) 2002; 9
607_CR52
D Thomas (607_CR8) 1995; 15
J Buchert (607_CR16) 1998
J Liu (607_CR32) 1993; 5
DB Smith (607_CR40) 1988; 67
C Xue (607_CR71) 2006; 17
H Singh (607_CR46) 1988; 52
N Aro (607_CR25) 2005; 29
PK Foreman (607_CR59) 2003; 278
M Schmoll (607_CR20) 2003; 50
L Banszky (607_CR55) 2003; 49
R Rauscher (607_CR27) 2006; 5
JV Paietta (607_CR2) 1987; 7
GC Segers (607_CR70) 2003; 38
KL Craig (607_CR61) 1999; 72
D Sternberg (607_CR30) 1979; 139
JT Kadonga (607_CR45) 1986; 83
P Raspor (607_CR54) 2003; 63
A Kumar (607_CR7) 1998; 95
J Felsenstein (607_CR43) 1985; 39
R Barbey (607_CR12) 2005; 24
J Sambrook (607_CR35) 1989
M Ilmen (607_CR60) 1997; 63
C Bai (607_CR50) 1996; 86
AC Haugen (607_CR14) 2004; 5
JL Yen (607_CR9) 2005; 16
RD Gietz (607_CR37) 2002; 350
FM Ausubel (607_CR38) 1993
JA Chong (607_CR44) 1997
References_xml – volume: 55
  start-page: 1843
  issue: 404
  year: 2004
  ident: 607_CR10
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erh175
– volume: 263
  start-page: 309
  issue: 2
  year: 2000
  ident: 607_CR47
  publication-title: Mol Gen Genet
– volume: 24
  start-page: 521
  issue: 3
  year: 2005
  ident: 607_CR12
  publication-title: Embo J
  doi: 10.1038/sj.emboj.7600556
– volume: 23
  start-page: 115
  issue: 2
  year: 1993
  ident: 607_CR41
  publication-title: Curr Genet
  doi: 10.1007/BF00352009
– volume: 63
  start-page: 89
  issue: 1
  year: 2003
  ident: 607_CR54
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-003-1336-1
– volume: 39
  start-page: 342
  issue: 3
  year: 1993
  ident: 607_CR69
  publication-title: Can J Microbiol
  doi: 10.1139/m93-048
– volume: 83
  start-page: 5889
  year: 1986
  ident: 607_CR45
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.83.16.5889
– volume: 91
  start-page: 491
  issue: 4
  year: 1997
  ident: 607_CR62
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80435-3
– volume: 257
  start-page: 255
  issue: 3
  year: 1998
  ident: 607_CR5
  publication-title: Mol Gen Genet
  doi: 10.1007/s004380050646
– volume: 15
  start-page: 6526
  issue: 12
  year: 1995
  ident: 607_CR8
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.15.12.6526
– volume: 5
  start-page: 447
  issue: 3
  year: 2006
  ident: 607_CR27
  publication-title: Eukaryot Cell
  doi: 10.1128/EC.5.3.447-456.2006
– volume-title: Current Protocols in Molecular Biology
  year: 1993
  ident: 607_CR38
– start-page: 343
  volume-title: Trichoderma & Gliocladium
  year: 1998
  ident: 607_CR16
– volume: 72
  start-page: 299
  issue: 3
  year: 1999
  ident: 607_CR61
  publication-title: Prog Biophys Mol Biol
  doi: 10.1016/S0079-6107(99)00010-3
– volume: 13
  start-page: 6
  year: 1978
  ident: 607_CR29
  publication-title: Proc Biochem
– volume: 26
  start-page: 2230
  issue: 9
  year: 1998
  ident: 607_CR49
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/26.9.2230
– volume: 86
  start-page: 263
  issue: 2
  year: 1996
  ident: 607_CR50
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80098-7
– volume: 92
  start-page: 3343
  issue: 8
  year: 1995
  ident: 607_CR6
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.92.8.3343
– volume: 63
  start-page: 1298
  issue: 4
  year: 1997
  ident: 607_CR60
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.63.4.1298-1306.1997
– volume: 41
  start-page: 877
  issue: 9
  year: 2004
  ident: 607_CR31
  publication-title: Fungal Genet Biol
  doi: 10.1016/j.fgb.2004.06.002
– volume: 278
  start-page: 31988
  issue: 34
  year: 2003
  ident: 607_CR59
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M304750200
– volume: 11
  start-page: 917
  issue: 11
  year: 1997
  ident: 607_CR66
  publication-title: Faseb J
  doi: 10.1096/fasebj.11.11.9285490
– volume: 39
  start-page: 783
  year: 1985
  ident: 607_CR43
  publication-title: Evolution
  doi: 10.2307/2408678
– volume: 371
  start-page: 297
  issue: 6495
  year: 1994
  ident: 607_CR72
  publication-title: Nature
  doi: 10.1038/371297a0
– ident: 607_CR52
– volume: 36
  start-page: 679
  issue: 3
  year: 2000
  ident: 607_CR15
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2000.01890.x
– start-page: 55
  volume-title: Applied mycology and biotechnology
  year: 2001
  ident: 607_CR63
– volume: 162
  start-page: 156
  issue: 1
  year: 1987
  ident: 607_CR36
  publication-title: Anal Biochem
  doi: 10.1016/0003-2697(87)90021-2
– volume: 276
  start-page: 24309
  issue: 26
  year: 2001
  ident: 607_CR26
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M003624200
– ident: 607_CR48
– volume-title: Molecular cloning: a Laboratory Manual
  year: 1989
  ident: 607_CR35
– volume: 38
  start-page: 198
  issue: 2
  year: 2003
  ident: 607_CR70
  publication-title: Fungal Genet Biol
  doi: 10.1016/S1087-1845(02)00534-0
– volume: 266
  start-page: 56
  issue: 1
  year: 2001
  ident: 607_CR24
  publication-title: Mol Genet Genomics
  doi: 10.1007/s004380100518
– volume: 5
  start-page: 2128
  issue: 12
  year: 2006
  ident: 607_CR28
  publication-title: Eukaryot Cell
  doi: 10.1128/EC.00211-06
– volume: 33
  start-page: 103
  issue: 1
  year: 1985
  ident: 607_CR34
  publication-title: Gene
  doi: 10.1016/0378-1119(85)90120-9
– volume: 17
  start-page: 667
  issue: 2
  year: 2006
  ident: 607_CR71
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.E05-07-0699
– volume: 12
  start-page: 1719
  issue: 4
  year: 1992
  ident: 607_CR3
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.12.4.1719
– volume: 9
  start-page: 713
  issue: 4
  year: 2002
  ident: 607_CR13
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(02)00500-2
– volume: 29
  start-page: 719
  issue: 4
  year: 2005
  ident: 607_CR25
  publication-title: FEMS Microbiol Rev
  doi: 10.1016/j.femsre.2004.11.006
– volume: 8
  start-page: 1504
  issue: 4
  year: 1988
  ident: 607_CR58
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.8.4.1504
– volume: 5
  start-page: R95
  issue: 12
  year: 2004
  ident: 607_CR14
  publication-title: Genome Biol
  doi: 10.1186/gb-2004-5-12-r95
– volume: 67
  start-page: 31
  issue: 1
  year: 1988
  ident: 607_CR40
  publication-title: Gene
  doi: 10.1016/0378-1119(88)90005-4
– volume: 68
  start-page: 1
  issue: 1
  year: 2004
  ident: 607_CR57
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.68.1.1-108.2004
– volume: 238
  start-page: 185
  issue: 1–2
  year: 1993
  ident: 607_CR4
  publication-title: Mol Gen Genet
  doi: 10.1007/BF00279546
– volume: 26
  start-page: 553
  issue: 5
  year: 2008
  ident: 607_CR19
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1403
– volume: 273
  start-page: 34463
  issue: 51
  year: 1998
  ident: 607_CR23
  publication-title: J Biol Chem
  doi: 10.1074/jbc.273.51.34463
– volume: 7
  start-page: 249
  issue: 4
  year: 2004
  ident: 607_CR68
  publication-title: Int Microbiol
– start-page: 327
  volume-title: Trichoderma and Gliocladium
  year: 1998
  ident: 607_CR18
– volume: 25
  start-page: 4876
  issue: 24
  year: 1997
  ident: 607_CR42
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/25.24.4876
– volume: 16
  start-page: 1872
  issue: 4
  year: 2005
  ident: 607_CR9
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.E04-12-1130
– volume: 51
  start-page: 73
  year: 1997
  ident: 607_CR1
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev.micro.51.1.73
– volume: 252
  start-page: 1296
  year: 1991
  ident: 607_CR33
  publication-title: Science
  doi: 10.1126/science.1925541
– ident: 607_CR39
– volume: 50
  start-page: 125
  issue: 2–3
  year: 2003
  ident: 607_CR20
  publication-title: Acta Microbiol Immunol Hung
  doi: 10.1556/AMicr.50.2003.2-3.3
– volume: 5
  start-page: 125
  year: 1993
  ident: 607_CR32
  publication-title: Methods: A Companion to Methods in Enzymology
  doi: 10.1006/meth.1993.1017
– start-page: 289
  volume-title: The Yeast Two Hybrid System
  year: 1997
  ident: 607_CR44
– volume: 88
  start-page: 1673
  issue: 11
  year: 2006
  ident: 607_CR11
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2006.03.001
– volume: 10
  start-page: 5207
  issue: 10
  year: 1990
  ident: 607_CR51
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.10.10.5207
– volume: 4
  start-page: 1998
  issue: 12
  year: 2005
  ident: 607_CR21
  publication-title: Eukaryot Cell
  doi: 10.1128/EC.4.12.1998-2007.2005
– volume: 132
  start-page: 224
  issue: 1
  year: 1977
  ident: 607_CR64
  publication-title: J Bacteriol
  doi: 10.1128/jb.132.1.224-232.1977
– volume: 139
  start-page: 761
  issue: 3
  year: 1979
  ident: 607_CR30
  publication-title: J Bacteriol
  doi: 10.1128/jb.139.3.761-769.1979
– volume: 52
  start-page: 415
  year: 1988
  ident: 607_CR46
  publication-title: Cell
  doi: 10.1016/S0092-8674(88)80034-5
– volume: 7
  start-page: 2506
  issue: 7
  year: 1987
  ident: 607_CR2
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.7.7.2506
– volume: 95
  start-page: 2417
  issue: 5
  year: 1998
  ident: 607_CR7
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.5.2417
– volume: 350
  start-page: 87
  year: 2002
  ident: 607_CR37
  publication-title: Methods in Enzymology
  doi: 10.1016/S0076-6879(02)50957-5
– volume: 2
  start-page: 43
  issue: 1
  year: 2004
  ident: 607_CR67
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro797
– start-page: 311
  volume-title: Trichoderma & Gliocladium
  year: 1998
  ident: 607_CR17
– volume: 49
  start-page: 271
  issue: 5
  year: 2003
  ident: 607_CR55
  publication-title: J Gen Appl Microbiol
  doi: 10.2323/jgam.49.271
– volume: 638
  start-page: 1
  issue: 1–2
  year: 2008
  ident: 607_CR56
  publication-title: Mutat Res
  doi: 10.1016/j.mrfmmm.2007.08.009
– volume: 102
  start-page: 716
  issue: 3
  year: 1970
  ident: 607_CR53
  publication-title: J Bacteriol
  doi: 10.1128/jb.102.3.716-721.1970
– volume: 13
  start-page: 225
  issue: 3
  year: 1997
  ident: 607_CR65
  publication-title: Yeast
  doi: 10.1002/(SICI)1097-0061(19970315)13:3<225::AID-YEA87>3.0.CO;2-I
– volume: 8
  start-page: 449
  issue: 1
  year: 2007
  ident: 607_CR22
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-8-449
SSID ssj0017837
Score 2.0660787
Snippet Sulphur compounds like cysteine, methionine and S-adenosylmethionine are essential for the viability of most cells. Thus many organisms have developed a...
Background Sulphur compounds like cysteine, methionine and S-adenosylmethionine are essential for the viability of most cells. Thus many organisms have...
BACKGROUND: Sulphur compounds like cysteine, methionine and S-adenosylmethionine are essential for the viability of most cells. Thus many organisms have...
Background: Sulphur compounds like cysteine, methionine and S-adenosylmethionine are essential for the viability of most cells. Thus many organisms have...
Abstract Background Sulphur compounds like cysteine, methionine and S-adenosylmethionine are essential for the viability of most cells. Thus many organisms...
SourceID doaj
pubmedcentral
osti
biomedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 174
SubjectTerms Amino Acid Sequence
Anion Transport Proteins - genetics
Base Sequence
BASIC BIOLOGICAL SCIENCES
Carrier Proteins - chemistry
Carrier Proteins - genetics
Cellular control mechanisms
cellulase
Cellulase - genetics
Cellulose - metabolism
cullulase gene
F-Box Proteins - genetics
Fungal Proteins - metabolism
Gene expression
Gene Expression Regulation, Fungal - radiation effects
Genetic aspects
Hypocrea - drug effects
Hypocrea - enzymology
Hypocrea - growth & development
Hypocrea - metabolism
Hypocrea jecorina
Light
Methionine - metabolism
microbiology
Molds (Fungi)
Molecular Sequence Data
Neurospora crassa
Phylogeny
Promoter Regions, Genetic - genetics
Saccharomyces cerevisiae
Selenic Acid
Selenium Compounds - pharmacology
Sulfates - metabolism
Sulfur - metabolism
sulphate uptake
sulphur metabolism
sulphur source
Ubiquitin-Protein Ligases - genetics
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZQJSReEL8pG2AhJMZDWJymjiueBmIqSPDANmlv1jm-bJlap2paif0b_MXcJWlZBhMvPEWKbcXxne--S87fCfHagy6oYRQlY2ei1I0gmmARRxBrl1I8lhVNtYav3_T0JP1yOj69UuqLc8JaeuB24faR_O0YMFfNUAAzApyMjfHKp0wFz9aXfN4mmOr-H2SmYctUZHojcmJxR-qjjN7f3osofMquH3Sf9fxTQ-O_NdaDinbd35Do9YTKKx7q8J6420FLedC-0n1xC8MDcbstNnn5UPw84kT09VLOcUWSn5X1XELwkj_drwlDoyRdQok_utTYIGGJMudEmJxgqVy0RwqwlmWQBBtlUZI20VSqdS3JPZ7RZXq5qBiGyguOassAcg8CzCsSpjwmi3vOldfmIJeINZZvH4mTw0_HH6dRV5EhchRYrCIs-Ddt7MG4TGGWeaBwI3NAsMG5zGcxpASHPPrUAwFD75XThTY5cqDmJm70WAxCFfCpkIVxOjFcEzBPUl-gM-BJq9UIC0hinQ_F-55c7KJl37DMh91voa1pWaqWpWqNJakOxbuNFG3ekZ1zzY2ZbYIeo_8csLcdsHnSjV0_sFr0JtTcILW1ndraf6ntULxipbJMwRE4x-cM1nVtPx99twfKNF8slBmKN12noqLZ59AdmaAVZNauXs_dXk-yEXmveYd11xKqYmrgTnWsomg2ndALvdyotOWBnHYXkJTHJgw4CeXd3ENPMoogYnrCk3YL_F49Y1Lm8xuKrLc5euvWbwnleUNwnhAqVko_-x8LvSPuJFsK410xWC3X-Jxw5Mq9aEzGL_ixceA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegCIkXxDdlAyyExHjISFI3doUQGoipII0Htkp7s-z40gW1Tklaaf03-Iu5S9OWjE7iqVJ9aVzfh3-XnH_H2GtnkgwHekHctyoQtmeCAWRhYMLECszHZFZ3azj5ngxH4tt5_3zbDqhZwGpnakf9pEbl5PDy1_IjOvyH2uFV8i7CABvgVhUGmBBJcZPdwm1JkpeeiO0rBalqAs2NcMPzs-MHrpx9n7S2rJrZfxO_OwU64i5werXG8q9N6_geu9ugTX60Mo_77Ab4B-z2qv_k8iH7fUq16YuST2GOxjDJqyk33nF6mr9AWA0czQs4XDbVsp6bEnhKtTEpIlU-W50ygIrnniOS5FmOBoZTKRYVxx1zjB_D5awgZMp_UqKbe8MPjDfTAvXLzzAIX1AztqnhJUAF-dtHbHT85ezzMGiaNAQWc415ABm9uQ2dUVZGIKUzmIFIaxBJWCudDI1AhOTACWcQKzoX2SRLVAqUu9mB7T1mHV94eMp4pmwSK2oTmMbCZWCVcWjoUQ8yE4dJ2mXvW3rRsxUhhyaK7PYIeqsmrWrSqlYatdplh2st6rThP6c2HBNd50Eq-feCg80F6ztdK_qJzKI1ofqLohzrJgRoQOTYN5BGtRMYo3oGBn2lXOQENTXosldkVJpYOTyV_YzNoqr019Mf-ihS9UOMSHXZm0YoK3D2qWlOUeAKEpFXS3K_JYlhI20N75HtagRaxBbcmI6OMMEVA_xDL9cmrelCqsTzgMajY8KgCPyul0gGEpOKEO_wZOUC29VTShDFX5fJlnO01q094vOLmvM8RqAcRcmz_9fJHrsTb7iL91lnXi7gOQLIuX1RB4Y_Rxpu5w
  priority: 102
  providerName: Scholars Portal
Title Sulphur metabolism and cellulase gene expression are connected processes in the filamentous fungus Hypocrea jecorina (anamorph Trichoderma reesei)
URI https://www.ncbi.nlm.nih.gov/pubmed/18842142
https://www.proquest.com/docview/20741022
https://www.proquest.com/docview/69797708
http://dx.doi.org/10.1186/1471-2180-8-174
https://www.osti.gov/servlets/purl/1626494
https://pubmed.ncbi.nlm.nih.gov/PMC2584116
https://doaj.org/article/e1595aec1b4046aa83ae9588d1d48481
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELagCIkXxG_KxrAQEuMhEKeu7YqnDTEVpPHANmnixbLjyxbUOlXTSuzf4C_mLs06UrYnXlqpPjeO72x_Z5-_Y-xNcKrAgkGSDb1JpB-4ZARFmrhUeYn-mC6abA2H39T4RH49HZ5ekUVvnOALoz4InD4TXIjSBN0dLW-zO5nEZZAc8_0f6wMDbRp6zLVwy-JzzR9s3GyfdBakhrd_PTv3Khxm10HPzQjKv5akgwfsfosl-d5K-Q_ZLYiP2N1VdsmLx-z3EUWeL-d8CgtU9aSsp9zFwGmvfomgGTgaD3D41cbCRu7mwHOKfMkRh_LZ6g4B1LyMHHEiL0o0H2xKtaw5rodn-DW-mFWEO_lPcmPL6Piui25aofb4MU6x55Rqber4HKCG8t0TdnLw-fjTOGlTMCQePYlFAgWdy6bBGa8FaB0c-hfaO8QJ3uugUycR_wQIMjhEgiEIrwplciDPzI_84CnrxSrCc8YL41VmKAlgnslQgDcuoBmLARQuS1XeZx87erGzFd2GJQLsbgmORUtataRVayxqtc_eX2rR5i27OSXZmNjGyzHq3wq76wqXT7pRdJ_MotOg5gc0U9sOcAuIC4cOctGYuHNm4GA0NCaIICllQZ-9JqOyxLkRKajnzC3r2n45-m73hGm2KITps7etUFFh63PX3pHAHiSaro7kdkcSJ4W8U7xFtmsRRhEXcGs6VqD7Kkf4Qq8uTdpSRYqzi4DGYzNCmAjrbpZQI40uQ4pPeLYaAle9Z4wkAr8-053B0em3bkkszxtG8wxhsBDqxX-ZwBa7l63JirdZbzFfwktEjAu_0-y04OehNDvNvPEH2rxsLQ
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLWgCMEL4puywSyExHjIlqRJ7IqnDTF1sO1hH9LEi2XHN11Q41RNK7G_wS_m3iTtlrE98VQpvm4c-9g-N7k-l7GPVicZFgy8MDbSi8xAe0PIfE_7iYnQHxNZna3h8CgZnUXfz-PzNv6JzsKYIi3yKwmireuH0Cf1yr0MGGvmu0y2A1xfPdypfA_9IRHdZw9EHAvKZnC8-3P1RUHIWj9zZdzK_NzyBzeOvk86O1Yt7L9avnslzsPbuOnNEMtre9beU_akJZt8p3mWZ-weuOfsYZN-8vIF-3NCoemLGS9gjliY5FXBtbOcXuYvkFUDR3QBh99tsKzjegY8pdCYFIkqnzaHDKDiueNIJHmWI76wKeWi4rhhjvFndDktiZjyX-Tn5k7zTe10UeLw8lNcgy8oF1uh-QyggvzzS3a29-3068hrczR4Bl2NuQcZfbj1rZZGBCCE1eiACKORSBgjrPB1hATJgo2sRqpobWCSLJEpkOtmhmbwivVc6eAN45k0SSgpS2AaRjYDI7VFnAcDyHToJ2mffemMi5o2ehyKFLK7JYgTRaOqaFSVVDiqfba1HEWVtvLnlIVjomo3SCb_VthcVVje6U7TXYJFp0H1hXI2Vi1eFSBxjDWkQT0HtJYDDcNYShvYiHIa9NkHApUiUQ5HUT9jvagqtX9yrHYCWb_DCGSffWqNshJbn-r2EAX2IOl4dSzXO5a4aqSd4jXCrkKeRWLBLXRUgP5tNMQH2lhCWlFFCsRzgOBRIVFQ5H13WyRDgT6Fj3d43UyBq96TMiKFvz4TncnR6bduicsvasnzEHlyECRv_wsCG-zR6PTwQB3sH_1YY4_DlbLxOuvNZwt4h_Rybt7X68Zfyc564w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BEIgL4k1ooSuERDm49Xs34tQCUcqjQn1IVS-rXe84NcR2FCcS_Rv8YmZsJ61Le-KUKLuO7d1vZr-xZ79h7K3VcYoNgeNHRjqhCbQzgNR1tBubEOMxkdbVGr7vx6Pj8MtJdNKWA6K9MCZP8uxCgmjr8ib0Se258Uvya3tq08bgZbztoYN1cKlyHQyIRHib3RFRJMhKD3ZPV68UhKwFNFedW52fa_7gyt73SWfJqpX9V_67V6IhXkdOr-ZYXlq0hg_Zg5Zt8p0GHo_YLSges7tN_cnzJ-zPIeWmL2Y8hzmCYZJVOdeF5fQ0f4G0GjjCCzj8brNlC65nwBPKjUmQqfJps8sAKp4VHJkkTzMEGF5Kuag4rphj_BidT0tipvwnBbpZofmmLnRe4vzyI3TCZ1SMLdd8BlBB9v4pOx5-Pvo4ctoiDY7BWGPuQEpvbl2rpREeCGE1RiDCaGQSxggrXB0iQ7JgQ6uRK1rrmTiNZQIUu5mBCZ6xXlEW8ILxVJrYl1QmMPFDm4KR2iLQvQBS7btx0mcfOvOipo0ghyKJ7G4LAkXRrCqaVSUVzmqfbS1nUSWt_jmV4ZioOg6S8b8HbK4OWJ7pxq67BIvOBdU_lLOxal2AAmSOkYbEq41AaxloGERSWs-GVNSgz94QqBSpchSU9jPWi6pSe4cHaseT9UMMT_bZu7ZTWpIl6HYXBY4gCXl1eq53eqLbSDrNa4RdhUSL1IJb6CgPA9xwgDe0sYS0ogMpE68ABI_yiYMi8bu5RzwQGFS4eIbnjQlcjJ6UIUn89ZnoGEdn3LotRXZWa577SJQ9L375XxDYYPd-fBqqb3v7X9fYfX-lbLzOevPZAl4hvZyb17Xb-AsUUXqu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sulphur+metabolism+and+cellulase+gene+expression+are+connected+processes+in+the+filamentous+fungus+Hypocrea+jecorina+%28anamorph+Trichoderma+reesei%29&rft.jtitle=BMC+microbiology&rft.au=Gremel%2C+Gabriela&rft.au=Dorrer%2C+Marcel&rft.au=Schmoll%2C+Monika&rft.date=2008-10-08&rft.issn=1471-2180&rft.eissn=1471-2180&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1186%2F1471-2180-8-174&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_1471_2180_8_174
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2180&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2180&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2180&client=summon