Sulphur metabolism and cellulase gene expression are connected processes in the filamentous fungus Hypocrea jecorina (anamorph Trichoderma reesei)
Sulphur compounds like cysteine, methionine and S-adenosylmethionine are essential for the viability of most cells. Thus many organisms have developed a complex regulatory circuit that governs the expression of enzymes involved in sulphur assimilation and metabolism. In the filamentous fungus Hypocr...
Saved in:
Published in | BMC microbiology Vol. 8; no. 1; p. 174 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
08.10.2008
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sulphur compounds like cysteine, methionine and S-adenosylmethionine are essential for the viability of most cells. Thus many organisms have developed a complex regulatory circuit that governs the expression of enzymes involved in sulphur assimilation and metabolism. In the filamentous fungus Hypocrea jecorina (anamorph Trichoderma reesei) little is known about the participants in this circuit.
Analyses of proteins binding to the cellulase activating element (CAE) within the promotor of the cellobiohydrolase cbh2 gene led to the identification of a putative E3 ubiquitin ligase protein named LIMPET (LIM1), which is an orthologue of the sulphur regulators SCON-2 of Neurospora crassa and Met30p of Saccharomyces cerevisiae. Transcription of lim1 is specifically up-regulated upon sulphur limitation and responds to cellulase inducing conditions. In addition, light dependent stimulation/shut down of cellulase gene transcription by methionine in the presence of sulphate was observed. Further, lim1 transcriptionally reacts to a switch from constant darkness to constant light and is subject to regulation by the light regulatory protein ENVOY. Thus lim1, despite its function in sulphur metabolite repression, responds both to light as well as sulphur- and carbon source. Upon growth on cellulose, the uptake of sulphate is dependent on the light status and essential for growth in light. Unlike other fungi, growth of H. jecorina is not inhibited by selenate under low sulphur conditions, suggesting altered regulation of sulphur metabolism. Phylogenetic analysis of the five sulphate permeases found in the genome of H. jecorina revealed that the predominantly mycelial sulphate permease is lacking, thus supporting this hypothesis.
Our data indicate that the significance of the sulphate/methionine-related signal with respect to cellulase gene expression is dependent on the light status and reaches beyond detection of sulphur availability. |
---|---|
AbstractList | Sulphur compounds like cysteine, methionine and S-adenosylmethionine are essential for the viability of most cells. Thus many organisms have developed a complex regulatory circuit that governs the expression of enzymes involved in sulphur assimilation and metabolism. In the filamentous fungus Hypocrea jecorina (anamorph Trichoderma reesei) little is known about the participants in this circuit.BACKGROUNDSulphur compounds like cysteine, methionine and S-adenosylmethionine are essential for the viability of most cells. Thus many organisms have developed a complex regulatory circuit that governs the expression of enzymes involved in sulphur assimilation and metabolism. In the filamentous fungus Hypocrea jecorina (anamorph Trichoderma reesei) little is known about the participants in this circuit.Analyses of proteins binding to the cellulase activating element (CAE) within the promotor of the cellobiohydrolase cbh2 gene led to the identification of a putative E3 ubiquitin ligase protein named LIMPET (LIM1), which is an orthologue of the sulphur regulators SCON-2 of Neurospora crassa and Met30p of Saccharomyces cerevisiae. Transcription of lim1 is specifically up-regulated upon sulphur limitation and responds to cellulase inducing conditions. In addition, light dependent stimulation/shut down of cellulase gene transcription by methionine in the presence of sulphate was observed. Further, lim1 transcriptionally reacts to a switch from constant darkness to constant light and is subject to regulation by the light regulatory protein ENVOY. Thus lim1, despite its function in sulphur metabolite repression, responds both to light as well as sulphur- and carbon source. Upon growth on cellulose, the uptake of sulphate is dependent on the light status and essential for growth in light. Unlike other fungi, growth of H. jecorina is not inhibited by selenate under low sulphur conditions, suggesting altered regulation of sulphur metabolism. Phylogenetic analysis of the five sulphate permeases found in the genome of H. jecorina revealed that the predominantly mycelial sulphate permease is lacking, thus supporting this hypothesis.RESULTSAnalyses of proteins binding to the cellulase activating element (CAE) within the promotor of the cellobiohydrolase cbh2 gene led to the identification of a putative E3 ubiquitin ligase protein named LIMPET (LIM1), which is an orthologue of the sulphur regulators SCON-2 of Neurospora crassa and Met30p of Saccharomyces cerevisiae. Transcription of lim1 is specifically up-regulated upon sulphur limitation and responds to cellulase inducing conditions. In addition, light dependent stimulation/shut down of cellulase gene transcription by methionine in the presence of sulphate was observed. Further, lim1 transcriptionally reacts to a switch from constant darkness to constant light and is subject to regulation by the light regulatory protein ENVOY. Thus lim1, despite its function in sulphur metabolite repression, responds both to light as well as sulphur- and carbon source. Upon growth on cellulose, the uptake of sulphate is dependent on the light status and essential for growth in light. Unlike other fungi, growth of H. jecorina is not inhibited by selenate under low sulphur conditions, suggesting altered regulation of sulphur metabolism. Phylogenetic analysis of the five sulphate permeases found in the genome of H. jecorina revealed that the predominantly mycelial sulphate permease is lacking, thus supporting this hypothesis.Our data indicate that the significance of the sulphate/methionine-related signal with respect to cellulase gene expression is dependent on the light status and reaches beyond detection of sulphur availability.CONCLUSIONOur data indicate that the significance of the sulphate/methionine-related signal with respect to cellulase gene expression is dependent on the light status and reaches beyond detection of sulphur availability. Sulphur compounds like cysteine, methionine and S-adenosylmethionine are essential for the viability of most cells. Thus many organisms have developed a complex regulatory circuit that governs the expression of enzymes involved in sulphur assimilation and metabolism. In the filamentous fungus Hypocrea jecorina (anamorph Trichoderma reesei) little is known about the participants in this circuit. Analyses of proteins binding to the cellulase activating element (CAE) within the promotor of the cellobiohydrolase cbh2 gene led to the identification of a putative E3 ubiquitin ligase protein named LIMPET (LIM1), which is an orthologue of the sulphur regulators SCON-2 of Neurospora crassa and Met30p of Saccharomyces cerevisiae. Transcription of lim1 is specifically up-regulated upon sulphur limitation and responds to cellulase inducing conditions. In addition, light dependent stimulation/shut down of cellulase gene transcription by methionine in the presence of sulphate was observed. Further, lim1 transcriptionally reacts to a switch from constant darkness to constant light and is subject to regulation by the light regulatory protein ENVOY. Thus lim1, despite its function in sulphur metabolite repression, responds both to light as well as sulphur- and carbon source. Upon growth on cellulose, the uptake of sulphate is dependent on the light status and essential for growth in light. Unlike other fungi, growth of H. jecorina is not inhibited by selenate under low sulphur conditions, suggesting altered regulation of sulphur metabolism. Phylogenetic analysis of the five sulphate permeases found in the genome of H. jecorina revealed that the predominantly mycelial sulphate permease is lacking, thus supporting this hypothesis. Our data indicate that the significance of the sulphate/methionine-related signal with respect to cellulase gene expression is dependent on the light status and reaches beyond detection of sulphur availability. Background: Sulphur compounds like cysteine, methionine and S-adenosylmethionine are essential for the viability of most cells. Thus many organisms have developed a complex regulatory circuit that governs the expression of enzymes involved in sulphur assimilation and metabolism. In the filamentous fungus Hypocrea jecorina (anamorph Trichoderma reesei) little is known about the participants in this circuit. Results: Analyses of proteins binding to the cellulase activating element (CAE) within the promotor of the cellobiohydrolase cbh2 gene led to the identification of a putative E3 ubiquitin ligase protein named LIMPET (LIM1), which is an orthologue of the sulphur regulators SCON-2 of Neurospora crassa and Met30p of Saccharomyces cerevisiae. Transcription of lim1 is specifically upregulated upon sulphur limitation and responds to cellulase inducing conditions. In addition, light dependent stimulation/shut down of cellulase gene transcription by methionine in the presence of sulphate was observed. Further, lim1 transcriptionally reacts to a switch from constant darkness to constant light and is subject to regulation by the light regulatory protein ENVOY. Thus lim1, despite its function in sulphur metabolite repression, responds both to light as well as sulphur- and carbon source. Upon growth on cellulose, the uptake of sulphate is dependent on the light status and essential for growth in light. Unlike other fungi, growth of H. jecorina is not inhibited by selenate under low sulphur conditions, suggesting altered regulation of sulphur metabolism. Phylogenetic analysis of the five sulphate permeases found in the genome of H. jecorina revealed that the predominantly mycelial sulphate permease is lacking, thus supporting this hypothesis. Conclusion: Our data indicate that the significance of the sulphate/methionine-related signal with respect to cellulase gene expression is dependent on the light status and reaches beyond detection of sulphur availability. Abstract Background Sulphur compounds like cysteine, methionine and S-adenosylmethionine are essential for the viability of most cells. Thus many organisms have developed a complex regulatory circuit that governs the expression of enzymes involved in sulphur assimilation and metabolism. In the filamentous fungus Hypocrea jecorina (anamorph Trichoderma reesei) little is known about the participants in this circuit. Results Analyses of proteins binding to the cellulase activating element (CAE) within the promotor of the cellobiohydrolase cbh2 gene led to the identification of a putative E3 ubiquitin ligase protein named LIMPET (LIM1), which is an orthologue of the sulphur regulators SCON-2 of Neurospora crassa and Met30p of Saccharomyces cerevisiae. Transcription of lim1 is specifically up-regulated upon sulphur limitation and responds to cellulase inducing conditions. In addition, light dependent stimulation/shut down of cellulase gene transcription by methionine in the presence of sulphate was observed. Further, lim1 transcriptionally reacts to a switch from constant darkness to constant light and is subject to regulation by the light regulatory protein ENVOY. Thus lim1, despite its function in sulphur metabolite repression, responds both to light as well as sulphur- and carbon source. Upon growth on cellulose, the uptake of sulphate is dependent on the light status and essential for growth in light. Unlike other fungi, growth of H. jecorina is not inhibited by selenate under low sulphur conditions, suggesting altered regulation of sulphur metabolism. Phylogenetic analysis of the five sulphate permeases found in the genome of H. jecorina revealed that the predominantly mycelial sulphate permease is lacking, thus supporting this hypothesis. Conclusion Our data indicate that the significance of the sulphate/methionine-related signal with respect to cellulase gene expression is dependent on the light status and reaches beyond detection of sulphur availability. Background Sulphur compounds like cysteine, methionine and S-adenosylmethionine are essential for the viability of most cells. Thus many organisms have developed a complex regulatory circuit that governs the expression of enzymes involved in sulphur assimilation and metabolism. In the filamentous fungus Hypocrea jecorina (anamorph Trichoderma reesei) little is known about the participants in this circuit. Results Analyses of proteins binding to the cellulase activating element (CAE) within the promotor of the cellobiohydrolase cbh2 gene led to the identification of a putative E3 ubiquitin ligase protein named LIMPET (LIM1), which is an orthologue of the sulphur regulators SCON-2 of Neurospora crassa and Met30p of Saccharomyces cerevisiae. Transcription of lim1 is specifically up-regulated upon sulphur limitation and responds to cellulase inducing conditions. In addition, light dependent stimulation/shut down of cellulase gene transcription by methionine in the presence of sulphate was observed. Further, lim1 transcriptionally reacts to a switch from constant darkness to constant light and is subject to regulation by the light regulatory protein ENVOY. Thus lim1, despite its function in sulphur metabolite repression, responds both to light as well as sulphur- and carbon source. Upon growth on cellulose, the uptake of sulphate is dependent on the light status and essential for growth in light. Unlike other fungi, growth of H. jecorina is not inhibited by selenate under low sulphur conditions, suggesting altered regulation of sulphur metabolism. Phylogenetic analysis of the five sulphate permeases found in the genome of H. jecorina revealed that the predominantly mycelial sulphate permease is lacking, thus supporting this hypothesis. Conclusion Our data indicate that the significance of the sulphate/methionine-related signal with respect to cellulase gene expression is dependent on the light status and reaches beyond detection of sulphur availability. |
ArticleNumber | 174 |
Audience | Academic |
Author | Dorrer, Marcel Gremel, Gabriela Schmoll, Monika |
AuthorAffiliation | 1 Research Area of Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9/1665, A-1060 Wien, Austria |
AuthorAffiliation_xml | – name: 1 Research Area of Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9/1665, A-1060 Wien, Austria |
Author_xml | – sequence: 1 givenname: Gabriela surname: Gremel fullname: Gremel, Gabriela – sequence: 2 givenname: Marcel surname: Dorrer fullname: Dorrer, Marcel – sequence: 3 givenname: Monika surname: Schmoll fullname: Schmoll, Monika |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18842142$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1626494$$D View this record in Osti.gov |
BookMark | eNqFk09v1DAQxSNURP_AmRuyQEL0sG0m68TOBalUQFeqhETL2ZrYk11XiZ3aCWq_Bp8YL1uqLmqFcnDk-c0b5_llP9tx3lGWvYb8CEBWx8AFzAqQ-UzOQPBn2d79zs6D991sP8arPAch5-JFtgtS8gJ4sZf9upi6YTUF1tOIje9s7Bk6wzR13dRhJLYkR4xuhkAxWu8YBmLaO0d6JMOG4HUqUGTWsXFFrLUd9uRGP0XWTm6ZlrPbwetAyK5I-2Adsg_osPdhWLHLYPXKGwo9skAUyR6-zJ632EV6dbceZD--fL48PZudf_u6OD05nzWVKMcZtWVRV7lB2QggIQyKUooGoYSmEUbkyAsxN2S4wXpeGANN1VZSEy8qaOpmfpAtNrrG45Uagu0x3CqPVv3Z8GGpMIxWd6QIyrpE0tDwnFeIco5Ul1IaMFxyCUnr40ZrmJqejE4GBOy2RLcrzq7U0v9URSk5QJUE3m4EfBytitqOpFd3NiuoiorXPEGfNlBj_RNTtiva92odArUOgZIqRSSJvL87avDXE8VR9TaurxsdpUtTVS1qIXL5X7DIBYe8KBL4bgMuMXllXevTcL2G1QnIOmFpfKKOHqHSY6i36UspJYe2Gw63GhIz0s24xClGtbj4vs2-eej_vSV_g56AcgPo4GMM1KpkMY4p0OkUtlOQq_UP9Yhbx__03Us_0fEbpx8jHQ |
CitedBy_id | crossref_primary_10_1016_j_fgb_2010_04_010 crossref_primary_10_1007_s00284_021_02568_9 crossref_primary_10_1146_annurev_micro_092611_150044 crossref_primary_10_1371_journal_pgen_1004500 crossref_primary_10_1007_s00344_022_10699_x crossref_primary_10_1128_AEM_02922_16 crossref_primary_10_3390_agronomy14010190 crossref_primary_10_1016_j_scib_2020_11_001 crossref_primary_10_1186_s40694_018_0052_7 crossref_primary_10_1186_s12918_015_0224_5 crossref_primary_10_3389_fbioe_2018_00135 crossref_primary_10_3390_toxins11100553 crossref_primary_10_1186_1471_2164_12_613 crossref_primary_10_1186_1471_2164_15_425 crossref_primary_10_1186_1756_0500_3_330 crossref_primary_10_1016_j_rser_2015_10_132 crossref_primary_10_1016_j_funbio_2017_10_007 crossref_primary_10_1016_j_fgb_2014_06_012 crossref_primary_10_1007_s00253_009_2320_1 crossref_primary_10_1016_j_soilbio_2015_04_004 crossref_primary_10_1128_EC_00386_08 crossref_primary_10_3389_fmicb_2019_02317 crossref_primary_10_3390_jof9020215 crossref_primary_10_1016_j_crbiot_2022_04_001 crossref_primary_10_1186_s13068_016_0547_5 crossref_primary_10_1186_1475_2859_10_40 crossref_primary_10_1186_s12934_015_0308_3 crossref_primary_10_1080_01490451_2021_1877854 crossref_primary_10_1186_1471_2164_14_657 crossref_primary_10_1128_AEM_00513_11 crossref_primary_10_1128_mSphere_00089_17 crossref_primary_10_1128_MMBR_00040_15 crossref_primary_10_1016_j_tibtech_2016_06_003 |
Cites_doi | 10.1093/jxb/erh175 10.1038/sj.emboj.7600556 10.1007/BF00352009 10.1007/s00253-003-1336-1 10.1139/m93-048 10.1073/pnas.83.16.5889 10.1016/S0092-8674(00)80435-3 10.1007/s004380050646 10.1128/MCB.15.12.6526 10.1128/EC.5.3.447-456.2006 10.1016/S0079-6107(99)00010-3 10.1093/nar/26.9.2230 10.1016/S0092-8674(00)80098-7 10.1073/pnas.92.8.3343 10.1128/aem.63.4.1298-1306.1997 10.1016/j.fgb.2004.06.002 10.1074/jbc.M304750200 10.1096/fasebj.11.11.9285490 10.2307/2408678 10.1038/371297a0 10.1046/j.1365-2958.2000.01890.x 10.1016/0003-2697(87)90021-2 10.1074/jbc.M003624200 10.1016/S1087-1845(02)00534-0 10.1007/s004380100518 10.1128/EC.00211-06 10.1016/0378-1119(85)90120-9 10.1091/mbc.E05-07-0699 10.1128/MCB.12.4.1719 10.1016/S1097-2765(02)00500-2 10.1016/j.femsre.2004.11.006 10.1128/MCB.8.4.1504 10.1186/gb-2004-5-12-r95 10.1016/0378-1119(88)90005-4 10.1128/MMBR.68.1.1-108.2004 10.1007/BF00279546 10.1038/nbt1403 10.1074/jbc.273.51.34463 10.1093/nar/25.24.4876 10.1091/mbc.E04-12-1130 10.1146/annurev.micro.51.1.73 10.1126/science.1925541 10.1556/AMicr.50.2003.2-3.3 10.1006/meth.1993.1017 10.1016/j.biochi.2006.03.001 10.1128/MCB.10.10.5207 10.1128/EC.4.12.1998-2007.2005 10.1128/jb.132.1.224-232.1977 10.1128/jb.139.3.761-769.1979 10.1016/S0092-8674(88)80034-5 10.1128/MCB.7.7.2506 10.1073/pnas.95.5.2417 10.1016/S0076-6879(02)50957-5 10.1038/nrmicro797 10.2323/jgam.49.271 10.1016/j.mrfmmm.2007.08.009 10.1128/jb.102.3.716-721.1970 10.1002/(SICI)1097-0061(19970315)13:3<225::AID-YEA87>3.0.CO;2-I 10.1186/1471-2164-8-449 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2008 BioMed Central Ltd. Copyright © 2008 Gremel et al; licensee BioMed Central Ltd. 2008 Gremel et al; licensee BioMed Central Ltd. |
Copyright_xml | – notice: COPYRIGHT 2008 BioMed Central Ltd. – notice: Copyright © 2008 Gremel et al; licensee BioMed Central Ltd. 2008 Gremel et al; licensee BioMed Central Ltd. |
CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7QO 7T7 8FD C1K FR3 M7N P64 RC3 7X8 OIOZB OTOTI 5PM DOA |
DOI | 10.1186/1471-2180-8-174 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) DOAJ: Directory of Open Access Journal (DOAJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Genetics Abstracts |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journal Collection url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2180 |
EndPage | 174 |
ExternalDocumentID | oai_doaj_org_article_e1595aec1b4046aa83ae9588d1d48481 PMC2584116 1626494 oai_biomedcentral_com_1471_2180_8_174 A189074218 18842142 10_1186_1471_2180_8_174 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Austrian Science Fund FWF grantid: P 20004 |
GroupedDBID | --- 0R~ 23N 2VQ 2WC 4.4 53G 5VS 6J9 A8Z AAFWJ AAJSJ AASML AAYXX ABDBF ACGFO ACGFS ACIHN ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BFQNJ BMC C1A C6C CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P GROUPED_DOAJ GX1 H13 HYE IAO IGS IHR INH INR IPNFZ ISR ITC KQ8 M48 MM. M~E O5R O5S OK1 OVT P2P PGMZT PQQKQ RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS W2D WOQ WOW XSB ~02 CGR CUY CVF ECM EIF NPM 7QO 7T7 8FD C1K FR3 M7N P64 RC3 7X8 -A0 ABVAZ ACRMQ ADINQ AFGXO AFNRJ AGJBV C24 ESTFP AAPBV ABPTK OIOZB OTOTI PQEST 5PM |
ID | FETCH-LOGICAL-b675t-ef52960da8b71e77da7587ba151bb7d70a4273ded4da932dd1b6f68ce4261b9b3 |
IEDL.DBID | RBZ |
ISSN | 1471-2180 |
IngestDate | Wed Aug 27 01:30:51 EDT 2025 Thu Aug 21 14:07:03 EDT 2025 Mon Jul 10 02:30:58 EDT 2023 Wed May 22 07:11:20 EDT 2024 Fri Jul 11 10:29:52 EDT 2025 Fri Jul 11 04:04:12 EDT 2025 Tue Jun 17 22:21:07 EDT 2025 Tue Jun 10 21:20:18 EDT 2025 Fri Jun 27 05:55:20 EDT 2025 Mon Jul 21 05:47:15 EDT 2025 Thu Apr 24 23:01:50 EDT 2025 Tue Jul 01 04:31:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b675t-ef52960da8b71e77da7587ba151bb7d70a4273ded4da932dd1b6f68ce4261b9b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Australian Science Fund (FWF) USDOE Office of Science (SC), Biological and Environmental Research (BER). Biological Systems Science Division AC02-05CH11231; FWP-P17325 |
OpenAccessLink | http://dx.doi.org/10.1186/1471-2180-8-174 |
PMID | 18842142 |
PQID | 20741022 |
PQPubID | 23462 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e1595aec1b4046aa83ae9588d1d48481 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2584116 osti_scitechconnect_1626494 biomedcentral_primary_oai_biomedcentral_com_1471_2180_8_174 proquest_miscellaneous_69797708 proquest_miscellaneous_20741022 gale_infotracmisc_A189074218 gale_infotracacademiconefile_A189074218 gale_incontextgauss_ISR_A189074218 pubmed_primary_18842142 crossref_citationtrail_10_1186_1471_2180_8_174 crossref_primary_10_1186_1471_2180_8_174 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-10-08 |
PublicationDateYYYYMMDD | 2008-10-08 |
PublicationDate_xml | – month: 10 year: 2008 text: 2008-10-08 day: 08 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: United States |
PublicationTitle | BMC microbiology |
PublicationTitleAlternate | BMC Microbiol |
PublicationYear | 2008 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | D Martinez (607_CR19) 2008; 26 Y Galante (607_CR17) 1998 S Zeilinger (607_CR23) 1998; 273 607_CR39 KA Borkovich (607_CR57) 2004; 68 R Natorff (607_CR4) 1993; 238 P Baudouin-Cornu (607_CR11) 2006; 88 AR Stricker (607_CR28) 2006; 5 J Schouten (607_CR47) 2000; 263 L Letavayova (607_CR56) 2008; 638 GA Marzluf (607_CR1) 1997; 51 B Pinson (607_CR15) 2000; 36 D Thomas (607_CR3) 1992; 12 A Schuster (607_CR22) 2007; 8 S Sestak (607_CR69) 1993; 39 R Natorff (607_CR5) 1998; 257 M Schmoll (607_CR21) 2005; 4 P Chomczynski (607_CR36) 1987; 162 JD Thompson (607_CR42) 1997; 25 GE Harman (607_CR67) 2004; 2 TE Wilson (607_CR33) 1991; 252 EJ Neer (607_CR72) 1994; 371 T Scheibel (607_CR66) 1997; 11 JS Ketter (607_CR58) 1988; 8 KB Kaplan (607_CR62) 1997; 91 607_CR48 A Reinhardt (607_CR49) 1998; 26 A Kumar (607_CR6) 1995; 92 Y Galante (607_CR18) 1998 C Yanisch-Perron (607_CR34) 1985; 33 MA Lachance (607_CR65) 1997; 13 S Zeilinger (607_CR24) 2001; 266 A Breton (607_CR64) 1977; 132 H Stangl (607_CR41) 1993; 23 M Mandels (607_CR29) 1978; 13 N Aro (607_CR26) 2001; 276 M Schmoll (607_CR31) 2004; 41 GA Marzluf (607_CR63) 2001 A Maruyama-Nakashita (607_CR10) 2004; 55 T Benitez (607_CR68) 2004; 7 JV Paietta (607_CR51) 1990; 10 GA Marzluf (607_CR53) 1970; 102 M Fauchon (607_CR13) 2002; 9 607_CR52 D Thomas (607_CR8) 1995; 15 J Buchert (607_CR16) 1998 J Liu (607_CR32) 1993; 5 DB Smith (607_CR40) 1988; 67 C Xue (607_CR71) 2006; 17 H Singh (607_CR46) 1988; 52 N Aro (607_CR25) 2005; 29 PK Foreman (607_CR59) 2003; 278 M Schmoll (607_CR20) 2003; 50 L Banszky (607_CR55) 2003; 49 R Rauscher (607_CR27) 2006; 5 JV Paietta (607_CR2) 1987; 7 GC Segers (607_CR70) 2003; 38 KL Craig (607_CR61) 1999; 72 D Sternberg (607_CR30) 1979; 139 JT Kadonga (607_CR45) 1986; 83 P Raspor (607_CR54) 2003; 63 A Kumar (607_CR7) 1998; 95 J Felsenstein (607_CR43) 1985; 39 R Barbey (607_CR12) 2005; 24 J Sambrook (607_CR35) 1989 M Ilmen (607_CR60) 1997; 63 C Bai (607_CR50) 1996; 86 AC Haugen (607_CR14) 2004; 5 JL Yen (607_CR9) 2005; 16 RD Gietz (607_CR37) 2002; 350 FM Ausubel (607_CR38) 1993 JA Chong (607_CR44) 1997 |
References_xml | – volume: 55 start-page: 1843 issue: 404 year: 2004 ident: 607_CR10 publication-title: J Exp Bot doi: 10.1093/jxb/erh175 – volume: 263 start-page: 309 issue: 2 year: 2000 ident: 607_CR47 publication-title: Mol Gen Genet – volume: 24 start-page: 521 issue: 3 year: 2005 ident: 607_CR12 publication-title: Embo J doi: 10.1038/sj.emboj.7600556 – volume: 23 start-page: 115 issue: 2 year: 1993 ident: 607_CR41 publication-title: Curr Genet doi: 10.1007/BF00352009 – volume: 63 start-page: 89 issue: 1 year: 2003 ident: 607_CR54 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-003-1336-1 – volume: 39 start-page: 342 issue: 3 year: 1993 ident: 607_CR69 publication-title: Can J Microbiol doi: 10.1139/m93-048 – volume: 83 start-page: 5889 year: 1986 ident: 607_CR45 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.83.16.5889 – volume: 91 start-page: 491 issue: 4 year: 1997 ident: 607_CR62 publication-title: Cell doi: 10.1016/S0092-8674(00)80435-3 – volume: 257 start-page: 255 issue: 3 year: 1998 ident: 607_CR5 publication-title: Mol Gen Genet doi: 10.1007/s004380050646 – volume: 15 start-page: 6526 issue: 12 year: 1995 ident: 607_CR8 publication-title: Mol Cell Biol doi: 10.1128/MCB.15.12.6526 – volume: 5 start-page: 447 issue: 3 year: 2006 ident: 607_CR27 publication-title: Eukaryot Cell doi: 10.1128/EC.5.3.447-456.2006 – volume-title: Current Protocols in Molecular Biology year: 1993 ident: 607_CR38 – start-page: 343 volume-title: Trichoderma & Gliocladium year: 1998 ident: 607_CR16 – volume: 72 start-page: 299 issue: 3 year: 1999 ident: 607_CR61 publication-title: Prog Biophys Mol Biol doi: 10.1016/S0079-6107(99)00010-3 – volume: 13 start-page: 6 year: 1978 ident: 607_CR29 publication-title: Proc Biochem – volume: 26 start-page: 2230 issue: 9 year: 1998 ident: 607_CR49 publication-title: Nucleic Acids Res doi: 10.1093/nar/26.9.2230 – volume: 86 start-page: 263 issue: 2 year: 1996 ident: 607_CR50 publication-title: Cell doi: 10.1016/S0092-8674(00)80098-7 – volume: 92 start-page: 3343 issue: 8 year: 1995 ident: 607_CR6 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.92.8.3343 – volume: 63 start-page: 1298 issue: 4 year: 1997 ident: 607_CR60 publication-title: Appl Environ Microbiol doi: 10.1128/aem.63.4.1298-1306.1997 – volume: 41 start-page: 877 issue: 9 year: 2004 ident: 607_CR31 publication-title: Fungal Genet Biol doi: 10.1016/j.fgb.2004.06.002 – volume: 278 start-page: 31988 issue: 34 year: 2003 ident: 607_CR59 publication-title: J Biol Chem doi: 10.1074/jbc.M304750200 – volume: 11 start-page: 917 issue: 11 year: 1997 ident: 607_CR66 publication-title: Faseb J doi: 10.1096/fasebj.11.11.9285490 – volume: 39 start-page: 783 year: 1985 ident: 607_CR43 publication-title: Evolution doi: 10.2307/2408678 – volume: 371 start-page: 297 issue: 6495 year: 1994 ident: 607_CR72 publication-title: Nature doi: 10.1038/371297a0 – ident: 607_CR52 – volume: 36 start-page: 679 issue: 3 year: 2000 ident: 607_CR15 publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2000.01890.x – start-page: 55 volume-title: Applied mycology and biotechnology year: 2001 ident: 607_CR63 – volume: 162 start-page: 156 issue: 1 year: 1987 ident: 607_CR36 publication-title: Anal Biochem doi: 10.1016/0003-2697(87)90021-2 – volume: 276 start-page: 24309 issue: 26 year: 2001 ident: 607_CR26 publication-title: J Biol Chem doi: 10.1074/jbc.M003624200 – ident: 607_CR48 – volume-title: Molecular cloning: a Laboratory Manual year: 1989 ident: 607_CR35 – volume: 38 start-page: 198 issue: 2 year: 2003 ident: 607_CR70 publication-title: Fungal Genet Biol doi: 10.1016/S1087-1845(02)00534-0 – volume: 266 start-page: 56 issue: 1 year: 2001 ident: 607_CR24 publication-title: Mol Genet Genomics doi: 10.1007/s004380100518 – volume: 5 start-page: 2128 issue: 12 year: 2006 ident: 607_CR28 publication-title: Eukaryot Cell doi: 10.1128/EC.00211-06 – volume: 33 start-page: 103 issue: 1 year: 1985 ident: 607_CR34 publication-title: Gene doi: 10.1016/0378-1119(85)90120-9 – volume: 17 start-page: 667 issue: 2 year: 2006 ident: 607_CR71 publication-title: Mol Biol Cell doi: 10.1091/mbc.E05-07-0699 – volume: 12 start-page: 1719 issue: 4 year: 1992 ident: 607_CR3 publication-title: Mol Cell Biol doi: 10.1128/MCB.12.4.1719 – volume: 9 start-page: 713 issue: 4 year: 2002 ident: 607_CR13 publication-title: Mol Cell doi: 10.1016/S1097-2765(02)00500-2 – volume: 29 start-page: 719 issue: 4 year: 2005 ident: 607_CR25 publication-title: FEMS Microbiol Rev doi: 10.1016/j.femsre.2004.11.006 – volume: 8 start-page: 1504 issue: 4 year: 1988 ident: 607_CR58 publication-title: Mol Cell Biol doi: 10.1128/MCB.8.4.1504 – volume: 5 start-page: R95 issue: 12 year: 2004 ident: 607_CR14 publication-title: Genome Biol doi: 10.1186/gb-2004-5-12-r95 – volume: 67 start-page: 31 issue: 1 year: 1988 ident: 607_CR40 publication-title: Gene doi: 10.1016/0378-1119(88)90005-4 – volume: 68 start-page: 1 issue: 1 year: 2004 ident: 607_CR57 publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.68.1.1-108.2004 – volume: 238 start-page: 185 issue: 1–2 year: 1993 ident: 607_CR4 publication-title: Mol Gen Genet doi: 10.1007/BF00279546 – volume: 26 start-page: 553 issue: 5 year: 2008 ident: 607_CR19 publication-title: Nat Biotechnol doi: 10.1038/nbt1403 – volume: 273 start-page: 34463 issue: 51 year: 1998 ident: 607_CR23 publication-title: J Biol Chem doi: 10.1074/jbc.273.51.34463 – volume: 7 start-page: 249 issue: 4 year: 2004 ident: 607_CR68 publication-title: Int Microbiol – start-page: 327 volume-title: Trichoderma and Gliocladium year: 1998 ident: 607_CR18 – volume: 25 start-page: 4876 issue: 24 year: 1997 ident: 607_CR42 publication-title: Nucleic Acids Res doi: 10.1093/nar/25.24.4876 – volume: 16 start-page: 1872 issue: 4 year: 2005 ident: 607_CR9 publication-title: Mol Biol Cell doi: 10.1091/mbc.E04-12-1130 – volume: 51 start-page: 73 year: 1997 ident: 607_CR1 publication-title: Annu Rev Microbiol doi: 10.1146/annurev.micro.51.1.73 – volume: 252 start-page: 1296 year: 1991 ident: 607_CR33 publication-title: Science doi: 10.1126/science.1925541 – ident: 607_CR39 – volume: 50 start-page: 125 issue: 2–3 year: 2003 ident: 607_CR20 publication-title: Acta Microbiol Immunol Hung doi: 10.1556/AMicr.50.2003.2-3.3 – volume: 5 start-page: 125 year: 1993 ident: 607_CR32 publication-title: Methods: A Companion to Methods in Enzymology doi: 10.1006/meth.1993.1017 – start-page: 289 volume-title: The Yeast Two Hybrid System year: 1997 ident: 607_CR44 – volume: 88 start-page: 1673 issue: 11 year: 2006 ident: 607_CR11 publication-title: Biochimie doi: 10.1016/j.biochi.2006.03.001 – volume: 10 start-page: 5207 issue: 10 year: 1990 ident: 607_CR51 publication-title: Mol Cell Biol doi: 10.1128/MCB.10.10.5207 – volume: 4 start-page: 1998 issue: 12 year: 2005 ident: 607_CR21 publication-title: Eukaryot Cell doi: 10.1128/EC.4.12.1998-2007.2005 – volume: 132 start-page: 224 issue: 1 year: 1977 ident: 607_CR64 publication-title: J Bacteriol doi: 10.1128/jb.132.1.224-232.1977 – volume: 139 start-page: 761 issue: 3 year: 1979 ident: 607_CR30 publication-title: J Bacteriol doi: 10.1128/jb.139.3.761-769.1979 – volume: 52 start-page: 415 year: 1988 ident: 607_CR46 publication-title: Cell doi: 10.1016/S0092-8674(88)80034-5 – volume: 7 start-page: 2506 issue: 7 year: 1987 ident: 607_CR2 publication-title: Mol Cell Biol doi: 10.1128/MCB.7.7.2506 – volume: 95 start-page: 2417 issue: 5 year: 1998 ident: 607_CR7 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.5.2417 – volume: 350 start-page: 87 year: 2002 ident: 607_CR37 publication-title: Methods in Enzymology doi: 10.1016/S0076-6879(02)50957-5 – volume: 2 start-page: 43 issue: 1 year: 2004 ident: 607_CR67 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro797 – start-page: 311 volume-title: Trichoderma & Gliocladium year: 1998 ident: 607_CR17 – volume: 49 start-page: 271 issue: 5 year: 2003 ident: 607_CR55 publication-title: J Gen Appl Microbiol doi: 10.2323/jgam.49.271 – volume: 638 start-page: 1 issue: 1–2 year: 2008 ident: 607_CR56 publication-title: Mutat Res doi: 10.1016/j.mrfmmm.2007.08.009 – volume: 102 start-page: 716 issue: 3 year: 1970 ident: 607_CR53 publication-title: J Bacteriol doi: 10.1128/jb.102.3.716-721.1970 – volume: 13 start-page: 225 issue: 3 year: 1997 ident: 607_CR65 publication-title: Yeast doi: 10.1002/(SICI)1097-0061(19970315)13:3<225::AID-YEA87>3.0.CO;2-I – volume: 8 start-page: 449 issue: 1 year: 2007 ident: 607_CR22 publication-title: BMC Genomics doi: 10.1186/1471-2164-8-449 |
SSID | ssj0017837 |
Score | 2.0660787 |
Snippet | Sulphur compounds like cysteine, methionine and S-adenosylmethionine are essential for the viability of most cells. Thus many organisms have developed a... Background Sulphur compounds like cysteine, methionine and S-adenosylmethionine are essential for the viability of most cells. Thus many organisms have... BACKGROUND: Sulphur compounds like cysteine, methionine and S-adenosylmethionine are essential for the viability of most cells. Thus many organisms have... Background: Sulphur compounds like cysteine, methionine and S-adenosylmethionine are essential for the viability of most cells. Thus many organisms have... Abstract Background Sulphur compounds like cysteine, methionine and S-adenosylmethionine are essential for the viability of most cells. Thus many organisms... |
SourceID | doaj pubmedcentral osti biomedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 174 |
SubjectTerms | Amino Acid Sequence Anion Transport Proteins - genetics Base Sequence BASIC BIOLOGICAL SCIENCES Carrier Proteins - chemistry Carrier Proteins - genetics Cellular control mechanisms cellulase Cellulase - genetics Cellulose - metabolism cullulase gene F-Box Proteins - genetics Fungal Proteins - metabolism Gene expression Gene Expression Regulation, Fungal - radiation effects Genetic aspects Hypocrea - drug effects Hypocrea - enzymology Hypocrea - growth & development Hypocrea - metabolism Hypocrea jecorina Light Methionine - metabolism microbiology Molds (Fungi) Molecular Sequence Data Neurospora crassa Phylogeny Promoter Regions, Genetic - genetics Saccharomyces cerevisiae Selenic Acid Selenium Compounds - pharmacology Sulfates - metabolism Sulfur - metabolism sulphate uptake sulphur metabolism sulphur source Ubiquitin-Protein Ligases - genetics |
SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journal (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZQJSReEL8pG2AhJMZDWJymjiueBmIqSPDANmlv1jm-bJlap2paif0b_MXcJWlZBhMvPEWKbcXxne--S87fCfHagy6oYRQlY2ei1I0gmmARRxBrl1I8lhVNtYav3_T0JP1yOj69UuqLc8JaeuB24faR_O0YMFfNUAAzApyMjfHKp0wFz9aXfN4mmOr-H2SmYctUZHojcmJxR-qjjN7f3osofMquH3Sf9fxTQ-O_NdaDinbd35Do9YTKKx7q8J6420FLedC-0n1xC8MDcbstNnn5UPw84kT09VLOcUWSn5X1XELwkj_drwlDoyRdQok_utTYIGGJMudEmJxgqVy0RwqwlmWQBBtlUZI20VSqdS3JPZ7RZXq5qBiGyguOassAcg8CzCsSpjwmi3vOldfmIJeINZZvH4mTw0_HH6dRV5EhchRYrCIs-Ddt7MG4TGGWeaBwI3NAsMG5zGcxpASHPPrUAwFD75XThTY5cqDmJm70WAxCFfCpkIVxOjFcEzBPUl-gM-BJq9UIC0hinQ_F-55c7KJl37DMh91voa1pWaqWpWqNJakOxbuNFG3ekZ1zzY2ZbYIeo_8csLcdsHnSjV0_sFr0JtTcILW1ndraf6ntULxipbJMwRE4x-cM1nVtPx99twfKNF8slBmKN12noqLZ59AdmaAVZNauXs_dXk-yEXmveYd11xKqYmrgTnWsomg2ndALvdyotOWBnHYXkJTHJgw4CeXd3ENPMoogYnrCk3YL_F49Y1Lm8xuKrLc5euvWbwnleUNwnhAqVko_-x8LvSPuJFsK410xWC3X-Jxw5Mq9aEzGL_ixceA priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegCIkXxDdlAyyExHjISFI3doUQGoipII0Htkp7s-z40gW1Tklaaf03-Iu5S9OWjE7iqVJ9aVzfh3-XnH_H2GtnkgwHekHctyoQtmeCAWRhYMLECszHZFZ3azj5ngxH4tt5_3zbDqhZwGpnakf9pEbl5PDy1_IjOvyH2uFV8i7CABvgVhUGmBBJcZPdwm1JkpeeiO0rBalqAs2NcMPzs-MHrpx9n7S2rJrZfxO_OwU64i5werXG8q9N6_geu9ugTX60Mo_77Ab4B-z2qv_k8iH7fUq16YuST2GOxjDJqyk33nF6mr9AWA0czQs4XDbVsp6bEnhKtTEpIlU-W50ygIrnniOS5FmOBoZTKRYVxx1zjB_D5awgZMp_UqKbe8MPjDfTAvXLzzAIX1AztqnhJUAF-dtHbHT85ezzMGiaNAQWc415ABm9uQ2dUVZGIKUzmIFIaxBJWCudDI1AhOTACWcQKzoX2SRLVAqUu9mB7T1mHV94eMp4pmwSK2oTmMbCZWCVcWjoUQ8yE4dJ2mXvW3rRsxUhhyaK7PYIeqsmrWrSqlYatdplh2st6rThP6c2HBNd50Eq-feCg80F6ztdK_qJzKI1ofqLohzrJgRoQOTYN5BGtRMYo3oGBn2lXOQENTXosldkVJpYOTyV_YzNoqr019Mf-ihS9UOMSHXZm0YoK3D2qWlOUeAKEpFXS3K_JYlhI20N75HtagRaxBbcmI6OMMEVA_xDL9cmrelCqsTzgMajY8KgCPyul0gGEpOKEO_wZOUC29VTShDFX5fJlnO01q094vOLmvM8RqAcRcmz_9fJHrsTb7iL91lnXi7gOQLIuX1RB4Y_Rxpu5w priority: 102 providerName: Scholars Portal |
Title | Sulphur metabolism and cellulase gene expression are connected processes in the filamentous fungus Hypocrea jecorina (anamorph Trichoderma reesei) |
URI | https://www.ncbi.nlm.nih.gov/pubmed/18842142 https://www.proquest.com/docview/20741022 https://www.proquest.com/docview/69797708 http://dx.doi.org/10.1186/1471-2180-8-174 https://www.osti.gov/servlets/purl/1626494 https://pubmed.ncbi.nlm.nih.gov/PMC2584116 https://doaj.org/article/e1595aec1b4046aa83ae9588d1d48481 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELagCIkXxG_KxrAQEuMhEKeu7YqnDTEVpPHANmnixbLjyxbUOlXTSuzf4C_mLs06UrYnXlqpPjeO72x_Z5-_Y-xNcKrAgkGSDb1JpB-4ZARFmrhUeYn-mC6abA2H39T4RH49HZ5ekUVvnOALoz4InD4TXIjSBN0dLW-zO5nEZZAc8_0f6wMDbRp6zLVwy-JzzR9s3GyfdBakhrd_PTv3Khxm10HPzQjKv5akgwfsfosl-d5K-Q_ZLYiP2N1VdsmLx-z3EUWeL-d8CgtU9aSsp9zFwGmvfomgGTgaD3D41cbCRu7mwHOKfMkRh_LZ6g4B1LyMHHEiL0o0H2xKtaw5rodn-DW-mFWEO_lPcmPL6Piui25aofb4MU6x55Rqber4HKCG8t0TdnLw-fjTOGlTMCQePYlFAgWdy6bBGa8FaB0c-hfaO8QJ3uugUycR_wQIMjhEgiEIrwplciDPzI_84CnrxSrCc8YL41VmKAlgnslQgDcuoBmLARQuS1XeZx87erGzFd2GJQLsbgmORUtataRVayxqtc_eX2rR5i27OSXZmNjGyzHq3wq76wqXT7pRdJ_MotOg5gc0U9sOcAuIC4cOctGYuHNm4GA0NCaIICllQZ-9JqOyxLkRKajnzC3r2n45-m73hGm2KITps7etUFFh63PX3pHAHiSaro7kdkcSJ4W8U7xFtmsRRhEXcGs6VqD7Kkf4Qq8uTdpSRYqzi4DGYzNCmAjrbpZQI40uQ4pPeLYaAle9Z4wkAr8-053B0em3bkkszxtG8wxhsBDqxX-ZwBa7l63JirdZbzFfwktEjAu_0-y04OehNDvNvPEH2rxsLQ |
linkProvider | BioMedCentral |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLWgCMEL4puywSyExHjIlqRJ7IqnDTF1sO1hH9LEi2XHN11Q41RNK7G_wS_m3iTtlrE98VQpvm4c-9g-N7k-l7GPVicZFgy8MDbSi8xAe0PIfE_7iYnQHxNZna3h8CgZnUXfz-PzNv6JzsKYIi3yKwmireuH0Cf1yr0MGGvmu0y2A1xfPdypfA_9IRHdZw9EHAvKZnC8-3P1RUHIWj9zZdzK_NzyBzeOvk86O1Yt7L9avnslzsPbuOnNEMtre9beU_akJZt8p3mWZ-weuOfsYZN-8vIF-3NCoemLGS9gjliY5FXBtbOcXuYvkFUDR3QBh99tsKzjegY8pdCYFIkqnzaHDKDiueNIJHmWI76wKeWi4rhhjvFndDktiZjyX-Tn5k7zTe10UeLw8lNcgy8oF1uh-QyggvzzS3a29-3068hrczR4Bl2NuQcZfbj1rZZGBCCE1eiACKORSBgjrPB1hATJgo2sRqpobWCSLJEpkOtmhmbwivVc6eAN45k0SSgpS2AaRjYDI7VFnAcDyHToJ2mffemMi5o2ehyKFLK7JYgTRaOqaFSVVDiqfba1HEWVtvLnlIVjomo3SCb_VthcVVje6U7TXYJFp0H1hXI2Vi1eFSBxjDWkQT0HtJYDDcNYShvYiHIa9NkHApUiUQ5HUT9jvagqtX9yrHYCWb_DCGSffWqNshJbn-r2EAX2IOl4dSzXO5a4aqSd4jXCrkKeRWLBLXRUgP5tNMQH2lhCWlFFCsRzgOBRIVFQ5H13WyRDgT6Fj3d43UyBq96TMiKFvz4TncnR6bduicsvasnzEHlyECRv_wsCG-zR6PTwQB3sH_1YY4_DlbLxOuvNZwt4h_Rybt7X68Zfyc564w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BEIgL4k1ooSuERDm49Xs34tQCUcqjQn1IVS-rXe84NcR2FCcS_Rv8YmZsJ61Le-KUKLuO7d1vZr-xZ79h7K3VcYoNgeNHRjqhCbQzgNR1tBubEOMxkdbVGr7vx6Pj8MtJdNKWA6K9MCZP8uxCgmjr8ib0Se258Uvya3tq08bgZbztoYN1cKlyHQyIRHib3RFRJMhKD3ZPV68UhKwFNFedW52fa_7gyt73SWfJqpX9V_67V6IhXkdOr-ZYXlq0hg_Zg5Zt8p0GHo_YLSges7tN_cnzJ-zPIeWmL2Y8hzmCYZJVOdeF5fQ0f4G0GjjCCzj8brNlC65nwBPKjUmQqfJps8sAKp4VHJkkTzMEGF5Kuag4rphj_BidT0tipvwnBbpZofmmLnRe4vzyI3TCZ1SMLdd8BlBB9v4pOx5-Pvo4ctoiDY7BWGPuQEpvbl2rpREeCGE1RiDCaGQSxggrXB0iQ7JgQ6uRK1rrmTiNZQIUu5mBCZ6xXlEW8ILxVJrYl1QmMPFDm4KR2iLQvQBS7btx0mcfOvOipo0ghyKJ7G4LAkXRrCqaVSUVzmqfbS1nUSWt_jmV4ZioOg6S8b8HbK4OWJ7pxq67BIvOBdU_lLOxal2AAmSOkYbEq41AaxloGERSWs-GVNSgz94QqBSpchSU9jPWi6pSe4cHaseT9UMMT_bZu7ZTWpIl6HYXBY4gCXl1eq53eqLbSDrNa4RdhUSL1IJb6CgPA9xwgDe0sYS0ogMpE68ABI_yiYMi8bu5RzwQGFS4eIbnjQlcjJ6UIUn89ZnoGEdn3LotRXZWa577SJQ9L375XxDYYPd-fBqqb3v7X9fYfX-lbLzOevPZAl4hvZyb17Xb-AsUUXqu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sulphur+metabolism+and+cellulase+gene+expression+are+connected+processes+in+the+filamentous+fungus+Hypocrea+jecorina+%28anamorph+Trichoderma+reesei%29&rft.jtitle=BMC+microbiology&rft.au=Gremel%2C+Gabriela&rft.au=Dorrer%2C+Marcel&rft.au=Schmoll%2C+Monika&rft.date=2008-10-08&rft.issn=1471-2180&rft.eissn=1471-2180&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1186%2F1471-2180-8-174&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_1471_2180_8_174 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2180&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2180&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2180&client=summon |