Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae

Biofuels offer a viable alternative to petroleum-based fuel. However, current methods are not sufficient and the technology required in order to use lignocellulosic biomass as a fermentation substrate faces several challenges. One challenge is the need for a robust fermentative microorganism that ca...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology for biofuels Vol. 3; no. 1; p. 2
Main Authors Allen, Sandra A, Clark, William, McCaffery, J Michael, Cai, Zhen, Lanctot, Alison, Slininger, Patricia J, Liu, Z Lewis, Gorsich, Steven W
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 15.01.2010
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biofuels offer a viable alternative to petroleum-based fuel. However, current methods are not sufficient and the technology required in order to use lignocellulosic biomass as a fermentation substrate faces several challenges. One challenge is the need for a robust fermentative microorganism that can tolerate the inhibitors present during lignocellulosic fermentation. These inhibitors include the furan aldehyde, furfural, which is released as a byproduct of pentose dehydration during the weak acid pretreatment of lignocellulose. In order to survive in the presence of furfural, yeast cells need not only to reduce furfural to the less toxic furan methanol, but also to protect themselves and repair any damage caused by the furfural. Since furfural tolerance in yeast requires a functional pentose phosphate pathway (PPP), and the PPP is associated with reactive oxygen species (ROS) tolerance, we decided to investigate whether or not furfural induces ROS and its related cellular damage in yeast. We demonstrated that furfural induces the accumulation of ROS in Saccharomyces cerevisiae. In addition, furfural was shown to cause cellular damage that is consistent with ROS accumulation in cells which includes damage to mitochondria and vacuole membranes, the actin cytoskeleton and nuclear chromatin. The furfural-induced damage is less severe when yeast are grown in a furfural concentration (25 mM) that allows for eventual growth after an extended lag compared to a concentration of furfural (50 mM) that prevents growth. These data suggest that when yeast cells encounter the inhibitor furfural, they not only need to reduce furfural into furan methanol but also to protect themselves from the cellular effects of furfural and repair any damage caused. The reduced cellular damage seen at 25 mM furfural compared to 50 mM furfural may be linked to the observation that at 25 mM furfural yeast were able to exit the furfural-induced lag phase and resume growth. Understanding the cellular effects of furfural will help direct future strain development to engineer strains capable of tolerating or remediating ROS and the effects of ROS.
AbstractList Abstract Background Biofuels offer a viable alternative to petroleum-based fuel. However, current methods are not sufficient and the technology required in order to use lignocellulosic biomass as a fermentation substrate faces several challenges. One challenge is the need for a robust fermentative microorganism that can tolerate the inhibitors present during lignocellulosic fermentation. These inhibitors include the furan aldehyde, furfural, which is released as a byproduct of pentose dehydration during the weak acid pretreatment of lignocellulose. In order to survive in the presence of furfural, yeast cells need not only to reduce furfural to the less toxic furan methanol, but also to protect themselves and repair any damage caused by the furfural. Since furfural tolerance in yeast requires a functional pentose phosphate pathway (PPP), and the PPP is associated with reactive oxygen species (ROS) tolerance, we decided to investigate whether or not furfural induces ROS and its related cellular damage in yeast. Results We demonstrated that furfural induces the accumulation of ROS in Saccharomyces cerevisiae . In addition, furfural was shown to cause cellular damage that is consistent with ROS accumulation in cells which includes damage to mitochondria and vacuole membranes, the actin cytoskeleton and nuclear chromatin. The furfural-induced damage is less severe when yeast are grown in a furfural concentration (25 m M ) that allows for eventual growth after an extended lag compared to a concentration of furfural (50 m M ) that prevents growth. Conclusion These data suggest that when yeast cells encounter the inhibitor furfural, they not only need to reduce furfural into furan methanol but also to protect themselves from the cellular effects of furfural and repair any damage caused. The reduced cellular damage seen at 25 m M furfural compared to 50 m M furfural may be linked to the observation that at 25 m M furfural yeast were able to exit the furfural-induced lag phase and resume growth. Understanding the cellular effects of furfural will help direct future strain development to engineer strains capable of tolerating or remediating ROS and the effects of ROS.
BACKGROUND: Biofuels offer a viable alternative to petroleum-based fuel. However, current methods are not sufficient and the technology required in order to use lignocellulosic biomass as a fermentation substrate faces several challenges. One challenge is the need for a robust fermentative microorganism that can tolerate the inhibitors present during lignocellulosic fermentation. These inhibitors include the furan aldehyde, furfural, which is released as a byproduct of pentose dehydration during the weak acid pretreatment of lignocellulose. In order to survive in the presence of furfural, yeast cells need not only to reduce furfural to the less toxic furan methanol, but also to protect themselves and repair any damage caused by the furfural. Since furfural tolerance in yeast requires a functional pentose phosphate pathway (PPP), and the PPP is associated with reactive oxygen species (ROS) tolerance, we decided to investigate whether or not furfural induces ROS and its related cellular damage in yeast. RESULTS: We demonstrated that furfural induces the accumulation of ROS in Saccharomyces cerevisiae. In addition, furfural was shown to cause cellular damage that is consistent with ROS accumulation in cells which includes damage to mitochondria and vacuole membranes, the actin cytoskeleton and nuclear chromatin. The furfural-induced damage is less severe when yeast are grown in a furfural concentration (25 mM) that allows for eventual growth after an extended lag compared to a concentration of furfural (50 mM) that prevents growth. CONCLUSION: These data suggest that when yeast cells encounter the inhibitor furfural, they not only need to reduce furfural into furan methanol but also to protect themselves from the cellular effects of furfural and repair any damage caused. The reduced cellular damage seen at 25 mM furfural compared to 50 mM furfural may be linked to the observation that at 25 mM furfural yeast were able to exit the furfural-induced lag phase and resume growth. Understanding the cellular effects of furfural will help direct future strain development to engineer strains capable of tolerating or remediating ROS and the effects of ROS.
Biofuels offer a viable alternative to petroleum-based fuel. However, current methods are not sufficient and the technology required in order to use lignocellulosic biomass as a fermentation substrate faces several challenges. One challenge is the need for a robust fermentative microorganism that can tolerate the inhibitors present during lignocellulosic fermentation. These inhibitors include the furan aldehyde, furfural, which is released as a byproduct of pentose dehydration during the weak acid pretreatment of lignocellulose. In order to survive in the presence of furfural, yeast cells need not only to reduce furfural to the less toxic furan methanol, but also to protect themselves and repair any damage caused by the furfural. Since furfural tolerance in yeast requires a functional pentose phosphate pathway (PPP), and the PPP is associated with reactive oxygen species (ROS) tolerance, we decided to investigate whether or not furfural induces ROS and its related cellular damage in yeast. We demonstrated that furfural induces the accumulation of ROS in Saccharomyces cerevisiae. In addition, furfural was shown to cause cellular damage that is consistent with ROS accumulation in cells which includes damage to mitochondria and vacuole membranes, the actin cytoskeleton and nuclear chromatin. The furfural-induced damage is less severe when yeast are grown in a furfural concentration (25 mM) that allows for eventual growth after an extended lag compared to a concentration of furfural (50 mM) that prevents growth. These data suggest that when yeast cells encounter the inhibitor furfural, they not only need to reduce furfural into furan methanol but also to protect themselves from the cellular effects of furfural and repair any damage caused. The reduced cellular damage seen at 25 mM furfural compared to 50 mM furfural may be linked to the observation that at 25 mM furfural yeast were able to exit the furfural-induced lag phase and resume growth. Understanding the cellular effects of furfural will help direct future strain development to engineer strains capable of tolerating or remediating ROS and the effects of ROS.
Biofuels offer a viable alternative to petroleum-based fuel. However, current methods are not sufficient and the technology required in order to use lignocellulosic biomass as a fermentation substrate faces several challenges. One challenge is the need for a robust fermentative microorganism that can tolerate the inhibitors present during lignocellulosic fermentation. These inhibitors include the furan aldehyde, furfural, which is released as a byproduct of pentose dehydration during the weak acid pretreatment of lignocellulose. In order to survive in the presence of furfural, yeast cells need not only to reduce furfural to the less toxic furan methanol, but also to protect themselves and repair any damage caused by the furfural. Since furfural tolerance in yeast requires a functional pentose phosphate pathway (PPP), and the PPP is associated with reactive oxygen species (ROS) tolerance, we decided to investigate whether or not furfural induces ROS and its related cellular damage in yeast. We demonstrated that furfural induces the accumulation of ROS in Saccharomyces cerevisiae. In addition, furfural was shown to cause cellular damage that is consistent with ROS accumulation in cells which includes damage to mitochondria and vacuole membranes, the actin cytoskeleton and nuclear chromatin. The furfural-induced damage is less severe when yeast are grown in a furfural concentration (25 mM) that allows for eventual growth after an extended lag compared to a concentration of furfural (50 mM) that prevents growth. These data suggest that when yeast cells encounter the inhibitor furfural, they not only need to reduce furfural into furan methanol but also to protect themselves from the cellular effects of furfural and repair any damage caused. The reduced cellular damage seen at 25 mM furfural compared to 50 mM furfural may be linked to the observation that at 25 mM furfural yeast were able to exit the furfural-induced lag phase and resume growth. Understanding the cellular effects of furfural will help direct future strain development to engineer strains capable of tolerating or remediating ROS and the effects of ROS.
Abstract Background Biofuels offer a viable alternative to petroleum-based fuel. However, current methods are not sufficient and the technology required in order to use lignocellulosic biomass as a fermentation substrate faces several challenges. One challenge is the need for a robust fermentative microorganism that can tolerate the inhibitors present during lignocellulosic fermentation. These inhibitors include the furan aldehyde, furfural, which is released as a byproduct of pentose dehydration during the weak acid pretreatment of lignocellulose. In order to survive in the presence of furfural, yeast cells need not only to reduce furfural to the less toxic furan methanol, but also to protect themselves and repair any damage caused by the furfural. Since furfural tolerance in yeast requires a functional pentose phosphate pathway (PPP), and the PPP is associated with reactive oxygen species (ROS) tolerance, we decided to investigate whether or not furfural induces ROS and its related cellular damage in yeast. Results We demonstrated that furfural induces the accumulation of ROS in Saccharomyces cerevisiae. In addition, furfural was shown to cause cellular damage that is consistent with ROS accumulation in cells which includes damage to mitochondria and vacuole membranes, the actin cytoskeleton and nuclear chromatin. The furfural-induced damage is less severe when yeast are grown in a furfural concentration (25 mM) that allows for eventual growth after an extended lag compared to a concentration of furfural (50 mM) that prevents growth. Conclusion These data suggest that when yeast cells encounter the inhibitor furfural, they not only need to reduce furfural into furan methanol but also to protect themselves from the cellular effects of furfural and repair any damage caused. The reduced cellular damage seen at 25 mM furfural compared to 50 mM furfural may be linked to the observation that at 25 mM furfural yeast were able to exit the furfural-induced lag phase and resume growth. Understanding the cellular effects of furfural will help direct future strain development to engineer strains capable of tolerating or remediating ROS and the effects of ROS.
ArticleNumber 2
Audience Academic
Author Lanctot, Alison
McCaffery, J Michael
Liu, Z Lewis
Slininger, Patricia J
Clark, William
Cai, Zhen
Allen, Sandra A
Gorsich, Steven W
AuthorAffiliation 3 National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL 61604, USA
2 Integrated Imaging Center, Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
1 Biology Department, Central Michigan University, Mt Pleasant, MI 48859, USA
AuthorAffiliation_xml – name: 3 National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL 61604, USA
– name: 2 Integrated Imaging Center, Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
– name: 1 Biology Department, Central Michigan University, Mt Pleasant, MI 48859, USA
Author_xml – sequence: 1
  givenname: Sandra A
  surname: Allen
  fullname: Allen, Sandra A
  organization: Biology Department, Central Michigan University, Mt Pleasant, MI 48859, USA
– sequence: 2
  givenname: William
  surname: Clark
  fullname: Clark, William
– sequence: 3
  givenname: J Michael
  surname: McCaffery
  fullname: McCaffery, J Michael
– sequence: 4
  givenname: Zhen
  surname: Cai
  fullname: Cai, Zhen
– sequence: 5
  givenname: Alison
  surname: Lanctot
  fullname: Lanctot, Alison
– sequence: 6
  givenname: Patricia J
  surname: Slininger
  fullname: Slininger, Patricia J
– sequence: 7
  givenname: Z Lewis
  surname: Liu
  fullname: Liu, Z Lewis
– sequence: 8
  givenname: Steven W
  surname: Gorsich
  fullname: Gorsich, Steven W
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20150993$$D View this record in MEDLINE/PubMed
BookMark eNp1kstv1DAQhy1URB9w5Ioibj2k-JH4cUFUFYWVKiFROFuOPUm9SuLFTlbd_x4vKauuEPLBnpnffBrPzDk6GcMICL0l-IoQyT8QUVcll6wqWUlfoLODffLsfYrOU1pjzInA4hU6pZjUWCl2huB2ju0cTV_40c0WUhHB2MlvoQiPuw7GIm3A-uw31s7D3JvJh7Ewoyss9H22Y-HMYDrIgOI-ix5MDMNuT7IQYeuTN_AavWxNn-DN032Bft5-_nHztbz79mV1c31XNlzUU0klE8pw3laOyEYCxrhplWNMGKta7qAxioqqqgkGziwlljBBJchKEE5rYBdotXBdMGu9iX4wcaeD8fqPI8ROmzh524MmwGluga0FtJXBtmkqUTtrW1ETJ2WTWR8X1mZuBnAWxim36Qh6HBn9g-7CVlNJcSVZBnxaAI0P_wEcR2wY9H5kej8yzTTNiPdPNcTwa4Y06XWY45hbqBWmTHFOVRZdLaLO5H_5sQ2ZZvNxMHibt6X12X9N87YoonCVEy6PErJmgsepM3NKenX__VhbLlobQ0oR2kP9BOv9Av5T8bvnXTuo_24c-w3EM9j8
CitedBy_id crossref_primary_10_1016_j_jbiosc_2019_05_016
crossref_primary_10_1016_j_ces_2016_09_026
crossref_primary_10_1016_j_biortech_2021_125171
crossref_primary_10_1186_s13068_023_02291_6
crossref_primary_10_1080_10826068_2018_1536992
crossref_primary_10_1186_s13068_015_0329_5
crossref_primary_10_1016_j_biortech_2023_129413
crossref_primary_10_1016_j_jbiosc_2016_07_021
crossref_primary_10_1016_j_biortech_2019_122724
crossref_primary_10_1093_femsyr_foy011
crossref_primary_10_1186_1472_6750_14_22
crossref_primary_10_1007_s10295_014_1515_3
crossref_primary_10_1016_j_biortech_2017_02_061
crossref_primary_10_1371_journal_pone_0085022
crossref_primary_10_1186_1754_6834_6_181
crossref_primary_10_1016_j_biteb_2020_100496
crossref_primary_10_1186_s12934_017_0795_5
crossref_primary_10_1007_s00253_012_4147_4
crossref_primary_10_1002_bit_24992
crossref_primary_10_26508_lsa_202302215
crossref_primary_10_1002_yea_3650
crossref_primary_10_1042_BCJ20210811
crossref_primary_10_1111_j_1462_2920_2012_02875_x
crossref_primary_10_1186_s12866_023_03095_2
crossref_primary_10_3390_molecules29010029
crossref_primary_10_1007_s10295_014_1421_8
crossref_primary_10_1007_s12010_016_2356_5
crossref_primary_10_1007_s00253_011_3632_5
crossref_primary_10_1186_1754_6834_6_22
crossref_primary_10_1038_s41598_021_86135_z
crossref_primary_10_1007_s00253_017_8368_4
crossref_primary_10_3389_fbioe_2015_00184
crossref_primary_10_3390_fermentation7010017
crossref_primary_10_3390_su12030755
crossref_primary_10_1111_1541_4337_12760
crossref_primary_10_1007_s00253_019_09906_9
crossref_primary_10_1128_AEM_02985_18
crossref_primary_10_1186_s13068_017_0766_4
crossref_primary_10_1007_s00253_018_8993_6
crossref_primary_10_1093_femsyr_fox056
crossref_primary_10_3389_fmicb_2014_00247
crossref_primary_10_3109_07388551_2015_1128877
crossref_primary_10_1016_j_biombioe_2021_106161
crossref_primary_10_1186_s13068_022_02127_9
crossref_primary_10_1021_acs_energyfuels_7b02159
crossref_primary_10_1016_j_mito_2018_07_003
crossref_primary_10_1038_s41598_023_48408_7
crossref_primary_10_1007_s12155_014_9506_9
crossref_primary_10_1080_17597269_2021_1894782
crossref_primary_10_1016_j_biotechadv_2011_10_011
crossref_primary_10_1007_s13205_016_0539_y
crossref_primary_10_1007_s00253_019_09885_x
crossref_primary_10_1007_s12010_012_0055_4
crossref_primary_10_1002_bbb_2042
crossref_primary_10_1007_s00253_018_8758_2
crossref_primary_10_1016_j_ces_2019_115306
crossref_primary_10_1371_journal_pone_0087540
crossref_primary_10_1371_journal_pone_0016228
crossref_primary_10_1016_j_indcrop_2022_116023
crossref_primary_10_1093_femsyr_foy116
crossref_primary_10_1016_j_ymben_2015_02_004
crossref_primary_10_1007_s43393_023_00177_0
crossref_primary_10_1002_bbb_2619
crossref_primary_10_2323_jgam_2017_11_002
crossref_primary_10_1016_j_biortech_2017_08_166
crossref_primary_10_1186_s13068_021_01880_7
crossref_primary_10_1007_s00253_014_6158_9
crossref_primary_10_1111_gcbb_12800
crossref_primary_10_1186_s12934_020_01414_0
crossref_primary_10_1039_c3mb70056a
crossref_primary_10_1016_j_jbiotec_2017_04_031
crossref_primary_10_1007_s12010_019_03130_x
crossref_primary_10_1016_j_biombioe_2023_107031
crossref_primary_10_3390_molecules24234328
crossref_primary_10_3390_fermentation9090789
crossref_primary_10_1016_j_foodres_2017_11_070
crossref_primary_10_1007_s12010_017_2554_9
crossref_primary_10_1016_j_cej_2021_131575
crossref_primary_10_1128_AEM_01237_19
crossref_primary_10_2139_ssrn_4009565
crossref_primary_10_1016_j_copbio_2015_02_010
crossref_primary_10_3390_molecules23020309
crossref_primary_10_1016_j_ijhydene_2018_04_139
crossref_primary_10_1007_s11557_014_0992_0
crossref_primary_10_1111_j_1567_1364_2012_00804_x
crossref_primary_10_1016_j_indcrop_2021_113812
crossref_primary_10_1016_j_gce_2022_04_007
crossref_primary_10_1016_j_jbiosc_2016_10_007
crossref_primary_10_1186_s13068_017_0794_0
crossref_primary_10_1186_1754_6834_4_49
crossref_primary_10_1007_s00253_018_9478_3
crossref_primary_10_1007_s13399_022_02758_w
crossref_primary_10_1016_j_rser_2017_05_138
crossref_primary_10_1016_j_biortech_2018_03_064
crossref_primary_10_1128_spectrum_02656_22
crossref_primary_10_1007_s00253_019_10272_9
crossref_primary_10_1186_s40643_015_0079_z
crossref_primary_10_1007_s12010_018_2852_x
crossref_primary_10_1186_s12866_023_02982_y
crossref_primary_10_1002_bit_25920
crossref_primary_10_1155_2015_369283
crossref_primary_10_1126_sciadv_abf7613
crossref_primary_10_1007_s12010_012_9873_7
crossref_primary_10_1089_omi_2011_0127
crossref_primary_10_1186_s12864_015_1737_4
crossref_primary_10_1186_s13068_016_0668_x
crossref_primary_10_1002_biot_201000301
crossref_primary_10_3390_catal12090979
crossref_primary_10_1016_j_biteb_2018_09_006
crossref_primary_10_1080_09168451_2014_895660
crossref_primary_10_1007_s00253_016_7783_2
crossref_primary_10_3389_fmicb_2022_1035263
crossref_primary_10_1016_j_biortech_2015_02_089
crossref_primary_10_3389_fmicb_2014_00090
crossref_primary_10_1016_j_procbio_2014_11_014
crossref_primary_10_1007_s00449_015_1440_5
crossref_primary_10_1128_AEM_01855_21
crossref_primary_10_1016_j_jbiosc_2023_06_012
crossref_primary_10_1186_s12934_021_01596_1
crossref_primary_10_3389_fgene_2020_00438
crossref_primary_10_1007_s10646_015_1543_4
crossref_primary_10_1371_journal_pone_0121416
crossref_primary_10_1016_j_biotechadv_2022_108027
crossref_primary_10_1007_s12010_016_2271_9
crossref_primary_10_1111_gcbb_12699
crossref_primary_10_1016_j_envres_2019_109094
crossref_primary_10_1186_s12934_024_02459_1
crossref_primary_10_1007_s00284_021_02615_5
crossref_primary_10_1016_j_enconman_2017_06_073
crossref_primary_10_1016_j_ces_2018_11_059
crossref_primary_10_1016_j_ijhydene_2020_11_096
crossref_primary_10_1007_s10529_014_1672_5
crossref_primary_10_1080_15567036_2018_1502843
crossref_primary_10_1007_s00253_023_12843_3
crossref_primary_10_1016_j_bej_2018_05_009
crossref_primary_10_1016_j_biortech_2022_126878
crossref_primary_10_1038_s41598_022_26686_x
crossref_primary_10_1186_1475_2859_12_87
crossref_primary_10_1515_biolog_2016_0069
crossref_primary_10_1016_j_biortech_2017_11_059
crossref_primary_10_1186_1754_6834_6_131
crossref_primary_10_1007_s11274_023_03663_8
crossref_primary_10_1002_jctb_5439
crossref_primary_10_1016_j_enzmictec_2017_08_009
crossref_primary_10_1007_s00253_014_5519_8
crossref_primary_10_3389_fbioe_2020_00615
crossref_primary_10_1186_s13068_018_1107_y
crossref_primary_10_3390_nu12040974
crossref_primary_10_1007_s00253_021_11383_y
crossref_primary_10_1128_AEM_03386_16
crossref_primary_10_1016_j_biortech_2022_128323
crossref_primary_10_1016_j_lwt_2017_07_002
crossref_primary_10_1007_s00253_020_10722_9
crossref_primary_10_1016_j_biortech_2014_10_067
crossref_primary_10_1007_s00253_022_12354_7
crossref_primary_10_1007_s13399_016_0224_8
crossref_primary_10_1007_s12257_014_0301_4
crossref_primary_10_1016_j_heliyon_2023_e14838
crossref_primary_10_1186_s13068_015_0217_z
crossref_primary_10_1016_j_anaerobe_2015_03_005
crossref_primary_10_1016_j_indcrop_2023_117136
crossref_primary_10_1039_D2SE00772J
crossref_primary_10_1007_s00253_019_10152_2
crossref_primary_10_1016_j_ygeno_2019_11_008
crossref_primary_10_1016_j_biortech_2019_121922
crossref_primary_10_1186_1754_6834_7_78
crossref_primary_10_1002_bit_25325
crossref_primary_10_1016_j_ces_2022_118348
crossref_primary_10_3390_ijms23031882
crossref_primary_10_1186_s13568_014_0056_5
crossref_primary_10_1007_s00253_021_11130_3
crossref_primary_10_1186_s12896_016_0264_y
crossref_primary_10_3390_microorganisms10071456
crossref_primary_10_1007_s10482_015_0537_9
crossref_primary_10_1128_AEM_02838_15
crossref_primary_10_1016_j_biteb_2023_101446
crossref_primary_10_1186_s12934_024_02352_x
crossref_primary_10_1627_jpi_58_165
crossref_primary_10_1002_cctc_202200933
crossref_primary_10_1093_nar_gkv358
crossref_primary_10_1016_j_jbiosc_2011_11_017
crossref_primary_10_1016_j_redox_2018_11_010
crossref_primary_10_1007_s00253_015_6595_0
crossref_primary_10_1093_bbb_zbab022
crossref_primary_10_1007_s00253_022_12353_8
crossref_primary_10_1007_s10570_019_02402_3
crossref_primary_10_1186_s12934_023_02223_x
crossref_primary_10_1007_s10482_013_9909_1
crossref_primary_10_1016_j_jbiotec_2014_11_012
crossref_primary_10_1016_j_indcrop_2021_113799
crossref_primary_10_1038_msb_2013_30
crossref_primary_10_1128_aem_02330_23
crossref_primary_10_1007_s00253_014_5802_8
crossref_primary_10_1016_j_ymben_2018_09_002
crossref_primary_10_1016_j_biortech_2016_09_067
crossref_primary_10_1186_s13068_015_0254_7
crossref_primary_10_3389_fbioe_2022_1110513
crossref_primary_10_1007_s00449_016_1725_3
crossref_primary_10_1016_j_jbiosc_2013_06_008
crossref_primary_10_1016_j_fuel_2021_121108
crossref_primary_10_3389_fbioe_2020_00844
crossref_primary_10_1128_spectrum_01216_23
crossref_primary_10_1016_j_biotechadv_2021_107889
crossref_primary_10_1186_1475_2859_10_5
crossref_primary_10_1016_j_wasman_2018_08_028
crossref_primary_10_1007_s00449_014_1183_8
crossref_primary_10_1016_j_ymben_2018_11_010
crossref_primary_10_1007_s00253_017_8567_z
crossref_primary_10_1007_s13205_018_1143_0
crossref_primary_10_1128_AEM_01913_14
crossref_primary_10_1186_s12934_021_01715_y
crossref_primary_10_1016_j_renene_2016_02_072
crossref_primary_10_1007_s00253_021_11256_4
crossref_primary_10_1080_15567036_2019_1602208
crossref_primary_10_1371_journal_pgen_1009826
crossref_primary_10_1016_j_biortech_2012_03_090
crossref_primary_10_3775_jie_95_303
crossref_primary_10_1007_s00253_016_7725_z
crossref_primary_10_1016_j_indcrop_2022_115466
crossref_primary_10_1186_s12866_023_03044_z
crossref_primary_10_1007_s00253_018_9425_3
crossref_primary_10_1002_jctb_5122
crossref_primary_10_1016_j_biotechadv_2019_02_003
crossref_primary_10_1016_j_jbiotec_2018_04_007
crossref_primary_10_1007_s00253_022_12281_7
crossref_primary_10_1111_1751_7915_12465
crossref_primary_10_1186_s13068_016_0614_y
crossref_primary_10_1016_j_renene_2021_04_018
crossref_primary_10_1016_j_bcab_2022_102414
crossref_primary_10_1007_s00449_019_02209_3
crossref_primary_10_1016_j_carbpol_2016_06_017
crossref_primary_10_1016_j_biortech_2018_09_095
crossref_primary_10_3390_bioengineering10091090
crossref_primary_10_1002_biot_201400833
crossref_primary_10_1186_1754_6834_6_66
crossref_primary_10_1016_j_apenergy_2013_07_036
crossref_primary_10_1016_j_renene_2019_03_028
crossref_primary_10_1042_BJ20121332
crossref_primary_10_1128_AEM_00356_12
crossref_primary_10_33073_pjm_2023_019
crossref_primary_10_3389_fbioe_2022_1061667
crossref_primary_10_1007_s00253_016_7445_4
crossref_primary_10_1016_j_cej_2015_10_086
crossref_primary_10_1007_s00253_020_10434_0
crossref_primary_10_1021_acssynbio_6b00135
crossref_primary_10_1002_jobm_200900391
crossref_primary_10_1039_C4MT00275J
crossref_primary_10_1016_j_bej_2021_108193
crossref_primary_10_1627_jpi_56_326
crossref_primary_10_1007_s40200_020_00603_3
crossref_primary_10_1021_acs_energyfuels_3c00015
crossref_primary_10_1094_ASBCJ_2014_0327_02
crossref_primary_10_1111_j_1365_2672_2010_04775_x
crossref_primary_10_3389_fbioe_2015_00017
crossref_primary_10_1016_j_jbiotec_2020_07_017
crossref_primary_10_1007_s00253_017_8208_6
crossref_primary_10_1016_j_biortech_2024_130627
crossref_primary_10_1016_j_ymben_2010_12_007
crossref_primary_10_5650_jos_ess22206
crossref_primary_10_1016_j_biortech_2021_125632
crossref_primary_10_1186_s13068_023_02334_y
crossref_primary_10_1016_j_jbiosc_2014_02_025
crossref_primary_10_1021_acscatal_0c02378
crossref_primary_10_1371_journal_pgen_1007217
crossref_primary_10_1186_s13568_019_0879_1
crossref_primary_10_1094_PHYTO_04_22_0118_R
crossref_primary_10_1016_j_biortech_2015_09_075
crossref_primary_10_1128_AEM_00158_21
crossref_primary_10_1016_j_renene_2019_12_106
crossref_primary_10_1016_j_biortech_2018_10_038
crossref_primary_10_1007_s11103_016_0475_6
crossref_primary_10_1016_j_procbio_2020_03_002
crossref_primary_10_1128_AEM_01603_16
crossref_primary_10_1128_AEM_02797_12
crossref_primary_10_1002_biot_201100335
crossref_primary_10_1007_s00253_012_4022_3
crossref_primary_10_1186_s13068_021_02049_y
crossref_primary_10_1021_acs_chemrestox_5b00222
crossref_primary_10_1007_s00253_020_10811_9
crossref_primary_10_3390_beverages7020028
crossref_primary_10_1080_21655979_2019_1700093
crossref_primary_10_1016_j_cej_2017_07_059
crossref_primary_10_1128_AEM_00643_13
crossref_primary_10_1007_s00253_012_4155_4
crossref_primary_10_1016_j_ces_2020_115933
Cites_doi 10.1128/MCB.20.9.2984-2995.2000
10.1016/S0891-5849(01)00666-9
10.1016/S0167-7799(99)01384-0
10.1016/S0065-2164(08)70464-7
10.1007/s00253-008-1702-0
10.1016/j.freeradbiomed.2008.07.018
10.1083/jcb.200310148
10.1007/s00438-009-0461-7
10.1091/mbc.7.6.985
10.1007/BF02922595
10.1016/S0074-7696(08)61410-2
10.1002/yea.1078
10.1083/jcb.145.2.291
10.1083/jcb.151.2.341
10.1083/jcb.107.1.115
10.1083/jcb.139.3.729
10.1002/yea.1637
10.1007/s00253-005-0142-3
10.1002/yea.320110107
10.1080/10715760400022343
10.1016/0076-6879(91)94054-G
10.1242/jcs.02337
10.1074/jbc.274.38.27002
10.1002/yea.1370
10.1016/S0076-6879(02)50957-5
10.1083/jcb.145.4.757
10.1042/bj3630769
10.1083/jcb.128.5.779
10.1007/s00253-004-1642-2
10.1002/1097-0061(200011)16:15<1421::AID-YEA624>3.0.CO;2-U
10.1016/j.gene.2009.06.018
10.1146/annurev.genet.38.072902.093019
10.1016/S0960-8524(99)00161-3
10.1002/jctb.1676
10.1016/j.femsyr.2005.06.001
10.1091/mbc.3.12.1389
10.1371/journal.pone.0004492
10.1371/journal.pgen.1000022
10.1091/mbc.E06-05-0475
10.1016/j.bbamcr.2008.01.023
10.1128/AEM.00526-06
10.1007/BF02173011
10.1016/j.ceb.2003.10.015
10.1002/yea.726
10.1007/s002530100624
10.1016/j.tibtech.2006.10.004
10.1083/jcb.144.4.711
10.1128/MMBR.00013-06
ContentType Journal Article
Copyright COPYRIGHT 2010 BioMed Central Ltd.
2010 Allen et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright ©2010 Allen et al; licensee BioMed Central Ltd. 2010 Allen et al; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2010 BioMed Central Ltd.
– notice: 2010 Allen et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright ©2010 Allen et al; licensee BioMed Central Ltd. 2010 Allen et al; licensee BioMed Central Ltd.
DBID NPM
AAYXX
CITATION
ISR
3V.
7QO
7SP
7ST
7TB
7X7
7XB
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
L7M
LK8
M0S
M7P
M7S
P5Z
P62
P64
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
SOI
5PM
DOA
DOI 10.1186/1754-6834-3-2
DatabaseName PubMed
CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Database (Proquest)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
Health & Medical Collection (Alumni Edition)
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environment Abstracts
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest Engineering Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
DatabaseTitleList CrossRef


PubMed


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
EISSN 1754-6834
EndPage 2
ExternalDocumentID oai_doaj_org_article_1e62099c57ef4a0cbb475dccf751d88b
oai_biomedcentral_com_1754_6834_3_2
2504478441
A218691904
10_1186_1754_6834_3_2
20150993
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID -A0
23N
2VQ
2WC
2XV
3V.
4.4
5GY
5VS
6J9
7X7
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAHBH
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ADBBV
ADINQ
ADRAZ
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C24
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBS
ECGQY
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
HMCUK
HYE
I-F
IAG
IAO
IEA
IEP
IHR
ISR
ITC
KQ8
L6V
L8X
LK8
M48
M7P
M7S
ML0
M~E
NPM
O5R
O5S
OK1
P2P
P62
PGMZT
PIMPY
PQQKQ
PROAC
PTHSS
RBZ
RNS
ROL
RPM
RSV
RVI
SCM
SOJ
TR2
TUS
UKHRP
~8M
AAYXX
CITATION
AFGXO
7QO
7SP
7ST
7TB
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
L7M
P64
PQEST
PQUKI
PRINS
SOI
5PM
ID FETCH-LOGICAL-b675t-28379a66f4d18b8e000bf9d337ac9f6deba92744510e63c21c13728e8471625e3
IEDL.DBID RPM
ISSN 1754-6834
IngestDate Thu Sep 05 15:43:30 EDT 2024
Tue Sep 17 20:50:03 EDT 2024
Tue Apr 16 22:45:09 EDT 2024
Thu Oct 10 18:02:08 EDT 2024
Fri Feb 02 04:09:02 EST 2024
Thu Aug 01 19:55:05 EDT 2024
Thu Sep 12 16:23:20 EDT 2024
Sat Sep 28 07:57:51 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b675t-28379a66f4d18b8e000bf9d337ac9f6deba92744510e63c21c13728e8471625e3
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2820483/
PMID 20150993
PQID 902396629
PQPubID 55236
ParticipantIDs doaj_primary_oai_doaj_org_article_1e62099c57ef4a0cbb475dccf751d88b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2820483
biomedcentral_primary_oai_biomedcentral_com_1754_6834_3_2
proquest_journals_902396629
gale_infotracacademiconefile_A218691904
gale_incontextgauss_ISR_A218691904
crossref_primary_10_1186_1754_6834_3_2
pubmed_primary_20150993
PublicationCentury 2000
PublicationDate 2010-01-15
PublicationDateYYYYMMDD 2010-01-15
PublicationDate_xml – month: 01
  year: 2010
  text: 2010-01-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Biotechnology for biofuels
PublicationTitleAlternate Biotechnol Biofuels
PublicationYear 2010
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References 7762301 - Yeast. 1995 Jan;11(1):53-5
15300416 - Appl Microbiol Biotechnol. 2004 Nov;66(1):10-26
16652391 - Yeast. 2006 Apr 30;23(6):455-64
14644195 - Curr Opin Cell Biol. 2003 Dec;15(6):706-16
17050014 - Trends Biotechnol. 2006 Dec;24(12):549-56
12073338 - Methods Enzymol. 2002;350:87-96
10209025 - J Cell Biol. 1999 Apr 19;145(2):291-304
18810428 - Appl Microbiol Biotechnol. 2008 Dec;81(4):743-53
19061187 - Yeast. 2008 Nov;25(11):825-33
15875812 - Free Radic Res. 2005 Jan;39(1):55-62
11378903 - Yeast. 2001 Jun;18(8):759-73
18298957 - Biochim Biophys Acta. 2008 Jul;1783(7):1354-68
15855235 - J Cell Sci. 2005 May 15;118(Pt 10):2119-32
9348289 - J Cell Biol. 1997 Nov 3;139(3):729-34
1929360 - Appl Biochem Biotechnol. 1991 Spring;28-29:131-44
11038181 - J Cell Biol. 2000 Oct 16;151(2):341-52
16087409 - FEMS Yeast Res. 2005 Dec;5(12):1215-28
8879247 - Mol Gen Genet. 1996 Sep 25;252(4):456-64
16222531 - Appl Microbiol Biotechnol. 2006 Jul;71(3):339-49
16285870 - Annu Rev Genet. 2005;39:503-36
1493335 - Mol Biol Cell. 1992 Dec;3(12):1389-402
16899507 - Mol Biol Cell. 2006 Oct;17(10):4584-91
10480913 - J Biol Chem. 1999 Sep 17;274(38):27002-9
18454199 - PLoS Genet. 2008 Feb;4(2):e1000022
16820484 - Appl Environ Microbiol. 2006 Jul;72(7):4885-92
11499926 - Appl Microbiol Biotechnol. 2001 Jul;56(1-2):17-34
15024029 - J Cell Biol. 2004 Mar 15;164(6):803-9
8817003 - Mol Biol Cell. 1996 Jun;7(6):985-99
18708137 - Free Radic Biol Med. 2008 Oct 15;45(8):1167-77
2005819 - Methods Enzymol. 1991;194:729-31
7533169 - J Cell Biol. 1995 Mar;128(5):779-92
10757783 - Mol Cell Biol. 2000 May;20(9):2984-95
11054823 - Yeast. 2000 Nov;16(15):1421-7
10330404 - J Cell Biol. 1999 May 17;145(4):757-67
19577617 - Gene. 2009 Oct 1;446(1):1-10
10557161 - Trends Biotechnol. 1999 Dec;17(12):482-7
19517136 - Mol Genet Genomics. 2009 Sep;282(3):233-44
19221591 - PLoS One. 2009;4(2):e4492
3292537 - J Cell Biol. 1988 Jul;107(1):115-20
15042591 - Yeast. 2004 Mar;21(4):313-23
16959963 - Microbiol Mol Biol Rev. 2006 Sep;70(3):605-45
11964178 - Biochem J. 2002 May 1;363(Pt 3):769-76
10037792 - J Cell Biol. 1999 Feb 22;144(4):711-20
1428679 - Int Rev Cytol. 1992;139:59-120
11557322 - Free Radic Biol Med. 2001 Sep 15;31(6):832-43
E Bossy-Wetzel (51_CR28) 2003; 15
Y Matsufuji (51_CR23) 2008; 25
F Madeo (51_CR35) 1997; 139
Y Inoue (51_CR22) 1999; 274
S Agarwal (51_CR14) 2005; 39
CW Gourlay (51_CR38) 2004; 164
CK Raymond (51_CR33) 1992; 3
R Schneiter (51_CR34) 2000; 20
GG Perrone (51_CR17) 2008; 1783
CK Raymond (51_CR31) 1992; 139
A Wiederkehr (51_CR39) 2001; 18
T Modig (51_CR11) 2002; 363
B Hahn-Hagerdal (51_CR6) 1991; 28-29
SW Gorsich (51_CR13) 2006; 71
LA Rowe (51_CR19) 2008; 45
KI Minard (51_CR21) 2001; 31
C Moraitis (51_CR16) 2004; 21
SE Rieder (51_CR48) 1996; 7
AE Wheals (51_CR2) 1999; 17
T Drakulic (51_CR15) 2005; 5
F Madeo (51_CR36) 1999; 145
B Westermann (51_CR45) 2000; 16
ED Wong (51_CR27) 2000; 151
B Hahn-Hagerdal (51_CR1) 2006; 24
TA Vida (51_CR49) 1995; 128
ZL Liu (51_CR40) 2009; 446
J Zaldivar (51_CR3) 2001; 56
JRM Almeida (51_CR7) 2007; 82
F Winston (51_CR44) 1995; 11
ZL Liu (51_CR12) 2009; 282
S Meeusen (51_CR50) 1999; 145
A Petersson (51_CR41) 2006; 23
GF Ribeiro (51_CR47) 2006; 17
K Okamoto (51_CR25) 2005; 39
ZL Liu (51_CR10) 2008; 81
KA Shepard (51_CR26) 1999; 144
HB Klinke (51_CR8) 2004; 66
S Tang (51_CR30) 2009; 4
CW Gourlay (51_CR18) 2005; 118
H Juhnke (51_CR20) 1996; 252
C Guthrie (51_CR42) 1991
E Palmqvist (51_CR5) 2000; 74
ZL Liu (51_CR9) 2009
F Sherman (51_CR43) 1986
JB Moseley (51_CR37) 2006; 70
EW Trotter (51_CR24) 2006; 72
BA Guthrie (51_CR32) 1988; 107
RD Gietz (51_CR46) 2002; 350
J Bothast (51_CR4) 1997; 44
T Kanazawa (51_CR29) 2008; 4
AE Adams (51_CR51) 1991; 194
References_xml – volume: 20
  start-page: 2984
  year: 2000
  ident: 51_CR34
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.20.9.2984-2995.2000
  contributor:
    fullname: R Schneiter
– volume: 31
  start-page: 832
  year: 2001
  ident: 51_CR21
  publication-title: Free Radic Biol Med
  doi: 10.1016/S0891-5849(01)00666-9
  contributor:
    fullname: KI Minard
– volume: 17
  start-page: 482
  year: 1999
  ident: 51_CR2
  publication-title: Trends Biotechnol
  doi: 10.1016/S0167-7799(99)01384-0
  contributor:
    fullname: AE Wheals
– volume: 44
  start-page: 261
  year: 1997
  ident: 51_CR4
  publication-title: Adv Appl Microbiol
  doi: 10.1016/S0065-2164(08)70464-7
  contributor:
    fullname: J Bothast
– volume: 81
  start-page: 743
  year: 2008
  ident: 51_CR10
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-008-1702-0
  contributor:
    fullname: ZL Liu
– volume: 45
  start-page: 1167
  year: 2008
  ident: 51_CR19
  publication-title: Free Radic Biol Med
  doi: 10.1016/j.freeradbiomed.2008.07.018
  contributor:
    fullname: LA Rowe
– volume: 164
  start-page: 803
  year: 2004
  ident: 51_CR38
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200310148
  contributor:
    fullname: CW Gourlay
– volume: 282
  start-page: 233
  year: 2009
  ident: 51_CR12
  publication-title: Mol Genet Genomics
  doi: 10.1007/s00438-009-0461-7
  contributor:
    fullname: ZL Liu
– volume: 7
  start-page: 985
  year: 1996
  ident: 51_CR48
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.7.6.985
  contributor:
    fullname: SE Rieder
– volume: 28-29
  start-page: 131
  year: 1991
  ident: 51_CR6
  publication-title: Appl Biochem Biotechnol
  doi: 10.1007/BF02922595
  contributor:
    fullname: B Hahn-Hagerdal
– volume: 139
  start-page: 59
  year: 1992
  ident: 51_CR31
  publication-title: Int Rev Cytol
  doi: 10.1016/S0074-7696(08)61410-2
  contributor:
    fullname: CK Raymond
– volume: 21
  start-page: 313
  year: 2004
  ident: 51_CR16
  publication-title: Yeast
  doi: 10.1002/yea.1078
  contributor:
    fullname: C Moraitis
– volume: 145
  start-page: 291
  year: 1999
  ident: 51_CR50
  publication-title: J Cell Biol
  doi: 10.1083/jcb.145.2.291
  contributor:
    fullname: S Meeusen
– volume: 151
  start-page: 341
  year: 2000
  ident: 51_CR27
  publication-title: J Cell Biol
  doi: 10.1083/jcb.151.2.341
  contributor:
    fullname: ED Wong
– start-page: 233
  volume-title: Biomass to Biofuels
  year: 2009
  ident: 51_CR9
  contributor:
    fullname: ZL Liu
– volume: 107
  start-page: 115
  year: 1988
  ident: 51_CR32
  publication-title: J Cell Biol
  doi: 10.1083/jcb.107.1.115
  contributor:
    fullname: BA Guthrie
– volume: 139
  start-page: 729
  year: 1997
  ident: 51_CR35
  publication-title: J Cell Biol
  doi: 10.1083/jcb.139.3.729
  contributor:
    fullname: F Madeo
– volume: 25
  start-page: 825
  year: 2008
  ident: 51_CR23
  publication-title: Yeast
  doi: 10.1002/yea.1637
  contributor:
    fullname: Y Matsufuji
– volume: 71
  start-page: 339
  year: 2006
  ident: 51_CR13
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-005-0142-3
  contributor:
    fullname: SW Gorsich
– volume: 11
  start-page: 53
  year: 1995
  ident: 51_CR44
  publication-title: Yeast
  doi: 10.1002/yea.320110107
  contributor:
    fullname: F Winston
– volume: 39
  start-page: 55
  year: 2005
  ident: 51_CR14
  publication-title: Free Radic Res
  doi: 10.1080/10715760400022343
  contributor:
    fullname: S Agarwal
– volume: 194
  start-page: 729
  year: 1991
  ident: 51_CR51
  publication-title: Methods Enzymol
  doi: 10.1016/0076-6879(91)94054-G
  contributor:
    fullname: AE Adams
– volume: 118
  start-page: 2119
  year: 2005
  ident: 51_CR18
  publication-title: J Cell Sci
  doi: 10.1242/jcs.02337
  contributor:
    fullname: CW Gourlay
– volume: 274
  start-page: 27002
  year: 1999
  ident: 51_CR22
  publication-title: J Biol Chem
  doi: 10.1074/jbc.274.38.27002
  contributor:
    fullname: Y Inoue
– volume: 23
  start-page: 455
  year: 2006
  ident: 51_CR41
  publication-title: Yeast
  doi: 10.1002/yea.1370
  contributor:
    fullname: A Petersson
– volume: 350
  start-page: 87
  year: 2002
  ident: 51_CR46
  publication-title: Methods Enzymol
  doi: 10.1016/S0076-6879(02)50957-5
  contributor:
    fullname: RD Gietz
– volume: 145
  start-page: 757
  year: 1999
  ident: 51_CR36
  publication-title: J Cell Biol
  doi: 10.1083/jcb.145.4.757
  contributor:
    fullname: F Madeo
– volume: 363
  start-page: 769
  year: 2002
  ident: 51_CR11
  publication-title: Biochem J
  doi: 10.1042/bj3630769
  contributor:
    fullname: T Modig
– volume: 128
  start-page: 779
  year: 1995
  ident: 51_CR49
  publication-title: J Cell Biol
  doi: 10.1083/jcb.128.5.779
  contributor:
    fullname: TA Vida
– volume: 66
  start-page: 10
  year: 2004
  ident: 51_CR8
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-004-1642-2
  contributor:
    fullname: HB Klinke
– volume: 16
  start-page: 1421
  year: 2000
  ident: 51_CR45
  publication-title: Yeast
  doi: 10.1002/1097-0061(200011)16:15<1421::AID-YEA624>3.0.CO;2-U
  contributor:
    fullname: B Westermann
– volume: 446
  start-page: 1
  year: 2009
  ident: 51_CR40
  publication-title: Gene
  doi: 10.1016/j.gene.2009.06.018
  contributor:
    fullname: ZL Liu
– volume: 39
  start-page: 503
  year: 2005
  ident: 51_CR25
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev.genet.38.072902.093019
  contributor:
    fullname: K Okamoto
– volume: 74
  start-page: 25
  year: 2000
  ident: 51_CR5
  publication-title: Bioresour Technol
  doi: 10.1016/S0960-8524(99)00161-3
  contributor:
    fullname: E Palmqvist
– volume: 82
  start-page: 340
  year: 2007
  ident: 51_CR7
  publication-title: J Chem Technol Biotechnol
  doi: 10.1002/jctb.1676
  contributor:
    fullname: JRM Almeida
– volume: 5
  start-page: 1215
  year: 2005
  ident: 51_CR15
  publication-title: FEMS Yeast Res
  doi: 10.1016/j.femsyr.2005.06.001
  contributor:
    fullname: T Drakulic
– volume: 3
  start-page: 1389
  year: 1992
  ident: 51_CR33
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.3.12.1389
  contributor:
    fullname: CK Raymond
– volume-title: Guide to Yeast Genetics and Molecular Biology
  year: 1991
  ident: 51_CR42
  contributor:
    fullname: C Guthrie
– volume: 4
  start-page: e4492
  year: 2009
  ident: 51_CR30
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0004492
  contributor:
    fullname: S Tang
– volume: 4
  start-page: e1000022
  year: 2008
  ident: 51_CR29
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000022
  contributor:
    fullname: T Kanazawa
– volume: 17
  start-page: 4584
  year: 2006
  ident: 51_CR47
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.E06-05-0475
  contributor:
    fullname: GF Ribeiro
– volume: 1783
  start-page: 1354
  year: 2008
  ident: 51_CR17
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbamcr.2008.01.023
  contributor:
    fullname: GG Perrone
– volume: 72
  start-page: 4885
  year: 2006
  ident: 51_CR24
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00526-06
  contributor:
    fullname: EW Trotter
– volume: 252
  start-page: 456
  year: 1996
  ident: 51_CR20
  publication-title: Mol Gen Genet
  doi: 10.1007/BF02173011
  contributor:
    fullname: H Juhnke
– volume-title: Methods in Yeast Genetics
  year: 1986
  ident: 51_CR43
  contributor:
    fullname: F Sherman
– volume: 15
  start-page: 706
  year: 2003
  ident: 51_CR28
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2003.10.015
  contributor:
    fullname: E Bossy-Wetzel
– volume: 18
  start-page: 759
  year: 2001
  ident: 51_CR39
  publication-title: Yeast
  doi: 10.1002/yea.726
  contributor:
    fullname: A Wiederkehr
– volume: 56
  start-page: 17
  year: 2001
  ident: 51_CR3
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s002530100624
  contributor:
    fullname: J Zaldivar
– volume: 24
  start-page: 549
  year: 2006
  ident: 51_CR1
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2006.10.004
  contributor:
    fullname: B Hahn-Hagerdal
– volume: 144
  start-page: 711
  year: 1999
  ident: 51_CR26
  publication-title: J Cell Biol
  doi: 10.1083/jcb.144.4.711
  contributor:
    fullname: KA Shepard
– volume: 70
  start-page: 605
  year: 2006
  ident: 51_CR37
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.00013-06
  contributor:
    fullname: JB Moseley
SSID ssj0061707
Score 2.1050184
Snippet Biofuels offer a viable alternative to petroleum-based fuel. However, current methods are not sufficient and the technology required in order to use...
Abstract Background Biofuels offer a viable alternative to petroleum-based fuel. However, current methods are not sufficient and the technology required in...
Background Biofuels offer a viable alternative to petroleum-based fuel. However, current methods are not sufficient and the technology required in order to use...
Abstract Background: Biofuels offer a viable alternative to petroleum-based fuel. However, current methods are not sufficient and the technology required in...
BACKGROUND: Biofuels offer a viable alternative to petroleum-based fuel. However, current methods are not sufficient and the technology required in order to...
Abstract Background Biofuels offer a viable alternative to petroleum-based fuel. However, current methods are not sufficient and the technology required in...
SourceID doaj
pubmedcentral
biomedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 2
SubjectTerms Agriculture
Apoptosis
Biomass
Brewer's yeast
Cellulose
Ethanol
Experiments
Hydrogen peroxide
Physiological aspects
Properties
Proteins
Reactive oxygen species
Scanning electron microscopy
SummonAdditionalLinks – databaseName: Open Access: BioMedCentral Open Access Titles
  dbid: RBZ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQucABlXcoIAshOFnUseM4xxaxKkhwoFSquFjjF63UzaLNrtT-e2aySdksR67x2Eo843k4M98w9tY30QQvSyFzqITONgpIAEKWMckm114mqkb--s2cnOkv59X5X5CknT_40poPaN-0MFZpoQTq2rslIZxTWH78c1S5BCred1EZSUcwzd3pO1XtVxNj1GP2_6uZt0zTNG1yyw7N9tmDwYHkRxuOP2R3UvuI3d-CFXzM0my9zASnwTHgRtZ1HD3DXq_xxfUNSgyn-koMkTmEsJ4PDbw4tJHTPT4lpvIIc9Q0uAA_RaILWC7mN7RS6POCu0tIT9jZ7NOPjydiaKcgPEYFK0E4Nw0Yk3WU1tuEytDnJipVQ2iyiclDQ3iBeEqTUaGUQaq6tInsF0ZJST1le-2iTc8ZT-DBHtoaLFWiBgvaUyerqJWuQmWgYM1kn93vDXSGIzDr6QieK0c8csQjp1xZsHcjT26n9ZGKNbuEx8Sxydr9A5QeN5w7J5Oh4uBQ1SlrOAze67qKIeS6ktFaX7A3xG9HUBgt5dr8gnXXuc-n391R364LHSZdsPcDUV7gSwcYShdwMwg9a0J5MMqNG5RB5xoqIDambAr2bCNBt-9c0oUTuogFqyeyNfmo6Uh7edGjgGOsTO0AXvzHVh-we5tkCClk9ZLtrZbr9Ap9rJV_3Z-vP2YEJiU
  priority: 500
  providerName: BioMedCentral
– databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAvAkFZCEEJ6t1YjvOsSBWBQkOlEq9WeMXrcRmq31I9N8z42RXm3LgwtV2LGdmPA9r5hvG3voumuBlLWQOWqhso4AEIGQdk-xy62WiauSv38zpufpyoS_2Wn1RTtgADzwQ7kgmQ9WdQbcpKzgO3qtWxxByq2W01hftK_U2mBp0MKGMl7YqrVbC2EZt0TWtOdqNiUbUt8rcf02sUwHx_1tV79mqaR7lnmGaPWD3R4-Snwx_8pDdSf0jdm8PZ_AxS7PNMhO-BscIHHm54ugqFkXHF79vUIQ4FVxizMwhhM187OjFoY-cHvYpU5VHmKPqwQ34GS66hOVifkM7hZIovLqC9ISdzz79-Hgqxv4KwmOYsBYEfNOBMVlFab1NqB197mLTtBC6bGLy0BGAIF7bZJpQyyCbtraJDBqGTal5yg76RZ-eM57Agz22LVgqTQ0WlKfWVlE1SgdtoGLdhM7uesDScIRuPZ3Bi-aIR4545BpXV-zdlie7z0roYs3thR-IY5O9ywDKkxvlyf1Lnir2hvjtCBujp-Sbn7BZrdzns-_upPTvQg9KVez9uCgv8NABxloGJAbBaU1WHm7lxo3aYeU6qig2pu4q9myQoN2Za3qBQp-xYu1EtiY_NZ3pry4LLDgGz9Qf4MX_oMIhuzukSUgh9Ut2sF5u0iv0vtb-dblofwAvrS-I
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeBMKyEIITlbrxHGcE1oQS0GCA6VSb5af20rdpCS7UvvvO5N1VpsicUzsOI5nPA9n5htC3tvaS2d5znh0JRNReWaCMYznPvA6VpYHzEb--UsenYgfp-Vpis3pU1jlKBMHQe1bh2fkBzVmYUqZ158u_zIsGoU_V1MFjbvkHkcgPEwUn38bBTFCjVcjrKaSB6AoBZOqEKxg-a389ouJWhrQ-_-V0TtKahpAuaOR5o_Iw2RK0tmG9o_JndA8IQ9miy7BaQS42oEbfErCfN1FhNmg4IgDSXsKFuMg72h7dQ2cRDHvElxnapxbL1NhL2oaT_F8HwNWqTdLkEAwAD2GTmema5fXOJIb4oX7cxOekZP51z9fjlgqs8AseAsrhvg3tZEyCs-VVQGEpI21L4rKuDpKH6ypEUcQdm-Qhcu540WVq4B6DbynUDwne03bhJeEBmONOlSVUZih6pQRFitceVGI0pXSZKSerLq-3EBqaAS5nrYA7TVSTCPFdKHzjHwYKbR9bPBglLzd8TPSbzL2cKPtFjrtR82DxKRhV1YhCnPorBVV6Z2LVcm9UjYj75D6GiEyGozBWZh13-vvx7_1bCjjBYaUyMjH1Cm2MGlnUkoDLAaiak167o9cpJOQ6PWWpTPyYsNP2znneBAFpmNGqgmnTT5q2tKcnw3o4OBDY5mAV_994z65vwmD4IyXr8neqluHN2BdrezbYQ_dAIpTKIw
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQucAB8Sa0IAshOBnqxHGcA0IFsSpI5UBZqTfLz7ZSN4FkV-r--854s8tm4cg1mViJ5-3MfEPIa1t76SzPGY-uZCIqz0wwhvHcB17HyvKA3cgn3-XxVHw7K8_-QAoNG9j_M7XDeVLT7urd9e_lR1D4D0nhlXwPHlAwqQrBCgbW-HYuCoHCfiI2PxQQdjzNWVmTruE2dx_f6Xu_GrmrhOr_t-3ecl7jwsotTzW5T-4NISY9WsnEA3IrNA_J3S3gwUckTBZdRMANCik5MLenEDsmy0fb6yXIFMUOTEiiqXFuMRtGfFHTeIon_Vi6Sr2ZgS2CBegpEF2Yrp0tcSWXKof7SxMek-nky8_Px2wYuMAs5A1zhkg4tZEyCs-VVQHMpY21L4rKuDpKH6ypEVEQ9DjIwuXc8aLKVUAPB3lUKJ6QvaZtwjNCg7FGHarKKOxVdcoIi7OuPLCmdKU0GalH-6x_rcA1NMJdj--A5mnkkUYe6ULnGXmz5snmsZTLKLlL-Ak5Nlo7XWi7cz1opuZBYvuwK6sQhTl01oqq9M7FquReKZuRV8hvjWAZDVbjnJtF3-uvpz_0URroBSGVyMjbgSi28NLODM0NsBmIrzWi3F_LjV5Lu66xxVjKvM7I05UEbd45xyMpCCIzUo1ka_RR4zvN5UXCCYdsGgcGPP8fu7BP7qzqJjjj5QHZm3eL8ALCsbl9mRTtBiorNY4
  priority: 102
  providerName: Scholars Portal
Title Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae
URI https://www.ncbi.nlm.nih.gov/pubmed/20150993
https://www.proquest.com/docview/902396629
http://dx.doi.org/10.1186/1754-6834-3-2
https://pubmed.ncbi.nlm.nih.gov/PMC2820483
https://doaj.org/article/1e62099c57ef4a0cbb475dccf751d88b
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLeAXbbDxD7J2CprmraTKU4c2zlSRMcmFaEypGoXy3YcqERT1A8J_vu95yao2W67-JDYluP35ee893uEfHFFKb3jKeOVz5modMlssJbxtAy8qJTjAbORRxfy_Fr8nOSTHZK3uTAxaN-76VF9Nzuqp7cxtvJ-5vttnFj_cnQKbgIiofd3ya7KstZF36hfBBhXLZimln0wj4JJnQmWMSxdk6KLX-B_5k6C-13HLkX4_n-V9JaV6kZQbpmk4T552Zwl6clmza_ITqhfkxdbCINvSBiuFxUia1DwvYGKSwqHxKji6PzhEZiHYqoleMvUer-eNbW8qK1Lilf6GKNKSzsDpQMT0CvodGsX89kjzuRjiPByasNbcj08-3V6zprKCsyBg7BiCHlTWCkrUXLtdAC96KqizDJlfVHJMjhbIHQgCGyQmU-555lKdUBTBg5TyN6RvXpehwNCg3VWH2tlNSalem2Fw6JWpchE7nNpE1J09tncb1A0DOJad9-AiBkkl0FymcykCfna0uRpWHRatPy74wAp1pk7PpgvbkzDOYYHiXnCPlehEvbYOydUXnpfqZyXWruEfEZ6G0TFqDHs5saul0vz42psTmLlLjg7iYR8azpVc1i0t00WA2wGAml1eh62fGMavbA0BeYSS5kWCXm_4aCnNbeMmRDV4a3OR3XfgHxEQPBGHj7898hD8nwTFcEZzz-SvdViHT7BYWvleiBiEwWtHn7vkWeDs4vLcS9eXEA7Ehra8eB3L4rgH8vMM28
link.rule.ids 108,230,315,733,786,790,870,891,2115,2236,12083,12792,21416,24346,24965,27955,27956,31752,33406,33777,43343,43633,43838,53825,53827,76167,76168
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegewAeEN-E8WEhBE_W5sRxnCfUoVUdbBXah7Q3y1_pJtFkNK3E_nvuUrdqhsRjYsdxfOf7cO5-R8gnW3rpLE8Zr1zORKU8M8EYxlMfeFkVlgfMRj6ZyPGF-H6ZX8bYnDaGVa5lYieofePwjHyvxCxMKdPy681vhkWj8OdqrKBxn-wg4qYakJ2Dw8nP07UoRrDxYg2sqeQeqErBpMoEy1h6J8P9V08xdfj9_0rpLTXVD6Hc0kmjJ-RxNCbpcEX9p-ReqJ-RR8PpPAJqBLjaAhx8TsJoOa8QaIOCKw5EbSnYjJ3Eo82fW-AlipmX4DxT49xyFkt7UVN7iif8GLJKvZmBDIIB6Bl0ujLzZnaLI7kuYri9NuEFuRgdnn8bs1hogVnwFxYMEXBKI2UlPFdWBRCTtip9lhXGlZX0wZoSkQRh_waZuZQ7nhWpCqjZwH8K2UsyqJs6vCY0GGvUviqMwhxVp4ywWOPKi0zkLpcmIWVv1fXNClRDI8x1vwWor5FiGimmM50m5POaQpvHOh9GybsdD5B-vbG7G818quOO1DxITBt2eREqYfadtaLIvXNVkXOvlE3IR6S-RpCMGqNwpmbZtvro7FQPu0JeYEqJhHyJnaoGJu1MTGqAxUBcrV7P3TUX6SgmWr1h6oS8WvHTZs4pHkWB8ZiQosdpvY_qt9TXVx0-OHjRWCjgzX_f-IE8GJ-fHOvjo8mPXfJwFRTBGc_fksFivgzvwNZa2PdxR_0FnqAs4w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSAgOvEtDeVgIwcm7deI4zrEUVi3QqqJUqrhYfrardrOrfRzg1zOTR7Upt143E8tef57xKN98Q8gHW3rpLE8Zjy5nIirPTDCG8dQHXsbC8oDVyIdHcv9UfDvLz9ZafdWkfWfHg-pqMqjGFzW3cjZxw44nNjw-3IM0AZXQhzMfh3fJPTizadEl6o0TRpnxopPUVHIIQVIwqTLBMoYNbFJM9Ev82twrc7_qRadaxP9_V70Wq_o8yrXANHpMfndLavgol4PV0g7c3xtqj7da8xPyqL2u0t3G5Cm5E6pn5OGaiOFzEkareUTxDgrpPQBlQeEeWntRCjMCfFKs5oSEnBrnVpO2XRg1laf41QBpsNSbCfg1GICegNGFmU8nf3AkV7OQF2MTXpDT0ddfe_usbd7ALOQgS4aqOqWRMgrPlVUBXK-Npc-ywrgySh-sKVGdEHxCkJlLueNZkaqA0RJyspBtko1qWoUtQoOxRu2owiise3XKCIt9s7zIRO5yaRJS9jZRzxqhDo3S2f0ncIo1YkEjFnSm04R87Db8-rU6L1LypuFnhENv7PqH6fxctxuleZBYiuzyIkRhdpy1osi9c7HIuVfKJuQ9gkmj8EaFzJ5zs1os9MHJT71bNweD65lIyKfWKE5h0s60hRLwZ6BWV89yuwOlbl3PQpdYrixlWibkZQPP6zl3qE9I0QNub1H9JwDHWnO8hd-rW7_5jtw__jLSPw6Ovm-TBw0HgzOevyYby_kqvIGr3dK-rQ_xP8i0UZs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Furfural+induces+reactive+oxygen+species+accumulation+and+cellular+damage+in+Saccharomyces+cerevisiae&rft.jtitle=Biotechnology+for+biofuels&rft.au=Slininger+Patricia+J&rft.au=Lanctot+Alison&rft.au=Cai+Zhen&rft.au=McCaffery+J+Michael&rft.date=2010-01-15&rft.pub=BMC&rft.issn=1754-6834&rft.eissn=1754-6834&rft.volume=3&rft.issue=1&rft.spage=2&rft_id=info:doi/10.1186%2F1754-6834-3-2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1e62099c57ef4a0cbb475dccf751d88b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-6834&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-6834&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-6834&client=summon