Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus WK1

Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica sol...

Full description

Saved in:
Bibliographic Details
Published inGenome biology Vol. 9; no. 11; pp. R161 - 2023
Main Authors Saw, Jimmy H, Mountain, Bruce W, Feng, Lu, Omelchenko, Marina V, Hou, Shaobin, Saito, Jennifer A, Stott, Matthew B, Li, Dan, Zhao, Guang, Wu, Junli, Galperin, Michael Y, Koonin, Eugene V, Makarova, Kira S, Wolf, Yuri I, Rigden, Daniel J, Dunfield, Peter F, Wang, Lei, Alam, Maqsudul
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 17.11.2008
BioMed Central
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life. We report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres. Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli.
AbstractList Sequencing of the complete genome of Anoxybacillus flavithermus reveals enzymes that are required for silica adaptation and biofilm formation. Background Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life. Results We report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres. Conclusions Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli.
BACKGROUND: Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life. RESULTS: We report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres. CONCLUSIONS: Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli.
Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life. We report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres. Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli.
Sequencing of the complete genome of Anoxybacillus flavithermus reveals enzymes that are required for silica adaptation and biofilm formation.
Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life.BACKGROUNDGram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life.We report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres.RESULTSWe report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres.Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli.CONCLUSIONSMicrobial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli.
ArticleNumber R161
Author Omelchenko, Marina V
Li, Dan
Galperin, Michael Y
Koonin, Eugene V
Hou, Shaobin
Zhao, Guang
Feng, Lu
Wolf, Yuri I
Wu, Junli
Alam, Maqsudul
Dunfield, Peter F
Saito, Jennifer A
Stott, Matthew B
Rigden, Daniel J
Wang, Lei
Makarova, Kira S
Saw, Jimmy H
Mountain, Bruce W
AuthorAffiliation 1 Department of Microbiology, University of Hawai'i, 2538 The Mall, Honolulu, HI 96822, USA
4 Tianjin Research Center for Functional Genomics and Biochip, Tianjin 300457, PR China
6 National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, MD 20894, USA
5 Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, PR China
2 GNS Science, Extremophile Research Group, 3352 Taupo, New Zealand
7 Advance Studies in Genomics, Proteomics and Bioinformatics, College of Natural Sciences, University of Hawai'i, Honolulu, HI 96822, USA
9 Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
8 School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
10 Current address: Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
3 TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR Chi
AuthorAffiliation_xml – name: 1 Department of Microbiology, University of Hawai'i, 2538 The Mall, Honolulu, HI 96822, USA
– name: 2 GNS Science, Extremophile Research Group, 3352 Taupo, New Zealand
– name: 6 National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, MD 20894, USA
– name: 7 Advance Studies in Genomics, Proteomics and Bioinformatics, College of Natural Sciences, University of Hawai'i, Honolulu, HI 96822, USA
– name: 10 Current address: Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
– name: 8 School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
– name: 9 Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
– name: 4 Tianjin Research Center for Functional Genomics and Biochip, Tianjin 300457, PR China
– name: 3 TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
– name: 5 Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, PR China
Author_xml – sequence: 1
  givenname: Jimmy H
  surname: Saw
  fullname: Saw, Jimmy H
– sequence: 2
  givenname: Bruce W
  surname: Mountain
  fullname: Mountain, Bruce W
– sequence: 3
  givenname: Lu
  surname: Feng
  fullname: Feng, Lu
– sequence: 4
  givenname: Marina V
  surname: Omelchenko
  fullname: Omelchenko, Marina V
– sequence: 5
  givenname: Shaobin
  surname: Hou
  fullname: Hou, Shaobin
– sequence: 6
  givenname: Jennifer A
  surname: Saito
  fullname: Saito, Jennifer A
– sequence: 7
  givenname: Matthew B
  surname: Stott
  fullname: Stott, Matthew B
– sequence: 8
  givenname: Dan
  surname: Li
  fullname: Li, Dan
– sequence: 9
  givenname: Guang
  surname: Zhao
  fullname: Zhao, Guang
– sequence: 10
  givenname: Junli
  surname: Wu
  fullname: Wu, Junli
– sequence: 11
  givenname: Michael Y
  surname: Galperin
  fullname: Galperin, Michael Y
– sequence: 12
  givenname: Eugene V
  surname: Koonin
  fullname: Koonin, Eugene V
– sequence: 13
  givenname: Kira S
  surname: Makarova
  fullname: Makarova, Kira S
– sequence: 14
  givenname: Yuri I
  surname: Wolf
  fullname: Wolf, Yuri I
– sequence: 15
  givenname: Daniel J
  surname: Rigden
  fullname: Rigden, Daniel J
– sequence: 16
  givenname: Peter F
  surname: Dunfield
  fullname: Dunfield, Peter F
– sequence: 17
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
– sequence: 18
  givenname: Maqsudul
  surname: Alam
  fullname: Alam, Maqsudul
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19014707$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1vFiEQx4mpsS_6AbwYTsZDV2GXhcWDSVPrS2ziRaM3Agu7D4aFLbCNz7cv61O1NWoPhBnmN_8MM3MI9nzwBoDHGD3HuKMvRlXVCHUVrzCuIqb4HjjAhJGKUfR174a9Dw5T-oYQ5qSmD8A-5qjEEDsA-cz3ck6Lk9loaD1M1tlevoSj8WEyx3COIZtiQek1nDfbZIML4xaGAeaNWU-cwrxZs6CSfTbRLhM88eH7trjWuSXBwclL-4MszpcP-CG4P0iXzKPr-wh8fnP26fRddf7x7fvTk_NK0ZbliqMBddroAXHZEk1V0ypJKWFG90gT1pYHjZBsJKeaNLxDA5aq1VwPSsmhbY7Aq53uvKipJBmfo3RijnaScSuCtOJ2xNuNGMOlqCkmhDdF4PVOQNnwD4HbkT5MYlRinYrgAmOxTqXIPL2uI4aLxaQsJpt645z0JixJUM4bTtDdYI1qhrqaF_DZHWAZNkUNYwV9crMJv4r_uQMFwDugjyGlaIbfCBLrnv31R-yPnN5mmW1Y22DdfzKvAEPn3QE
CitedBy_id crossref_primary_10_1016_j_enzmictec_2019_109385
crossref_primary_10_1128_genomeA_00547_17
crossref_primary_10_1128_JB_01877_12
crossref_primary_10_3390_microorganisms7100468
crossref_primary_10_1093_glycob_cwu182
crossref_primary_10_3389_fmicb_2016_00723
crossref_primary_10_1128_genomeA_00010_13
crossref_primary_10_1016_j_gene_2022_146756
crossref_primary_10_1007_s12275_011_1136_8
crossref_primary_10_1111_1462_2920_14411
crossref_primary_10_1128_microbiolspectrum_TBS_0015_2012
crossref_primary_10_1128_spectrum_00129_22
crossref_primary_10_17816_ecogen50901
crossref_primary_10_1016_j_ejsobi_2015_03_006
crossref_primary_10_1515_biolog_2015_0111
crossref_primary_10_1007_s00284_017_1239_5
crossref_primary_10_1016_j_mib_2010_01_005
crossref_primary_10_1016_j_gca_2015_09_031
crossref_primary_10_1002_jobm_201600494
crossref_primary_10_1007_s12010_011_9337_5
crossref_primary_10_1007_s00792_023_01305_3
crossref_primary_10_1371_journal_pntd_0001304
crossref_primary_10_3390_microorganisms12071274
crossref_primary_10_1128_genomeA_00311_13
crossref_primary_10_1128_genomeA_01251_14
crossref_primary_10_1038_ja_2013_24
crossref_primary_10_1186_s40793_015_0065_2
crossref_primary_10_1590_1678_4324_2021200045
crossref_primary_10_1007_s00248_014_0389_2
crossref_primary_10_1007_s12010_013_0680_6
crossref_primary_10_1186_s40793_016_0172_8
crossref_primary_10_4056_sigs_4968750
crossref_primary_10_4236_fns_2022_133020
crossref_primary_10_1016_j_jbiotec_2015_08_007
crossref_primary_10_2138_am_2018_6429
crossref_primary_10_1002_bies_201300037
crossref_primary_10_1016_j_jiph_2017_01_010
crossref_primary_10_1186_s13068_016_0587_x
crossref_primary_10_1016_j_fm_2014_05_002
crossref_primary_10_1007_s10930_015_9618_x
crossref_primary_10_1007_s00253_016_7451_6
crossref_primary_10_1371_journal_pone_0090549
crossref_primary_10_1016_j_dib_2017_11_095
crossref_primary_10_1016_j_gca_2014_10_002
crossref_primary_10_35229_jaes_1068313
crossref_primary_10_3389_fmicb_2022_803241
crossref_primary_10_1007_s10295_012_1213_y
crossref_primary_10_1099_mic_0_001355
crossref_primary_10_1007_s13369_017_2622_z
crossref_primary_10_1073_pnas_2302156120
crossref_primary_10_1139_W09_036
crossref_primary_10_1111_zph_12091
crossref_primary_10_1128_genomeA_00800_17
crossref_primary_10_1186_s12866_017_1016_4
crossref_primary_10_1155_2021_1869748
crossref_primary_10_1039_b908047c
crossref_primary_10_1016_j_susmat_2022_e00447
crossref_primary_10_1111_j_1462_2920_2012_02841_x
crossref_primary_10_1128_AEM_01051_12
crossref_primary_10_3390_microorganisms10081673
Cites_doi 10.1579/0044-7447-33.8.552
10.1093/bioinformatics/bti739
10.1186/1471-2148-1-8
10.1128/jb.175.7.1936-1945.1993
10.1186/1745-6150-2-33
10.1126/science.286.5442.1129
10.1074/jbc.M611593200
10.1038/382313a0
10.1007/PL00000845
10.1006/mgme.2001.3277
10.1246/bcsj.71.2017
10.1093/nar/25.5.0955
10.1039/b313261g
10.1111/j.1365-2958.2005.04697.x
10.2174/138920305774933240
10.1099/00207713-50-6-2109
10.1073/pnas.260496497
10.1016/j.pep.2005.04.017
10.1146/annurev.micro.52.1.165
10.1128/am.26.6.1001-1003.1973
10.1139/e03-059
10.1039/b505945c
10.1016/S0074-7696(08)61544-2
10.1128/jb.179.21.6749-6755.1997
10.1128/JB.187.21.7434-7443.2005
10.1099/ijs.0.02643-0
10.1016/S0065-2911(01)44011-2
10.1101/gr.9.9.868
10.1128/AEM.70.6.3664-3672.2004
10.1101/gr.4126905
10.1016/j.febslet.2007.05.074
10.1101/gr.8.3.195
10.1007/BF00400386
10.1007/BF00393678
10.1126/science.1101156
10.1074/jbc.C600179200
10.1128/JB.186.12.3970-3979.2004
10.1038/378047a0
10.1039/b401028k
10.1002/elps.200305844
10.1016/0009-2541(94)90018-3
10.1093/nar/gkl932
10.1002/1522-2683(200108)22:14<2908::AID-ELPS2908>3.0.CO;2-M
10.1128/JB.188.7.2355-2363.2006
10.1139/e03-068
10.1016/j.mimet.2004.09.008
10.1093/nar/27.23.4636
10.1073/pnas.0407638102
10.1016/S0021-9673(00)95481-5
10.1016/S0016-7037(03)00489-7
10.1007/BF00399422
10.1016/j.gca.2006.01.009
10.1126/science.1076221
10.1111/j.1574-6968.1995.tb07780.x
10.1016/S0009-2541(00)00212-6
10.1007/978-1-4612-5944-2
10.1007/s10265-007-0074-3
10.1111/j.1348-0421.1988.tb01429.x
10.1128/jb.177.5.1409-1413.1995
10.1186/1471-2148-3-2
10.1271/bbb.58.1045
10.1126/science.1138140
10.1111/j.1462-2920.2004.00686.x
10.1111/j.1365-2958.2004.04023.x
10.1111/j.1574-6968.1994.tb06639.x
10.1099/ijs.0.02473-0
10.1046/j.1365-2958.1998.00979.x
10.1094/MPMI.1997.10.4.506
10.1128/JB.182.11.3072-3080.2000
10.1093/nar/25.17.3389
10.1186/1471-2180-5-35
10.1021/ja061211s
10.1111/j.1365-2958.2005.05019.x
10.1111/j.1365-2958.2005.05020.x
10.1186/1745-6150-1-7
ContentType Journal Article
Copyright Copyright © 2008 Saw et al.; licensee BioMed Central Ltd. 2008 Saw et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: Copyright © 2008 Saw et al.; licensee BioMed Central Ltd. 2008 Saw et al.; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7QL
7T7
7TM
8FD
C1K
FR3
P64
RC3
7X8
5PM
DOI 10.1186/gb-2008-9-11-r161
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
Genetics Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts

MEDLINE

AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1474-760X
1465-6914
EndPage 2023
ExternalDocumentID PMC2614493
oai_biomedcentral_com_gb_2008_9_11_r161
19014707
10_1186_gb_2008_9_11_r161
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations New Zealand
GeographicLocations_xml – name: New Zealand
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: Z99 LM999999
GroupedDBID ---
0R~
123
29H
4.4
53G
5GY
5VS
7X7
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ACGFO
ACGFS
ACJQM
ACPRK
ADBBV
ADUKV
AEGXH
AFPKN
AHBYD
AHSBF
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BCNDV
BFQNJ
BMC
C6C
CITATION
EBLON
EBS
GROUPED_DOAJ
GX1
HYE
IAO
IGS
IHR
ISR
ITC
KPI
ROL
RPM
RSV
SJN
SOJ
88E
8FE
8FH
8FI
8FJ
8R4
8R5
ABUWG
AFKRA
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CGR
CUY
CVF
EBD
ECM
EIF
EMOBN
FYUFA
H13
HCIFZ
HMCUK
LK8
M1P
M7P
NPM
PHGZM
PHGZT
PIMPY
PMFND
PQQKQ
PROAC
PSQYO
SV3
UKHRP
7S9
L.6
2WC
7QL
7T7
7TM
8FD
AENEX
C1A
C1K
CS3
E3Z
EJD
F5P
FR3
HZ~
KQ8
O5R
O5S
O9-
OK1
P64
RBZ
RC3
SBL
TR2
WOQ
7X8
AHYZX
C24
DIK
ZA5
5PM
ID FETCH-LOGICAL-b657t-90f08dedf09a54d6b35ba6647edc0d475b35d00a3a96d43980f1ab5d9dfbbaf53
IEDL.DBID RBZ
ISSN 1474-760X
1465-6906
IngestDate Thu Aug 21 17:39:06 EDT 2025
Tue Apr 16 22:46:04 EDT 2024
Fri Jul 11 10:10:14 EDT 2025
Fri Jul 11 06:44:34 EDT 2025
Fri Jul 11 05:39:05 EDT 2025
Fri May 30 10:59:42 EDT 2025
Thu Apr 24 22:52:41 EDT 2025
Tue Jul 01 03:26:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b657t-90f08dedf09a54d6b35ba6647edc0d475b35d00a3a96d43980f1ab5d9dfbbaf53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1186/gb-2008-9-11-r161
PMID 19014707
PQID 2000160377
PQPubID 24069
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2614493
biomedcentral_primary_oai_biomedcentral_com_gb_2008_9_11_r161
proquest_miscellaneous_69939401
proquest_miscellaneous_20270829
proquest_miscellaneous_2000160377
pubmed_primary_19014707
crossref_primary_10_1186_gb_2008_9_11_r161
crossref_citationtrail_10_1186_gb_2008_9_11_r161
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-11-17
PublicationDateYYYYMMDD 2008-11-17
PublicationDate_xml – month: 11
  year: 2008
  text: 2008-11-17
  day: 17
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Genome biology
PublicationTitleAlternate Genome Biol
PublicationYear 2008
Publisher BioMed Central Ltd
BioMed Central
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
References A Rueckert (2023_CR8) 2005; 60
W Heinen (2023_CR6) 1982; 48
BG Mirkin (2023_CR22) 2003; 3
LE Ulrich (2023_CR30) 2007; 35
KO Konhauser (2023_CR13) 2003; 40
KS Makarova (2023_CR23) 2006; 1
U Römling (2023_CR25) 2005; 57
K Büttner (2023_CR69) 2001; 22
T Mizutani (2023_CR51) 1998; 71
E Pikuta (2023_CR5) 2003; 53
DJ Richardson (2023_CR18) 2001; 58
L Lenoci (2023_CR41) 2006; 128
D Gordon (2023_CR61) 1998; 8
S Yamamoto (2023_CR72) 1988; 32
S Oliver (2023_CR44) 1995; 378
EV Armbrust (2023_CR56) 2004; 306
T Kusano (2023_CR58) 2007; 120
FA Rainey (2023_CR10) 1994; 115
RK Iyer (2023_CR73) 2002; 75
PG Burnett (2023_CR20) 2006; 70
E Karatan (2023_CR53) 2005; 187
BW Mountain (2023_CR9) 2003; 40
W Zolg (2023_CR75) 1973; 26
K Ogawa (2023_CR17) 1995; 177
A Sekowska (2023_CR37) 1998; 29
M Sumper (2023_CR43) 2004; 14
MJ Lee (2023_CR74) 2005; 43
E Brunner (2023_CR47) 2004; 6
G Candiano (2023_CR70) 2004; 25
RD Pancost (2023_CR12) 2005; 7
X Huang (2023_CR62) 1999; 9
N Guerreiro (2023_CR68) 1997; 10
SF Altschul (2023_CR64) 1997; 25
DA Ryjenkov (2023_CR28) 2006; 281
N Kröger (2023_CR46) 2002; 298
RK Iler (2023_CR50) 1979
MM Urrutia (2023_CR55) 1994; 116
AM Lauwers (2023_CR11) 1983; 49
VR Phoenix (2023_CR59) 2000; 169
N Kröger (2023_CR40) 2000; 97
RJ Siezen (2023_CR21) 1996; 69
S Hou (2023_CR60) 2004; 101
MM Nakano (2023_CR1) 1997; 179
SS Branda (2023_CR31) 2004; 186
MY Galperin (2023_CR26) 2005; 5
MA Hamon (2023_CR32) 2004; 52
D Amikam (2023_CR27) 2006; 22
EV Koonin (2023_CR66) 2002
H Cruz Ramos (2023_CR3) 2000; 182
SS Branda (2023_CR34) 2006; 59
E Pikuta (2023_CR4) 2000; 50
TM Lowe (2023_CR65) 1997; 25
M Hecker (2023_CR36) 2001; 44
JM Knott (2023_CR38) 2007; 581
R Gordon (2023_CR48) 1994; 150
KS Makarova (2023_CR78) 2007; 2
AO Belduz (2023_CR15) 2003; 53
F Chu (2023_CR33) 2006; 59
E De Clerck (2023_CR7) 2004; 70
M Urrutia Mera (2023_CR54) 1993; 175
T Hoffmann (2023_CR16) 1995; 131
R Barrangou (2023_CR24) 2007; 315
N Kröger (2023_CR39) 1999; 286
JW Redmond (2023_CR76) 1979; 170
LG Benning (2023_CR35) 2004; 68
C Médigue (2023_CR19) 2005; 15
YI Wolf (2023_CR67) 2001; 1
K Lutz (2023_CR42) 2005; 7
S Mann (2023_CR45) 1996; 382
KW Shimotohno (2023_CR71) 1994; 58
AL Delcher (2023_CR63) 1999; 27
MM Nakano (2023_CR2) 1998; 52
TL Simpson (2023_CR49) 1981
JT Pratt (2023_CR29) 2007; 282
CN Patel (2023_CR52) 2006; 188
DM Morgan (2023_CR77) 1998; 79
KO Konhauser (2023_CR14) 2004; 33
U Bachrach (2023_CR57) 2005; 6
References_xml – volume: 33
  start-page: 552
  year: 2004
  ident: 2023_CR14
  publication-title: Ambio
  doi: 10.1579/0044-7447-33.8.552
– volume: 22
  start-page: 3
  year: 2006
  ident: 2023_CR27
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti739
– volume: 1
  start-page: 8
  year: 2001
  ident: 2023_CR67
  publication-title: BMC Evol Biol
  doi: 10.1186/1471-2148-1-8
– volume: 175
  start-page: 1936
  year: 1993
  ident: 2023_CR54
  publication-title: J Bacteriol
  doi: 10.1128/jb.175.7.1936-1945.1993
– volume: 2
  start-page: 33
  year: 2007
  ident: 2023_CR78
  publication-title: Biol Direct
  doi: 10.1186/1745-6150-2-33
– volume: 286
  start-page: 1129
  year: 1999
  ident: 2023_CR39
  publication-title: Science
  doi: 10.1126/science.286.5442.1129
– volume: 282
  start-page: 12860
  year: 2007
  ident: 2023_CR29
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M611593200
– volume: 382
  start-page: 313
  year: 1996
  ident: 2023_CR45
  publication-title: Nature
  doi: 10.1038/382313a0
– volume: 58
  start-page: 165
  year: 2001
  ident: 2023_CR18
  publication-title: Cell Mol Life Sci
  doi: 10.1007/PL00000845
– volume: 75
  start-page: 209
  year: 2002
  ident: 2023_CR73
  publication-title: Mol Genet Metab
  doi: 10.1006/mgme.2001.3277
– volume: 71
  start-page: 2017
  year: 1998
  ident: 2023_CR51
  publication-title: Bull Chem Soc Jpn
  doi: 10.1246/bcsj.71.2017
– volume: 25
  start-page: 955
  year: 1997
  ident: 2023_CR65
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/25.5.0955
– volume: 6
  start-page: 854
  year: 2004
  ident: 2023_CR47
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/b313261g
– volume: 57
  start-page: 629
  year: 2005
  ident: 2023_CR25
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2005.04697.x
– volume: 6
  start-page: 559
  year: 2005
  ident: 2023_CR57
  publication-title: Curr Protein Pept Sci
  doi: 10.2174/138920305774933240
– volume: 50
  start-page: 2109
  year: 2000
  ident: 2023_CR4
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/00207713-50-6-2109
– volume: 97
  start-page: 14133
  year: 2000
  ident: 2023_CR40
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.260496497
– volume: 43
  start-page: 140
  year: 2005
  ident: 2023_CR74
  publication-title: Protein Expr Purif
  doi: 10.1016/j.pep.2005.04.017
– volume: 52
  start-page: 165
  year: 1998
  ident: 2023_CR2
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev.micro.52.1.165
– volume: 26
  start-page: 1001
  year: 1973
  ident: 2023_CR75
  publication-title: Appl Microbiol
  doi: 10.1128/am.26.6.1001-1003.1973
– volume: 40
  start-page: 1713
  year: 2003
  ident: 2023_CR13
  publication-title: Can J Earth Sci
  doi: 10.1139/e03-059
– volume: 7
  start-page: 2812
  year: 2005
  ident: 2023_CR42
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/b505945c
– volume: 150
  start-page: 243
  year: 1994
  ident: 2023_CR48
  publication-title: Int Rev Cytol
  doi: 10.1016/S0074-7696(08)61544-2
– volume: 179
  start-page: 6749
  year: 1997
  ident: 2023_CR1
  publication-title: J Bacteriol
  doi: 10.1128/jb.179.21.6749-6755.1997
– volume: 187
  start-page: 7434
  year: 2005
  ident: 2023_CR53
  publication-title: J Bacteriol
  doi: 10.1128/JB.187.21.7434-7443.2005
– volume: 53
  start-page: 1561
  year: 2003
  ident: 2023_CR5
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijs.0.02643-0
– volume: 44
  start-page: 35
  year: 2001
  ident: 2023_CR36
  publication-title: Adv Microb Physiol
  doi: 10.1016/S0065-2911(01)44011-2
– volume: 9
  start-page: 868
  year: 1999
  ident: 2023_CR62
  publication-title: Genome Res
  doi: 10.1101/gr.9.9.868
– volume: 70
  start-page: 3664
  year: 2004
  ident: 2023_CR7
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.70.6.3664-3672.2004
– volume-title: Sequence - Evolution - Function. Computational Approaches in Comparative Genomics
  year: 2002
  ident: 2023_CR66
– volume: 15
  start-page: 1325
  year: 2005
  ident: 2023_CR19
  publication-title: Genome Res
  doi: 10.1101/gr.4126905
– volume: 581
  start-page: 3081
  year: 2007
  ident: 2023_CR38
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2007.05.074
– volume: 8
  start-page: 195
  year: 1998
  ident: 2023_CR61
  publication-title: Genome Res
  doi: 10.1101/gr.8.3.195
– volume: 48
  start-page: 265
  year: 1982
  ident: 2023_CR6
  publication-title: Antonie van Leeuwenhoek
  doi: 10.1007/BF00400386
– volume: 49
  start-page: 191
  year: 1983
  ident: 2023_CR11
  publication-title: Antonie van Leeuwenhoek
  doi: 10.1007/BF00393678
– volume: 306
  start-page: 79
  year: 2004
  ident: 2023_CR56
  publication-title: Science
  doi: 10.1126/science.1101156
– volume: 281
  start-page: 30310
  year: 2006
  ident: 2023_CR28
  publication-title: J Biol Chem
  doi: 10.1074/jbc.C600179200
– volume: 186
  start-page: 3970
  year: 2004
  ident: 2023_CR31
  publication-title: J Bacteriol
  doi: 10.1128/JB.186.12.3970-3979.2004
– volume: 378
  start-page: 47
  year: 1995
  ident: 2023_CR44
  publication-title: Nature
  doi: 10.1038/378047a0
– volume: 14
  start-page: 2059
  year: 2004
  ident: 2023_CR43
  publication-title: J Mater Chem
  doi: 10.1039/b401028k
– volume: 25
  start-page: 1327
  year: 2004
  ident: 2023_CR70
  publication-title: Electrophoresis
  doi: 10.1002/elps.200305844
– volume: 116
  start-page: 261
  year: 1994
  ident: 2023_CR55
  publication-title: Chem Geol
  doi: 10.1016/0009-2541(94)90018-3
– volume: 35
  start-page: D386
  year: 2007
  ident: 2023_CR30
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl932
– volume: 22
  start-page: 2908
  year: 2001
  ident: 2023_CR69
  publication-title: Electrophoresis
  doi: 10.1002/1522-2683(200108)22:14<2908::AID-ELPS2908>3.0.CO;2-M
– volume: 188
  start-page: 2355
  year: 2006
  ident: 2023_CR52
  publication-title: J Bacteriol
  doi: 10.1128/JB.188.7.2355-2363.2006
– volume: 40
  start-page: 1643
  year: 2003
  ident: 2023_CR9
  publication-title: Can J Earth Sci
  doi: 10.1139/e03-068
– volume: 60
  start-page: 155
  year: 2005
  ident: 2023_CR8
  publication-title: J Microbiol Methods
  doi: 10.1016/j.mimet.2004.09.008
– volume: 27
  start-page: 4636
  year: 1999
  ident: 2023_CR63
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/27.23.4636
– volume: 101
  start-page: 18036
  year: 2004
  ident: 2023_CR60
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0407638102
– volume: 170
  start-page: 479
  year: 1979
  ident: 2023_CR76
  publication-title: J Chromatogr
  doi: 10.1016/S0021-9673(00)95481-5
– volume: 68
  start-page: 729
  year: 2004
  ident: 2023_CR35
  publication-title: Geochim Cosmochim Acta
  doi: 10.1016/S0016-7037(03)00489-7
– volume: 69
  start-page: 171
  year: 1996
  ident: 2023_CR21
  publication-title: Antonie van Leeuwenhoek
  doi: 10.1007/BF00399422
– volume: 70
  start-page: 1914
  year: 2006
  ident: 2023_CR20
  publication-title: Geochim Cosmochim Acta
  doi: 10.1016/j.gca.2006.01.009
– volume: 298
  start-page: 584
  year: 2002
  ident: 2023_CR46
  publication-title: Science
  doi: 10.1126/science.1076221
– volume: 79
  start-page: 111
  year: 1998
  ident: 2023_CR77
  publication-title: Methods Mol Biol
– volume: 131
  start-page: 219
  year: 1995
  ident: 2023_CR16
  publication-title: FEMS Microbiol Lett
  doi: 10.1111/j.1574-6968.1995.tb07780.x
– volume: 169
  start-page: 329
  year: 2000
  ident: 2023_CR59
  publication-title: Chem Geol
  doi: 10.1016/S0009-2541(00)00212-6
– volume-title: Silicon and Siliceous Structures in Biological Systems
  year: 1981
  ident: 2023_CR49
  doi: 10.1007/978-1-4612-5944-2
– volume: 120
  start-page: 345
  year: 2007
  ident: 2023_CR58
  publication-title: J Plant Res
  doi: 10.1007/s10265-007-0074-3
– volume: 32
  start-page: 675
  year: 1988
  ident: 2023_CR72
  publication-title: Microbiol Immunol
  doi: 10.1111/j.1348-0421.1988.tb01429.x
– volume: 177
  start-page: 1409
  year: 1995
  ident: 2023_CR17
  publication-title: J Bacteriol
  doi: 10.1128/jb.177.5.1409-1413.1995
– volume: 3
  start-page: 2
  year: 2003
  ident: 2023_CR22
  publication-title: BMC Evol Biol
  doi: 10.1186/1471-2148-3-2
– volume: 58
  start-page: 1045
  year: 1994
  ident: 2023_CR71
  publication-title: Biosci Biotechnol Biochem
  doi: 10.1271/bbb.58.1045
– volume: 315
  start-page: 1709
  year: 2007
  ident: 2023_CR24
  publication-title: Science
  doi: 10.1126/science.1138140
– volume-title: The Chemistry of Silica
  year: 1979
  ident: 2023_CR50
– volume: 7
  start-page: 66
  year: 2005
  ident: 2023_CR12
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2004.00686.x
– volume: 52
  start-page: 847
  year: 2004
  ident: 2023_CR32
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2004.04023.x
– volume: 115
  start-page: 205
  year: 1994
  ident: 2023_CR10
  publication-title: FEMS Microbiol Lett
  doi: 10.1111/j.1574-6968.1994.tb06639.x
– volume: 53
  start-page: 1315
  year: 2003
  ident: 2023_CR15
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijs.0.02473-0
– volume: 29
  start-page: 851
  year: 1998
  ident: 2023_CR37
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.1998.00979.x
– volume: 10
  start-page: 506
  year: 1997
  ident: 2023_CR68
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI.1997.10.4.506
– volume: 182
  start-page: 3072
  year: 2000
  ident: 2023_CR3
  publication-title: J Bacteriol
  doi: 10.1128/JB.182.11.3072-3080.2000
– volume: 25
  start-page: 3389
  year: 1997
  ident: 2023_CR64
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/25.17.3389
– volume: 5
  start-page: 35
  year: 2005
  ident: 2023_CR26
  publication-title: BMC Microbiol
  doi: 10.1186/1471-2180-5-35
– volume: 128
  start-page: 10111
  year: 2006
  ident: 2023_CR41
  publication-title: J Am Chem Soc
  doi: 10.1021/ja061211s
– volume: 59
  start-page: 1216
  year: 2006
  ident: 2023_CR33
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2005.05019.x
– volume: 59
  start-page: 1229
  year: 2006
  ident: 2023_CR34
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2005.05020.x
– volume: 1
  start-page: 7
  year: 2006
  ident: 2023_CR23
  publication-title: Biol Direct
  doi: 10.1186/1745-6150-1-7
SSID ssj0019426
ssj0017866
Score 2.2089138
Snippet Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed...
BACKGROUND: Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and...
Sequencing of the complete genome of Anoxybacillus flavithermus reveals enzymes that are required for silica adaptation and biofilm formation. Background...
Sequencing of the complete genome of Anoxybacillus flavithermus reveals enzymes that are required for silica adaptation and biofilm formation.
SourceID pubmedcentral
biomedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage R161
SubjectTerms anaerobes
Anoxybacillus flavithermus
Bacillaceae - chemistry
Bacillaceae - genetics
Bacillaceae - physiology
Bacteria
Bacterial Proteins - analysis
biofilm
biomineralization
chromosomes
drainage water
dried milk
enzymes
Fossils
gelatin
gene deletion
genome
Genome, Bacterial
Geobacillus
geothermal energy
Gram-positive bacteria
habitats
hot springs
Hot Temperature
nanospheres
New Zealand
nucleotide sequences
physiology
polyamines
processed foods
proteome
proteomics
sequence analysis
silica
Silicon Dioxide
thermophilic bacteria
wastewater
Water Microbiology
Title Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus WK1
URI https://www.ncbi.nlm.nih.gov/pubmed/19014707
https://www.proquest.com/docview/2000160377
https://www.proquest.com/docview/20270829
https://www.proquest.com/docview/69939401
http://dx.doi.org/10.1186/gb-2008-9-11-r161
https://pubmed.ncbi.nlm.nih.gov/PMC2614493
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqokpcEFAeC7QYiRMiIk5iO0bqoaA-VAQnKlZcInttt5GyTrUPRP89M062JUvLpYddbTZjZ9cTa-abyXxDyFsvSqnAsiSOGZ8UYPISgGACC3UNywyYfIdxyK_fxPFpcTLm42ue7bUMPivFhzOTxBy9wgqwGUOocy8rwBAiNP_08yplIEvRlxLxBNl3-xTmjVOsVbc3Q6P0j6e5_sDkXxbo8CF50LuOdL_T9SOy4cJjstU1k7zcJouDMNGAeRvwHi2tA53XGJD7SJGGdere00jJAJ-oDpbGiEYcSVtPwQvE12zaXmCAZUJNR-K8nNL90P6-hMO6aZZz6hv9q46ScPDjC3tCTg8Pvn8-TvqeCokRXC5AET4trbM-VZoXVoA2jBaikPDnUltIDl_YNNW5VsKC5srUM224VdYboz3Pn5LN0Ab3nFAAdtKXueNGwUwgMrEM-f5y0D-zPBuRvcEiVxcdf0aFjNbDM7C5qjPTtcRUAEoqVNKIpCulVJOesBz7ZjRVBC6luGnIu6shq6v9R_jNStMV7ClMlOjg2uUc5WL7bSlH5PWtMpnEuuTbJQS4fgrg64g86-6e65-EuWuZwuxycF8NVmh4JtTnkfs7QwCv8hd3XNuX5H7cEfg8o3xFNhezpdsB72phdmNUAt6Pxmw37rA_waEnmw
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqqqq9IPpeKMWVOCFCk01sx5U40Aq0PA8IVMQlstc2jZR10D6q8u8742QpodBLD5HyGDuOx87MeDzfELLueC4kSJbIJtpFGYi8CEwwjoG6OulrEPkW1yGPT_jgPDu4YBft_qdJiK3y9ci2AERbd0PQq_Dfnm8Xa2Z7zj9f6Si48CUGiI0TtISeCsYEZjM4_Xp561EQOW8jjViE4Lyth_PBKu4Fv1ddmfWXInp_P-UdAbW3RBZbzZLuNE1_SZ5Y_4o8a3JN3rwm010_VGASV6BcGlp6Oilxve4LbfpikwbEBjijyhsaFjxCSVo7CkoiHuNRfY3rL0OqG4zn2Yju-PrXDVyWVTWbUFepn2WghIvvh8kbcr63e_ZtELUpFyLNmZgCn1ycG2tcLBXLDAdmacV5JuDjYpMJBjdMHKtUSW6AsXnsEqWZkcZprRxL35IFX3v7nlCw-4TLU8u0hJqAZGgShANMYXgkhvV7ZLvTycV1A69RIOB19wkwvrjSTcZMCTZLgUzqkXjOlGLY4pljWo2qCHZNzh8qsnFbZP62fxB_mnO6gCmHfhTlbT2bIF3Izi1Ej6w9StMXGLb8OAUHzVCCddsj75rR86dJ6NoWMdQuOuOq00PdJ778EaDB-2jfy3T5P_t2jTwfnB0fFUf7J4cr5EWYHbj1UXwgC9PxzK6CIjbVH8MM-w0X6DVn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQEYgLKs9uC62ROCFCk01sx0gcSumqUKgQoqLiEtmxXaJmndU-EP33zDjZ0pSWC4dIeYydxOPJzHgy3xDy3PFcSNAskU20izJQeRG4YBwTdXUy1KDyLa5Dfjrk-0fZh2N23JUDmoXcKt-MbQdA9OpiCnodvtuwU55uT4xrxT3n2yc6CjF8iRli0wRdoZuCMYFS-uXt9_OQgsh5l2rEIkTn7UKcV3ZxKfu97iutvyzRyz9UXtBQo1VytzMt6U47F-6RG9bfJ7faYpNnD8h8z5cKfOIarEtDK09nFS7YvabtYLykAbIB9qjyhoYVj9CSNo6ClYjbdNxMcAGmpLoFeV6M6Y5vfp3BYVXXixl1tfpZBUo4-HaQPCRHo72vu_tRV3Mh0pyJOTDKxbmxxsVSscxw4JZWnGcCXi42mWBwwsSxSpXkBjibxy5RmhlpnNbKsfQRWfGNt2uEguMnXJ5apiX0BCSlSRAPMIX5kRg2HJA3vUEuJi2-RoGI1_0rwPniRLclMyU4LQUyaUDiJVOKsgM0x7oadREcm5xf1eTFeZPl3f5B_GzJ6QJkDgMpyttmMUO6UJ5biAHZupZmKDBv-XoKDqahBPd2QB63s-fPI2FsW8TQu-jNq94I9a_46kfABh-igy_T9f8c2y1y-_O7UfHx_eHBBrkThAN_fRRPyMp8urBPwRCb680gYL8BhX81Mg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Encapsulated+in+silica%3A+genome%2C+proteome+and+physiology+of+the+thermophilic+bacterium+Anoxybacillus+flavithermus+WK1&rft.jtitle=Genome+biology&rft.au=Saw%2C+Jimmy+H&rft.au=Mountain%2C+Bruce+W&rft.au=Feng%2C+Lu&rft.au=Omelchenko%2C+Marina+V&rft.date=2008-11-17&rft.eissn=1474-760X&rft.volume=9&rft.issue=11&rft.spage=R161&rft_id=info:doi/10.1186%2Fgb-2008-9-11-r161&rft_id=info%3Apmid%2F19014707&rft.externalDocID=19014707
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon