Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus WK1
Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica sol...
Saved in:
Published in | Genome biology Vol. 9; no. 11; pp. R161 - 2023 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
17.11.2008
BioMed Central |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life.
We report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres.
Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli. |
---|---|
AbstractList | Sequencing of the complete genome of Anoxybacillus flavithermus reveals enzymes that are required for silica adaptation and biofilm formation. Background Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life. Results We report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres. Conclusions Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli. BACKGROUND: Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life. RESULTS: We report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres. CONCLUSIONS: Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli. Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life. We report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres. Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli. Sequencing of the complete genome of Anoxybacillus flavithermus reveals enzymes that are required for silica adaptation and biofilm formation. Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life.BACKGROUNDGram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life.We report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres.RESULTSWe report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres.Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli.CONCLUSIONSMicrobial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli. |
ArticleNumber | R161 |
Author | Omelchenko, Marina V Li, Dan Galperin, Michael Y Koonin, Eugene V Hou, Shaobin Zhao, Guang Feng, Lu Wolf, Yuri I Wu, Junli Alam, Maqsudul Dunfield, Peter F Saito, Jennifer A Stott, Matthew B Rigden, Daniel J Wang, Lei Makarova, Kira S Saw, Jimmy H Mountain, Bruce W |
AuthorAffiliation | 1 Department of Microbiology, University of Hawai'i, 2538 The Mall, Honolulu, HI 96822, USA 4 Tianjin Research Center for Functional Genomics and Biochip, Tianjin 300457, PR China 6 National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, MD 20894, USA 5 Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, PR China 2 GNS Science, Extremophile Research Group, 3352 Taupo, New Zealand 7 Advance Studies in Genomics, Proteomics and Bioinformatics, College of Natural Sciences, University of Hawai'i, Honolulu, HI 96822, USA 9 Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada 8 School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK 10 Current address: Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA 3 TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR Chi |
AuthorAffiliation_xml | – name: 1 Department of Microbiology, University of Hawai'i, 2538 The Mall, Honolulu, HI 96822, USA – name: 2 GNS Science, Extremophile Research Group, 3352 Taupo, New Zealand – name: 6 National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, MD 20894, USA – name: 7 Advance Studies in Genomics, Proteomics and Bioinformatics, College of Natural Sciences, University of Hawai'i, Honolulu, HI 96822, USA – name: 10 Current address: Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA – name: 8 School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK – name: 9 Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada – name: 4 Tianjin Research Center for Functional Genomics and Biochip, Tianjin 300457, PR China – name: 3 TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China – name: 5 Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, PR China |
Author_xml | – sequence: 1 givenname: Jimmy H surname: Saw fullname: Saw, Jimmy H – sequence: 2 givenname: Bruce W surname: Mountain fullname: Mountain, Bruce W – sequence: 3 givenname: Lu surname: Feng fullname: Feng, Lu – sequence: 4 givenname: Marina V surname: Omelchenko fullname: Omelchenko, Marina V – sequence: 5 givenname: Shaobin surname: Hou fullname: Hou, Shaobin – sequence: 6 givenname: Jennifer A surname: Saito fullname: Saito, Jennifer A – sequence: 7 givenname: Matthew B surname: Stott fullname: Stott, Matthew B – sequence: 8 givenname: Dan surname: Li fullname: Li, Dan – sequence: 9 givenname: Guang surname: Zhao fullname: Zhao, Guang – sequence: 10 givenname: Junli surname: Wu fullname: Wu, Junli – sequence: 11 givenname: Michael Y surname: Galperin fullname: Galperin, Michael Y – sequence: 12 givenname: Eugene V surname: Koonin fullname: Koonin, Eugene V – sequence: 13 givenname: Kira S surname: Makarova fullname: Makarova, Kira S – sequence: 14 givenname: Yuri I surname: Wolf fullname: Wolf, Yuri I – sequence: 15 givenname: Daniel J surname: Rigden fullname: Rigden, Daniel J – sequence: 16 givenname: Peter F surname: Dunfield fullname: Dunfield, Peter F – sequence: 17 givenname: Lei surname: Wang fullname: Wang, Lei – sequence: 18 givenname: Maqsudul surname: Alam fullname: Alam, Maqsudul |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19014707$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1vFiEQx4mpsS_6AbwYTsZDV2GXhcWDSVPrS2ziRaM3Agu7D4aFLbCNz7cv61O1NWoPhBnmN_8MM3MI9nzwBoDHGD3HuKMvRlXVCHUVrzCuIqb4HjjAhJGKUfR174a9Dw5T-oYQ5qSmD8A-5qjEEDsA-cz3ck6Lk9loaD1M1tlevoSj8WEyx3COIZtiQek1nDfbZIML4xaGAeaNWU-cwrxZs6CSfTbRLhM88eH7trjWuSXBwclL-4MszpcP-CG4P0iXzKPr-wh8fnP26fRddf7x7fvTk_NK0ZbliqMBddroAXHZEk1V0ypJKWFG90gT1pYHjZBsJKeaNLxDA5aq1VwPSsmhbY7Aq53uvKipJBmfo3RijnaScSuCtOJ2xNuNGMOlqCkmhDdF4PVOQNnwD4HbkT5MYlRinYrgAmOxTqXIPL2uI4aLxaQsJpt645z0JixJUM4bTtDdYI1qhrqaF_DZHWAZNkUNYwV9crMJv4r_uQMFwDugjyGlaIbfCBLrnv31R-yPnN5mmW1Y22DdfzKvAEPn3QE |
CitedBy_id | crossref_primary_10_1016_j_enzmictec_2019_109385 crossref_primary_10_1128_genomeA_00547_17 crossref_primary_10_1128_JB_01877_12 crossref_primary_10_3390_microorganisms7100468 crossref_primary_10_1093_glycob_cwu182 crossref_primary_10_3389_fmicb_2016_00723 crossref_primary_10_1128_genomeA_00010_13 crossref_primary_10_1016_j_gene_2022_146756 crossref_primary_10_1007_s12275_011_1136_8 crossref_primary_10_1111_1462_2920_14411 crossref_primary_10_1128_microbiolspectrum_TBS_0015_2012 crossref_primary_10_1128_spectrum_00129_22 crossref_primary_10_17816_ecogen50901 crossref_primary_10_1016_j_ejsobi_2015_03_006 crossref_primary_10_1515_biolog_2015_0111 crossref_primary_10_1007_s00284_017_1239_5 crossref_primary_10_1016_j_mib_2010_01_005 crossref_primary_10_1016_j_gca_2015_09_031 crossref_primary_10_1002_jobm_201600494 crossref_primary_10_1007_s12010_011_9337_5 crossref_primary_10_1007_s00792_023_01305_3 crossref_primary_10_1371_journal_pntd_0001304 crossref_primary_10_3390_microorganisms12071274 crossref_primary_10_1128_genomeA_00311_13 crossref_primary_10_1128_genomeA_01251_14 crossref_primary_10_1038_ja_2013_24 crossref_primary_10_1186_s40793_015_0065_2 crossref_primary_10_1590_1678_4324_2021200045 crossref_primary_10_1007_s00248_014_0389_2 crossref_primary_10_1007_s12010_013_0680_6 crossref_primary_10_1186_s40793_016_0172_8 crossref_primary_10_4056_sigs_4968750 crossref_primary_10_4236_fns_2022_133020 crossref_primary_10_1016_j_jbiotec_2015_08_007 crossref_primary_10_2138_am_2018_6429 crossref_primary_10_1002_bies_201300037 crossref_primary_10_1016_j_jiph_2017_01_010 crossref_primary_10_1186_s13068_016_0587_x crossref_primary_10_1016_j_fm_2014_05_002 crossref_primary_10_1007_s10930_015_9618_x crossref_primary_10_1007_s00253_016_7451_6 crossref_primary_10_1371_journal_pone_0090549 crossref_primary_10_1016_j_dib_2017_11_095 crossref_primary_10_1016_j_gca_2014_10_002 crossref_primary_10_35229_jaes_1068313 crossref_primary_10_3389_fmicb_2022_803241 crossref_primary_10_1007_s10295_012_1213_y crossref_primary_10_1099_mic_0_001355 crossref_primary_10_1007_s13369_017_2622_z crossref_primary_10_1073_pnas_2302156120 crossref_primary_10_1139_W09_036 crossref_primary_10_1111_zph_12091 crossref_primary_10_1128_genomeA_00800_17 crossref_primary_10_1186_s12866_017_1016_4 crossref_primary_10_1155_2021_1869748 crossref_primary_10_1039_b908047c crossref_primary_10_1016_j_susmat_2022_e00447 crossref_primary_10_1111_j_1462_2920_2012_02841_x crossref_primary_10_1128_AEM_01051_12 crossref_primary_10_3390_microorganisms10081673 |
Cites_doi | 10.1579/0044-7447-33.8.552 10.1093/bioinformatics/bti739 10.1186/1471-2148-1-8 10.1128/jb.175.7.1936-1945.1993 10.1186/1745-6150-2-33 10.1126/science.286.5442.1129 10.1074/jbc.M611593200 10.1038/382313a0 10.1007/PL00000845 10.1006/mgme.2001.3277 10.1246/bcsj.71.2017 10.1093/nar/25.5.0955 10.1039/b313261g 10.1111/j.1365-2958.2005.04697.x 10.2174/138920305774933240 10.1099/00207713-50-6-2109 10.1073/pnas.260496497 10.1016/j.pep.2005.04.017 10.1146/annurev.micro.52.1.165 10.1128/am.26.6.1001-1003.1973 10.1139/e03-059 10.1039/b505945c 10.1016/S0074-7696(08)61544-2 10.1128/jb.179.21.6749-6755.1997 10.1128/JB.187.21.7434-7443.2005 10.1099/ijs.0.02643-0 10.1016/S0065-2911(01)44011-2 10.1101/gr.9.9.868 10.1128/AEM.70.6.3664-3672.2004 10.1101/gr.4126905 10.1016/j.febslet.2007.05.074 10.1101/gr.8.3.195 10.1007/BF00400386 10.1007/BF00393678 10.1126/science.1101156 10.1074/jbc.C600179200 10.1128/JB.186.12.3970-3979.2004 10.1038/378047a0 10.1039/b401028k 10.1002/elps.200305844 10.1016/0009-2541(94)90018-3 10.1093/nar/gkl932 10.1002/1522-2683(200108)22:14<2908::AID-ELPS2908>3.0.CO;2-M 10.1128/JB.188.7.2355-2363.2006 10.1139/e03-068 10.1016/j.mimet.2004.09.008 10.1093/nar/27.23.4636 10.1073/pnas.0407638102 10.1016/S0021-9673(00)95481-5 10.1016/S0016-7037(03)00489-7 10.1007/BF00399422 10.1016/j.gca.2006.01.009 10.1126/science.1076221 10.1111/j.1574-6968.1995.tb07780.x 10.1016/S0009-2541(00)00212-6 10.1007/978-1-4612-5944-2 10.1007/s10265-007-0074-3 10.1111/j.1348-0421.1988.tb01429.x 10.1128/jb.177.5.1409-1413.1995 10.1186/1471-2148-3-2 10.1271/bbb.58.1045 10.1126/science.1138140 10.1111/j.1462-2920.2004.00686.x 10.1111/j.1365-2958.2004.04023.x 10.1111/j.1574-6968.1994.tb06639.x 10.1099/ijs.0.02473-0 10.1046/j.1365-2958.1998.00979.x 10.1094/MPMI.1997.10.4.506 10.1128/JB.182.11.3072-3080.2000 10.1093/nar/25.17.3389 10.1186/1471-2180-5-35 10.1021/ja061211s 10.1111/j.1365-2958.2005.05019.x 10.1111/j.1365-2958.2005.05020.x 10.1186/1745-6150-1-7 |
ContentType | Journal Article |
Copyright | Copyright © 2008 Saw et al.; licensee BioMed Central Ltd. 2008 Saw et al.; licensee BioMed Central Ltd. |
Copyright_xml | – notice: Copyright © 2008 Saw et al.; licensee BioMed Central Ltd. 2008 Saw et al.; licensee BioMed Central Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7S9 L.6 7QL 7T7 7TM 8FD C1K FR3 P64 RC3 7X8 5PM |
DOI | 10.1186/gb-2008-9-11-r161 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic Genetics Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1474-760X 1465-6914 |
EndPage | 2023 |
ExternalDocumentID | PMC2614493 oai_biomedcentral_com_gb_2008_9_11_r161 19014707 10_1186_gb_2008_9_11_r161 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | New Zealand |
GeographicLocations_xml | – name: New Zealand |
GrantInformation_xml | – fundername: Intramural NIH HHS grantid: Z99 LM999999 |
GroupedDBID | --- 0R~ 123 29H 4.4 53G 5GY 5VS 7X7 AAFWJ AAHBH AAJSJ AASML AAYXX ACGFO ACGFS ACJQM ACPRK ADBBV ADUKV AEGXH AFPKN AHBYD AHSBF AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIAM AOIJS BAPOH BAWUL BCNDV BFQNJ BMC C6C CITATION EBLON EBS GROUPED_DOAJ GX1 HYE IAO IGS IHR ISR ITC KPI ROL RPM RSV SJN SOJ 88E 8FE 8FH 8FI 8FJ 8R4 8R5 ABUWG AFKRA BBNVY BENPR BHPHI BPHCQ BVXVI CCPQU CGR CUY CVF EBD ECM EIF EMOBN FYUFA H13 HCIFZ HMCUK LK8 M1P M7P NPM PHGZM PHGZT PIMPY PMFND PQQKQ PROAC PSQYO SV3 UKHRP 7S9 L.6 2WC 7QL 7T7 7TM 8FD AENEX C1A C1K CS3 E3Z EJD F5P FR3 HZ~ KQ8 O5R O5S O9- OK1 P64 RBZ RC3 SBL TR2 WOQ 7X8 AHYZX C24 DIK ZA5 5PM |
ID | FETCH-LOGICAL-b657t-90f08dedf09a54d6b35ba6647edc0d475b35d00a3a96d43980f1ab5d9dfbbaf53 |
IEDL.DBID | RBZ |
ISSN | 1474-760X 1465-6906 |
IngestDate | Thu Aug 21 17:39:06 EDT 2025 Tue Apr 16 22:46:04 EDT 2024 Fri Jul 11 10:10:14 EDT 2025 Fri Jul 11 06:44:34 EDT 2025 Fri Jul 11 05:39:05 EDT 2025 Fri May 30 10:59:42 EDT 2025 Thu Apr 24 22:52:41 EDT 2025 Tue Jul 01 03:26:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b657t-90f08dedf09a54d6b35ba6647edc0d475b35d00a3a96d43980f1ab5d9dfbbaf53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1186/gb-2008-9-11-r161 |
PMID | 19014707 |
PQID | 2000160377 |
PQPubID | 24069 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2614493 biomedcentral_primary_oai_biomedcentral_com_gb_2008_9_11_r161 proquest_miscellaneous_69939401 proquest_miscellaneous_20270829 proquest_miscellaneous_2000160377 pubmed_primary_19014707 crossref_primary_10_1186_gb_2008_9_11_r161 crossref_citationtrail_10_1186_gb_2008_9_11_r161 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-11-17 |
PublicationDateYYYYMMDD | 2008-11-17 |
PublicationDate_xml | – month: 11 year: 2008 text: 2008-11-17 day: 17 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Genome biology |
PublicationTitleAlternate | Genome Biol |
PublicationYear | 2008 |
Publisher | BioMed Central Ltd BioMed Central |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central |
References | A Rueckert (2023_CR8) 2005; 60 W Heinen (2023_CR6) 1982; 48 BG Mirkin (2023_CR22) 2003; 3 LE Ulrich (2023_CR30) 2007; 35 KO Konhauser (2023_CR13) 2003; 40 KS Makarova (2023_CR23) 2006; 1 U Römling (2023_CR25) 2005; 57 K Büttner (2023_CR69) 2001; 22 T Mizutani (2023_CR51) 1998; 71 E Pikuta (2023_CR5) 2003; 53 DJ Richardson (2023_CR18) 2001; 58 L Lenoci (2023_CR41) 2006; 128 D Gordon (2023_CR61) 1998; 8 S Yamamoto (2023_CR72) 1988; 32 S Oliver (2023_CR44) 1995; 378 EV Armbrust (2023_CR56) 2004; 306 T Kusano (2023_CR58) 2007; 120 FA Rainey (2023_CR10) 1994; 115 RK Iyer (2023_CR73) 2002; 75 PG Burnett (2023_CR20) 2006; 70 E Karatan (2023_CR53) 2005; 187 BW Mountain (2023_CR9) 2003; 40 W Zolg (2023_CR75) 1973; 26 K Ogawa (2023_CR17) 1995; 177 A Sekowska (2023_CR37) 1998; 29 M Sumper (2023_CR43) 2004; 14 MJ Lee (2023_CR74) 2005; 43 E Brunner (2023_CR47) 2004; 6 G Candiano (2023_CR70) 2004; 25 RD Pancost (2023_CR12) 2005; 7 X Huang (2023_CR62) 1999; 9 N Guerreiro (2023_CR68) 1997; 10 SF Altschul (2023_CR64) 1997; 25 DA Ryjenkov (2023_CR28) 2006; 281 N Kröger (2023_CR46) 2002; 298 RK Iler (2023_CR50) 1979 MM Urrutia (2023_CR55) 1994; 116 AM Lauwers (2023_CR11) 1983; 49 VR Phoenix (2023_CR59) 2000; 169 N Kröger (2023_CR40) 2000; 97 RJ Siezen (2023_CR21) 1996; 69 S Hou (2023_CR60) 2004; 101 MM Nakano (2023_CR1) 1997; 179 SS Branda (2023_CR31) 2004; 186 MY Galperin (2023_CR26) 2005; 5 MA Hamon (2023_CR32) 2004; 52 D Amikam (2023_CR27) 2006; 22 EV Koonin (2023_CR66) 2002 H Cruz Ramos (2023_CR3) 2000; 182 SS Branda (2023_CR34) 2006; 59 E Pikuta (2023_CR4) 2000; 50 TM Lowe (2023_CR65) 1997; 25 M Hecker (2023_CR36) 2001; 44 JM Knott (2023_CR38) 2007; 581 R Gordon (2023_CR48) 1994; 150 KS Makarova (2023_CR78) 2007; 2 AO Belduz (2023_CR15) 2003; 53 F Chu (2023_CR33) 2006; 59 E De Clerck (2023_CR7) 2004; 70 M Urrutia Mera (2023_CR54) 1993; 175 T Hoffmann (2023_CR16) 1995; 131 R Barrangou (2023_CR24) 2007; 315 N Kröger (2023_CR39) 1999; 286 JW Redmond (2023_CR76) 1979; 170 LG Benning (2023_CR35) 2004; 68 C Médigue (2023_CR19) 2005; 15 YI Wolf (2023_CR67) 2001; 1 K Lutz (2023_CR42) 2005; 7 S Mann (2023_CR45) 1996; 382 KW Shimotohno (2023_CR71) 1994; 58 AL Delcher (2023_CR63) 1999; 27 MM Nakano (2023_CR2) 1998; 52 TL Simpson (2023_CR49) 1981 JT Pratt (2023_CR29) 2007; 282 CN Patel (2023_CR52) 2006; 188 DM Morgan (2023_CR77) 1998; 79 KO Konhauser (2023_CR14) 2004; 33 U Bachrach (2023_CR57) 2005; 6 |
References_xml | – volume: 33 start-page: 552 year: 2004 ident: 2023_CR14 publication-title: Ambio doi: 10.1579/0044-7447-33.8.552 – volume: 22 start-page: 3 year: 2006 ident: 2023_CR27 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti739 – volume: 1 start-page: 8 year: 2001 ident: 2023_CR67 publication-title: BMC Evol Biol doi: 10.1186/1471-2148-1-8 – volume: 175 start-page: 1936 year: 1993 ident: 2023_CR54 publication-title: J Bacteriol doi: 10.1128/jb.175.7.1936-1945.1993 – volume: 2 start-page: 33 year: 2007 ident: 2023_CR78 publication-title: Biol Direct doi: 10.1186/1745-6150-2-33 – volume: 286 start-page: 1129 year: 1999 ident: 2023_CR39 publication-title: Science doi: 10.1126/science.286.5442.1129 – volume: 282 start-page: 12860 year: 2007 ident: 2023_CR29 publication-title: J Biol Chem doi: 10.1074/jbc.M611593200 – volume: 382 start-page: 313 year: 1996 ident: 2023_CR45 publication-title: Nature doi: 10.1038/382313a0 – volume: 58 start-page: 165 year: 2001 ident: 2023_CR18 publication-title: Cell Mol Life Sci doi: 10.1007/PL00000845 – volume: 75 start-page: 209 year: 2002 ident: 2023_CR73 publication-title: Mol Genet Metab doi: 10.1006/mgme.2001.3277 – volume: 71 start-page: 2017 year: 1998 ident: 2023_CR51 publication-title: Bull Chem Soc Jpn doi: 10.1246/bcsj.71.2017 – volume: 25 start-page: 955 year: 1997 ident: 2023_CR65 publication-title: Nucleic Acids Res doi: 10.1093/nar/25.5.0955 – volume: 6 start-page: 854 year: 2004 ident: 2023_CR47 publication-title: Phys Chem Chem Phys doi: 10.1039/b313261g – volume: 57 start-page: 629 year: 2005 ident: 2023_CR25 publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2005.04697.x – volume: 6 start-page: 559 year: 2005 ident: 2023_CR57 publication-title: Curr Protein Pept Sci doi: 10.2174/138920305774933240 – volume: 50 start-page: 2109 year: 2000 ident: 2023_CR4 publication-title: Int J Syst Evol Microbiol doi: 10.1099/00207713-50-6-2109 – volume: 97 start-page: 14133 year: 2000 ident: 2023_CR40 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.260496497 – volume: 43 start-page: 140 year: 2005 ident: 2023_CR74 publication-title: Protein Expr Purif doi: 10.1016/j.pep.2005.04.017 – volume: 52 start-page: 165 year: 1998 ident: 2023_CR2 publication-title: Annu Rev Microbiol doi: 10.1146/annurev.micro.52.1.165 – volume: 26 start-page: 1001 year: 1973 ident: 2023_CR75 publication-title: Appl Microbiol doi: 10.1128/am.26.6.1001-1003.1973 – volume: 40 start-page: 1713 year: 2003 ident: 2023_CR13 publication-title: Can J Earth Sci doi: 10.1139/e03-059 – volume: 7 start-page: 2812 year: 2005 ident: 2023_CR42 publication-title: Phys Chem Chem Phys doi: 10.1039/b505945c – volume: 150 start-page: 243 year: 1994 ident: 2023_CR48 publication-title: Int Rev Cytol doi: 10.1016/S0074-7696(08)61544-2 – volume: 179 start-page: 6749 year: 1997 ident: 2023_CR1 publication-title: J Bacteriol doi: 10.1128/jb.179.21.6749-6755.1997 – volume: 187 start-page: 7434 year: 2005 ident: 2023_CR53 publication-title: J Bacteriol doi: 10.1128/JB.187.21.7434-7443.2005 – volume: 53 start-page: 1561 year: 2003 ident: 2023_CR5 publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijs.0.02643-0 – volume: 44 start-page: 35 year: 2001 ident: 2023_CR36 publication-title: Adv Microb Physiol doi: 10.1016/S0065-2911(01)44011-2 – volume: 9 start-page: 868 year: 1999 ident: 2023_CR62 publication-title: Genome Res doi: 10.1101/gr.9.9.868 – volume: 70 start-page: 3664 year: 2004 ident: 2023_CR7 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.70.6.3664-3672.2004 – volume-title: Sequence - Evolution - Function. Computational Approaches in Comparative Genomics year: 2002 ident: 2023_CR66 – volume: 15 start-page: 1325 year: 2005 ident: 2023_CR19 publication-title: Genome Res doi: 10.1101/gr.4126905 – volume: 581 start-page: 3081 year: 2007 ident: 2023_CR38 publication-title: FEBS Lett doi: 10.1016/j.febslet.2007.05.074 – volume: 8 start-page: 195 year: 1998 ident: 2023_CR61 publication-title: Genome Res doi: 10.1101/gr.8.3.195 – volume: 48 start-page: 265 year: 1982 ident: 2023_CR6 publication-title: Antonie van Leeuwenhoek doi: 10.1007/BF00400386 – volume: 49 start-page: 191 year: 1983 ident: 2023_CR11 publication-title: Antonie van Leeuwenhoek doi: 10.1007/BF00393678 – volume: 306 start-page: 79 year: 2004 ident: 2023_CR56 publication-title: Science doi: 10.1126/science.1101156 – volume: 281 start-page: 30310 year: 2006 ident: 2023_CR28 publication-title: J Biol Chem doi: 10.1074/jbc.C600179200 – volume: 186 start-page: 3970 year: 2004 ident: 2023_CR31 publication-title: J Bacteriol doi: 10.1128/JB.186.12.3970-3979.2004 – volume: 378 start-page: 47 year: 1995 ident: 2023_CR44 publication-title: Nature doi: 10.1038/378047a0 – volume: 14 start-page: 2059 year: 2004 ident: 2023_CR43 publication-title: J Mater Chem doi: 10.1039/b401028k – volume: 25 start-page: 1327 year: 2004 ident: 2023_CR70 publication-title: Electrophoresis doi: 10.1002/elps.200305844 – volume: 116 start-page: 261 year: 1994 ident: 2023_CR55 publication-title: Chem Geol doi: 10.1016/0009-2541(94)90018-3 – volume: 35 start-page: D386 year: 2007 ident: 2023_CR30 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl932 – volume: 22 start-page: 2908 year: 2001 ident: 2023_CR69 publication-title: Electrophoresis doi: 10.1002/1522-2683(200108)22:14<2908::AID-ELPS2908>3.0.CO;2-M – volume: 188 start-page: 2355 year: 2006 ident: 2023_CR52 publication-title: J Bacteriol doi: 10.1128/JB.188.7.2355-2363.2006 – volume: 40 start-page: 1643 year: 2003 ident: 2023_CR9 publication-title: Can J Earth Sci doi: 10.1139/e03-068 – volume: 60 start-page: 155 year: 2005 ident: 2023_CR8 publication-title: J Microbiol Methods doi: 10.1016/j.mimet.2004.09.008 – volume: 27 start-page: 4636 year: 1999 ident: 2023_CR63 publication-title: Nucleic Acids Res doi: 10.1093/nar/27.23.4636 – volume: 101 start-page: 18036 year: 2004 ident: 2023_CR60 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0407638102 – volume: 170 start-page: 479 year: 1979 ident: 2023_CR76 publication-title: J Chromatogr doi: 10.1016/S0021-9673(00)95481-5 – volume: 68 start-page: 729 year: 2004 ident: 2023_CR35 publication-title: Geochim Cosmochim Acta doi: 10.1016/S0016-7037(03)00489-7 – volume: 69 start-page: 171 year: 1996 ident: 2023_CR21 publication-title: Antonie van Leeuwenhoek doi: 10.1007/BF00399422 – volume: 70 start-page: 1914 year: 2006 ident: 2023_CR20 publication-title: Geochim Cosmochim Acta doi: 10.1016/j.gca.2006.01.009 – volume: 298 start-page: 584 year: 2002 ident: 2023_CR46 publication-title: Science doi: 10.1126/science.1076221 – volume: 79 start-page: 111 year: 1998 ident: 2023_CR77 publication-title: Methods Mol Biol – volume: 131 start-page: 219 year: 1995 ident: 2023_CR16 publication-title: FEMS Microbiol Lett doi: 10.1111/j.1574-6968.1995.tb07780.x – volume: 169 start-page: 329 year: 2000 ident: 2023_CR59 publication-title: Chem Geol doi: 10.1016/S0009-2541(00)00212-6 – volume-title: Silicon and Siliceous Structures in Biological Systems year: 1981 ident: 2023_CR49 doi: 10.1007/978-1-4612-5944-2 – volume: 120 start-page: 345 year: 2007 ident: 2023_CR58 publication-title: J Plant Res doi: 10.1007/s10265-007-0074-3 – volume: 32 start-page: 675 year: 1988 ident: 2023_CR72 publication-title: Microbiol Immunol doi: 10.1111/j.1348-0421.1988.tb01429.x – volume: 177 start-page: 1409 year: 1995 ident: 2023_CR17 publication-title: J Bacteriol doi: 10.1128/jb.177.5.1409-1413.1995 – volume: 3 start-page: 2 year: 2003 ident: 2023_CR22 publication-title: BMC Evol Biol doi: 10.1186/1471-2148-3-2 – volume: 58 start-page: 1045 year: 1994 ident: 2023_CR71 publication-title: Biosci Biotechnol Biochem doi: 10.1271/bbb.58.1045 – volume: 315 start-page: 1709 year: 2007 ident: 2023_CR24 publication-title: Science doi: 10.1126/science.1138140 – volume-title: The Chemistry of Silica year: 1979 ident: 2023_CR50 – volume: 7 start-page: 66 year: 2005 ident: 2023_CR12 publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2004.00686.x – volume: 52 start-page: 847 year: 2004 ident: 2023_CR32 publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2004.04023.x – volume: 115 start-page: 205 year: 1994 ident: 2023_CR10 publication-title: FEMS Microbiol Lett doi: 10.1111/j.1574-6968.1994.tb06639.x – volume: 53 start-page: 1315 year: 2003 ident: 2023_CR15 publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijs.0.02473-0 – volume: 29 start-page: 851 year: 1998 ident: 2023_CR37 publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.1998.00979.x – volume: 10 start-page: 506 year: 1997 ident: 2023_CR68 publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI.1997.10.4.506 – volume: 182 start-page: 3072 year: 2000 ident: 2023_CR3 publication-title: J Bacteriol doi: 10.1128/JB.182.11.3072-3080.2000 – volume: 25 start-page: 3389 year: 1997 ident: 2023_CR64 publication-title: Nucleic Acids Res doi: 10.1093/nar/25.17.3389 – volume: 5 start-page: 35 year: 2005 ident: 2023_CR26 publication-title: BMC Microbiol doi: 10.1186/1471-2180-5-35 – volume: 128 start-page: 10111 year: 2006 ident: 2023_CR41 publication-title: J Am Chem Soc doi: 10.1021/ja061211s – volume: 59 start-page: 1216 year: 2006 ident: 2023_CR33 publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2005.05019.x – volume: 59 start-page: 1229 year: 2006 ident: 2023_CR34 publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2005.05020.x – volume: 1 start-page: 7 year: 2006 ident: 2023_CR23 publication-title: Biol Direct doi: 10.1186/1745-6150-1-7 |
SSID | ssj0019426 ssj0017866 |
Score | 2.2089138 |
Snippet | Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed... BACKGROUND: Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and... Sequencing of the complete genome of Anoxybacillus flavithermus reveals enzymes that are required for silica adaptation and biofilm formation. Background... Sequencing of the complete genome of Anoxybacillus flavithermus reveals enzymes that are required for silica adaptation and biofilm formation. |
SourceID | pubmedcentral biomedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | R161 |
SubjectTerms | anaerobes Anoxybacillus flavithermus Bacillaceae - chemistry Bacillaceae - genetics Bacillaceae - physiology Bacteria Bacterial Proteins - analysis biofilm biomineralization chromosomes drainage water dried milk enzymes Fossils gelatin gene deletion genome Genome, Bacterial Geobacillus geothermal energy Gram-positive bacteria habitats hot springs Hot Temperature nanospheres New Zealand nucleotide sequences physiology polyamines processed foods proteome proteomics sequence analysis silica Silicon Dioxide thermophilic bacteria wastewater Water Microbiology |
Title | Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus WK1 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/19014707 https://www.proquest.com/docview/2000160377 https://www.proquest.com/docview/20270829 https://www.proquest.com/docview/69939401 http://dx.doi.org/10.1186/gb-2008-9-11-r161 https://pubmed.ncbi.nlm.nih.gov/PMC2614493 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqokpcEFAeC7QYiRMiIk5iO0bqoaA-VAQnKlZcInttt5GyTrUPRP89M062JUvLpYddbTZjZ9cTa-abyXxDyFsvSqnAsiSOGZ8UYPISgGACC3UNywyYfIdxyK_fxPFpcTLm42ue7bUMPivFhzOTxBy9wgqwGUOocy8rwBAiNP_08yplIEvRlxLxBNl3-xTmjVOsVbc3Q6P0j6e5_sDkXxbo8CF50LuOdL_T9SOy4cJjstU1k7zcJouDMNGAeRvwHi2tA53XGJD7SJGGdere00jJAJ-oDpbGiEYcSVtPwQvE12zaXmCAZUJNR-K8nNL90P6-hMO6aZZz6hv9q46ScPDjC3tCTg8Pvn8-TvqeCokRXC5AET4trbM-VZoXVoA2jBaikPDnUltIDl_YNNW5VsKC5srUM224VdYboz3Pn5LN0Ab3nFAAdtKXueNGwUwgMrEM-f5y0D-zPBuRvcEiVxcdf0aFjNbDM7C5qjPTtcRUAEoqVNKIpCulVJOesBz7ZjRVBC6luGnIu6shq6v9R_jNStMV7ClMlOjg2uUc5WL7bSlH5PWtMpnEuuTbJQS4fgrg64g86-6e65-EuWuZwuxycF8NVmh4JtTnkfs7QwCv8hd3XNuX5H7cEfg8o3xFNhezpdsB72phdmNUAt6Pxmw37rA_waEnmw |
linkProvider | BioMedCentral |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqqqq9IPpeKMWVOCFCk01sx5U40Aq0PA8IVMQlstc2jZR10D6q8u8742QpodBLD5HyGDuOx87MeDzfELLueC4kSJbIJtpFGYi8CEwwjoG6OulrEPkW1yGPT_jgPDu4YBft_qdJiK3y9ci2AERbd0PQq_Dfnm8Xa2Z7zj9f6Si48CUGiI0TtISeCsYEZjM4_Xp561EQOW8jjViE4Lyth_PBKu4Fv1ddmfWXInp_P-UdAbW3RBZbzZLuNE1_SZ5Y_4o8a3JN3rwm010_VGASV6BcGlp6Oilxve4LbfpikwbEBjijyhsaFjxCSVo7CkoiHuNRfY3rL0OqG4zn2Yju-PrXDVyWVTWbUFepn2WghIvvh8kbcr63e_ZtELUpFyLNmZgCn1ycG2tcLBXLDAdmacV5JuDjYpMJBjdMHKtUSW6AsXnsEqWZkcZprRxL35IFX3v7nlCw-4TLU8u0hJqAZGgShANMYXgkhvV7ZLvTycV1A69RIOB19wkwvrjSTcZMCTZLgUzqkXjOlGLY4pljWo2qCHZNzh8qsnFbZP62fxB_mnO6gCmHfhTlbT2bIF3Izi1Ej6w9StMXGLb8OAUHzVCCddsj75rR86dJ6NoWMdQuOuOq00PdJ778EaDB-2jfy3T5P_t2jTwfnB0fFUf7J4cr5EWYHbj1UXwgC9PxzK6CIjbVH8MM-w0X6DVn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQEYgLKs9uC62ROCFCk01sx0gcSumqUKgQoqLiEtmxXaJmndU-EP33zDjZ0pSWC4dIeYydxOPJzHgy3xDy3PFcSNAskU20izJQeRG4YBwTdXUy1KDyLa5Dfjrk-0fZh2N23JUDmoXcKt-MbQdA9OpiCnodvtuwU55uT4xrxT3n2yc6CjF8iRli0wRdoZuCMYFS-uXt9_OQgsh5l2rEIkTn7UKcV3ZxKfu97iutvyzRyz9UXtBQo1VytzMt6U47F-6RG9bfJ7faYpNnD8h8z5cKfOIarEtDK09nFS7YvabtYLykAbIB9qjyhoYVj9CSNo6ClYjbdNxMcAGmpLoFeV6M6Y5vfp3BYVXXixl1tfpZBUo4-HaQPCRHo72vu_tRV3Mh0pyJOTDKxbmxxsVSscxw4JZWnGcCXi42mWBwwsSxSpXkBjibxy5RmhlpnNbKsfQRWfGNt2uEguMnXJ5apiX0BCSlSRAPMIX5kRg2HJA3vUEuJi2-RoGI1_0rwPniRLclMyU4LQUyaUDiJVOKsgM0x7oadREcm5xf1eTFeZPl3f5B_GzJ6QJkDgMpyttmMUO6UJ5biAHZupZmKDBv-XoKDqahBPd2QB63s-fPI2FsW8TQu-jNq94I9a_46kfABh-igy_T9f8c2y1y-_O7UfHx_eHBBrkThAN_fRRPyMp8urBPwRCb680gYL8BhX81Mg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Encapsulated+in+silica%3A+genome%2C+proteome+and+physiology+of+the+thermophilic+bacterium+Anoxybacillus+flavithermus+WK1&rft.jtitle=Genome+biology&rft.au=Saw%2C+Jimmy+H&rft.au=Mountain%2C+Bruce+W&rft.au=Feng%2C+Lu&rft.au=Omelchenko%2C+Marina+V&rft.date=2008-11-17&rft.eissn=1474-760X&rft.volume=9&rft.issue=11&rft.spage=R161&rft_id=info:doi/10.1186%2Fgb-2008-9-11-r161&rft_id=info%3Apmid%2F19014707&rft.externalDocID=19014707 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon |