Impact of accelerometer data processing decisions on the sample size, wear time and physical activity level of a large cohort study
Accelerometers objectively assess physical activity (PA) and are currently used in several large-scale epidemiological studies, but there is no consensus for processing the data. This study compared the impact of wear-time assessment methods and using either vertical (V)-axis or vector magnitude (VM...
Saved in:
Published in | BMC public health Vol. 14; no. 1; p. 1210 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
24.11.2014
BioMed Central |
Subjects | |
Online Access | Get full text |
ISSN | 1471-2458 1471-2458 |
DOI | 10.1186/1471-2458-14-1210 |
Cover
Loading…
Abstract | Accelerometers objectively assess physical activity (PA) and are currently used in several large-scale epidemiological studies, but there is no consensus for processing the data. This study compared the impact of wear-time assessment methods and using either vertical (V)-axis or vector magnitude (VM) cut-points on accelerometer output.
Participants (7,650 women, mean age 71.4 y) were mailed an accelerometer (ActiGraph GT3X+), instructed to wear it for 7 days, record dates and times the monitor was worn on a log, and return the monitor and log via mail. Data were processed using three wear-time methods (logs, Troiano or Choi algorithms) and V-axis or VM cut-points.
Using algorithms alone resulted in "mail-days" incorrectly identified as "wear-days" (27-79% of subjects had >7-days of valid data). Using only dates from the log and the Choi algorithm yielded: 1) larger samples with valid data than using log dates and times, 2) similar wear-times as using log dates and times, 3) more wear-time (V, 48.1 min more; VM, 29.5 min more) than only log dates and Troiano algorithm. Wear-time algorithm impacted sedentary time (~30-60 min lower for Troiano vs. Choi) but not moderate-to-vigorous (MV) PA time. Using V-axis cut-points yielded ~60 min more sedentary time and ~10 min less MVPA time than using VM cut-points.
Combining log-dates and the Choi algorithm was optimal, minimizing missing data and researcher burden. Estimates of time in physical activity and sedentary behavior are not directly comparable between V-axis and VM cut-points. These findings will inform consensus development for accelerometer data processing in ongoing epidemiologic studies. |
---|---|
AbstractList | Doc number: 1210 Abstract Background: Accelerometers objectively assess physical activity (PA) and are currently used in several large-scale epidemiological studies, but there is no consensus for processing the data. This study compared the impact of wear-time assessment methods and using either vertical (V)-axis or vector magnitude (VM) cut-points on accelerometer output. Methods: Participants (7,650 women, mean age 71.4 y) were mailed an accelerometer (ActiGraph GT3X+), instructed to wear it for 7 days, record dates and times the monitor was worn on a log, and return the monitor and log via mail. Data were processed using three wear-time methods (logs, Troiano or Choi algorithms) and V-axis or VM cut-points. Results: Using algorithms alone resulted in "mail-days" incorrectly identified as "wear-days" (27-79% of subjects had >7-days of valid data). Using only dates from the log and the Choi algorithm yielded: 1) larger samples with valid data than using log dates and times, 2) similar wear-times as using log dates and times, 3) more wear-time (V, 48.1 min more; VM, 29.5 min more) than only log dates and Troiano algorithm. Wear-time algorithm impacted sedentary time (~30-60 min lower for Troiano vs. Choi) but not moderate-to-vigorous (MV) PA time. Using V-axis cut-points yielded ~60 min more sedentary time and ~10 min less MVPA time than using VM cut-points. Conclusions: Combining log-dates and the Choi algorithm was optimal, minimizing missing data and researcher burden. Estimates of time in physical activity and sedentary behavior are not directly comparable between V-axis and VM cut-points. These findings will inform consensus development for accelerometer data processing in ongoing epidemiologic studies. Background: Accelerometers objectively assess physical activity (PA) and are currently used in several large-scale epidemiological studies, but there is no consensus for processing the data. This study compared the impact of wear-time assessment methods and using either vertical (V)-axis or vector magnitude (VM) cut-points on accelerometer output. Methods: Participants (7,650 women, mean age 71.4 y) were mailed an accelerometer (ActiGraph GT3X+), instructed to wear it for 7 days, record dates and times the monitor was worn on a log, and return the monitor and log via mail. Data were processed using three wear-time methods (logs, Troiano or Choi algorithms) and V-axis or VM cut-points. Results: Using algorithms alone resulted in "mail-days" incorrectly identified as "wear-days" (27-79% of subjects had >7-days of valid data). Using only dates from the log and the Choi algorithm yielded: 1) larger samples with valid data than using log dates and times, 2) similar wear-times as using log dates and times, 3) more wear-time (V, 48.1 min more; VM, 29.5 min more) than only log dates and Troiano algorithm. Wear-time algorithm impacted sedentary time (~30-60 min lower for Troiano vs. Choi) but not moderate-to-vigorous (MV) PA time. Using V-axis cut-points yielded ~60 min more sedentary time and ~10 min less MVPA time than using VM cut-points. Conclusions: Combining log-dates and the Choi algorithm was optimal, minimizing missing data and researcher burden. Estimates of time in physical activity and sedentary behavior are not directly comparable between V-axis and VM cut-points. These findings will inform consensus development for accelerometer data processing in ongoing epidemiologic studies. Background Accelerometers objectively assess physical activity (PA) and are currently used in several large-scale epidemiological studies, but there is no consensus for processing the data. This study compared the impact of wear-time assessment methods and using either vertical (V)-axis or vector magnitude (VM) cut-points on accelerometer output. Methods Participants (7,650 women, mean age 71.4 y) were mailed an accelerometer (ActiGraph GT3X+), instructed to wear it for 7 days, record dates and times the monitor was worn on a log, and return the monitor and log via mail. Data were processed using three wear-time methods (logs, Troiano or Choi algorithms) and V-axis or VM cut-points. Results Using algorithms alone resulted in "mail-days" incorrectly identified as "wear-days" (27-79% of subjects had >7-days of valid data). Using only dates from the log and the Choi algorithm yielded: 1) larger samples with valid data than using log dates and times, 2) similar wear-times as using log dates and times, 3) more wear-time (V, 48.1 min more; VM, 29.5 min more) than only log dates and Troiano algorithm. Wear-time algorithm impacted sedentary time (~30-60 min lower for Troiano vs. Choi) but not moderate-to-vigorous (MV) PA time. Using V-axis cut-points yielded ~60 min more sedentary time and ~10 min less MVPA time than using VM cut-points. Conclusions Combining log-dates and the Choi algorithm was optimal, minimizing missing data and researcher burden. Estimates of time in physical activity and sedentary behavior are not directly comparable between V-axis and VM cut-points. These findings will inform consensus development for accelerometer data processing in ongoing epidemiologic studies. Keywords: Physical activity, Measurement, Exposure assessment, Behavioral epidemiology, Sedentary behavior Accelerometers objectively assess physical activity (PA) and are currently used in several large-scale epidemiological studies, but there is no consensus for processing the data. This study compared the impact of wear-time assessment methods and using either vertical (V)-axis or vector magnitude (VM) cut-points on accelerometer output.BACKGROUNDAccelerometers objectively assess physical activity (PA) and are currently used in several large-scale epidemiological studies, but there is no consensus for processing the data. This study compared the impact of wear-time assessment methods and using either vertical (V)-axis or vector magnitude (VM) cut-points on accelerometer output.Participants (7,650 women, mean age 71.4 y) were mailed an accelerometer (ActiGraph GT3X+), instructed to wear it for 7 days, record dates and times the monitor was worn on a log, and return the monitor and log via mail. Data were processed using three wear-time methods (logs, Troiano or Choi algorithms) and V-axis or VM cut-points.METHODSParticipants (7,650 women, mean age 71.4 y) were mailed an accelerometer (ActiGraph GT3X+), instructed to wear it for 7 days, record dates and times the monitor was worn on a log, and return the monitor and log via mail. Data were processed using three wear-time methods (logs, Troiano or Choi algorithms) and V-axis or VM cut-points.Using algorithms alone resulted in "mail-days" incorrectly identified as "wear-days" (27-79% of subjects had >7-days of valid data). Using only dates from the log and the Choi algorithm yielded: 1) larger samples with valid data than using log dates and times, 2) similar wear-times as using log dates and times, 3) more wear-time (V, 48.1 min more; VM, 29.5 min more) than only log dates and Troiano algorithm. Wear-time algorithm impacted sedentary time (~30-60 min lower for Troiano vs. Choi) but not moderate-to-vigorous (MV) PA time. Using V-axis cut-points yielded ~60 min more sedentary time and ~10 min less MVPA time than using VM cut-points.RESULTSUsing algorithms alone resulted in "mail-days" incorrectly identified as "wear-days" (27-79% of subjects had >7-days of valid data). Using only dates from the log and the Choi algorithm yielded: 1) larger samples with valid data than using log dates and times, 2) similar wear-times as using log dates and times, 3) more wear-time (V, 48.1 min more; VM, 29.5 min more) than only log dates and Troiano algorithm. Wear-time algorithm impacted sedentary time (~30-60 min lower for Troiano vs. Choi) but not moderate-to-vigorous (MV) PA time. Using V-axis cut-points yielded ~60 min more sedentary time and ~10 min less MVPA time than using VM cut-points.Combining log-dates and the Choi algorithm was optimal, minimizing missing data and researcher burden. Estimates of time in physical activity and sedentary behavior are not directly comparable between V-axis and VM cut-points. These findings will inform consensus development for accelerometer data processing in ongoing epidemiologic studies.CONCLUSIONSCombining log-dates and the Choi algorithm was optimal, minimizing missing data and researcher burden. Estimates of time in physical activity and sedentary behavior are not directly comparable between V-axis and VM cut-points. These findings will inform consensus development for accelerometer data processing in ongoing epidemiologic studies. Accelerometers objectively assess physical activity (PA) and are currently used in several large-scale epidemiological studies, but there is no consensus for processing the data. This study compared the impact of wear-time assessment methods and using either vertical (V)-axis or vector magnitude (VM) cut-points on accelerometer output. Using algorithms alone resulted in "mail-days" incorrectly identified as "wear-days" (27-79% of subjects had >7-days of valid data). Using only dates from the log and the Choi algorithm yielded: 1) larger samples with valid data than using log dates and times, 2) similar wear-times as using log dates and times, 3) more wear-time (V, 48.1 min more; VM, 29.5 min more) than only log dates and Troiano algorithm. Wear-time algorithm impacted sedentary time (~30-60 min lower for Troiano vs. Choi) but not moderate-to-vigorous (MV) PA time. Using V-axis cut-points yielded ~60 min more sedentary time and ~10 min less MVPA time than using VM cut-points. Combining log-dates and the Choi algorithm was optimal, minimizing missing data and researcher burden. Estimates of time in physical activity and sedentary behavior are not directly comparable between V-axis and VM cut-points. These findings will inform consensus development for accelerometer data processing in ongoing epidemiologic studies. Accelerometers objectively assess physical activity (PA) and are currently used in several large-scale epidemiological studies, but there is no consensus for processing the data. This study compared the impact of wear-time assessment methods and using either vertical (V)-axis or vector magnitude (VM) cut-points on accelerometer output. Participants (7,650 women, mean age 71.4 y) were mailed an accelerometer (ActiGraph GT3X+), instructed to wear it for 7 days, record dates and times the monitor was worn on a log, and return the monitor and log via mail. Data were processed using three wear-time methods (logs, Troiano or Choi algorithms) and V-axis or VM cut-points. Using algorithms alone resulted in "mail-days" incorrectly identified as "wear-days" (27-79% of subjects had >7-days of valid data). Using only dates from the log and the Choi algorithm yielded: 1) larger samples with valid data than using log dates and times, 2) similar wear-times as using log dates and times, 3) more wear-time (V, 48.1 min more; VM, 29.5 min more) than only log dates and Troiano algorithm. Wear-time algorithm impacted sedentary time (~30-60 min lower for Troiano vs. Choi) but not moderate-to-vigorous (MV) PA time. Using V-axis cut-points yielded ~60 min more sedentary time and ~10 min less MVPA time than using VM cut-points. Combining log-dates and the Choi algorithm was optimal, minimizing missing data and researcher burden. Estimates of time in physical activity and sedentary behavior are not directly comparable between V-axis and VM cut-points. These findings will inform consensus development for accelerometer data processing in ongoing epidemiologic studies. BACKGROUND: Accelerometers objectively assess physical activity (PA) and are currently used in several large-scale epidemiological studies, but there is no consensus for processing the data. This study compared the impact of wear-time assessment methods and using either vertical (V)-axis or vector magnitude (VM) cut-points on accelerometer output. METHODS: Participants (7,650 women, mean age 71.4 y) were mailed an accelerometer (ActiGraph GT3X+), instructed to wear it for 7 days, record dates and times the monitor was worn on a log, and return the monitor and log via mail. Data were processed using three wear-time methods (logs, Troiano or Choi algorithms) and V-axis or VM cut-points. RESULTS: Using algorithms alone resulted in "mail-days" incorrectly identified as "wear-days" (27-79% of subjects had >7-days of valid data). Using only dates from the log and the Choi algorithm yielded: 1) larger samples with valid data than using log dates and times, 2) similar wear-times as using log dates and times, 3) more wear-time (V, 48.1 min more; VM, 29.5 min more) than only log dates and Troiano algorithm. Wear-time algorithm impacted sedentary time (~30-60 min lower for Troiano vs. Choi) but not moderate-to-vigorous (MV) PA time. Using V-axis cut-points yielded ~60 min more sedentary time and ~10 min less MVPA time than using VM cut-points. CONCLUSIONS: Combining log-dates and the Choi algorithm was optimal, minimizing missing data and researcher burden. Estimates of time in physical activity and sedentary behavior are not directly comparable between V-axis and VM cut-points. These findings will inform consensus development for accelerometer data processing in ongoing epidemiologic studies. |
ArticleNumber | 1210 |
Audience | Academic |
Author | Keadle, Sarah Kozey Freedson, Patty S Lee, I-Min Shiroma, Eric J |
Author_xml | – sequence: 1 givenname: Sarah Kozey surname: Keadle fullname: Keadle, Sarah Kozey – sequence: 2 givenname: Eric J surname: Shiroma fullname: Shiroma, Eric J – sequence: 3 givenname: Patty S surname: Freedson fullname: Freedson, Patty S – sequence: 4 givenname: I-Min surname: Lee fullname: Lee, I-Min |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25421941$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1r3DAQhk1JaT7aH9BLEfTSQ51YX7Z8KYT0KxDIpT0LWR7vKsiSK2k3bK_945WzSZoNCRQdJI3eeTS8M4fFnvMOiuItro4xFvUJZg0uCeOixKzEBFcvioP72N6D835xGONVVeFGcPKq2CecEdwyfFD8OR8npRPyA1Jag4XgR0gQUK-SQlPwGmI0boF60CYa7yLyDqUloKjGyebN_IaP6BpUQMmMgJTr0bTcRKOVzchk1iZtkIU12JtPkFVhAUj7pQ8JxbTqN6-Ll4OyEd7c7kfFz69ffpx9Ly8uv52fnV6UXc1ZKjvMuw4zAppR3jOudStAABaUdw0D3RI-DLxve4BWAambRlGCh3zTMOiG06Pi05Y7rboReg0uBWXlFMyowkZ6ZeTuizNLufBryQhr6hpnwOctoDP-GcDui_ajnJsg5ybkk5yblDEfbusI_tcKYpKjidl7qxz4VZS4prwitCb0P6RECIGZaLL0_SPplV8Flw29UVFRYU7_qRbKgjRu8LlQPUPlKactb2nNZ6eOn1Dl1cNodB7CweT4TsK7h9beW3I3aFnQbAU6-BgDDFKbpFIeqEw2VuJKziP9pFv4UeYd_Pmcv802-Ok |
CitedBy_id | crossref_primary_10_1016_j_cct_2017_12_004 crossref_primary_10_1186_s12874_019_0712_1 crossref_primary_10_1249_MSS_0000000000000915 crossref_primary_10_1080_02701367_2020_1734520 crossref_primary_10_1177_27536130241265669 crossref_primary_10_2196_36889 crossref_primary_10_1123_jmpb_2021_0050 crossref_primary_10_2139_ssrn_4179191 crossref_primary_10_1080_02640414_2021_1981689 crossref_primary_10_1097_BRS_0000000000004385 crossref_primary_10_1123_jmpb_2018_0052 crossref_primary_10_1371_journal_pone_0222268 crossref_primary_10_1016_j_mhpa_2015_09_003 crossref_primary_10_1007_s12529_021_09999_5 crossref_primary_10_1007_s12561_023_09383_9 crossref_primary_10_1136_bjsports_2015_095947 crossref_primary_10_1088_1361_6579_ac18fe crossref_primary_10_1136_bmjopen_2024_084645 crossref_primary_10_2196_resprot_9098 crossref_primary_10_1123_jmpb_2019_0062 crossref_primary_10_1186_s12889_019_6837_7 crossref_primary_10_3389_fpubh_2023_1132190 crossref_primary_10_1186_s12877_021_02289_5 crossref_primary_10_1249_MSS_0000000000001287 crossref_primary_10_1161_JAHA_122_028180 crossref_primary_10_3390_jcm12165340 crossref_primary_10_1161_JAHA_117_007064 crossref_primary_10_1080_02640414_2024_2319448 crossref_primary_10_1136_bmj_l4570 crossref_primary_10_1186_s12889_018_5415_8 crossref_primary_10_1002_acr2_1013 crossref_primary_10_1214_21_AOAS1596 crossref_primary_10_2196_39856 crossref_primary_10_1123_jmpb_2019_0037 crossref_primary_10_1016_j_nutres_2022_03_001 crossref_primary_10_1016_j_jfma_2023_08_001 crossref_primary_10_1186_s12884_019_2293_8 crossref_primary_10_3390_app14093854 crossref_primary_10_1249_MSS_0000000000001355 crossref_primary_10_1371_journal_pone_0274442 crossref_primary_10_1186_s12889_018_5212_4 crossref_primary_10_3390_s18020540 crossref_primary_10_1123_jmpb_2019_0049 crossref_primary_10_3390_s21082726 crossref_primary_10_1016_j_avsg_2020_03_040 crossref_primary_10_1016_j_psychres_2017_04_035 crossref_primary_10_7717_peerj_8284 crossref_primary_10_1002_art_39252 crossref_primary_10_1080_2331205X_2017_1313505 crossref_primary_10_1016_j_future_2022_11_019 crossref_primary_10_1186_s12966_017_0525_8 crossref_primary_10_3390_ijerph15040594 crossref_primary_10_1123_jmpb_2017_0008 crossref_primary_10_1123_jmpb_2018_0062 crossref_primary_10_1186_s12889_020_09128_z crossref_primary_10_3390_ijerph192214767 crossref_primary_10_3390_ijerph17249323 crossref_primary_10_1093_gerona_glw026 crossref_primary_10_1249_MSS_0000000000000778 crossref_primary_10_1123_jmpb_2017_0010 crossref_primary_10_1590_1414_462x201900020169 crossref_primary_10_1186_s12970_018_0262_7 crossref_primary_10_1249_MSS_0000000000001743 crossref_primary_10_1186_s12966_018_0749_2 crossref_primary_10_1016_j_jpeds_2018_03_057 crossref_primary_10_1016_j_conctc_2019_100386 crossref_primary_10_1038_s41598_020_62821_2 crossref_primary_10_1007_s00394_023_03102_2 crossref_primary_10_1016_j_jth_2021_101234 crossref_primary_10_1080_07315724_2019_1691954 crossref_primary_10_1080_03014460_2024_2310724 crossref_primary_10_1016_j_pmedr_2021_101408 crossref_primary_10_1038_s41598_024_58724_1 crossref_primary_10_1080_00336297_2017_1380054 crossref_primary_10_1249_MSS_0000000000000725 crossref_primary_10_1093_abm_kaab109 crossref_primary_10_3390_ijerph18010032 crossref_primary_10_1136_bmjopen_2024_085896 crossref_primary_10_3390_nu10050566 crossref_primary_10_1016_j_amepre_2016_11_010 crossref_primary_10_1097_NCC_0000000000000834 crossref_primary_10_1016_j_sleh_2022_10_002 crossref_primary_10_1123_jmpb_2018_0005 crossref_primary_10_3389_fpubh_2024_1175109 crossref_primary_10_1007_s40279_017_0716_0 crossref_primary_10_1186_s13063_019_3557_3 crossref_primary_10_1016_j_apmr_2017_05_008 crossref_primary_10_3390_life13020574 crossref_primary_10_1016_j_gaitpost_2015_11_005 crossref_primary_10_1016_j_respe_2018_10_010 crossref_primary_10_1016_j_gerinurse_2022_02_003 crossref_primary_10_1186_s12966_020_00966_z crossref_primary_10_1371_journal_pone_0202390 crossref_primary_10_1016_j_conctc_2020_100626 crossref_primary_10_3390_ijerph192214834 crossref_primary_10_1371_journal_pone_0225670 crossref_primary_10_1136_bmjopen_2019_031592 crossref_primary_10_1371_journal_pone_0162436 crossref_primary_10_1016_j_cct_2022_106993 crossref_primary_10_1519_JPT_0000000000000077 crossref_primary_10_1038_s41598_017_01092_w crossref_primary_10_1186_s12966_021_01173_0 crossref_primary_10_1097_HJH_0000000000000904 crossref_primary_10_7600_jpfsm_6_135 crossref_primary_10_1038_s41598_023_36924_5 crossref_primary_10_1111_sms_12887 crossref_primary_10_1159_000479753 crossref_primary_10_5897_IJNAM2016_0207 crossref_primary_10_1123_jmpb_2018_0029 crossref_primary_10_1111_sms_14541 |
Cites_doi | 10.1016/j.jsams.2011.04.003 10.1371/journal.pone.0037696 10.1001/jama.294.1.47 10.1136/bjsports-2012-091410 10.1249/mss.0b013e31815a51b3 10.1186/1479-5868-7-53 10.1097/00005768-199805000-00021 10.1016/j.jsams.2012.12.002 10.1123/jpah.9.s1.s68 10.1186/1479-5868-6-17 10.1249/MSS.0b013e318258cb36 10.3390/s100201154 10.1152/japplphysiol.00818.2005 10.1249/MSS.0b013e318260c477 10.1249/MSS.0b013e31820ce174 10.1001/jama.294.1.56 10.1249/MSS.0b013e3181ed61a3 10.1002/oby.20234 10.1080/02701367.2011.10599814 10.1249/MSS.0b013e3182399c7d 10.1007/s00421-010-1639-8 10.1123/jpah.10.5.742 10.1136/bjsports-2013-093154 10.1186/1479-5868-9-103 10.1016/j.jsams.2013.07.002 10.1136/bjsm.2010.079699 10.1249/MSS.0b013e318199885c 10.1093/aje/kwm390 10.1123/jpah.9.s1.s5 10.3389/fpubh.2014.00012 10.1249/MSS.0b013e3182a42a2d 10.1186/1479-5868-10-120 10.1056/NEJMoa050613 10.1249/01.mss.0000185674.09066.8a 10.1080/02701367.2009.10599570 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2014 BioMed Central Ltd. 2014 Keadle et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Keadle et al.; licensee BioMed Central Ltd. 2014 |
Copyright_xml | – notice: COPYRIGHT 2014 BioMed Central Ltd. – notice: 2014 Keadle et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. – notice: Keadle et al.; licensee BioMed Central Ltd. 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7T2 7X7 7XB 88E 8C1 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AN0 ATCPS AZQEC BENPR BGLVJ BHPHI C1K CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. L6V M0S M1P M7S PATMY PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY 7X8 5PM |
DOI | 10.1186/1471-2458-14-1210 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health and Safety Science Abstracts (Full archive) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Public Health Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland British Nursing Database Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection ProQuest Health & Medical Collection Medical Database Engineering Database Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Agricultural & Environmental Science Collection Health & Safety Science Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Public Health ProQuest One Academic Eastern Edition British Nursing Index with Full Text ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Environmental Science Collection ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database Health & Safety Science Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health |
EISSN | 1471-2458 |
EndPage | 1210 |
ExternalDocumentID | PMC4247661 oai_biomedcentral_com_1471_2458_14_1210 3509318771 A539593655 25421941 10_1186_1471_2458_14_1210 |
Genre | Clinical Trial Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA154647 – fundername: NCI NIH HHS grantid: CA154647 |
GroupedDBID | --- 0R~ 23N 2WC 2XV 4.4 44B 53G 5VS 6J9 6PF 7X7 7XC 88E 8C1 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAJSJ AASML AAWTL AAYXX ABDBF ABJCF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AN0 AOIJS ATCPS BAPOH BAWUL BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BNQBC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IHR INH INR IPNFZ ITC KQ8 L6V M1P M48 M7S M~E O5R O5S OK1 OVT P2P PATMY PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PYCSY RBZ RIG RNS ROL RPM RSV SMD SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB CGR CUY CVF ECM EIF NPM PMFND 3V. 7T2 7XB 8FK AZQEC C1K DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 -A0 ABVAZ ACRMQ ADINQ AFGXO AFNRJ C24 ESTFP 5PM |
ID | FETCH-LOGICAL-b654t-b15bb142ec435d45cc98e8e1835b74ec925ff5d9dee9ae2677a321fee9cefc753 |
IEDL.DBID | RBZ |
ISSN | 1471-2458 |
IngestDate | Thu Aug 21 14:34:54 EDT 2025 Wed May 22 07:24:48 EDT 2024 Mon Jul 21 11:07:25 EDT 2025 Thu Jul 10 20:04:12 EDT 2025 Fri Jul 25 10:34:21 EDT 2025 Tue Jun 17 22:05:10 EDT 2025 Tue Jun 10 21:02:50 EDT 2025 Thu Apr 03 06:51:35 EDT 2025 Thu Apr 24 23:06:46 EDT 2025 Tue Jul 01 04:09:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b654t-b15bb142ec435d45cc98e8e1835b74ec925ff5d9dee9ae2677a321fee9cefc753 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1186/1471-2458-14-1210 |
PMID | 25421941 |
PQID | 1628380153 |
PQPubID | 44782 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4247661 biomedcentral_primary_oai_biomedcentral_com_1471_2458_14_1210 proquest_miscellaneous_1635023623 proquest_miscellaneous_1628881487 proquest_journals_1628380153 gale_infotracmisc_A539593655 gale_infotracacademiconefile_A539593655 pubmed_primary_25421941 crossref_citationtrail_10_1186_1471_2458_14_1210 crossref_primary_10_1186_1471_2458_14_1210 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-11-24 |
PublicationDateYYYYMMDD | 2014-11-24 |
PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC public health |
PublicationTitleAlternate | BMC Public Health |
PublicationYear | 2014 |
Publisher | BioMed Central Ltd BioMed Central |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central |
References | KR Evenson (7313_CR33) 2009; 80 JE Sasaki (7313_CR22) 2011; 14 SD Herrmann (7313_CR34) 2014; 48 LC Masse (7313_CR8) 2005; 37 RP Troiano (7313_CR3) 2012; 9 SM Slootmaker (7313_CR37) 2009; 6 SS Intille (7313_CR40) 2012; 44 7313_CR20 KP Gabriel (7313_CR36) 2010; 7 Department of Health and Human Services (7313_CR1) 2008 HJ Helmerhorst (7313_CR4) 2012; 9 7313_CR41 RP Troiano (7313_CR5) 2008; 40 S Kozey-Keadle (7313_CR27) 2011; 43 G Peeters (7313_CR10) 2013; 16 L Choi (7313_CR11) 2011; 43 NR Cook (7313_CR14) 2005; 294 L Choi (7313_CR19) 2012; 44 WL Haskell (7313_CR2) 2012; 9 M Oliver (7313_CR32) 2011; 82 IM Lee (7313_CR15) 2005; 294 K Lyden (7313_CR30) 2014; 46 N Aguilar-Farias (7313_CR18) 2013; 17 EAH Winkler (7313_CR23) 2012; 46 A Mannini (7313_CR31) 2010; 10 PS Freedson (7313_CR12) 1998; 30 K Lyden (7313_CR28) 2012; 44 PM Ridker (7313_CR16) 2005; 352 A Koster (7313_CR6) 2012; 7 GF Dunton (7313_CR39) 2014; 2 KR Evenson (7313_CR13) 2013 C Tudor-Locke (7313_CR38) 2009; 41 GD Miller (7313_CR25) 2013; 21 7313_CR17 C Tudor-Locke (7313_CR9) 2012; 9 K Lyden (7313_CR26) 2011; 111 SD Herrmann (7313_CR35) 2013; 10 CE Matthews (7313_CR21) 2008; 167 B Hutto (7313_CR24) 2013; 10 IM Lee (7313_CR7) 2014; 48 SE Crouter (7313_CR29) 2006; 100 22938557 - Int J Behav Nutr Phys Act. 2012;9:103 23860415 - Med Sci Sports Exerc. 2014 Feb;46(2):386-97 23036822 - J Phys Act Health. 2013 Jul;10(5):742-9 23505166 - Obesity (Silver Spring). 2013 Jan;21(1):32-44 18091006 - Med Sci Sports Exerc. 2008 Jan;40(1):181-8 23932934 - J Sci Med Sport. 2014 May;17(3):293-9 22157771 - Med Sci Sports Exerc. 2012 Jan;44(1 Suppl 1):S24-31 22287448 - J Phys Act Health. 2012 Jan;9 Suppl 1:S5-10 15998891 - JAMA. 2005 Jul 6;294(1):56-65 20842375 - Eur J Appl Physiol. 2011 Feb;111(2):187-201 22648343 - Med Sci Sports Exerc. 2012 Nov;44(11):2243-52 20581716 - Med Sci Sports Exerc. 2011 Feb;43(2):357-64 22525772 - Med Sci Sports Exerc. 2012 Oct;44(10):2009-16 24616888 - Front Public Health. 2014 Feb 28;2:12 20550691 - Int J Behav Nutr Phys Act. 2010 Jun 15;7:53 9588623 - Med Sci Sports Exerc. 1998 May;30(5):777-81 19516163 - Med Sci Sports Exerc. 2009 Jul;41(7):1384-91 16322367 - J Appl Physiol (1985). 2006 Apr;100(4):1324-31 23294696 - J Sci Med Sport. 2013 Nov;16(6):515-9 24297837 - Br J Sports Med. 2014 Feb;48(3):197-201 18303006 - Am J Epidemiol. 2008 Apr 1;167(7):875-81 22719846 - PLoS One. 2012;7(6):e37696 22698174 - Prev Chronic Dis. 2012;9:E113 19320985 - Int J Behav Nutr Phys Act. 2009 Mar 25;6:17 22276419 - Res Q Exerc Sport. 2011 Dec;82(4):779-83 21504965 - Br J Sports Med. 2012 May;46(6):436-42 15753114 - N Engl J Med. 2005 Mar 31;352(13):1293-304 24156309 - Int J Behav Nutr Phys Act. 2013;10:120 22936409 - Br J Sports Med. 2014 Feb;48(3):278-82 16294117 - Med Sci Sports Exerc. 2005 Nov;37(11 Suppl):S544-54 21616714 - J Sci Med Sport. 2011 Sep;14(5):411-6 15998890 - JAMA. 2005 Jul 6;294(1):47-55 22205862 - Sensors (Basel). 2010;10(2):1154-75 19650401 - Res Q Exerc Sport. 2009 Jun;80(2):355-62 22287450 - J Phys Act Health. 2012 Jan;9 Suppl 1:S68-75 21233777 - Med Sci Sports Exerc. 2011 Aug;43(8):1561-7 |
References_xml | – volume: 14 start-page: 411 year: 2011 ident: 7313_CR22 publication-title: J Sci Med Sport doi: 10.1016/j.jsams.2011.04.003 – volume: 7 start-page: e37696 year: 2012 ident: 7313_CR6 publication-title: PLoS One doi: 10.1371/journal.pone.0037696 – volume: 294 start-page: 47 year: 2005 ident: 7313_CR14 publication-title: JAMA doi: 10.1001/jama.294.1.47 – ident: 7313_CR17 – volume: 48 start-page: 278 year: 2014 ident: 7313_CR34 publication-title: Br J Sports Med doi: 10.1136/bjsports-2012-091410 – volume: 40 start-page: 181 year: 2008 ident: 7313_CR5 publication-title: Med Sci Sports Exerc doi: 10.1249/mss.0b013e31815a51b3 – volume: 7 start-page: 53 year: 2010 ident: 7313_CR36 publication-title: Int J Behav Nutr Phys Activ doi: 10.1186/1479-5868-7-53 – volume: 30 start-page: 777 year: 1998 ident: 7313_CR12 publication-title: Med Sci Sport Exer doi: 10.1097/00005768-199805000-00021 – volume: 16 start-page: 515 year: 2013 ident: 7313_CR10 publication-title: J Sci Med Sport doi: 10.1016/j.jsams.2012.12.002 – volume: 9 start-page: S68 year: 2012 ident: 7313_CR3 publication-title: J Phys Act Health doi: 10.1123/jpah.9.s1.s68 – volume: 6 start-page: 17 year: 2009 ident: 7313_CR37 publication-title: Int J Behav Nutr Phys Act doi: 10.1186/1479-5868-6-17 – volume: 44 start-page: 2009 year: 2012 ident: 7313_CR19 publication-title: Med Sci Sports Exerc doi: 10.1249/MSS.0b013e318258cb36 – volume: 9 start-page: e113 year: 2012 ident: 7313_CR9 publication-title: Prev Chronic Dis – volume: 10 start-page: 1154 year: 2010 ident: 7313_CR31 publication-title: Sensors doi: 10.3390/s100201154 – volume-title: Physical Activity Guidelines for Americans year: 2008 ident: 7313_CR1 – volume: 100 start-page: 1324 year: 2006 ident: 7313_CR29 publication-title: J Appl Physiol doi: 10.1152/japplphysiol.00818.2005 – volume: 44 start-page: 2243 year: 2012 ident: 7313_CR28 publication-title: Med Sci Sports Exerc doi: 10.1249/MSS.0b013e318260c477 – volume: 43 start-page: 1561 year: 2011 ident: 7313_CR27 publication-title: Med Sci Sports Exerc doi: 10.1249/MSS.0b013e31820ce174 – volume: 294 start-page: 56 year: 2005 ident: 7313_CR15 publication-title: JAMA doi: 10.1001/jama.294.1.56 – volume: 43 start-page: 357 year: 2011 ident: 7313_CR11 publication-title: Med Sci Sport Exer doi: 10.1249/MSS.0b013e3181ed61a3 – volume: 21 start-page: 32 year: 2013 ident: 7313_CR25 publication-title: Obesity doi: 10.1002/oby.20234 – volume: 82 start-page: 779 year: 2011 ident: 7313_CR32 publication-title: Res Q Exercise Sport doi: 10.1080/02701367.2011.10599814 – volume: 44 start-page: S24 year: 2012 ident: 7313_CR40 publication-title: Med Sci Sports Exerc doi: 10.1249/MSS.0b013e3182399c7d – volume: 111 start-page: 187 year: 2011 ident: 7313_CR26 publication-title: Eur J Appl Physiol doi: 10.1007/s00421-010-1639-8 – volume: 10 start-page: 742 year: 2013 ident: 7313_CR35 publication-title: J Phys Act Health doi: 10.1123/jpah.10.5.742 – ident: 7313_CR20 – volume: 48 start-page: 197 year: 2014 ident: 7313_CR7 publication-title: Br J Sports Med doi: 10.1136/bjsports-2013-093154 – volume: 9 start-page: 103 year: 2012 ident: 7313_CR4 publication-title: Int J Behav Nutr Phys Activ doi: 10.1186/1479-5868-9-103 – volume: 17 start-page: 293 year: 2013 ident: 7313_CR18 publication-title: J Sci Med Sport doi: 10.1016/j.jsams.2013.07.002 – volume: 46 start-page: 436 year: 2012 ident: 7313_CR23 publication-title: Brit J Sport Med doi: 10.1136/bjsm.2010.079699 – volume-title: International Conference on Ambulatory Monitoring of Physical Activity and Movement; June year: 2013 ident: 7313_CR13 – ident: 7313_CR41 – volume: 41 start-page: 1384 year: 2009 ident: 7313_CR38 publication-title: Med Sci Sports Exerc doi: 10.1249/MSS.0b013e318199885c – volume: 167 start-page: 875 year: 2008 ident: 7313_CR21 publication-title: Am J Epidemiol doi: 10.1093/aje/kwm390 – volume: 9 start-page: S5 year: 2012 ident: 7313_CR2 publication-title: J Phys Act Health doi: 10.1123/jpah.9.s1.s5 – volume: 2 start-page: 12 year: 2014 ident: 7313_CR39 publication-title: Frontiers Public Health doi: 10.3389/fpubh.2014.00012 – volume: 46 start-page: 386 year: 2014 ident: 7313_CR30 publication-title: Med Sci Sports Exerc doi: 10.1249/MSS.0b013e3182a42a2d – volume: 10 start-page: 120 year: 2013 ident: 7313_CR24 publication-title: Int J Behav Nutr Phys Activ doi: 10.1186/1479-5868-10-120 – volume: 352 start-page: 1293 year: 2005 ident: 7313_CR16 publication-title: N Engl J Med doi: 10.1056/NEJMoa050613 – volume: 37 start-page: S544 year: 2005 ident: 7313_CR8 publication-title: Med Sci Sport Exer doi: 10.1249/01.mss.0000185674.09066.8a – volume: 80 start-page: 355 year: 2009 ident: 7313_CR33 publication-title: Res Q Exercise Sport doi: 10.1080/02701367.2009.10599570 – reference: 23505166 - Obesity (Silver Spring). 2013 Jan;21(1):32-44 – reference: 24156309 - Int J Behav Nutr Phys Act. 2013;10:120 – reference: 22938557 - Int J Behav Nutr Phys Act. 2012;9:103 – reference: 23294696 - J Sci Med Sport. 2013 Nov;16(6):515-9 – reference: 21233777 - Med Sci Sports Exerc. 2011 Aug;43(8):1561-7 – reference: 16294117 - Med Sci Sports Exerc. 2005 Nov;37(11 Suppl):S544-54 – reference: 15998891 - JAMA. 2005 Jul 6;294(1):56-65 – reference: 22719846 - PLoS One. 2012;7(6):e37696 – reference: 20842375 - Eur J Appl Physiol. 2011 Feb;111(2):187-201 – reference: 16322367 - J Appl Physiol (1985). 2006 Apr;100(4):1324-31 – reference: 22936409 - Br J Sports Med. 2014 Feb;48(3):278-82 – reference: 22648343 - Med Sci Sports Exerc. 2012 Nov;44(11):2243-52 – reference: 21504965 - Br J Sports Med. 2012 May;46(6):436-42 – reference: 22525772 - Med Sci Sports Exerc. 2012 Oct;44(10):2009-16 – reference: 20581716 - Med Sci Sports Exerc. 2011 Feb;43(2):357-64 – reference: 19320985 - Int J Behav Nutr Phys Act. 2009 Mar 25;6:17 – reference: 24297837 - Br J Sports Med. 2014 Feb;48(3):197-201 – reference: 18091006 - Med Sci Sports Exerc. 2008 Jan;40(1):181-8 – reference: 9588623 - Med Sci Sports Exerc. 1998 May;30(5):777-81 – reference: 24616888 - Front Public Health. 2014 Feb 28;2:12 – reference: 18303006 - Am J Epidemiol. 2008 Apr 1;167(7):875-81 – reference: 19516163 - Med Sci Sports Exerc. 2009 Jul;41(7):1384-91 – reference: 22287450 - J Phys Act Health. 2012 Jan;9 Suppl 1:S68-75 – reference: 22205862 - Sensors (Basel). 2010;10(2):1154-75 – reference: 15753114 - N Engl J Med. 2005 Mar 31;352(13):1293-304 – reference: 23036822 - J Phys Act Health. 2013 Jul;10(5):742-9 – reference: 21616714 - J Sci Med Sport. 2011 Sep;14(5):411-6 – reference: 23932934 - J Sci Med Sport. 2014 May;17(3):293-9 – reference: 15998890 - JAMA. 2005 Jul 6;294(1):47-55 – reference: 22157771 - Med Sci Sports Exerc. 2012 Jan;44(1 Suppl 1):S24-31 – reference: 19650401 - Res Q Exerc Sport. 2009 Jun;80(2):355-62 – reference: 22276419 - Res Q Exerc Sport. 2011 Dec;82(4):779-83 – reference: 22698174 - Prev Chronic Dis. 2012;9:E113 – reference: 23860415 - Med Sci Sports Exerc. 2014 Feb;46(2):386-97 – reference: 20550691 - Int J Behav Nutr Phys Act. 2010 Jun 15;7:53 – reference: 22287448 - J Phys Act Health. 2012 Jan;9 Suppl 1:S5-10 |
SSID | ssj0017852 |
Score | 2.4420402 |
Snippet | Accelerometers objectively assess physical activity (PA) and are currently used in several large-scale epidemiological studies, but there is no consensus for... Background Accelerometers objectively assess physical activity (PA) and are currently used in several large-scale epidemiological studies, but there is no... Doc number: 1210 Abstract Background: Accelerometers objectively assess physical activity (PA) and are currently used in several large-scale epidemiological... Background: Accelerometers objectively assess physical activity (PA) and are currently used in several large-scale epidemiological studies, but there is no... BACKGROUND: Accelerometers objectively assess physical activity (PA) and are currently used in several large-scale epidemiological studies, but there is no... |
SourceID | pubmedcentral biomedcentral proquest gale pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1210 |
SubjectTerms | Accelerometers Accelerometry - instrumentation Accelerometry - methods Adult Aged Algorithms Analysis Automatic Data Processing - instrumentation Automatic Data Processing - methods Body Mass Index Cohort Studies Data processing Epidemiologic Measurements Epidemiology Exercise - physiology Female Humans Medical research Middle Aged Monitoring, Ambulatory - instrumentation Physical Examination Sample Size Studies Time Factors Womens health |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF9q-yJIqVbt2SojCIIYetnsR_JQpIilLehTC_e27G42WDiSa3NF6Kv_uDPJ3tkVubc7djbJZmbnYzPzG8Y-NNYXymGQ4zA4yUSoi8zZqc-a0ion7DRwSwf633-o82txOZOzeODWx7TKlU4cFHXdeTojP84VGkJUp7L4srjNqGsUfV2NLTSesB2CLqOULj1bB1zUeJ7HL5l5qY5zVMQZFxLDJsLqo6LZpMh9ntimfzX0IxOVpk8-skdne2w3OpJwOnL-OdsK7Qv2bDyFg7G4aJ_9vhiKIKFrwHqPFobACfBNAiWGwmIsEkDjBXVstdND1wL6hNBbgg2G_uYhfIZfuB2AutCDbWtYRNYC1URQ6wmYU-bRcBOYU2Y5UNvduyUM2LUv2fXZt6uv51lsu5A5JcUyc7l0dDQUPLpStZDeV2UoA-596bQIvuKyaWRd1SFUNnCltS143uA_HxqP4c8rtt12bThgILz0DukKPrXC5XVF1o_nwtmgNfJywk4SBpjFCLFhCPQ6HUFZMMRAQwzEX4YYOGHTFcOMj5jm1FpjbobYplT_m_JpPWV1tw3EH0kKDG12vK63sWYBV0ewWeZUFgTsrCSu5CihxE3q0-GVHJmoJHrzV6Qn7P16mGZS4lsbuvuRpiwxZtWbaApJjQA4Xuf1KJrrpWH8jzZJ5BOmE6FN3nQ60t78HGDGBRcavbc3mx_9kD1FH1JQeSYXR2x7eXcf3qKftnTvhs34B9P7PyI priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEA-lfSmItLbqaS1TEARx9Tabj92HIkUsrVCfetC3kGSzWFj2zrsrVV_9x53Zj2tTjuLbHZlkN5mZzEw28xvG3lbWZ8phkOMwOElEKLPE2bFPqtwqJ-w4cEsH-hff1dlEfLuSVxtsKG_VL-BibWhH9aQm8_rjr5-_P6PCH7cKn6tPKW6wCRcSwyHC4KOEqy00TJr09ELcfVTQeVuAZ0Xef-RcO8SD_Pc6MlsPN-971iu-WXnPVJ3usKe9jwknnVDsso3QPGNPugM66PKO9tjf8zY_EqYVWO_R-BBuAS4y0J1RmHX5A2jXoOyr8Cxg2gC6i7CwhCgMi-s_4QPcoqYAFagH25Qw67kOlC5BVSmgpktJ7UOgpkvnQBV550toYW332eT06-WXs6SvyJA4JcUycal0dGoUPHpZpZDeF3nIA24L0mkRfMFlVcmyKEMobOBKa5vxtMJ_PlQeI6PnbLOZNuElA-Gld0iX8bEVLi0LMow8Fc4GrdFHGbHjiAFm1qFvGMLDjltQNQ0x0BAD8ZchBo7YeGCY8T3cOVXdqE0b9uRqXZf3qy7D0x4hfkdSYEgycVxv-3QGnB0hapkTmRHms5I4k4OIEvXXx82DHJlB_E2q0O1D50FmI3a0aqaedCeuCdObjibPMZzVj9FkkmoEcBznRSeaq6lxKdBciXTEdCS00UrHLc31jxaBXHCh0bF79R_v9ppto48pKH2TiwO2uZzfhDfoxy3dYaud_wAyp0XN priority: 102 providerName: Scholars Portal |
Title | Impact of accelerometer data processing decisions on the sample size, wear time and physical activity level of a large cohort study |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25421941 https://www.proquest.com/docview/1628380153 https://www.proquest.com/docview/1628881487 https://www.proquest.com/docview/1635023623 http://dx.doi.org/10.1186/1471-2458-14-1210 https://pubmed.ncbi.nlm.nih.gov/PMC4247661 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEA_avggifntajxEEQVy8zeZrH3xoS88qtIhYOHwJSTZLC8fe0bsi-Oo_7szu3tocpS--hF0yyZKdTGYmyfyGsbe1C4Xy6OR4dE4yEasi824Ssto45YWbRO5oQ__kVB2fia8zOfuHs711gp8b9THH5TPjQqKzQwh7FE61ywUqQnLND34ORwbatOl1BvL-CPPGLrai2-eJUtpemq_ppvTe5DVFNH3IHvQWJOx3LH_E7sTmMbvfbb9BF1X0hP350kY_wqIGFwKqFkIlwF8IdCMUll10AGotqPocOytYNIDGIKwc4QXD6uJ3_AC_UA6A0s-DaypY9jwFCoagnBMwpytH7UdgTlfKgfLtXq6hBa19ys6mRz8Oj7M-30LmlRTrzOfS055QDGhDVUKGUJpoIgq99FrEUHJZ17IqqxhLF7nS2hU8r_EtxDqg3_OM7TSLJr5gIIIMHukKPnHC51VJao_nwruoNVogI_YpYYBddtgaltCu0xoUPEsMtMRAfLLEwBGbbBhmQw9mTjk15rZ1aoy6qcn7ocnma7cQv6NZYEnKsd_g-mAFHB3hZdl9WRCis5I4kr2EEqUzpNWbeWT71WFlc4VGHZoGshixN0M1taQbb01cXHU0xqCzqm-jKSRlAODYz_Nuag5DQ8cflZHIR0wnkzb502lNc3He4osLFC80217-J49esXtoXQoK3ORij-2sL6_ia7Tg1n7M7uqZxtIc5lROP4_Z7sHR6bfv43ZPBMsTYcatfP8FdLRIhA |
linkProvider | BioMedCentral |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAJId5sW2CQQEiIqIljx8mhQhVQ7dLHqZX2ZmzHEZVWydLdqoIr_4ffyEweS43Q3nrblcdJnBnPw5mZj7HXlXFpZjHIsRicRMKXaWRN7KIqN5kVJvbc0IH-8Uk2PhNfpnK6wX4PtTCUVjnoxFZRl42jM_LdJENDiOpUph_m3yNCjaKvqwOERicWh_7HFYZsi73JJ-TvG84PPp9-HEc9qkBkMymWkU2kpZMP79BTKIV0rsh97lG0pVXCu4LLqpJlUXpfGM8zpUzKkwr_OV85RSgRqPJvoeGNaUep6SrAI6B73n85TfJsN0HFH3EhMUyj3oBUpBsU1c8CW_ivRbhmEsN0zWv27-A-u9c7rrDfSdoDtuHrh-xud-oHXTHTI_Zr0hZdQlOBcQ4tGjVDQM4BJaLCvCtKQGMJZQ_ts4CmBvRBYWGoTTEszn_693CF7xkI9R5MXcK8FyWgGgyCuoAZZTq1N4EZZbIDwfxeLKHtlfuYnd0IQ56wzbqp_TMGwklnkS7lsRE2KQuytjwR1nilUHZGbC9ggJ53LT00NdkOR1D2NDFQEwPxlyYGjlg8MEy7voc6QXnMdBtL5dn_prxbTRnutob4LUmBJuWC13Wmr5HA1VGbLr0vU2oknUlcyU5AiUrBhcODHOleKS303y00Yq9WwzSTEu1q31x2NHmOMbJaR5NKAh7geJ2nnWiulsalQBsokhFTgdAGbzocqc-_tW3NBRcKvcWt9Y_-kt0enx4f6aPJyeE2u4P-q6DSUC522Oby4tI_Rx9xaV-0GxPY15vWBH8A4Rt93Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEF9KBRGk1O9rq44gCGLsZbObTR58qB9Hq7aIWCi-LLubDZamuaN3RfDVf9yZbC7cltIX3xJ2NmEzs_OxmfkNYy9r47LcYpBjMThJhK-yxJqxS-rC5FaYseeGDvQPj_L9Y_H5RJ6sscNlLYw9dwHfOZQBvl0tQm86zY0X7mx3VtVhwxf5booKNuFCYjhEGHxUcHVLSalon35__3P4qaCKrgHPQN7_5Lz2EVfq35vIbF1V3ivWK86sXDFVk0220fuYsBeE4h5b8-19djcc0EGoO3rA_h509ZEwrcE4h8aHcAvwIwPljMIs1A-gXYOq78Izh2kL6C7C3BCiMMxP__g38Bt3ClCDejBtBbOe60DlEtSVAhpKSupeAg0lnQN15L1YQAdr-5AdTz79-LCf9B0ZEptLsUhsKi2dGnmHXlYlpHNl4QuPakFaJbwruaxrWZWV96XxPFfKZDyt8c752mFk9Iitt9PWP2EgnHQW6TI-NsKmVUmGkafCGq8U-igj9i5igJ4F9A1NeNjxCEqFJgZqYiBeaWLgiI2XDNOuhzunrhuN7sKeIr9uyuthyvJtNxC_IinQpAdIJE1fzoCrI0QtvSczwnzOJa5kJ6LE_evi4aUc6V5_zHWao9uHzoPMRuzFMEwzKSeu9dPLQFMUGM6qm2gyST0COD7ncRDNYWlcCjRXIh0xFQlt9KXjkfb0V4dALrhQ6Nht_SePnrPb3z5O9NeDoy_b7A66ooKqPLnYYeuLi0v_FN29hX3WbeJ_TzNStw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+accelerometer+data+processing+decisions+on+the+sample+size%2C+wear+time+and+physical+activity+level+of+a+large+cohort+study&rft.jtitle=BMC+public+health&rft.au=Keadle%2C+Sarah+Kozey&rft.au=Shiroma%2C+Eric+J&rft.au=Freedson%2C+Patty+S&rft.au=Lee%2C+I-Min&rft.date=2014-11-24&rft.issn=1471-2458&rft.eissn=1471-2458&rft.volume=14&rft.spage=1210&rft_id=info:doi/10.1186%2F1471-2458-14-1210&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2458&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2458&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2458&client=summon |