Impact of accelerometer data processing decisions on the sample size, wear time and physical activity level of a large cohort study

Accelerometers objectively assess physical activity (PA) and are currently used in several large-scale epidemiological studies, but there is no consensus for processing the data. This study compared the impact of wear-time assessment methods and using either vertical (V)-axis or vector magnitude (VM...

Full description

Saved in:
Bibliographic Details
Published inBMC public health Vol. 14; no. 1; p. 1210
Main Authors Keadle, Sarah Kozey, Shiroma, Eric J, Freedson, Patty S, Lee, I-Min
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 24.11.2014
BioMed Central
Subjects
Online AccessGet full text
ISSN1471-2458
1471-2458
DOI10.1186/1471-2458-14-1210

Cover

Loading…
Abstract Accelerometers objectively assess physical activity (PA) and are currently used in several large-scale epidemiological studies, but there is no consensus for processing the data. This study compared the impact of wear-time assessment methods and using either vertical (V)-axis or vector magnitude (VM) cut-points on accelerometer output. Participants (7,650 women, mean age 71.4 y) were mailed an accelerometer (ActiGraph GT3X+), instructed to wear it for 7 days, record dates and times the monitor was worn on a log, and return the monitor and log via mail. Data were processed using three wear-time methods (logs, Troiano or Choi algorithms) and V-axis or VM cut-points. Using algorithms alone resulted in "mail-days" incorrectly identified as "wear-days" (27-79% of subjects had >7-days of valid data). Using only dates from the log and the Choi algorithm yielded: 1) larger samples with valid data than using log dates and times, 2) similar wear-times as using log dates and times, 3) more wear-time (V, 48.1 min more; VM, 29.5 min more) than only log dates and Troiano algorithm. Wear-time algorithm impacted sedentary time (~30-60 min lower for Troiano vs. Choi) but not moderate-to-vigorous (MV) PA time. Using V-axis cut-points yielded ~60 min more sedentary time and ~10 min less MVPA time than using VM cut-points. Combining log-dates and the Choi algorithm was optimal, minimizing missing data and researcher burden. Estimates of time in physical activity and sedentary behavior are not directly comparable between V-axis and VM cut-points. These findings will inform consensus development for accelerometer data processing in ongoing epidemiologic studies.
AbstractList Doc number: 1210 Abstract Background: Accelerometers objectively assess physical activity (PA) and are currently used in several large-scale epidemiological studies, but there is no consensus for processing the data. This study compared the impact of wear-time assessment methods and using either vertical (V)-axis or vector magnitude (VM) cut-points on accelerometer output. Methods: Participants (7,650 women, mean age 71.4 y) were mailed an accelerometer (ActiGraph GT3X+), instructed to wear it for 7 days, record dates and times the monitor was worn on a log, and return the monitor and log via mail. Data were processed using three wear-time methods (logs, Troiano or Choi algorithms) and V-axis or VM cut-points. Results: Using algorithms alone resulted in "mail-days" incorrectly identified as "wear-days" (27-79% of subjects had >7-days of valid data). Using only dates from the log and the Choi algorithm yielded: 1) larger samples with valid data than using log dates and times, 2) similar wear-times as using log dates and times, 3) more wear-time (V, 48.1 min more; VM, 29.5 min more) than only log dates and Troiano algorithm. Wear-time algorithm impacted sedentary time (~30-60 min lower for Troiano vs. Choi) but not moderate-to-vigorous (MV) PA time. Using V-axis cut-points yielded ~60 min more sedentary time and ~10 min less MVPA time than using VM cut-points. Conclusions: Combining log-dates and the Choi algorithm was optimal, minimizing missing data and researcher burden. Estimates of time in physical activity and sedentary behavior are not directly comparable between V-axis and VM cut-points. These findings will inform consensus development for accelerometer data processing in ongoing epidemiologic studies.
Background: Accelerometers objectively assess physical activity (PA) and are currently used in several large-scale epidemiological studies, but there is no consensus for processing the data. This study compared the impact of wear-time assessment methods and using either vertical (V)-axis or vector magnitude (VM) cut-points on accelerometer output. Methods: Participants (7,650 women, mean age 71.4 y) were mailed an accelerometer (ActiGraph GT3X+), instructed to wear it for 7 days, record dates and times the monitor was worn on a log, and return the monitor and log via mail. Data were processed using three wear-time methods (logs, Troiano or Choi algorithms) and V-axis or VM cut-points. Results: Using algorithms alone resulted in "mail-days" incorrectly identified as "wear-days" (27-79% of subjects had >7-days of valid data). Using only dates from the log and the Choi algorithm yielded: 1) larger samples with valid data than using log dates and times, 2) similar wear-times as using log dates and times, 3) more wear-time (V, 48.1 min more; VM, 29.5 min more) than only log dates and Troiano algorithm. Wear-time algorithm impacted sedentary time (~30-60 min lower for Troiano vs. Choi) but not moderate-to-vigorous (MV) PA time. Using V-axis cut-points yielded ~60 min more sedentary time and ~10 min less MVPA time than using VM cut-points. Conclusions: Combining log-dates and the Choi algorithm was optimal, minimizing missing data and researcher burden. Estimates of time in physical activity and sedentary behavior are not directly comparable between V-axis and VM cut-points. These findings will inform consensus development for accelerometer data processing in ongoing epidemiologic studies.
Background Accelerometers objectively assess physical activity (PA) and are currently used in several large-scale epidemiological studies, but there is no consensus for processing the data. This study compared the impact of wear-time assessment methods and using either vertical (V)-axis or vector magnitude (VM) cut-points on accelerometer output. Methods Participants (7,650 women, mean age 71.4 y) were mailed an accelerometer (ActiGraph GT3X+), instructed to wear it for 7 days, record dates and times the monitor was worn on a log, and return the monitor and log via mail. Data were processed using three wear-time methods (logs, Troiano or Choi algorithms) and V-axis or VM cut-points. Results Using algorithms alone resulted in "mail-days" incorrectly identified as "wear-days" (27-79% of subjects had >7-days of valid data). Using only dates from the log and the Choi algorithm yielded: 1) larger samples with valid data than using log dates and times, 2) similar wear-times as using log dates and times, 3) more wear-time (V, 48.1 min more; VM, 29.5 min more) than only log dates and Troiano algorithm. Wear-time algorithm impacted sedentary time (~30-60 min lower for Troiano vs. Choi) but not moderate-to-vigorous (MV) PA time. Using V-axis cut-points yielded ~60 min more sedentary time and ~10 min less MVPA time than using VM cut-points. Conclusions Combining log-dates and the Choi algorithm was optimal, minimizing missing data and researcher burden. Estimates of time in physical activity and sedentary behavior are not directly comparable between V-axis and VM cut-points. These findings will inform consensus development for accelerometer data processing in ongoing epidemiologic studies. Keywords: Physical activity, Measurement, Exposure assessment, Behavioral epidemiology, Sedentary behavior
Accelerometers objectively assess physical activity (PA) and are currently used in several large-scale epidemiological studies, but there is no consensus for processing the data. This study compared the impact of wear-time assessment methods and using either vertical (V)-axis or vector magnitude (VM) cut-points on accelerometer output.BACKGROUNDAccelerometers objectively assess physical activity (PA) and are currently used in several large-scale epidemiological studies, but there is no consensus for processing the data. This study compared the impact of wear-time assessment methods and using either vertical (V)-axis or vector magnitude (VM) cut-points on accelerometer output.Participants (7,650 women, mean age 71.4 y) were mailed an accelerometer (ActiGraph GT3X+), instructed to wear it for 7 days, record dates and times the monitor was worn on a log, and return the monitor and log via mail. Data were processed using three wear-time methods (logs, Troiano or Choi algorithms) and V-axis or VM cut-points.METHODSParticipants (7,650 women, mean age 71.4 y) were mailed an accelerometer (ActiGraph GT3X+), instructed to wear it for 7 days, record dates and times the monitor was worn on a log, and return the monitor and log via mail. Data were processed using three wear-time methods (logs, Troiano or Choi algorithms) and V-axis or VM cut-points.Using algorithms alone resulted in "mail-days" incorrectly identified as "wear-days" (27-79% of subjects had >7-days of valid data). Using only dates from the log and the Choi algorithm yielded: 1) larger samples with valid data than using log dates and times, 2) similar wear-times as using log dates and times, 3) more wear-time (V, 48.1 min more; VM, 29.5 min more) than only log dates and Troiano algorithm. Wear-time algorithm impacted sedentary time (~30-60 min lower for Troiano vs. Choi) but not moderate-to-vigorous (MV) PA time. Using V-axis cut-points yielded ~60 min more sedentary time and ~10 min less MVPA time than using VM cut-points.RESULTSUsing algorithms alone resulted in "mail-days" incorrectly identified as "wear-days" (27-79% of subjects had >7-days of valid data). Using only dates from the log and the Choi algorithm yielded: 1) larger samples with valid data than using log dates and times, 2) similar wear-times as using log dates and times, 3) more wear-time (V, 48.1 min more; VM, 29.5 min more) than only log dates and Troiano algorithm. Wear-time algorithm impacted sedentary time (~30-60 min lower for Troiano vs. Choi) but not moderate-to-vigorous (MV) PA time. Using V-axis cut-points yielded ~60 min more sedentary time and ~10 min less MVPA time than using VM cut-points.Combining log-dates and the Choi algorithm was optimal, minimizing missing data and researcher burden. Estimates of time in physical activity and sedentary behavior are not directly comparable between V-axis and VM cut-points. These findings will inform consensus development for accelerometer data processing in ongoing epidemiologic studies.CONCLUSIONSCombining log-dates and the Choi algorithm was optimal, minimizing missing data and researcher burden. Estimates of time in physical activity and sedentary behavior are not directly comparable between V-axis and VM cut-points. These findings will inform consensus development for accelerometer data processing in ongoing epidemiologic studies.
Accelerometers objectively assess physical activity (PA) and are currently used in several large-scale epidemiological studies, but there is no consensus for processing the data. This study compared the impact of wear-time assessment methods and using either vertical (V)-axis or vector magnitude (VM) cut-points on accelerometer output. Using algorithms alone resulted in "mail-days" incorrectly identified as "wear-days" (27-79% of subjects had >7-days of valid data). Using only dates from the log and the Choi algorithm yielded: 1) larger samples with valid data than using log dates and times, 2) similar wear-times as using log dates and times, 3) more wear-time (V, 48.1 min more; VM, 29.5 min more) than only log dates and Troiano algorithm. Wear-time algorithm impacted sedentary time (~30-60 min lower for Troiano vs. Choi) but not moderate-to-vigorous (MV) PA time. Using V-axis cut-points yielded ~60 min more sedentary time and ~10 min less MVPA time than using VM cut-points. Combining log-dates and the Choi algorithm was optimal, minimizing missing data and researcher burden. Estimates of time in physical activity and sedentary behavior are not directly comparable between V-axis and VM cut-points. These findings will inform consensus development for accelerometer data processing in ongoing epidemiologic studies.
Accelerometers objectively assess physical activity (PA) and are currently used in several large-scale epidemiological studies, but there is no consensus for processing the data. This study compared the impact of wear-time assessment methods and using either vertical (V)-axis or vector magnitude (VM) cut-points on accelerometer output. Participants (7,650 women, mean age 71.4 y) were mailed an accelerometer (ActiGraph GT3X+), instructed to wear it for 7 days, record dates and times the monitor was worn on a log, and return the monitor and log via mail. Data were processed using three wear-time methods (logs, Troiano or Choi algorithms) and V-axis or VM cut-points. Using algorithms alone resulted in "mail-days" incorrectly identified as "wear-days" (27-79% of subjects had >7-days of valid data). Using only dates from the log and the Choi algorithm yielded: 1) larger samples with valid data than using log dates and times, 2) similar wear-times as using log dates and times, 3) more wear-time (V, 48.1 min more; VM, 29.5 min more) than only log dates and Troiano algorithm. Wear-time algorithm impacted sedentary time (~30-60 min lower for Troiano vs. Choi) but not moderate-to-vigorous (MV) PA time. Using V-axis cut-points yielded ~60 min more sedentary time and ~10 min less MVPA time than using VM cut-points. Combining log-dates and the Choi algorithm was optimal, minimizing missing data and researcher burden. Estimates of time in physical activity and sedentary behavior are not directly comparable between V-axis and VM cut-points. These findings will inform consensus development for accelerometer data processing in ongoing epidemiologic studies.
BACKGROUND: Accelerometers objectively assess physical activity (PA) and are currently used in several large-scale epidemiological studies, but there is no consensus for processing the data. This study compared the impact of wear-time assessment methods and using either vertical (V)-axis or vector magnitude (VM) cut-points on accelerometer output. METHODS: Participants (7,650 women, mean age 71.4 y) were mailed an accelerometer (ActiGraph GT3X+), instructed to wear it for 7 days, record dates and times the monitor was worn on a log, and return the monitor and log via mail. Data were processed using three wear-time methods (logs, Troiano or Choi algorithms) and V-axis or VM cut-points. RESULTS: Using algorithms alone resulted in "mail-days" incorrectly identified as "wear-days" (27-79% of subjects had >7-days of valid data). Using only dates from the log and the Choi algorithm yielded: 1) larger samples with valid data than using log dates and times, 2) similar wear-times as using log dates and times, 3) more wear-time (V, 48.1 min more; VM, 29.5 min more) than only log dates and Troiano algorithm. Wear-time algorithm impacted sedentary time (~30-60 min lower for Troiano vs. Choi) but not moderate-to-vigorous (MV) PA time. Using V-axis cut-points yielded ~60 min more sedentary time and ~10 min less MVPA time than using VM cut-points. CONCLUSIONS: Combining log-dates and the Choi algorithm was optimal, minimizing missing data and researcher burden. Estimates of time in physical activity and sedentary behavior are not directly comparable between V-axis and VM cut-points. These findings will inform consensus development for accelerometer data processing in ongoing epidemiologic studies.
ArticleNumber 1210
Audience Academic
Author Keadle, Sarah Kozey
Freedson, Patty S
Lee, I-Min
Shiroma, Eric J
Author_xml – sequence: 1
  givenname: Sarah Kozey
  surname: Keadle
  fullname: Keadle, Sarah Kozey
– sequence: 2
  givenname: Eric J
  surname: Shiroma
  fullname: Shiroma, Eric J
– sequence: 3
  givenname: Patty S
  surname: Freedson
  fullname: Freedson, Patty S
– sequence: 4
  givenname: I-Min
  surname: Lee
  fullname: Lee, I-Min
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25421941$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1r3DAQhk1JaT7aH9BLEfTSQ51YX7Z8KYT0KxDIpT0LWR7vKsiSK2k3bK_945WzSZoNCRQdJI3eeTS8M4fFnvMOiuItro4xFvUJZg0uCeOixKzEBFcvioP72N6D835xGONVVeFGcPKq2CecEdwyfFD8OR8npRPyA1Jag4XgR0gQUK-SQlPwGmI0boF60CYa7yLyDqUloKjGyebN_IaP6BpUQMmMgJTr0bTcRKOVzchk1iZtkIU12JtPkFVhAUj7pQ8JxbTqN6-Ll4OyEd7c7kfFz69ffpx9Ly8uv52fnV6UXc1ZKjvMuw4zAppR3jOudStAABaUdw0D3RI-DLxve4BWAambRlGCh3zTMOiG06Pi05Y7rboReg0uBWXlFMyowkZ6ZeTuizNLufBryQhr6hpnwOctoDP-GcDui_ajnJsg5ybkk5yblDEfbusI_tcKYpKjidl7qxz4VZS4prwitCb0P6RECIGZaLL0_SPplV8Flw29UVFRYU7_qRbKgjRu8LlQPUPlKactb2nNZ6eOn1Dl1cNodB7CweT4TsK7h9beW3I3aFnQbAU6-BgDDFKbpFIeqEw2VuJKziP9pFv4UeYd_Pmcv802-Ok
CitedBy_id crossref_primary_10_1016_j_cct_2017_12_004
crossref_primary_10_1186_s12874_019_0712_1
crossref_primary_10_1249_MSS_0000000000000915
crossref_primary_10_1080_02701367_2020_1734520
crossref_primary_10_1177_27536130241265669
crossref_primary_10_2196_36889
crossref_primary_10_1123_jmpb_2021_0050
crossref_primary_10_2139_ssrn_4179191
crossref_primary_10_1080_02640414_2021_1981689
crossref_primary_10_1097_BRS_0000000000004385
crossref_primary_10_1123_jmpb_2018_0052
crossref_primary_10_1371_journal_pone_0222268
crossref_primary_10_1016_j_mhpa_2015_09_003
crossref_primary_10_1007_s12529_021_09999_5
crossref_primary_10_1007_s12561_023_09383_9
crossref_primary_10_1136_bjsports_2015_095947
crossref_primary_10_1088_1361_6579_ac18fe
crossref_primary_10_1136_bmjopen_2024_084645
crossref_primary_10_2196_resprot_9098
crossref_primary_10_1123_jmpb_2019_0062
crossref_primary_10_1186_s12889_019_6837_7
crossref_primary_10_3389_fpubh_2023_1132190
crossref_primary_10_1186_s12877_021_02289_5
crossref_primary_10_1249_MSS_0000000000001287
crossref_primary_10_1161_JAHA_122_028180
crossref_primary_10_3390_jcm12165340
crossref_primary_10_1161_JAHA_117_007064
crossref_primary_10_1080_02640414_2024_2319448
crossref_primary_10_1136_bmj_l4570
crossref_primary_10_1186_s12889_018_5415_8
crossref_primary_10_1002_acr2_1013
crossref_primary_10_1214_21_AOAS1596
crossref_primary_10_2196_39856
crossref_primary_10_1123_jmpb_2019_0037
crossref_primary_10_1016_j_nutres_2022_03_001
crossref_primary_10_1016_j_jfma_2023_08_001
crossref_primary_10_1186_s12884_019_2293_8
crossref_primary_10_3390_app14093854
crossref_primary_10_1249_MSS_0000000000001355
crossref_primary_10_1371_journal_pone_0274442
crossref_primary_10_1186_s12889_018_5212_4
crossref_primary_10_3390_s18020540
crossref_primary_10_1123_jmpb_2019_0049
crossref_primary_10_3390_s21082726
crossref_primary_10_1016_j_avsg_2020_03_040
crossref_primary_10_1016_j_psychres_2017_04_035
crossref_primary_10_7717_peerj_8284
crossref_primary_10_1002_art_39252
crossref_primary_10_1080_2331205X_2017_1313505
crossref_primary_10_1016_j_future_2022_11_019
crossref_primary_10_1186_s12966_017_0525_8
crossref_primary_10_3390_ijerph15040594
crossref_primary_10_1123_jmpb_2017_0008
crossref_primary_10_1123_jmpb_2018_0062
crossref_primary_10_1186_s12889_020_09128_z
crossref_primary_10_3390_ijerph192214767
crossref_primary_10_3390_ijerph17249323
crossref_primary_10_1093_gerona_glw026
crossref_primary_10_1249_MSS_0000000000000778
crossref_primary_10_1123_jmpb_2017_0010
crossref_primary_10_1590_1414_462x201900020169
crossref_primary_10_1186_s12970_018_0262_7
crossref_primary_10_1249_MSS_0000000000001743
crossref_primary_10_1186_s12966_018_0749_2
crossref_primary_10_1016_j_jpeds_2018_03_057
crossref_primary_10_1016_j_conctc_2019_100386
crossref_primary_10_1038_s41598_020_62821_2
crossref_primary_10_1007_s00394_023_03102_2
crossref_primary_10_1016_j_jth_2021_101234
crossref_primary_10_1080_07315724_2019_1691954
crossref_primary_10_1080_03014460_2024_2310724
crossref_primary_10_1016_j_pmedr_2021_101408
crossref_primary_10_1038_s41598_024_58724_1
crossref_primary_10_1080_00336297_2017_1380054
crossref_primary_10_1249_MSS_0000000000000725
crossref_primary_10_1093_abm_kaab109
crossref_primary_10_3390_ijerph18010032
crossref_primary_10_1136_bmjopen_2024_085896
crossref_primary_10_3390_nu10050566
crossref_primary_10_1016_j_amepre_2016_11_010
crossref_primary_10_1097_NCC_0000000000000834
crossref_primary_10_1016_j_sleh_2022_10_002
crossref_primary_10_1123_jmpb_2018_0005
crossref_primary_10_3389_fpubh_2024_1175109
crossref_primary_10_1007_s40279_017_0716_0
crossref_primary_10_1186_s13063_019_3557_3
crossref_primary_10_1016_j_apmr_2017_05_008
crossref_primary_10_3390_life13020574
crossref_primary_10_1016_j_gaitpost_2015_11_005
crossref_primary_10_1016_j_respe_2018_10_010
crossref_primary_10_1016_j_gerinurse_2022_02_003
crossref_primary_10_1186_s12966_020_00966_z
crossref_primary_10_1371_journal_pone_0202390
crossref_primary_10_1016_j_conctc_2020_100626
crossref_primary_10_3390_ijerph192214834
crossref_primary_10_1371_journal_pone_0225670
crossref_primary_10_1136_bmjopen_2019_031592
crossref_primary_10_1371_journal_pone_0162436
crossref_primary_10_1016_j_cct_2022_106993
crossref_primary_10_1519_JPT_0000000000000077
crossref_primary_10_1038_s41598_017_01092_w
crossref_primary_10_1186_s12966_021_01173_0
crossref_primary_10_1097_HJH_0000000000000904
crossref_primary_10_7600_jpfsm_6_135
crossref_primary_10_1038_s41598_023_36924_5
crossref_primary_10_1111_sms_12887
crossref_primary_10_1159_000479753
crossref_primary_10_5897_IJNAM2016_0207
crossref_primary_10_1123_jmpb_2018_0029
crossref_primary_10_1111_sms_14541
Cites_doi 10.1016/j.jsams.2011.04.003
10.1371/journal.pone.0037696
10.1001/jama.294.1.47
10.1136/bjsports-2012-091410
10.1249/mss.0b013e31815a51b3
10.1186/1479-5868-7-53
10.1097/00005768-199805000-00021
10.1016/j.jsams.2012.12.002
10.1123/jpah.9.s1.s68
10.1186/1479-5868-6-17
10.1249/MSS.0b013e318258cb36
10.3390/s100201154
10.1152/japplphysiol.00818.2005
10.1249/MSS.0b013e318260c477
10.1249/MSS.0b013e31820ce174
10.1001/jama.294.1.56
10.1249/MSS.0b013e3181ed61a3
10.1002/oby.20234
10.1080/02701367.2011.10599814
10.1249/MSS.0b013e3182399c7d
10.1007/s00421-010-1639-8
10.1123/jpah.10.5.742
10.1136/bjsports-2013-093154
10.1186/1479-5868-9-103
10.1016/j.jsams.2013.07.002
10.1136/bjsm.2010.079699
10.1249/MSS.0b013e318199885c
10.1093/aje/kwm390
10.1123/jpah.9.s1.s5
10.3389/fpubh.2014.00012
10.1249/MSS.0b013e3182a42a2d
10.1186/1479-5868-10-120
10.1056/NEJMoa050613
10.1249/01.mss.0000185674.09066.8a
10.1080/02701367.2009.10599570
ContentType Journal Article
Copyright COPYRIGHT 2014 BioMed Central Ltd.
2014 Keadle et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Keadle et al.; licensee BioMed Central Ltd. 2014
Copyright_xml – notice: COPYRIGHT 2014 BioMed Central Ltd.
– notice: 2014 Keadle et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
– notice: Keadle et al.; licensee BioMed Central Ltd. 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T2
7X7
7XB
88E
8C1
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AN0
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
M0S
M1P
M7S
PATMY
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
7X8
5PM
DOI 10.1186/1471-2458-14-1210
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health and Safety Science Abstracts (Full archive)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Public Health Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
British Nursing Database
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
ProQuest Health & Medical Collection
Medical Database
Engineering Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Agricultural & Environmental Science Collection
Health & Safety Science Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Public Health
ProQuest One Academic Eastern Edition
British Nursing Index with Full Text
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
Health & Safety Science Abstracts

MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1471-2458
EndPage 1210
ExternalDocumentID PMC4247661
oai_biomedcentral_com_1471_2458_14_1210
3509318771
A539593655
25421941
10_1186_1471_2458_14_1210
Genre Clinical Trial
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA154647
– fundername: NCI NIH HHS
  grantid: CA154647
GroupedDBID ---
0R~
23N
2WC
2XV
4.4
44B
53G
5VS
6J9
6PF
7X7
7XC
88E
8C1
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAJSJ
AASML
AAWTL
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AN0
AOIJS
ATCPS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BNQBC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
IPNFZ
ITC
KQ8
L6V
M1P
M48
M7S
M~E
O5R
O5S
OK1
OVT
P2P
PATMY
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
RBZ
RIG
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7T2
7XB
8FK
AZQEC
C1K
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
-A0
ABVAZ
ACRMQ
ADINQ
AFGXO
AFNRJ
C24
ESTFP
5PM
ID FETCH-LOGICAL-b654t-b15bb142ec435d45cc98e8e1835b74ec925ff5d9dee9ae2677a321fee9cefc753
IEDL.DBID RBZ
ISSN 1471-2458
IngestDate Thu Aug 21 14:34:54 EDT 2025
Wed May 22 07:24:48 EDT 2024
Mon Jul 21 11:07:25 EDT 2025
Thu Jul 10 20:04:12 EDT 2025
Fri Jul 25 10:34:21 EDT 2025
Tue Jun 17 22:05:10 EDT 2025
Tue Jun 10 21:02:50 EDT 2025
Thu Apr 03 06:51:35 EDT 2025
Thu Apr 24 23:06:46 EDT 2025
Tue Jul 01 04:09:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b654t-b15bb142ec435d45cc98e8e1835b74ec925ff5d9dee9ae2677a321fee9cefc753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink http://dx.doi.org/10.1186/1471-2458-14-1210
PMID 25421941
PQID 1628380153
PQPubID 44782
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4247661
biomedcentral_primary_oai_biomedcentral_com_1471_2458_14_1210
proquest_miscellaneous_1635023623
proquest_miscellaneous_1628881487
proquest_journals_1628380153
gale_infotracmisc_A539593655
gale_infotracacademiconefile_A539593655
pubmed_primary_25421941
crossref_citationtrail_10_1186_1471_2458_14_1210
crossref_primary_10_1186_1471_2458_14_1210
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-11-24
PublicationDateYYYYMMDD 2014-11-24
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-24
  day: 24
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC public health
PublicationTitleAlternate BMC Public Health
PublicationYear 2014
Publisher BioMed Central Ltd
BioMed Central
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
References KR Evenson (7313_CR33) 2009; 80
JE Sasaki (7313_CR22) 2011; 14
SD Herrmann (7313_CR34) 2014; 48
LC Masse (7313_CR8) 2005; 37
RP Troiano (7313_CR3) 2012; 9
SM Slootmaker (7313_CR37) 2009; 6
SS Intille (7313_CR40) 2012; 44
7313_CR20
KP Gabriel (7313_CR36) 2010; 7
Department of Health and Human Services (7313_CR1) 2008
HJ Helmerhorst (7313_CR4) 2012; 9
7313_CR41
RP Troiano (7313_CR5) 2008; 40
S Kozey-Keadle (7313_CR27) 2011; 43
G Peeters (7313_CR10) 2013; 16
L Choi (7313_CR11) 2011; 43
NR Cook (7313_CR14) 2005; 294
L Choi (7313_CR19) 2012; 44
WL Haskell (7313_CR2) 2012; 9
M Oliver (7313_CR32) 2011; 82
IM Lee (7313_CR15) 2005; 294
K Lyden (7313_CR30) 2014; 46
N Aguilar-Farias (7313_CR18) 2013; 17
EAH Winkler (7313_CR23) 2012; 46
A Mannini (7313_CR31) 2010; 10
PS Freedson (7313_CR12) 1998; 30
K Lyden (7313_CR28) 2012; 44
PM Ridker (7313_CR16) 2005; 352
A Koster (7313_CR6) 2012; 7
GF Dunton (7313_CR39) 2014; 2
KR Evenson (7313_CR13) 2013
C Tudor-Locke (7313_CR38) 2009; 41
GD Miller (7313_CR25) 2013; 21
7313_CR17
C Tudor-Locke (7313_CR9) 2012; 9
K Lyden (7313_CR26) 2011; 111
SD Herrmann (7313_CR35) 2013; 10
CE Matthews (7313_CR21) 2008; 167
B Hutto (7313_CR24) 2013; 10
IM Lee (7313_CR7) 2014; 48
SE Crouter (7313_CR29) 2006; 100
22938557 - Int J Behav Nutr Phys Act. 2012;9:103
23860415 - Med Sci Sports Exerc. 2014 Feb;46(2):386-97
23036822 - J Phys Act Health. 2013 Jul;10(5):742-9
23505166 - Obesity (Silver Spring). 2013 Jan;21(1):32-44
18091006 - Med Sci Sports Exerc. 2008 Jan;40(1):181-8
23932934 - J Sci Med Sport. 2014 May;17(3):293-9
22157771 - Med Sci Sports Exerc. 2012 Jan;44(1 Suppl 1):S24-31
22287448 - J Phys Act Health. 2012 Jan;9 Suppl 1:S5-10
15998891 - JAMA. 2005 Jul 6;294(1):56-65
20842375 - Eur J Appl Physiol. 2011 Feb;111(2):187-201
22648343 - Med Sci Sports Exerc. 2012 Nov;44(11):2243-52
20581716 - Med Sci Sports Exerc. 2011 Feb;43(2):357-64
22525772 - Med Sci Sports Exerc. 2012 Oct;44(10):2009-16
24616888 - Front Public Health. 2014 Feb 28;2:12
20550691 - Int J Behav Nutr Phys Act. 2010 Jun 15;7:53
9588623 - Med Sci Sports Exerc. 1998 May;30(5):777-81
19516163 - Med Sci Sports Exerc. 2009 Jul;41(7):1384-91
16322367 - J Appl Physiol (1985). 2006 Apr;100(4):1324-31
23294696 - J Sci Med Sport. 2013 Nov;16(6):515-9
24297837 - Br J Sports Med. 2014 Feb;48(3):197-201
18303006 - Am J Epidemiol. 2008 Apr 1;167(7):875-81
22719846 - PLoS One. 2012;7(6):e37696
22698174 - Prev Chronic Dis. 2012;9:E113
19320985 - Int J Behav Nutr Phys Act. 2009 Mar 25;6:17
22276419 - Res Q Exerc Sport. 2011 Dec;82(4):779-83
21504965 - Br J Sports Med. 2012 May;46(6):436-42
15753114 - N Engl J Med. 2005 Mar 31;352(13):1293-304
24156309 - Int J Behav Nutr Phys Act. 2013;10:120
22936409 - Br J Sports Med. 2014 Feb;48(3):278-82
16294117 - Med Sci Sports Exerc. 2005 Nov;37(11 Suppl):S544-54
21616714 - J Sci Med Sport. 2011 Sep;14(5):411-6
15998890 - JAMA. 2005 Jul 6;294(1):47-55
22205862 - Sensors (Basel). 2010;10(2):1154-75
19650401 - Res Q Exerc Sport. 2009 Jun;80(2):355-62
22287450 - J Phys Act Health. 2012 Jan;9 Suppl 1:S68-75
21233777 - Med Sci Sports Exerc. 2011 Aug;43(8):1561-7
References_xml – volume: 14
  start-page: 411
  year: 2011
  ident: 7313_CR22
  publication-title: J Sci Med Sport
  doi: 10.1016/j.jsams.2011.04.003
– volume: 7
  start-page: e37696
  year: 2012
  ident: 7313_CR6
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0037696
– volume: 294
  start-page: 47
  year: 2005
  ident: 7313_CR14
  publication-title: JAMA
  doi: 10.1001/jama.294.1.47
– ident: 7313_CR17
– volume: 48
  start-page: 278
  year: 2014
  ident: 7313_CR34
  publication-title: Br J Sports Med
  doi: 10.1136/bjsports-2012-091410
– volume: 40
  start-page: 181
  year: 2008
  ident: 7313_CR5
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/mss.0b013e31815a51b3
– volume: 7
  start-page: 53
  year: 2010
  ident: 7313_CR36
  publication-title: Int J Behav Nutr Phys Activ
  doi: 10.1186/1479-5868-7-53
– volume: 30
  start-page: 777
  year: 1998
  ident: 7313_CR12
  publication-title: Med Sci Sport Exer
  doi: 10.1097/00005768-199805000-00021
– volume: 16
  start-page: 515
  year: 2013
  ident: 7313_CR10
  publication-title: J Sci Med Sport
  doi: 10.1016/j.jsams.2012.12.002
– volume: 9
  start-page: S68
  year: 2012
  ident: 7313_CR3
  publication-title: J Phys Act Health
  doi: 10.1123/jpah.9.s1.s68
– volume: 6
  start-page: 17
  year: 2009
  ident: 7313_CR37
  publication-title: Int J Behav Nutr Phys Act
  doi: 10.1186/1479-5868-6-17
– volume: 44
  start-page: 2009
  year: 2012
  ident: 7313_CR19
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/MSS.0b013e318258cb36
– volume: 9
  start-page: e113
  year: 2012
  ident: 7313_CR9
  publication-title: Prev Chronic Dis
– volume: 10
  start-page: 1154
  year: 2010
  ident: 7313_CR31
  publication-title: Sensors
  doi: 10.3390/s100201154
– volume-title: Physical Activity Guidelines for Americans
  year: 2008
  ident: 7313_CR1
– volume: 100
  start-page: 1324
  year: 2006
  ident: 7313_CR29
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.00818.2005
– volume: 44
  start-page: 2243
  year: 2012
  ident: 7313_CR28
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/MSS.0b013e318260c477
– volume: 43
  start-page: 1561
  year: 2011
  ident: 7313_CR27
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/MSS.0b013e31820ce174
– volume: 294
  start-page: 56
  year: 2005
  ident: 7313_CR15
  publication-title: JAMA
  doi: 10.1001/jama.294.1.56
– volume: 43
  start-page: 357
  year: 2011
  ident: 7313_CR11
  publication-title: Med Sci Sport Exer
  doi: 10.1249/MSS.0b013e3181ed61a3
– volume: 21
  start-page: 32
  year: 2013
  ident: 7313_CR25
  publication-title: Obesity
  doi: 10.1002/oby.20234
– volume: 82
  start-page: 779
  year: 2011
  ident: 7313_CR32
  publication-title: Res Q Exercise Sport
  doi: 10.1080/02701367.2011.10599814
– volume: 44
  start-page: S24
  year: 2012
  ident: 7313_CR40
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/MSS.0b013e3182399c7d
– volume: 111
  start-page: 187
  year: 2011
  ident: 7313_CR26
  publication-title: Eur J Appl Physiol
  doi: 10.1007/s00421-010-1639-8
– volume: 10
  start-page: 742
  year: 2013
  ident: 7313_CR35
  publication-title: J Phys Act Health
  doi: 10.1123/jpah.10.5.742
– ident: 7313_CR20
– volume: 48
  start-page: 197
  year: 2014
  ident: 7313_CR7
  publication-title: Br J Sports Med
  doi: 10.1136/bjsports-2013-093154
– volume: 9
  start-page: 103
  year: 2012
  ident: 7313_CR4
  publication-title: Int J Behav Nutr Phys Activ
  doi: 10.1186/1479-5868-9-103
– volume: 17
  start-page: 293
  year: 2013
  ident: 7313_CR18
  publication-title: J Sci Med Sport
  doi: 10.1016/j.jsams.2013.07.002
– volume: 46
  start-page: 436
  year: 2012
  ident: 7313_CR23
  publication-title: Brit J Sport Med
  doi: 10.1136/bjsm.2010.079699
– volume-title: International Conference on Ambulatory Monitoring of Physical Activity and Movement; June
  year: 2013
  ident: 7313_CR13
– ident: 7313_CR41
– volume: 41
  start-page: 1384
  year: 2009
  ident: 7313_CR38
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/MSS.0b013e318199885c
– volume: 167
  start-page: 875
  year: 2008
  ident: 7313_CR21
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwm390
– volume: 9
  start-page: S5
  year: 2012
  ident: 7313_CR2
  publication-title: J Phys Act Health
  doi: 10.1123/jpah.9.s1.s5
– volume: 2
  start-page: 12
  year: 2014
  ident: 7313_CR39
  publication-title: Frontiers Public Health
  doi: 10.3389/fpubh.2014.00012
– volume: 46
  start-page: 386
  year: 2014
  ident: 7313_CR30
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/MSS.0b013e3182a42a2d
– volume: 10
  start-page: 120
  year: 2013
  ident: 7313_CR24
  publication-title: Int J Behav Nutr Phys Activ
  doi: 10.1186/1479-5868-10-120
– volume: 352
  start-page: 1293
  year: 2005
  ident: 7313_CR16
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa050613
– volume: 37
  start-page: S544
  year: 2005
  ident: 7313_CR8
  publication-title: Med Sci Sport Exer
  doi: 10.1249/01.mss.0000185674.09066.8a
– volume: 80
  start-page: 355
  year: 2009
  ident: 7313_CR33
  publication-title: Res Q Exercise Sport
  doi: 10.1080/02701367.2009.10599570
– reference: 23505166 - Obesity (Silver Spring). 2013 Jan;21(1):32-44
– reference: 24156309 - Int J Behav Nutr Phys Act. 2013;10:120
– reference: 22938557 - Int J Behav Nutr Phys Act. 2012;9:103
– reference: 23294696 - J Sci Med Sport. 2013 Nov;16(6):515-9
– reference: 21233777 - Med Sci Sports Exerc. 2011 Aug;43(8):1561-7
– reference: 16294117 - Med Sci Sports Exerc. 2005 Nov;37(11 Suppl):S544-54
– reference: 15998891 - JAMA. 2005 Jul 6;294(1):56-65
– reference: 22719846 - PLoS One. 2012;7(6):e37696
– reference: 20842375 - Eur J Appl Physiol. 2011 Feb;111(2):187-201
– reference: 16322367 - J Appl Physiol (1985). 2006 Apr;100(4):1324-31
– reference: 22936409 - Br J Sports Med. 2014 Feb;48(3):278-82
– reference: 22648343 - Med Sci Sports Exerc. 2012 Nov;44(11):2243-52
– reference: 21504965 - Br J Sports Med. 2012 May;46(6):436-42
– reference: 22525772 - Med Sci Sports Exerc. 2012 Oct;44(10):2009-16
– reference: 20581716 - Med Sci Sports Exerc. 2011 Feb;43(2):357-64
– reference: 19320985 - Int J Behav Nutr Phys Act. 2009 Mar 25;6:17
– reference: 24297837 - Br J Sports Med. 2014 Feb;48(3):197-201
– reference: 18091006 - Med Sci Sports Exerc. 2008 Jan;40(1):181-8
– reference: 9588623 - Med Sci Sports Exerc. 1998 May;30(5):777-81
– reference: 24616888 - Front Public Health. 2014 Feb 28;2:12
– reference: 18303006 - Am J Epidemiol. 2008 Apr 1;167(7):875-81
– reference: 19516163 - Med Sci Sports Exerc. 2009 Jul;41(7):1384-91
– reference: 22287450 - J Phys Act Health. 2012 Jan;9 Suppl 1:S68-75
– reference: 22205862 - Sensors (Basel). 2010;10(2):1154-75
– reference: 15753114 - N Engl J Med. 2005 Mar 31;352(13):1293-304
– reference: 23036822 - J Phys Act Health. 2013 Jul;10(5):742-9
– reference: 21616714 - J Sci Med Sport. 2011 Sep;14(5):411-6
– reference: 23932934 - J Sci Med Sport. 2014 May;17(3):293-9
– reference: 15998890 - JAMA. 2005 Jul 6;294(1):47-55
– reference: 22157771 - Med Sci Sports Exerc. 2012 Jan;44(1 Suppl 1):S24-31
– reference: 19650401 - Res Q Exerc Sport. 2009 Jun;80(2):355-62
– reference: 22276419 - Res Q Exerc Sport. 2011 Dec;82(4):779-83
– reference: 22698174 - Prev Chronic Dis. 2012;9:E113
– reference: 23860415 - Med Sci Sports Exerc. 2014 Feb;46(2):386-97
– reference: 20550691 - Int J Behav Nutr Phys Act. 2010 Jun 15;7:53
– reference: 22287448 - J Phys Act Health. 2012 Jan;9 Suppl 1:S5-10
SSID ssj0017852
Score 2.4420402
Snippet Accelerometers objectively assess physical activity (PA) and are currently used in several large-scale epidemiological studies, but there is no consensus for...
Background Accelerometers objectively assess physical activity (PA) and are currently used in several large-scale epidemiological studies, but there is no...
Doc number: 1210 Abstract Background: Accelerometers objectively assess physical activity (PA) and are currently used in several large-scale epidemiological...
Background: Accelerometers objectively assess physical activity (PA) and are currently used in several large-scale epidemiological studies, but there is no...
BACKGROUND: Accelerometers objectively assess physical activity (PA) and are currently used in several large-scale epidemiological studies, but there is no...
SourceID pubmedcentral
biomedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1210
SubjectTerms Accelerometers
Accelerometry - instrumentation
Accelerometry - methods
Adult
Aged
Algorithms
Analysis
Automatic Data Processing - instrumentation
Automatic Data Processing - methods
Body Mass Index
Cohort Studies
Data processing
Epidemiologic Measurements
Epidemiology
Exercise - physiology
Female
Humans
Medical research
Middle Aged
Monitoring, Ambulatory - instrumentation
Physical Examination
Sample Size
Studies
Time Factors
Womens health
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF9q-yJIqVbt2SojCIIYetnsR_JQpIilLehTC_e27G42WDiSa3NF6Kv_uDPJ3tkVubc7djbJZmbnYzPzG8Y-NNYXymGQ4zA4yUSoi8zZqc-a0ion7DRwSwf633-o82txOZOzeODWx7TKlU4cFHXdeTojP84VGkJUp7L4srjNqGsUfV2NLTSesB2CLqOULj1bB1zUeJ7HL5l5qY5zVMQZFxLDJsLqo6LZpMh9ntimfzX0IxOVpk8-skdne2w3OpJwOnL-OdsK7Qv2bDyFg7G4aJ_9vhiKIKFrwHqPFobACfBNAiWGwmIsEkDjBXVstdND1wL6hNBbgg2G_uYhfIZfuB2AutCDbWtYRNYC1URQ6wmYU-bRcBOYU2Y5UNvduyUM2LUv2fXZt6uv51lsu5A5JcUyc7l0dDQUPLpStZDeV2UoA-596bQIvuKyaWRd1SFUNnCltS143uA_HxqP4c8rtt12bThgILz0DukKPrXC5XVF1o_nwtmgNfJywk4SBpjFCLFhCPQ6HUFZMMRAQwzEX4YYOGHTFcOMj5jm1FpjbobYplT_m_JpPWV1tw3EH0kKDG12vK63sWYBV0ewWeZUFgTsrCSu5CihxE3q0-GVHJmoJHrzV6Qn7P16mGZS4lsbuvuRpiwxZtWbaApJjQA4Xuf1KJrrpWH8jzZJ5BOmE6FN3nQ60t78HGDGBRcavbc3mx_9kD1FH1JQeSYXR2x7eXcf3qKftnTvhs34B9P7PyI
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEA-lfSmItLbqaS1TEARx9Tabj92HIkUsrVCfetC3kGSzWFj2zrsrVV_9x53Zj2tTjuLbHZlkN5mZzEw28xvG3lbWZ8phkOMwOElEKLPE2bFPqtwqJ-w4cEsH-hff1dlEfLuSVxtsKG_VL-BibWhH9aQm8_rjr5-_P6PCH7cKn6tPKW6wCRcSwyHC4KOEqy00TJr09ELcfVTQeVuAZ0Xef-RcO8SD_Pc6MlsPN-971iu-WXnPVJ3usKe9jwknnVDsso3QPGNPugM66PKO9tjf8zY_EqYVWO_R-BBuAS4y0J1RmHX5A2jXoOyr8Cxg2gC6i7CwhCgMi-s_4QPcoqYAFagH25Qw67kOlC5BVSmgpktJ7UOgpkvnQBV550toYW332eT06-WXs6SvyJA4JcUycal0dGoUPHpZpZDeF3nIA24L0mkRfMFlVcmyKEMobOBKa5vxtMJ_PlQeI6PnbLOZNuElA-Gld0iX8bEVLi0LMow8Fc4GrdFHGbHjiAFm1qFvGMLDjltQNQ0x0BAD8ZchBo7YeGCY8T3cOVXdqE0b9uRqXZf3qy7D0x4hfkdSYEgycVxv-3QGnB0hapkTmRHms5I4k4OIEvXXx82DHJlB_E2q0O1D50FmI3a0aqaedCeuCdObjibPMZzVj9FkkmoEcBznRSeaq6lxKdBciXTEdCS00UrHLc31jxaBXHCh0bF79R_v9ppto48pKH2TiwO2uZzfhDfoxy3dYaud_wAyp0XN
  priority: 102
  providerName: Scholars Portal
Title Impact of accelerometer data processing decisions on the sample size, wear time and physical activity level of a large cohort study
URI https://www.ncbi.nlm.nih.gov/pubmed/25421941
https://www.proquest.com/docview/1628380153
https://www.proquest.com/docview/1628881487
https://www.proquest.com/docview/1635023623
http://dx.doi.org/10.1186/1471-2458-14-1210
https://pubmed.ncbi.nlm.nih.gov/PMC4247661
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEA_avggifntajxEEQVy8zeZrH3xoS88qtIhYOHwJSTZLC8fe0bsi-Oo_7szu3tocpS--hF0yyZKdTGYmyfyGsbe1C4Xy6OR4dE4yEasi824Ssto45YWbRO5oQ__kVB2fia8zOfuHs711gp8b9THH5TPjQqKzQwh7FE61ywUqQnLND34ORwbatOl1BvL-CPPGLrai2-eJUtpemq_ppvTe5DVFNH3IHvQWJOx3LH_E7sTmMbvfbb9BF1X0hP350kY_wqIGFwKqFkIlwF8IdCMUll10AGotqPocOytYNIDGIKwc4QXD6uJ3_AC_UA6A0s-DaypY9jwFCoagnBMwpytH7UdgTlfKgfLtXq6hBa19ys6mRz8Oj7M-30LmlRTrzOfS055QDGhDVUKGUJpoIgq99FrEUHJZ17IqqxhLF7nS2hU8r_EtxDqg3_OM7TSLJr5gIIIMHukKPnHC51VJao_nwruoNVogI_YpYYBddtgaltCu0xoUPEsMtMRAfLLEwBGbbBhmQw9mTjk15rZ1aoy6qcn7ocnma7cQv6NZYEnKsd_g-mAFHB3hZdl9WRCis5I4kr2EEqUzpNWbeWT71WFlc4VGHZoGshixN0M1taQbb01cXHU0xqCzqm-jKSRlAODYz_Nuag5DQ8cflZHIR0wnkzb502lNc3He4osLFC80217-J49esXtoXQoK3ORij-2sL6_ia7Tg1n7M7uqZxtIc5lROP4_Z7sHR6bfv43ZPBMsTYcatfP8FdLRIhA
linkProvider BioMedCentral
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAJId5sW2CQQEiIqIljx8mhQhVQ7dLHqZX2ZmzHEZVWydLdqoIr_4ffyEweS43Q3nrblcdJnBnPw5mZj7HXlXFpZjHIsRicRMKXaWRN7KIqN5kVJvbc0IH-8Uk2PhNfpnK6wX4PtTCUVjnoxFZRl42jM_LdJENDiOpUph_m3yNCjaKvqwOERicWh_7HFYZsi73JJ-TvG84PPp9-HEc9qkBkMymWkU2kpZMP79BTKIV0rsh97lG0pVXCu4LLqpJlUXpfGM8zpUzKkwr_OV85RSgRqPJvoeGNaUep6SrAI6B73n85TfJsN0HFH3EhMUyj3oBUpBsU1c8CW_ivRbhmEsN0zWv27-A-u9c7rrDfSdoDtuHrh-xud-oHXTHTI_Zr0hZdQlOBcQ4tGjVDQM4BJaLCvCtKQGMJZQ_ts4CmBvRBYWGoTTEszn_693CF7xkI9R5MXcK8FyWgGgyCuoAZZTq1N4EZZbIDwfxeLKHtlfuYnd0IQ56wzbqp_TMGwklnkS7lsRE2KQuytjwR1nilUHZGbC9ggJ53LT00NdkOR1D2NDFQEwPxlyYGjlg8MEy7voc6QXnMdBtL5dn_prxbTRnutob4LUmBJuWC13Wmr5HA1VGbLr0vU2oknUlcyU5AiUrBhcODHOleKS303y00Yq9WwzSTEu1q31x2NHmOMbJaR5NKAh7geJ2nnWiulsalQBsokhFTgdAGbzocqc-_tW3NBRcKvcWt9Y_-kt0enx4f6aPJyeE2u4P-q6DSUC522Oby4tI_Rx9xaV-0GxPY15vWBH8A4Rt93Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEF9KBRGk1O9rq44gCGLsZbObTR58qB9Hq7aIWCi-LLubDZamuaN3RfDVf9yZbC7cltIX3xJ2NmEzs_OxmfkNYy9r47LcYpBjMThJhK-yxJqxS-rC5FaYseeGDvQPj_L9Y_H5RJ6sscNlLYw9dwHfOZQBvl0tQm86zY0X7mx3VtVhwxf5booKNuFCYjhEGHxUcHVLSalon35__3P4qaCKrgHPQN7_5Lz2EVfq35vIbF1V3ivWK86sXDFVk0220fuYsBeE4h5b8-19djcc0EGoO3rA_h509ZEwrcE4h8aHcAvwIwPljMIs1A-gXYOq78Izh2kL6C7C3BCiMMxP__g38Bt3ClCDejBtBbOe60DlEtSVAhpKSupeAg0lnQN15L1YQAdr-5AdTz79-LCf9B0ZEptLsUhsKi2dGnmHXlYlpHNl4QuPakFaJbwruaxrWZWV96XxPFfKZDyt8c752mFk9Iitt9PWP2EgnHQW6TI-NsKmVUmGkafCGq8U-igj9i5igJ4F9A1NeNjxCEqFJgZqYiBeaWLgiI2XDNOuhzunrhuN7sKeIr9uyuthyvJtNxC_IinQpAdIJE1fzoCrI0QtvSczwnzOJa5kJ6LE_evi4aUc6V5_zHWao9uHzoPMRuzFMEwzKSeu9dPLQFMUGM6qm2gyST0COD7ncRDNYWlcCjRXIh0xFQlt9KXjkfb0V4dALrhQ6Nht_SePnrPb3z5O9NeDoy_b7A66ooKqPLnYYeuLi0v_FN29hX3WbeJ_TzNStw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+accelerometer+data+processing+decisions+on+the+sample+size%2C+wear+time+and+physical+activity+level+of+a+large+cohort+study&rft.jtitle=BMC+public+health&rft.au=Keadle%2C+Sarah+Kozey&rft.au=Shiroma%2C+Eric+J&rft.au=Freedson%2C+Patty+S&rft.au=Lee%2C+I-Min&rft.date=2014-11-24&rft.issn=1471-2458&rft.eissn=1471-2458&rft.volume=14&rft.spage=1210&rft_id=info:doi/10.1186%2F1471-2458-14-1210&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2458&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2458&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2458&client=summon