Narrow band quantitative and multivariate electroencephalogram analysis of peri-adolescent period

The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (2...

Full description

Saved in:
Bibliographic Details
Published inBMC neuroscience Vol. 13; no. 1; p. 104
Main Authors Martinez, E I Rodríguez, Barriga-Paulino, C I, Zapata, M I, Chinchilla, C, López-Jiménez, A M, Gómez, C M
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 24.08.2012
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0-20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages.
AbstractList Doc number: 104 Abstract Background: The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). Results: The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0-20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. Conclusions: The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages.
BACKGROUNDThe peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). RESULTSThe narrow band analysis of the Electroencephalogram was computed in the frequency range of 0-20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. CONCLUSIONSThe present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages.
Background The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). Results The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0-20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. Conclusions The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages. Keywords: Spontaneous EEG, EEG development, Adolescence, Brain rhythms, Power spectrum, Principal component analysis, Component analysis
The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0-20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages.
Background: The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). Results: The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0-20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. Conclusions: The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages.
Abstract Background The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). Results The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0–20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. Conclusions The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages.
Abstract Background The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). Results The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0–20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. Conclusions The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages.
The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0-20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages.
ArticleNumber 104
Audience Academic
Author Martinez, E I Rodríguez
Gómez, C M
Chinchilla, C
Zapata, M I
Barriga-Paulino, C I
López-Jiménez, A M
AuthorAffiliation 2 Behavioral Methodology Lab, Experimental Psychology Deparment, University of Sevilla, Seville, Spain
1 Human Psychobiology Lab, Experimental Psychology Deparment, University of Sevilla, Seville, Spain
AuthorAffiliation_xml – name: 1 Human Psychobiology Lab, Experimental Psychology Deparment, University of Sevilla, Seville, Spain
– name: 2 Behavioral Methodology Lab, Experimental Psychology Deparment, University of Sevilla, Seville, Spain
Author_xml – sequence: 1
  givenname: E I Rodríguez
  surname: Martinez
  fullname: Martinez, E I Rodríguez
  organization: Experimental Psychology Deparment, University of Sevilla, Seville, Spain
– sequence: 2
  givenname: C I
  surname: Barriga-Paulino
  fullname: Barriga-Paulino, C I
– sequence: 3
  givenname: M I
  surname: Zapata
  fullname: Zapata, M I
– sequence: 4
  givenname: C
  surname: Chinchilla
  fullname: Chinchilla, C
– sequence: 5
  givenname: A M
  surname: López-Jiménez
  fullname: López-Jiménez, A M
– sequence: 6
  givenname: C M
  surname: Gómez
  fullname: Gómez, C M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22920159$$D View this record in MEDLINE/PubMed
BookMark eNqFUktv1DAQjlARfcCdE4rEhUvK-JXHBala8ahUwQXO1tiebL1K4q2TFPXf4-yW0kVFyAfbM998Hn_fnGZHQxgoy14zOGesLt8zWbGCc-AFEwUD-Sw7eQgdPTofZ6fjuAFgVS35i-yY84YDU81Jhl8xxvAzNzi4_GbGYfITTv6W8iXQz106Y_Q4UU4d2SkGGixtr7EL64h9QmF3N_oxD22-pegLdKGj0dIw7e7Bvcyet9iN9Op-P8t-fPr4ffWluPr2-XJ1cVWYUsFUEEpyohZolBBUMrBKEGJtuastVdAobpxorKosMWLgbFVjhY4MQOlQiLPscs_rAm70Nvoe450O6PUuEOJaY5y87Ug7SE-WVWsUK6VBZ1RlgFomBa-EdGXi-rDn2s6mJ7f8JmJ3QHqYGfy1XodbLWQNjWCJYLUnMD78g-AwY0OvF7v0YpdmQic3E8u7-zZiuJlpnHTvk7RdhwOFeUwwXivGQTb_hzKmFC_5rre3f0E3YY7Jxx1K1iUI4H9Qa0yK-aENqU-7kOoLJWTqFdgi1PkTqLQc9d6mYW19ih8UwL7AxjCOkdoHTRjoZaafUuHNYzMeCn4PsfgFfXjzmg
CitedBy_id crossref_primary_10_1109_JBHI_2024_3364499
crossref_primary_10_1007_s11571_016_9402_4
crossref_primary_10_1017_sjp_2016_64
crossref_primary_10_1016_j_ijpsycho_2019_08_013
crossref_primary_10_1016_j_neuroimage_2023_119925
crossref_primary_10_1007_s11571_022_09869_0
crossref_primary_10_1016_j_jneumeth_2019_04_001
crossref_primary_10_1007_s11571_018_9476_2
crossref_primary_10_1016_j_cortex_2017_05_007
crossref_primary_10_1016_j_ridd_2019_103520
crossref_primary_10_3390_jpm12060896
crossref_primary_10_1007_s10548_014_0369_3
crossref_primary_10_1016_j_neulet_2021_135747
crossref_primary_10_1159_000358484
crossref_primary_10_1016_j_bandc_2023_105969
crossref_primary_10_1016_j_neuropsychologia_2016_12_026
crossref_primary_10_1007_s10548_016_0532_0
crossref_primary_10_1186_s12993_015_0067_7
crossref_primary_10_1016_j_neulet_2016_07_048
Cites_doi 10.1016/0013-4694(87)90119-2
10.55782/ane-2009-1741
10.1016/j.brainres.2006.06.019
10.1016/0013-4694(88)90205-2
10.1016/0013-4694(90)90135-7
10.1006/nimg.2002.1070
10.1073/pnas.0812947106
10.1016/0278-2626(92)90060-Y
10.1016/S0167-8760(97)00068-8
10.1016/0013-4694(84)90002-6
10.1097/00004691-199701000-00007
10.1016/j.clinph.2008.02.010
10.1016/j.clinph.2005.08.007
10.1080/87565649109540500
10.1126/science.7434026
10.1002/hbm.20273
10.1007/BF00583657
10.1016/S0013-4694(98)00090-X
10.1007/s10548-007-0032-3
10.1002/dev.420130608
10.1007/s10548-005-4449-2
10.1016/S1388-2457(01)00488-6
10.1002/hbm.20474
10.1016/0013-4694(88)90128-9
10.1016/j.jneumeth.2003.10.009
10.1177/155005940603700307
10.1016/S0301-0511(96)05218-0
10.1016/0013-4694(80)90403-4
10.1016/S1388-2457(03)00173-1
10.1016/0167-8760(92)90039-E
10.1038/nature04513
10.1016/j.neuroimage.2011.02.050
10.1016/j.brainresbull.2010.01.005
10.1016/j.neuropsychologia.2011.09.012
10.1196/annals.1308.009
10.1523/JNEUROSCI.21-22-08819.2001
10.1016/j.clinph.2008.02.023
10.1016/S0361-9230(00)00434-2
10.1523/JNEUROSCI.5309-07.2008
10.1016/0921-884X(96)95573-3
10.1016/0013-4694(74)90176-X
10.1111/j.1467-7687.2010.01031.x
10.1016/S0024-3205(02)01492-3
10.1542/peds.102.SE1.1225
10.1017/S0012162201001591
10.1016/j.bandc.2009.09.008
10.1016/S0022-5193(05)80218-8
10.1016/j.bandc.2009.10.003
10.1016/0013-4694(92)90070-X
10.1016/0304-3940(92)90051-8
10.1027/0269-8803/a000052
10.1016/0013-4694(88)90204-0
ContentType Journal Article
Copyright COPYRIGHT 2012 BioMed Central Ltd.
2012 Rodriguez Martinez et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright ©2012 Rodriguez Martinez et al.; licensee BioMed Central Ltd. 2012 Rodriguez Martinez et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2012 BioMed Central Ltd.
– notice: 2012 Rodriguez Martinez et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright ©2012 Rodriguez Martinez et al.; licensee BioMed Central Ltd. 2012 Rodriguez Martinez et al.; licensee BioMed Central Ltd.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7TK
7X7
7XB
88E
88G
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
5PM
DOA
DOI 10.1186/1471-2202-13-104
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Psychology Database (ProQuest)
Biological Science Database
Access via ProQuest (Open Access)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest One Psychology
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic


Neurosciences Abstracts

CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1471-2202
EndPage 104
ExternalDocumentID oai_doaj_org_article_d065067fb5164badb57b0ef1432734d6
oai_biomedcentral_com_1471_2202_13_104
2796979821
A534147016
10_1186_1471_2202_13_104
22920159
Genre Journal Article
GeographicLocations Spain
GeographicLocations_xml – name: Spain
GroupedDBID ---
-A0
0R~
23N
2VQ
2WC
3V.
4.4
53G
5VS
6J9
6PF
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAWTL
ABDBF
ABIVO
ABUWG
ACGFO
ACGFS
ACIHN
ACMJI
ACPRK
ACRMQ
ADBBV
ADINQ
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C24
C6C
CCPQU
CGR
CS3
CUY
CVF
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
ECM
EIF
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
IPNFZ
IPY
ITC
KQ8
LK8
M1P
M2M
M48
M7P
M~E
NPM
NXXTH
O5R
O5S
OK1
P2P
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
PSYQQ
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
AFGXO
7TK
7XB
8FK
K9.
PQEST
PQUKI
PRINS
Q9U
7X8
ABVAZ
AFNRJ
5PM
ID FETCH-LOGICAL-b650t-ea4ed383ab533e610c53eaa8c2d8ce70952bd39c57ce1e10dc78a7adeb006da33
IEDL.DBID RPM
ISSN 1471-2202
IngestDate Tue Oct 22 15:07:22 EDT 2024
Tue Sep 17 21:09:02 EDT 2024
Wed May 22 07:15:16 EDT 2024
Fri Oct 25 04:47:04 EDT 2024
Fri Oct 25 22:06:44 EDT 2024
Thu Oct 10 16:43:05 EDT 2024
Wed Aug 14 18:52:46 EDT 2024
Tue Nov 12 23:35:08 EST 2024
Thu Sep 12 19:37:20 EDT 2024
Sat Sep 28 08:04:03 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b650t-ea4ed383ab533e610c53eaa8c2d8ce70952bd39c57ce1e10dc78a7adeb006da33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3480931/
PMID 22920159
PQID 1114860302
PQPubID 44779
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_d065067fb5164badb57b0ef1432734d6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3480931
biomedcentral_primary_oai_biomedcentral_com_1471_2202_13_104
proquest_miscellaneous_1328512049
proquest_miscellaneous_1115526231
proquest_journals_1114860302
gale_infotracmisc_A534147016
gale_infotracacademiconefile_A534147016
crossref_primary_10_1186_1471_2202_13_104
pubmed_primary_22920159
PublicationCentury 2000
PublicationDate 2012-08-24
PublicationDateYYYYMMDD 2012-08-24
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08-24
  day: 24
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC neuroscience
PublicationTitleAlternate BMC Neurosci
PublicationYear 2012
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References 19883968 - Brain Cogn. 2010 Feb;72(1):56-65
11811649 - Dev Med Child Neurol. 2002 Jan;44(1):4-16
9506312 - Int J Psychophysiol. 1998 Jan;28(1):77-98
2446829 - Electroencephalogr Clin Neurophysiol. 1988 Feb;69(2):100-9
1693893 - Electroencephalogr Clin Neurophysiol. 1990 Jun;75(6):482-91
15251877 - Ann N Y Acad Sci. 2004 Jun;1021:77-85
18387340 - Clin Neurophysiol. 2008 Jun;119(6):1271-80
18486545 - Clin Neurophysiol. 2008 Aug;119(8):1778-81
9013362 - J Clin Neurophysiol. 1997 Jan;14(1):73-82
18385317 - J Neurosci. 2008 Apr 2;28(14):3586-94
1641193 - Neurosci Lett. 1992 Mar 2;136(2):213-5
1281080 - Electroencephalogr Clin Neurophysiol. 1992 Dec;83(6):350-7
11969316 - Neuroimage. 2002 May;16(1):41-8
12005176 - Life Sci. 2002 Mar 8;70(16):1909-22
9922087 - Electroencephalogr Clin Neurophysiol. 1998 Dec;107(6):415-21
16875680 - Brain Res. 2006 Aug 30;1107(1):151-60
11698594 - J Neurosci. 2001 Nov 15;21(22):8819-29
1510873 - Brain Topogr. 1992 Summer;4(4):291-307
20080154 - Brain Res Bull. 2010 Apr 5;81(6):525-33
17957703 - Hum Brain Mapp. 2008 Dec;29(12):1400-15
11336896 - Clin Neurophysiol. 2001 May;112(5):806-14
7434026 - Science. 1980 Dec 12;210(4475):1255-8
16929704 - Clin EEG Neurosci. 2006 Jul;37(3):198-203
1034286 - Pflugers Arch. 1976 Nov 30;367(1):55-66
9794959 - Pediatrics. 1998 Nov;102(5 Suppl E):1225-9
1740399 - Int J Psychophysiol. 1992 Jan;12(1):19-29
17929159 - Brain Topogr. 2007 Winter;20(2):63-76
9043653 - Biol Psychol. 1997 Jan 31;44(3):187-209
6158442 - Electroencephalogr Clin Neurophysiol. 1980 Sep;49(5-6):626-35
16572172 - Nature. 2006 Mar 30;440(7084):676-9
21884309 - Dev Sci. 2011 Sep;14(5):935-43
1389121 - Brain Cogn. 1992 Sep;20(1):24-50
4130613 - Electroencephalogr Clin Neurophysiol. 1974 Mar;36(3):319-22
2446839 - Electroencephalogr Clin Neurophysiol. 1988 Feb;69(2):91-9
11287130 - Brain Res Bull. 2001 Feb;54(3):255-66
21939677 - Neuropsychologia. 2011 Nov;49(13):3605-11
6198138 - Electroencephalogr Clin Neurophysiol. 1984 Jan;57(1):1-12
21349336 - Neuroimage. 2011 Jun 1;56(3):1493-505
19593330 - Acta Neurobiol Exp (Wars). 2009;69(2):155-67
15974475 - Brain Topogr. 2005 Spring;17(3):165-75
19914761 - Brain Cogn. 2010 Feb;72(1):86-100
2450000 - Electroencephalogr Clin Neurophysiol. 1988 Mar;69(3):191-8
2161971 - J Theor Biol. 1990 Jan 23;142(2):149-61
16257577 - Clin Neurophysiol. 2005 Dec;116(12):2826-46
8758971 - Electroencephalogr Clin Neurophysiol. 1996 Jul;99(1):63-8
15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21
19307577 - Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5177-80
7429022 - Dev Psychobiol. 1980 Nov;13(6):629-31
14499754 - Clin Neurophysiol. 2003 Oct;114(10):1918-25
16767769 - Hum Brain Mapp. 2007 Mar;28(3):228-37
2441966 - Electroencephalogr Clin Neurophysiol. 1987 Oct;67(4):330-2
ER John (2783_CR5) 1980; 210
HT Epstein (2783_CR27) 1980; 13
JN Giedd (2783_CR37) 2004; 1021
RW Thatcher (2783_CR13) 2008; 29
GA Otero (2783_CR24) 2003; 114
T Paus (2783_CR1) 2000; 54
RJM Somsen (2783_CR3) 1997; 44
I Feinberg (2783_CR44) 1990; 142
RW Thatcher (2783_CR29) 1992; 20
RL Gorsuch (2783_CR54) 1983
CK Tamnes (2783_CR41) 2011; 49
RW Thatcher (2783_CR11) 1991; 7
P Novak (2783_CR61) 1992; 136
A Alvarez (2783_CR6) 1987; 67
M Haan (2783_CR17) 2007
P Shaw (2783_CR34) 2008; 28
LA Carretié (2783_CR19) 2001
G Pfurtscheller (2783_CR60) 1976; 367
JR Zaragoza (2783_CR53) 1977
IG Campbell (2783_CR59) 2009; 106
M Defayolle (2783_CR47) 2001; 36
T Harmony (2783_CR23) 1990; 75
T Gasser (2783_CR4) 1988; 69
AR Clarke (2783_CR21) 2001; 112
J Wackermann (2783_CR64) 1998; 107
CI Barriga-Paulino (2783_CR10) 2011; 25
AP Anokhin (2783_CR8) 1996; 99
M Toth (2783_CR65) 2007; 20
CE Tenke (2783_CR15) 2005; 116
R Lüchinger (2783_CR56) 2011; 56
J Piaget (2783_CR30) 1967
TD Lagerlund (2783_CR52) 1997; 14
TJ Whitford (2783_CR14) 2007; 28
A Flores (2783_CR50) 2009; 69
FH Duffy (2783_CR48) 1992; 1
MS Keshavan (2783_CR38) 2002; 70
P Matthis (2783_CR25) 1980; 49
P Shaw (2783_CR39) 2006; 440
HT Chugani (2783_CR57) 1998; 102
CM Gómez (2783_CR16) 2006; 1107
G Otero (2783_CR36) 2001
E Marosi (2783_CR12) 1992; 83
M Puligheddu (2783_CR9) 2005; 17
BS Oken (2783_CR63) 1988; 69
A Delorme (2783_CR55) 2004; 134
ER Sowell (2783_CR42) 2001; 21
WJ Hudspeth (2783_CR28) 1992; 12
V Lazarev (2783_CR49) 1998; 28
D Hagemann (2783_CR58) 2008; 119
ER Sowell (2783_CR40) 2002; 44
T Koenig (2783_CR7) 2002; 16
J Yordanova (2783_CR33) 2007
2783_CR43
M Matousek (2783_CR2) 1973
LV Marcuse (2783_CR31) 2008; 119
T Gasser (2783_CR35) 1988; 69
J Becerra (2783_CR22) 2006; 37
ER John (2783_CR45) 1977
SJ Segalowitz (2783_CR20) 2010; 72
E Niedermeyer (2783_CR18) 1999
J Imgren (2783_CR46) 1973; 28
G Otero (2783_CR62) 2001
AB Flores (2783_CR51) 2010; 81
C Benninger (2783_CR26) 1984; 57
L Cragg (2783_CR32) 2001; 14
References_xml – volume-title: Neurometrics. Functional Neuroscience, volume II
  year: 1977
  ident: 2783_CR45
  contributor:
    fullname: ER John
– volume: 67
  start-page: 330
  issue: 4
  year: 1987
  ident: 2783_CR6
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(87)90119-2
  contributor:
    fullname: A Alvarez
– volume: 69
  start-page: 155
  issue: 2
  year: 2009
  ident: 2783_CR50
  publication-title: Acta Neurobiol Exp
  doi: 10.55782/ane-2009-1741
  contributor:
    fullname: A Flores
– volume: 1107
  start-page: 151
  year: 2006
  ident: 2783_CR16
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2006.06.019
  contributor:
    fullname: CM Gómez
– volume-title: Psicofisiología
  year: 2001
  ident: 2783_CR19
  contributor:
    fullname: LA Carretié
– volume: 69
  start-page: 100
  year: 1988
  ident: 2783_CR35
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(88)90205-2
  contributor:
    fullname: T Gasser
– volume: 75
  start-page: 482
  year: 1990
  ident: 2783_CR23
  publication-title: Clin Neurophysiol
  doi: 10.1016/0013-4694(90)90135-7
  contributor:
    fullname: T Harmony
– volume: 16
  start-page: 41
  issue: 1
  year: 2002
  ident: 2783_CR7
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1070
  contributor:
    fullname: T Koenig
– volume: 106
  start-page: 5177
  issue: 13
  year: 2009
  ident: 2783_CR59
  publication-title: PNAS
  doi: 10.1073/pnas.0812947106
  contributor:
    fullname: IG Campbell
– start-page: 371
  volume-title: Texto de Neurociencias Cognitivas
  year: 2001
  ident: 2783_CR36
  contributor:
    fullname: G Otero
– volume: 20
  start-page: 24
  issue: 1
  year: 1992
  ident: 2783_CR29
  publication-title: Brain Cogn
  doi: 10.1016/0278-2626(92)90060-Y
  contributor:
    fullname: RW Thatcher
– volume: 28
  start-page: 77
  issue: 1
  year: 1998
  ident: 2783_CR49
  publication-title: Int J Psychophysiol
  doi: 10.1016/S0167-8760(97)00068-8
  contributor:
    fullname: V Lazarev
– volume: 57
  start-page: 1
  year: 1984
  ident: 2783_CR26
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(84)90002-6
  contributor:
    fullname: C Benninger
– volume: 14
  start-page: 73
  year: 1997
  ident: 2783_CR52
  publication-title: J Clin Neurophysiol
  doi: 10.1097/00004691-199701000-00007
  contributor:
    fullname: TD Lagerlund
– volume: 119
  start-page: 1271
  year: 2008
  ident: 2783_CR58
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2008.02.010
  contributor:
    fullname: D Hagemann
– volume: 116
  start-page: 2826
  year: 2005
  ident: 2783_CR15
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2005.08.007
  contributor:
    fullname: CE Tenke
– volume-title: Infant EEG and event-related potentials
  year: 2007
  ident: 2783_CR17
  contributor:
    fullname: M Haan
– volume: 7
  start-page: 397
  year: 1991
  ident: 2783_CR11
  publication-title: Dev Neuropsychol
  doi: 10.1080/87565649109540500
  contributor:
    fullname: RW Thatcher
– volume: 1
  start-page: 291
  year: 1992
  ident: 2783_CR48
  publication-title: BrainTopography
  contributor:
    fullname: FH Duffy
– volume: 210
  start-page: 1255
  year: 1980
  ident: 2783_CR5
  publication-title: Science
  doi: 10.1126/science.7434026
  contributor:
    fullname: ER John
– volume: 28
  start-page: 228
  year: 2007
  ident: 2783_CR14
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20273
  contributor:
    fullname: TJ Whitford
– volume: 367
  start-page: 55
  year: 1976
  ident: 2783_CR60
  publication-title: Pflugers Arch
  doi: 10.1007/BF00583657
  contributor:
    fullname: G Pfurtscheller
– volume: 107
  start-page: 415
  year: 1998
  ident: 2783_CR64
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/S0013-4694(98)00090-X
  contributor:
    fullname: J Wackermann
– volume: 20
  start-page: 63
  issue: 2
  year: 2007
  ident: 2783_CR65
  publication-title: Brain Topogr
  doi: 10.1007/s10548-007-0032-3
  contributor:
    fullname: M Toth
– volume: 13
  start-page: 629
  year: 1980
  ident: 2783_CR27
  publication-title: Dev Psychobiol
  doi: 10.1002/dev.420130608
  contributor:
    fullname: HT Epstein
– volume: 17
  start-page: 165
  issue: 3
  year: 2005
  ident: 2783_CR9
  publication-title: Brain Topogr
  doi: 10.1007/s10548-005-4449-2
  contributor:
    fullname: M Puligheddu
– volume: 112
  start-page: 806
  year: 2001
  ident: 2783_CR21
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(01)00488-6
  contributor:
    fullname: AR Clarke
– volume: 29
  start-page: 1400
  issue: 12
  year: 2008
  ident: 2783_CR13
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20474
  contributor:
    fullname: RW Thatcher
– volume: 69
  start-page: 191
  year: 1988
  ident: 2783_CR63
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(88)90128-9
  contributor:
    fullname: BS Oken
– volume-title: Factor Analysis
  year: 1983
  ident: 2783_CR54
  contributor:
    fullname: RL Gorsuch
– volume: 134
  start-page: 9
  issue: 1
  year: 2004
  ident: 2783_CR55
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2003.10.009
  contributor:
    fullname: A Delorme
– volume: 37
  start-page: 198
  issue: 3
  year: 2006
  ident: 2783_CR22
  publication-title: Clin EEG Neurosci
  doi: 10.1177/155005940603700307
  contributor:
    fullname: J Becerra
– volume-title: Física e instrumentación médicas
  year: 1977
  ident: 2783_CR53
  contributor:
    fullname: JR Zaragoza
– volume: 44
  start-page: 187
  year: 1997
  ident: 2783_CR3
  publication-title: Biol Psychol
  doi: 10.1016/S0301-0511(96)05218-0
  contributor:
    fullname: RJM Somsen
– volume: 49
  start-page: 626
  year: 1980
  ident: 2783_CR25
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(80)90403-4
  contributor:
    fullname: P Matthis
– volume: 114
  start-page: 1918
  year: 2003
  ident: 2783_CR24
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(03)00173-1
  contributor:
    fullname: GA Otero
– volume: 12
  start-page: 19
  year: 1992
  ident: 2783_CR28
  publication-title: Int J Psychophysiol
  doi: 10.1016/0167-8760(92)90039-E
  contributor:
    fullname: WJ Hudspeth
– volume: 440
  start-page: 676
  year: 2006
  ident: 2783_CR39
  publication-title: Nature
  doi: 10.1038/nature04513
  contributor:
    fullname: P Shaw
– volume: 56
  start-page: 1493
  year: 2011
  ident: 2783_CR56
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.02.050
  contributor:
    fullname: R Lüchinger
– volume: 81
  start-page: 525
  issue: 6
  year: 2010
  ident: 2783_CR51
  publication-title: Brain Res Bull
  doi: 10.1016/j.brainresbull.2010.01.005
  contributor:
    fullname: AB Flores
– volume: 49
  start-page: 3605
  issue: 13
  year: 2011
  ident: 2783_CR41
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2011.09.012
  contributor:
    fullname: CK Tamnes
– volume: 1021
  start-page: 77
  year: 2004
  ident: 2783_CR37
  publication-title: Ann N Y Acad Sci
  doi: 10.1196/annals.1308.009
  contributor:
    fullname: JN Giedd
– volume: 21
  start-page: 8819
  issue: 22
  year: 2001
  ident: 2783_CR42
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.21-22-08819.2001
  contributor:
    fullname: ER Sowell
– volume: 119
  start-page: 1778
  year: 2008
  ident: 2783_CR31
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2008.02.023
  contributor:
    fullname: LV Marcuse
– volume: 54
  start-page: 255
  issue: 3
  year: 2000
  ident: 2783_CR1
  publication-title: Brain Res Bull
  doi: 10.1016/S0361-9230(00)00434-2
  contributor:
    fullname: T Paus
– volume: 28
  start-page: 3586
  issue: 14
  year: 2008
  ident: 2783_CR34
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5309-07.2008
  contributor:
    fullname: P Shaw
– volume: 99
  start-page: 63
  issue: 1
  year: 1996
  ident: 2783_CR8
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0921-884X(96)95573-3
  contributor:
    fullname: AP Anokhin
– volume-title: Six psychological studies
  year: 1967
  ident: 2783_CR30
  contributor:
    fullname: J Piaget
– volume: 36
  start-page: 319
  year: 2001
  ident: 2783_CR47
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(74)90176-X
  contributor:
    fullname: M Defayolle
– volume: 14
  start-page: 935
  issue: 5
  year: 2001
  ident: 2783_CR32
  publication-title: Dev Sci
  doi: 10.1111/j.1467-7687.2010.01031.x
  contributor:
    fullname: L Cragg
– volume: 70
  start-page: 1909
  year: 2002
  ident: 2783_CR38
  publication-title: Life Sci
  doi: 10.1016/S0024-3205(02)01492-3
  contributor:
    fullname: MS Keshavan
– volume: 102
  start-page: 1225
  year: 1998
  ident: 2783_CR57
  publication-title: Pediatrics
  doi: 10.1542/peds.102.SE1.1225
  contributor:
    fullname: HT Chugani
– volume: 44
  start-page: 4
  year: 2002
  ident: 2783_CR40
  publication-title: Dev Med Child Neurol
  doi: 10.1017/S0012162201001591
  contributor:
    fullname: ER Sowell
– ident: 2783_CR43
  doi: 10.1016/j.bandc.2009.09.008
– volume: 142
  start-page: 149
  issue: 2
  year: 1990
  ident: 2783_CR44
  publication-title: J Theor Biol
  doi: 10.1016/S0022-5193(05)80218-8
  contributor:
    fullname: I Feinberg
– volume: 28
  start-page: 255
  issue: 122
  year: 1973
  ident: 2783_CR46
  publication-title: Revista de psicología general y aplicada: Revista de la Federación Española de Asociaciones de Psicología
  contributor:
    fullname: J Imgren
– start-page: 75
  volume-title: Automation of clinical electroencephalography
  year: 1973
  ident: 2783_CR2
  contributor:
    fullname: M Matousek
– volume: 72
  start-page: 86
  issue: 1
  year: 2010
  ident: 2783_CR20
  publication-title: Brain Cogn
  doi: 10.1016/j.bandc.2009.10.003
  contributor:
    fullname: SJ Segalowitz
– volume: 83
  start-page: 350
  issue: 6
  year: 1992
  ident: 2783_CR12
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(92)90070-X
  contributor:
    fullname: E Marosi
– volume: 136
  start-page: 213
  year: 1992
  ident: 2783_CR61
  publication-title: Neurosci Lett
  doi: 10.1016/0304-3940(92)90051-8
  contributor:
    fullname: P Novak
– volume: 25
  start-page: 143
  issue: 3
  year: 2011
  ident: 2783_CR10
  publication-title: Journal of Psychophysiology
  doi: 10.1027/0269-8803/a000052
  contributor:
    fullname: CI Barriga-Paulino
– volume-title: Journal of Psychophysiology
  year: 2007
  ident: 2783_CR33
  contributor:
    fullname: J Yordanova
– start-page: 371
  volume-title: Texto de Neurociencias Cognitivas
  year: 2001
  ident: 2783_CR62
  contributor:
    fullname: G Otero
– volume: 69
  start-page: 91
  issue: 2
  year: 1988
  ident: 2783_CR4
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(88)90204-0
  contributor:
    fullname: T Gasser
– volume-title: Lopes da Silva F: Electroencephalography: basic principles, clinical applications, and related fields
  year: 1999
  ident: 2783_CR18
  contributor:
    fullname: E Niedermeyer
SSID ssj0017842
Score 2.160149
Snippet The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in...
Abstract Background The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report...
Background The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the...
Doc number: 104 Abstract Background: The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The...
BACKGROUNDThe peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the...
Background: The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the...
BACKGROUND: The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the...
Abstract Background The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report...
SourceID doaj
pubmedcentral
biomedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 104
SubjectTerms Adolescence
Adolescent
Age
Age Factors
Analysis
Behavior
Brain
Brain - physiology
Brain Mapping
Brain rhythms
Brain Waves - physiology
Child
Child development
Child Development - physiology
Children
Cognition - physiology
Colleges & universities
Component analysis
EEG
EEG development
Electroencephalography
Experimental psychology
Female
Fourier transforms
Humans
Male
Multivariate Analysis
Nervous system
Neuropsychological Tests
Physiological aspects
Power spectrum
Principal Component Analysis
Principal components analysis
Rhythm
Rhythms
Spectrum Analysis
Spontaneous EEG
Statistics as Topic
Topography
Young adults
SummonAdditionalLinks – databaseName: BiomedCentral
  dbid: RBZ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB-0gvgi9TtaJYIgPgST_Ug20JdWLEVonywUX5bZj1BBc2298-93Zi-Xdmvxxbe73cldsjOz85vs7m8A3mmpBymcrvrQx0o5-uT0YKq2GygaB4c98nvIo-P28ER9OdWnVzQ5N1bwG9N-bGj6rITgGhy8i0rdhXuCKVU4M9__Nq8YdCYVypmlN0uSt_zCjbPtP7KQlJj7_56frwWofPPktWh0sA0PJxhZ7q31_gjuxPEx3D-aFsqfAB4ncsXS4RjKixWO6SwZzWwlN6RdhL8pSyagWU6FcNjDz88wUVj_JKk1V0m5GErmQq6umJ_S90V4CicHn79-OqymagqVIxS2rCKqGCgfRUcILxJq8lpGRONFMD52BLWEC7L3uvOxiU0dfGeww8DFhdqAUj6DrXExxhdQehyo2WCQtVK91KTdWkavTDTowyAK2M0G2J6vmTMsc1nnPeRWlvVjWT-2kZb0U8CHjT7mK1OuYtpbZPdZYdk_pAYyITs5nw2MQ8n6nKbk0GFwunN1HAgqMrlPaAt4z-q27NN0Vx6nown0tMyOZfc0xXrVETouYCeTJF_0effGYOw0F_ziHIsrfcmaxuXt3M1X8v62MS5WSUZrQVC0-YeMFASPBaV0BTxf2-D82IKLjhEyLaDLrDMbl7xn_H6W2MSlMnUvm5f_p7NX8IBuQPDbdqF2YGt5uYqvCa4t3Zvkp38A-OU9YA
  priority: 500
  providerName: BioMedCentral
– databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gLAsojtKAgISEOVhM_Ykfi0lZUVaX2RKXerPEjKhJkW9jl93fGyS5rQHDhtvFDG8-M7W_i8TeMvdVSD1J4zfvYJ648_vJ6sLwzA-7G0UMP9B3y_KI7vVRnV_pqK9UXxYRN9MCT4A4iYQjs6TUCew_Ra-ObNOA2T8QscSLbbvq1MzWfHxib0-a0uPRyISiGZzqgtN3Bpoy3FJX16033L8UGlXn8f1-tt7arMpRya286ecQezqCyPpwG85jdS-MTdv98PjbfZXCRqRZrD2Osb1cw5ptluM7VVJBjCn-gz4yws57T4tB8v7mGTGj9FVtNzCX1YqiJGZn_5IHKz4v4lF2efPx0fMrn3ArcozyXPIFKEb1T8Ij3EmKooGUCsEFEG5JB4CV8lH3QJqQ2tU0MxoKBSKmGughSPmM742JML1gdYMBiC1E2SvVSo64bmYKyyUKIg6jYh0LA7mbi0XDEbF3W4CRzpB9H-nGtdKifir1f62PTM3sutvtD2yNSWPEPuQAtys0W5f5lURV7R-p2NMPxrQLMFxVwtMSV5Q417vzKIFau2H7REmdmKKvXBuPmleE7eVyU90s2KJc3m2rqSdFuY1qschutBQLT9i9tpECwLNDBq9jzyQY3wxaUggxxasVMYZ2FXMqa8fN15haXyja9bF_-D0HusQf4GoK-wAu1z3aW31bpFUK4pX-dZ-sdMkBEeg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB-0gvgifrtaZQVBfFi6m49NFgSpYilC-2ShbyFfawXdvbZ3_v3O5HLXRqVvd8ks-zGTyW-SyW8A3kouR86cbIYwxEY4_OXkqJtejTgbB2cHS-uQR8f94Yn4eipP84LbZU6r3PjE5KjD7GmNfK8j4N6jSbKPi_OGqkbR7mouoXEb7nSs7SmlS51uA65OacE2W5O63-vQETeMUTUPysf6-4z7z2JqSgz-__rpaxNVmUR5bVY6eAD3M5ys99f6fwi34vQI7h7lDfPHYI8TyWLt7BTq85Wd0pky9HA1NaRswt8YLSPgrHNBHBrpizObqKx_odSas6Sex5o4kZsrBqj0fw5P4OTgy7fPh02uqtA4RGPLJloRA8al1iHSi4ievOTRWu1Z0D4qhFzMBT54qXzsYtcGr7RVNlCRoT5Yzp_CzjRP8TnU3o7YrG3grRADl6jllkcvdNTWh5FV8KH4wGaxZtAwxGld9qCqDenHkH5Mxw3qp4L3G31sr0wxi-7_I_uJFFbcITXMF99NHoQmEB5FK3QSg0Rng5PKtXFEyEgkP6Gv4B2p29DYxqfyNh9RwLclliyzL3HOFwpRcgW7hSSOSV92bwzGZJ9waa4suII32266kvLcpjivkoyUDCFpd4MMZwiTGYZ2FTxb2-D2tRkVH0OEWoEqrLP4LmXP9OMssYpzoduBdy9ufvSXcA9vwGhVnYld2FlerOIrhGVL9zqNvT-ieTpj
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSIgLKu_QgoKEhDgEEj8SR2qFCqKqkNoTK_VmjR-hSCVpl92q_HtmvNndGla9Ze1JsvbM2N_E9jeMvVVCdYJbVbS-DYW0eGVVp4u66XA29hZaoO-Qxyf10UR-O1Wn6-PRYwf-3hjaUT6pyfT8w_Xln0_o8PvR4XX9scIBtuCcsnTQPit5l93jEuN02sgn12sKjY6pdFbSy0XLDU_45_T7eTJpRW7__0fwG1NYur3yxnx1uM0ejkAzP1hYxiN2J_SP2f3jcSn9CYOTSL-YW-h9fjmHPp42w7Evp4K4z_AK42iEovmYKofGgIsziCTXv1BqwWaSD11ObMnFmhsq_h78UzY5_Pr9y1Ex5lsoLOK0WRFABo8RK1jEgAFxlVMiAGjHvXahQTDGrRetU40LVahK7xoNDXhKP1R7EOIZ2-qHPrxguYMOizV4UUrZCoX6L0VwUgcNznc8Y3tJB5uLBbeGIbbrtAYdz5B-DOnHVMKgfjL2fqmP1Z0xmtH1BtnPpLDkDbFgmP4wo3saT0gV7dMqDB8teKsaW4YOwSTR__g6Y-9I3YbsEP-Vg_HwAraW-LPMgUI0IBvEzxnbTSTRW11avTQYszR2isIoF5gosV_erKrpTtoB14dhHmWU4ghWq1tkBEcAzTHoy9jzhQ2ums0pLRli14w1iXUm_ZLW9D_PIt-4kLpsRfXy9pbtsAf4Ak7f27ncZVuz6Ty8QsA2s6-jH_4FFu8-dw
  priority: 102
  providerName: Scholars Portal
Title Narrow band quantitative and multivariate electroencephalogram analysis of peri-adolescent period
URI https://www.ncbi.nlm.nih.gov/pubmed/22920159
https://www.proquest.com/docview/1114860302
https://search.proquest.com/docview/1115526231
https://search.proquest.com/docview/1328512049
http://dx.doi.org/10.1186/1471-2202-13-104
https://pubmed.ncbi.nlm.nih.gov/PMC3480931
https://doaj.org/article/d065067fb5164badb57b0ef1432734d6
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF6SFEovpe-qTY0KhdKDYmsf0gp6sUNCMNiEtAHTy7IvJYFYclO7v78za8nN0tJDL7K1DyTtzOx-I81-Q8gHwUTNqBFZ5SqfcQP_jKhlVpQ1rMbO6Erje8jZvDi75NOFWOwR0e-FCUH71twcNbfLo-bmOsRWrpZ22MeJDc9nx4xLcMTz4T7ZBwXtXfTu00EpOe2_R8pimMPsm1GKKTwwCAvz8FDM0JQjO2m0x_02WpoCg_-f8_S9hSoOory3Kp0-IY87OJmOt7f9lOz55hl5OOs-mD8neh5IFlOjG5d-3-gm7CmDGS7FghBN-BO8ZQCcaZcQBy19da0DlfUSWm05S9K2TpETOfvNABXOW_eCXJ6efD0-y7qsCpkBNLbOvObegV-qDSA9D-jJCua1lpY6aX0JkIsaxyorSutzn4-cLaUutcMkQ4XTjL0kB03b-NcktbqGYqkdG3FeMQFSHjFvufRSW1fThHyOBlittgwaCjmt4xowL4WiUigqlTMFokrIp14eu57BZ5HFX9pOUGDRFUJBe3elOt1RDvEoaKER4CQa7YwozcjXABmR5McVCfmI4lZo23BXVndbFOBpkSVLjQWs-bwElJyQw6gl2KSNq3uFUd2c8AN9Lcz4xUYwLu931dgT49wa325CGyEoQNL8H20YBZhMwbVLyKutDu4eu1fthJSRdkbjEteAkQVW8c6o3vx3z7fkEVyb4gt3yg_Jwfpu498BYlubAdjpohyQB-Px9MsUficn8_OLQXj_AccZl3C8mHwbBEv-BU3ZSlk
link.rule.ids 108,230,315,730,783,787,867,888,2109,2228,12068,21400,24330,24949,27936,27937,31731,31732,33756,33757,43322,43817,53804,53806,76140,76141
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSMAF8SZQIEhIiEPUxI_YkZBQQVQLdPfUSnuz_EqLBMm23eX3M-P1bmtAve3ajvKY8cw39vgbQt4KJnpGrag634WKW_hlRa-qVvbgjb01ncF1yOmsnRzzb3MxTwtuFymtcmMTo6H2o8M18r0GgXsLKkk_Ls4qrBqFu6uphMZNcgt5uLCCgZxvA65GKk43W5Oq3WvAEFeUYjUPzMf6-4z7z8w1RQb_f-30FUeVJ1Fe8UoH98m9BCfL_bX8H5AbYXhIbk_ThvkjYmaRZLG0ZvDl2coM8UwZWLgSG2I24W-IlgFwlqkgDs70xamJVNa_YNSas6Qc-xI5katLBqj4f_SPyfHBl6PPkypVVagsoLFlFQwPHuJSYwHpBUBPTrBgjHLUKxckQC5qPeuckC40oam9k8pI47HIUOsNY0_IzjAO4RkpnemhWRnPas47JkDKNQuOq6CM8z0tyIfsA-vFmkFDI6d13gOi1igfjfLRDdMgn4K838hje2WMWVT7n7GfUGDZHWLDeH6i0yTUHvEoaKEVECRa462Qtg49QEYk-fFtQd6huDXObXgqZ9IRBXhbZMnS-wJ8PpeAkguym42EOeny7o3C6GQTLvSlBhfkzbYbr8Q8tyGMqzhGCAqQtLlmDKMAkymEdgV5utbB7WtTLD4GCLUgMtPO7LvkPcOP08gqzriqO9Y8v_7RX5M7k6PpoT78Ovv-gtyFm1FcYad8l-wsz1fhJUC0pX0V5-EfdmQ9Sg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSBUX3pSUAkFCQhyySew4cSQupbAqj131QKWKi-VXaEU3uy27HPj1zDjJsgbEobdNbGvj-PP4m3j8DSEvOOMNo5onta1dUmj4pXkjkrJqYDW2WtUKv0NOpuXhcfHhhJ9spPryQftGn43a89moPTv1sZWLmUmHOLH0aHLACgGOeJ4ubJNeJzdgzmbl4Kj3GwiVKOiwKynKNAcbnFCKiTwwFAuz8VDM05SjRmlw0v08WKC8jv_f1npjuQpDKTfWpvFt8mXoVReS8m20WuqR-fmH4OOVun2H3OoZa7zfVblLrrn2Htme9Hvy94maeh3HWKvWxhcr1fpja2BEY7zhAxZ_gEMOnDbuc-6gMVmcKq-WPYNanSxKPG9ilF1OfotM-eu5fUCOx-8-HxwmfeKGRAPhWyZOFc6C66s0kEkHBM1w5pQShlphXAWsjmrLasMr43KXZ9ZUQlXKYh6j0irGHpKtdt66RyQ2qoHbQlmWFUXNOAApY84UwgllbEMj8joYPbnoRDokymaHJTCDJeJAIg5kziTgICKvhsFet_RukSj_UfcNoiH4B39jfvlV9uMkLVJeALrm4IdqZTWvdOYaYKWoI2TLiLxELEk0H_BURvWnIKC3KMQl9znQiqICIh6RvaAmTHsTFg9olL3Z-Y7uHCYVYxm8l-frYmyJoXStm698Hc4psN78P3UYBSZOwXuMyE4H8HW3h3kTkSqAfvBewhIAtBcu7wG8e-WWz8j20dux_PR--vExuQmPQfHzPi32yNbycuWeAD9c6qfeEvwC9i9n4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Narrow+band+quantitative+and+multivariate+electroencephalogram+analysis+of+peri-adolescent+period&rft.jtitle=BMC+neuroscience&rft.au=Rodr%C3%ADguez+Martinez%2C+EI&rft.au=Barriga-Paulino%2C+CI&rft.au=Zapata%2C+MI&rft.au=Chinchilla%2C+C&rft.date=2012-08-24&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2202&rft.eissn=1471-2202&rft.volume=13&rft_id=info:doi/10.1186%2F1471-2202-13-104&rft.externalDocID=A534147016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2202&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2202&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2202&client=summon