Narrow band quantitative and multivariate electroencephalogram analysis of peri-adolescent period
The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (2...
Saved in:
Published in | BMC neuroscience Vol. 13; no. 1; p. 104 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
24.08.2012
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old).
The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0-20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults.
The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages. |
---|---|
AbstractList | Doc number: 104 Abstract Background: The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). Results: The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0-20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. Conclusions: The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages. BACKGROUNDThe peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). RESULTSThe narrow band analysis of the Electroencephalogram was computed in the frequency range of 0-20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. CONCLUSIONSThe present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages. Background The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). Results The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0-20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. Conclusions The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages. Keywords: Spontaneous EEG, EEG development, Adolescence, Brain rhythms, Power spectrum, Principal component analysis, Component analysis The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0-20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages. Background: The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). Results: The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0-20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. Conclusions: The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages. Abstract Background The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). Results The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0–20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. Conclusions The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages. Abstract Background The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). Results The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0–20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. Conclusions The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages. The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0-20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages. |
ArticleNumber | 104 |
Audience | Academic |
Author | Martinez, E I Rodríguez Gómez, C M Chinchilla, C Zapata, M I Barriga-Paulino, C I López-Jiménez, A M |
AuthorAffiliation | 2 Behavioral Methodology Lab, Experimental Psychology Deparment, University of Sevilla, Seville, Spain 1 Human Psychobiology Lab, Experimental Psychology Deparment, University of Sevilla, Seville, Spain |
AuthorAffiliation_xml | – name: 1 Human Psychobiology Lab, Experimental Psychology Deparment, University of Sevilla, Seville, Spain – name: 2 Behavioral Methodology Lab, Experimental Psychology Deparment, University of Sevilla, Seville, Spain |
Author_xml | – sequence: 1 givenname: E I Rodríguez surname: Martinez fullname: Martinez, E I Rodríguez organization: Experimental Psychology Deparment, University of Sevilla, Seville, Spain – sequence: 2 givenname: C I surname: Barriga-Paulino fullname: Barriga-Paulino, C I – sequence: 3 givenname: M I surname: Zapata fullname: Zapata, M I – sequence: 4 givenname: C surname: Chinchilla fullname: Chinchilla, C – sequence: 5 givenname: A M surname: López-Jiménez fullname: López-Jiménez, A M – sequence: 6 givenname: C M surname: Gómez fullname: Gómez, C M |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22920159$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUktv1DAQjlARfcCdE4rEhUvK-JXHBala8ahUwQXO1tiebL1K4q2TFPXf4-yW0kVFyAfbM998Hn_fnGZHQxgoy14zOGesLt8zWbGCc-AFEwUD-Sw7eQgdPTofZ6fjuAFgVS35i-yY84YDU81Jhl8xxvAzNzi4_GbGYfITTv6W8iXQz106Y_Q4UU4d2SkGGixtr7EL64h9QmF3N_oxD22-pegLdKGj0dIw7e7Bvcyet9iN9Op-P8t-fPr4ffWluPr2-XJ1cVWYUsFUEEpyohZolBBUMrBKEGJtuastVdAobpxorKosMWLgbFVjhY4MQOlQiLPscs_rAm70Nvoe450O6PUuEOJaY5y87Ug7SE-WVWsUK6VBZ1RlgFomBa-EdGXi-rDn2s6mJ7f8JmJ3QHqYGfy1XodbLWQNjWCJYLUnMD78g-AwY0OvF7v0YpdmQic3E8u7-zZiuJlpnHTvk7RdhwOFeUwwXivGQTb_hzKmFC_5rre3f0E3YY7Jxx1K1iUI4H9Qa0yK-aENqU-7kOoLJWTqFdgi1PkTqLQc9d6mYW19ih8UwL7AxjCOkdoHTRjoZaafUuHNYzMeCn4PsfgFfXjzmg |
CitedBy_id | crossref_primary_10_1109_JBHI_2024_3364499 crossref_primary_10_1007_s11571_016_9402_4 crossref_primary_10_1017_sjp_2016_64 crossref_primary_10_1016_j_ijpsycho_2019_08_013 crossref_primary_10_1016_j_neuroimage_2023_119925 crossref_primary_10_1007_s11571_022_09869_0 crossref_primary_10_1016_j_jneumeth_2019_04_001 crossref_primary_10_1007_s11571_018_9476_2 crossref_primary_10_1016_j_cortex_2017_05_007 crossref_primary_10_1016_j_ridd_2019_103520 crossref_primary_10_3390_jpm12060896 crossref_primary_10_1007_s10548_014_0369_3 crossref_primary_10_1016_j_neulet_2021_135747 crossref_primary_10_1159_000358484 crossref_primary_10_1016_j_bandc_2023_105969 crossref_primary_10_1016_j_neuropsychologia_2016_12_026 crossref_primary_10_1007_s10548_016_0532_0 crossref_primary_10_1186_s12993_015_0067_7 crossref_primary_10_1016_j_neulet_2016_07_048 |
Cites_doi | 10.1016/0013-4694(87)90119-2 10.55782/ane-2009-1741 10.1016/j.brainres.2006.06.019 10.1016/0013-4694(88)90205-2 10.1016/0013-4694(90)90135-7 10.1006/nimg.2002.1070 10.1073/pnas.0812947106 10.1016/0278-2626(92)90060-Y 10.1016/S0167-8760(97)00068-8 10.1016/0013-4694(84)90002-6 10.1097/00004691-199701000-00007 10.1016/j.clinph.2008.02.010 10.1016/j.clinph.2005.08.007 10.1080/87565649109540500 10.1126/science.7434026 10.1002/hbm.20273 10.1007/BF00583657 10.1016/S0013-4694(98)00090-X 10.1007/s10548-007-0032-3 10.1002/dev.420130608 10.1007/s10548-005-4449-2 10.1016/S1388-2457(01)00488-6 10.1002/hbm.20474 10.1016/0013-4694(88)90128-9 10.1016/j.jneumeth.2003.10.009 10.1177/155005940603700307 10.1016/S0301-0511(96)05218-0 10.1016/0013-4694(80)90403-4 10.1016/S1388-2457(03)00173-1 10.1016/0167-8760(92)90039-E 10.1038/nature04513 10.1016/j.neuroimage.2011.02.050 10.1016/j.brainresbull.2010.01.005 10.1016/j.neuropsychologia.2011.09.012 10.1196/annals.1308.009 10.1523/JNEUROSCI.21-22-08819.2001 10.1016/j.clinph.2008.02.023 10.1016/S0361-9230(00)00434-2 10.1523/JNEUROSCI.5309-07.2008 10.1016/0921-884X(96)95573-3 10.1016/0013-4694(74)90176-X 10.1111/j.1467-7687.2010.01031.x 10.1016/S0024-3205(02)01492-3 10.1542/peds.102.SE1.1225 10.1017/S0012162201001591 10.1016/j.bandc.2009.09.008 10.1016/S0022-5193(05)80218-8 10.1016/j.bandc.2009.10.003 10.1016/0013-4694(92)90070-X 10.1016/0304-3940(92)90051-8 10.1027/0269-8803/a000052 10.1016/0013-4694(88)90204-0 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2012 BioMed Central Ltd. 2012 Rodriguez Martinez et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright ©2012 Rodriguez Martinez et al.; licensee BioMed Central Ltd. 2012 Rodriguez Martinez et al.; licensee BioMed Central Ltd. |
Copyright_xml | – notice: COPYRIGHT 2012 BioMed Central Ltd. – notice: 2012 Rodriguez Martinez et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright ©2012 Rodriguez Martinez et al.; licensee BioMed Central Ltd. 2012 Rodriguez Martinez et al.; licensee BioMed Central Ltd. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7TK 7X7 7XB 88E 88G 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P PIMPY PQEST PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 5PM DOA |
DOI | 10.1186/1471-2202-13-104 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Neurosciences Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Psychology Database (ProQuest) Biological Science Database Access via ProQuest (Open Access) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest One Psychology ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic Neurosciences Abstracts CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1471-2202 |
EndPage | 104 |
ExternalDocumentID | oai_doaj_org_article_d065067fb5164badb57b0ef1432734d6 oai_biomedcentral_com_1471_2202_13_104 2796979821 A534147016 10_1186_1471_2202_13_104 22920159 |
Genre | Journal Article |
GeographicLocations | Spain |
GeographicLocations_xml | – name: Spain |
GroupedDBID | --- -A0 0R~ 23N 2VQ 2WC 3V. 4.4 53G 5VS 6J9 6PF 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAWTL ABDBF ABIVO ABUWG ACGFO ACGFS ACIHN ACMJI ACPRK ACRMQ ADBBV ADINQ ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C24 C6C CCPQU CGR CS3 CUY CVF DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS ECM EIF EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR INH INR IPNFZ IPY ITC KQ8 LK8 M1P M2M M48 M7P M~E NPM NXXTH O5R O5S OK1 P2P PGMZT PIMPY PQQKQ PROAC PSQYO PSYQQ RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB AAYXX CITATION AFGXO 7TK 7XB 8FK K9. PQEST PQUKI PRINS Q9U 7X8 ABVAZ AFNRJ 5PM |
ID | FETCH-LOGICAL-b650t-ea4ed383ab533e610c53eaa8c2d8ce70952bd39c57ce1e10dc78a7adeb006da33 |
IEDL.DBID | RPM |
ISSN | 1471-2202 |
IngestDate | Tue Oct 22 15:07:22 EDT 2024 Tue Sep 17 21:09:02 EDT 2024 Wed May 22 07:15:16 EDT 2024 Fri Oct 25 04:47:04 EDT 2024 Fri Oct 25 22:06:44 EDT 2024 Thu Oct 10 16:43:05 EDT 2024 Wed Aug 14 18:52:46 EDT 2024 Tue Nov 12 23:35:08 EST 2024 Thu Sep 12 19:37:20 EDT 2024 Sat Sep 28 08:04:03 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b650t-ea4ed383ab533e610c53eaa8c2d8ce70952bd39c57ce1e10dc78a7adeb006da33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3480931/ |
PMID | 22920159 |
PQID | 1114860302 |
PQPubID | 44779 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d065067fb5164badb57b0ef1432734d6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3480931 biomedcentral_primary_oai_biomedcentral_com_1471_2202_13_104 proquest_miscellaneous_1328512049 proquest_miscellaneous_1115526231 proquest_journals_1114860302 gale_infotracmisc_A534147016 gale_infotracacademiconefile_A534147016 crossref_primary_10_1186_1471_2202_13_104 pubmed_primary_22920159 |
PublicationCentury | 2000 |
PublicationDate | 2012-08-24 |
PublicationDateYYYYMMDD | 2012-08-24 |
PublicationDate_xml | – month: 08 year: 2012 text: 2012-08-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC neuroscience |
PublicationTitleAlternate | BMC Neurosci |
PublicationYear | 2012 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | 19883968 - Brain Cogn. 2010 Feb;72(1):56-65 11811649 - Dev Med Child Neurol. 2002 Jan;44(1):4-16 9506312 - Int J Psychophysiol. 1998 Jan;28(1):77-98 2446829 - Electroencephalogr Clin Neurophysiol. 1988 Feb;69(2):100-9 1693893 - Electroencephalogr Clin Neurophysiol. 1990 Jun;75(6):482-91 15251877 - Ann N Y Acad Sci. 2004 Jun;1021:77-85 18387340 - Clin Neurophysiol. 2008 Jun;119(6):1271-80 18486545 - Clin Neurophysiol. 2008 Aug;119(8):1778-81 9013362 - J Clin Neurophysiol. 1997 Jan;14(1):73-82 18385317 - J Neurosci. 2008 Apr 2;28(14):3586-94 1641193 - Neurosci Lett. 1992 Mar 2;136(2):213-5 1281080 - Electroencephalogr Clin Neurophysiol. 1992 Dec;83(6):350-7 11969316 - Neuroimage. 2002 May;16(1):41-8 12005176 - Life Sci. 2002 Mar 8;70(16):1909-22 9922087 - Electroencephalogr Clin Neurophysiol. 1998 Dec;107(6):415-21 16875680 - Brain Res. 2006 Aug 30;1107(1):151-60 11698594 - J Neurosci. 2001 Nov 15;21(22):8819-29 1510873 - Brain Topogr. 1992 Summer;4(4):291-307 20080154 - Brain Res Bull. 2010 Apr 5;81(6):525-33 17957703 - Hum Brain Mapp. 2008 Dec;29(12):1400-15 11336896 - Clin Neurophysiol. 2001 May;112(5):806-14 7434026 - Science. 1980 Dec 12;210(4475):1255-8 16929704 - Clin EEG Neurosci. 2006 Jul;37(3):198-203 1034286 - Pflugers Arch. 1976 Nov 30;367(1):55-66 9794959 - Pediatrics. 1998 Nov;102(5 Suppl E):1225-9 1740399 - Int J Psychophysiol. 1992 Jan;12(1):19-29 17929159 - Brain Topogr. 2007 Winter;20(2):63-76 9043653 - Biol Psychol. 1997 Jan 31;44(3):187-209 6158442 - Electroencephalogr Clin Neurophysiol. 1980 Sep;49(5-6):626-35 16572172 - Nature. 2006 Mar 30;440(7084):676-9 21884309 - Dev Sci. 2011 Sep;14(5):935-43 1389121 - Brain Cogn. 1992 Sep;20(1):24-50 4130613 - Electroencephalogr Clin Neurophysiol. 1974 Mar;36(3):319-22 2446839 - Electroencephalogr Clin Neurophysiol. 1988 Feb;69(2):91-9 11287130 - Brain Res Bull. 2001 Feb;54(3):255-66 21939677 - Neuropsychologia. 2011 Nov;49(13):3605-11 6198138 - Electroencephalogr Clin Neurophysiol. 1984 Jan;57(1):1-12 21349336 - Neuroimage. 2011 Jun 1;56(3):1493-505 19593330 - Acta Neurobiol Exp (Wars). 2009;69(2):155-67 15974475 - Brain Topogr. 2005 Spring;17(3):165-75 19914761 - Brain Cogn. 2010 Feb;72(1):86-100 2450000 - Electroencephalogr Clin Neurophysiol. 1988 Mar;69(3):191-8 2161971 - J Theor Biol. 1990 Jan 23;142(2):149-61 16257577 - Clin Neurophysiol. 2005 Dec;116(12):2826-46 8758971 - Electroencephalogr Clin Neurophysiol. 1996 Jul;99(1):63-8 15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21 19307577 - Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5177-80 7429022 - Dev Psychobiol. 1980 Nov;13(6):629-31 14499754 - Clin Neurophysiol. 2003 Oct;114(10):1918-25 16767769 - Hum Brain Mapp. 2007 Mar;28(3):228-37 2441966 - Electroencephalogr Clin Neurophysiol. 1987 Oct;67(4):330-2 ER John (2783_CR5) 1980; 210 HT Epstein (2783_CR27) 1980; 13 JN Giedd (2783_CR37) 2004; 1021 RW Thatcher (2783_CR13) 2008; 29 GA Otero (2783_CR24) 2003; 114 T Paus (2783_CR1) 2000; 54 RJM Somsen (2783_CR3) 1997; 44 I Feinberg (2783_CR44) 1990; 142 RW Thatcher (2783_CR29) 1992; 20 RL Gorsuch (2783_CR54) 1983 CK Tamnes (2783_CR41) 2011; 49 RW Thatcher (2783_CR11) 1991; 7 P Novak (2783_CR61) 1992; 136 A Alvarez (2783_CR6) 1987; 67 M Haan (2783_CR17) 2007 P Shaw (2783_CR34) 2008; 28 LA Carretié (2783_CR19) 2001 G Pfurtscheller (2783_CR60) 1976; 367 JR Zaragoza (2783_CR53) 1977 IG Campbell (2783_CR59) 2009; 106 M Defayolle (2783_CR47) 2001; 36 T Harmony (2783_CR23) 1990; 75 T Gasser (2783_CR4) 1988; 69 AR Clarke (2783_CR21) 2001; 112 J Wackermann (2783_CR64) 1998; 107 CI Barriga-Paulino (2783_CR10) 2011; 25 AP Anokhin (2783_CR8) 1996; 99 M Toth (2783_CR65) 2007; 20 CE Tenke (2783_CR15) 2005; 116 R Lüchinger (2783_CR56) 2011; 56 J Piaget (2783_CR30) 1967 TD Lagerlund (2783_CR52) 1997; 14 TJ Whitford (2783_CR14) 2007; 28 A Flores (2783_CR50) 2009; 69 FH Duffy (2783_CR48) 1992; 1 MS Keshavan (2783_CR38) 2002; 70 P Matthis (2783_CR25) 1980; 49 P Shaw (2783_CR39) 2006; 440 HT Chugani (2783_CR57) 1998; 102 CM Gómez (2783_CR16) 2006; 1107 G Otero (2783_CR36) 2001 E Marosi (2783_CR12) 1992; 83 M Puligheddu (2783_CR9) 2005; 17 BS Oken (2783_CR63) 1988; 69 A Delorme (2783_CR55) 2004; 134 ER Sowell (2783_CR42) 2001; 21 WJ Hudspeth (2783_CR28) 1992; 12 V Lazarev (2783_CR49) 1998; 28 D Hagemann (2783_CR58) 2008; 119 ER Sowell (2783_CR40) 2002; 44 T Koenig (2783_CR7) 2002; 16 J Yordanova (2783_CR33) 2007 2783_CR43 M Matousek (2783_CR2) 1973 LV Marcuse (2783_CR31) 2008; 119 T Gasser (2783_CR35) 1988; 69 J Becerra (2783_CR22) 2006; 37 ER John (2783_CR45) 1977 SJ Segalowitz (2783_CR20) 2010; 72 E Niedermeyer (2783_CR18) 1999 J Imgren (2783_CR46) 1973; 28 G Otero (2783_CR62) 2001 AB Flores (2783_CR51) 2010; 81 C Benninger (2783_CR26) 1984; 57 L Cragg (2783_CR32) 2001; 14 |
References_xml | – volume-title: Neurometrics. Functional Neuroscience, volume II year: 1977 ident: 2783_CR45 contributor: fullname: ER John – volume: 67 start-page: 330 issue: 4 year: 1987 ident: 2783_CR6 publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(87)90119-2 contributor: fullname: A Alvarez – volume: 69 start-page: 155 issue: 2 year: 2009 ident: 2783_CR50 publication-title: Acta Neurobiol Exp doi: 10.55782/ane-2009-1741 contributor: fullname: A Flores – volume: 1107 start-page: 151 year: 2006 ident: 2783_CR16 publication-title: Brain Res doi: 10.1016/j.brainres.2006.06.019 contributor: fullname: CM Gómez – volume-title: Psicofisiología year: 2001 ident: 2783_CR19 contributor: fullname: LA Carretié – volume: 69 start-page: 100 year: 1988 ident: 2783_CR35 publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(88)90205-2 contributor: fullname: T Gasser – volume: 75 start-page: 482 year: 1990 ident: 2783_CR23 publication-title: Clin Neurophysiol doi: 10.1016/0013-4694(90)90135-7 contributor: fullname: T Harmony – volume: 16 start-page: 41 issue: 1 year: 2002 ident: 2783_CR7 publication-title: Neuroimage doi: 10.1006/nimg.2002.1070 contributor: fullname: T Koenig – volume: 106 start-page: 5177 issue: 13 year: 2009 ident: 2783_CR59 publication-title: PNAS doi: 10.1073/pnas.0812947106 contributor: fullname: IG Campbell – start-page: 371 volume-title: Texto de Neurociencias Cognitivas year: 2001 ident: 2783_CR36 contributor: fullname: G Otero – volume: 20 start-page: 24 issue: 1 year: 1992 ident: 2783_CR29 publication-title: Brain Cogn doi: 10.1016/0278-2626(92)90060-Y contributor: fullname: RW Thatcher – volume: 28 start-page: 77 issue: 1 year: 1998 ident: 2783_CR49 publication-title: Int J Psychophysiol doi: 10.1016/S0167-8760(97)00068-8 contributor: fullname: V Lazarev – volume: 57 start-page: 1 year: 1984 ident: 2783_CR26 publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(84)90002-6 contributor: fullname: C Benninger – volume: 14 start-page: 73 year: 1997 ident: 2783_CR52 publication-title: J Clin Neurophysiol doi: 10.1097/00004691-199701000-00007 contributor: fullname: TD Lagerlund – volume: 119 start-page: 1271 year: 2008 ident: 2783_CR58 publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2008.02.010 contributor: fullname: D Hagemann – volume: 116 start-page: 2826 year: 2005 ident: 2783_CR15 publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2005.08.007 contributor: fullname: CE Tenke – volume-title: Infant EEG and event-related potentials year: 2007 ident: 2783_CR17 contributor: fullname: M Haan – volume: 7 start-page: 397 year: 1991 ident: 2783_CR11 publication-title: Dev Neuropsychol doi: 10.1080/87565649109540500 contributor: fullname: RW Thatcher – volume: 1 start-page: 291 year: 1992 ident: 2783_CR48 publication-title: BrainTopography contributor: fullname: FH Duffy – volume: 210 start-page: 1255 year: 1980 ident: 2783_CR5 publication-title: Science doi: 10.1126/science.7434026 contributor: fullname: ER John – volume: 28 start-page: 228 year: 2007 ident: 2783_CR14 publication-title: Hum Brain Mapp doi: 10.1002/hbm.20273 contributor: fullname: TJ Whitford – volume: 367 start-page: 55 year: 1976 ident: 2783_CR60 publication-title: Pflugers Arch doi: 10.1007/BF00583657 contributor: fullname: G Pfurtscheller – volume: 107 start-page: 415 year: 1998 ident: 2783_CR64 publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/S0013-4694(98)00090-X contributor: fullname: J Wackermann – volume: 20 start-page: 63 issue: 2 year: 2007 ident: 2783_CR65 publication-title: Brain Topogr doi: 10.1007/s10548-007-0032-3 contributor: fullname: M Toth – volume: 13 start-page: 629 year: 1980 ident: 2783_CR27 publication-title: Dev Psychobiol doi: 10.1002/dev.420130608 contributor: fullname: HT Epstein – volume: 17 start-page: 165 issue: 3 year: 2005 ident: 2783_CR9 publication-title: Brain Topogr doi: 10.1007/s10548-005-4449-2 contributor: fullname: M Puligheddu – volume: 112 start-page: 806 year: 2001 ident: 2783_CR21 publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(01)00488-6 contributor: fullname: AR Clarke – volume: 29 start-page: 1400 issue: 12 year: 2008 ident: 2783_CR13 publication-title: Hum Brain Mapp doi: 10.1002/hbm.20474 contributor: fullname: RW Thatcher – volume: 69 start-page: 191 year: 1988 ident: 2783_CR63 publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(88)90128-9 contributor: fullname: BS Oken – volume-title: Factor Analysis year: 1983 ident: 2783_CR54 contributor: fullname: RL Gorsuch – volume: 134 start-page: 9 issue: 1 year: 2004 ident: 2783_CR55 publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2003.10.009 contributor: fullname: A Delorme – volume: 37 start-page: 198 issue: 3 year: 2006 ident: 2783_CR22 publication-title: Clin EEG Neurosci doi: 10.1177/155005940603700307 contributor: fullname: J Becerra – volume-title: Física e instrumentación médicas year: 1977 ident: 2783_CR53 contributor: fullname: JR Zaragoza – volume: 44 start-page: 187 year: 1997 ident: 2783_CR3 publication-title: Biol Psychol doi: 10.1016/S0301-0511(96)05218-0 contributor: fullname: RJM Somsen – volume: 49 start-page: 626 year: 1980 ident: 2783_CR25 publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(80)90403-4 contributor: fullname: P Matthis – volume: 114 start-page: 1918 year: 2003 ident: 2783_CR24 publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(03)00173-1 contributor: fullname: GA Otero – volume: 12 start-page: 19 year: 1992 ident: 2783_CR28 publication-title: Int J Psychophysiol doi: 10.1016/0167-8760(92)90039-E contributor: fullname: WJ Hudspeth – volume: 440 start-page: 676 year: 2006 ident: 2783_CR39 publication-title: Nature doi: 10.1038/nature04513 contributor: fullname: P Shaw – volume: 56 start-page: 1493 year: 2011 ident: 2783_CR56 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.02.050 contributor: fullname: R Lüchinger – volume: 81 start-page: 525 issue: 6 year: 2010 ident: 2783_CR51 publication-title: Brain Res Bull doi: 10.1016/j.brainresbull.2010.01.005 contributor: fullname: AB Flores – volume: 49 start-page: 3605 issue: 13 year: 2011 ident: 2783_CR41 publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2011.09.012 contributor: fullname: CK Tamnes – volume: 1021 start-page: 77 year: 2004 ident: 2783_CR37 publication-title: Ann N Y Acad Sci doi: 10.1196/annals.1308.009 contributor: fullname: JN Giedd – volume: 21 start-page: 8819 issue: 22 year: 2001 ident: 2783_CR42 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.21-22-08819.2001 contributor: fullname: ER Sowell – volume: 119 start-page: 1778 year: 2008 ident: 2783_CR31 publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2008.02.023 contributor: fullname: LV Marcuse – volume: 54 start-page: 255 issue: 3 year: 2000 ident: 2783_CR1 publication-title: Brain Res Bull doi: 10.1016/S0361-9230(00)00434-2 contributor: fullname: T Paus – volume: 28 start-page: 3586 issue: 14 year: 2008 ident: 2783_CR34 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5309-07.2008 contributor: fullname: P Shaw – volume: 99 start-page: 63 issue: 1 year: 1996 ident: 2783_CR8 publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0921-884X(96)95573-3 contributor: fullname: AP Anokhin – volume-title: Six psychological studies year: 1967 ident: 2783_CR30 contributor: fullname: J Piaget – volume: 36 start-page: 319 year: 2001 ident: 2783_CR47 publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(74)90176-X contributor: fullname: M Defayolle – volume: 14 start-page: 935 issue: 5 year: 2001 ident: 2783_CR32 publication-title: Dev Sci doi: 10.1111/j.1467-7687.2010.01031.x contributor: fullname: L Cragg – volume: 70 start-page: 1909 year: 2002 ident: 2783_CR38 publication-title: Life Sci doi: 10.1016/S0024-3205(02)01492-3 contributor: fullname: MS Keshavan – volume: 102 start-page: 1225 year: 1998 ident: 2783_CR57 publication-title: Pediatrics doi: 10.1542/peds.102.SE1.1225 contributor: fullname: HT Chugani – volume: 44 start-page: 4 year: 2002 ident: 2783_CR40 publication-title: Dev Med Child Neurol doi: 10.1017/S0012162201001591 contributor: fullname: ER Sowell – ident: 2783_CR43 doi: 10.1016/j.bandc.2009.09.008 – volume: 142 start-page: 149 issue: 2 year: 1990 ident: 2783_CR44 publication-title: J Theor Biol doi: 10.1016/S0022-5193(05)80218-8 contributor: fullname: I Feinberg – volume: 28 start-page: 255 issue: 122 year: 1973 ident: 2783_CR46 publication-title: Revista de psicología general y aplicada: Revista de la Federación Española de Asociaciones de Psicología contributor: fullname: J Imgren – start-page: 75 volume-title: Automation of clinical electroencephalography year: 1973 ident: 2783_CR2 contributor: fullname: M Matousek – volume: 72 start-page: 86 issue: 1 year: 2010 ident: 2783_CR20 publication-title: Brain Cogn doi: 10.1016/j.bandc.2009.10.003 contributor: fullname: SJ Segalowitz – volume: 83 start-page: 350 issue: 6 year: 1992 ident: 2783_CR12 publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(92)90070-X contributor: fullname: E Marosi – volume: 136 start-page: 213 year: 1992 ident: 2783_CR61 publication-title: Neurosci Lett doi: 10.1016/0304-3940(92)90051-8 contributor: fullname: P Novak – volume: 25 start-page: 143 issue: 3 year: 2011 ident: 2783_CR10 publication-title: Journal of Psychophysiology doi: 10.1027/0269-8803/a000052 contributor: fullname: CI Barriga-Paulino – volume-title: Journal of Psychophysiology year: 2007 ident: 2783_CR33 contributor: fullname: J Yordanova – start-page: 371 volume-title: Texto de Neurociencias Cognitivas year: 2001 ident: 2783_CR62 contributor: fullname: G Otero – volume: 69 start-page: 91 issue: 2 year: 1988 ident: 2783_CR4 publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(88)90204-0 contributor: fullname: T Gasser – volume-title: Lopes da Silva F: Electroencephalography: basic principles, clinical applications, and related fields year: 1999 ident: 2783_CR18 contributor: fullname: E Niedermeyer |
SSID | ssj0017842 |
Score | 2.160149 |
Snippet | The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in... Abstract Background The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report... Background The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the... Doc number: 104 Abstract Background: The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The... BACKGROUNDThe peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the... Background: The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the... BACKGROUND: The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the... Abstract Background The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report... |
SourceID | doaj pubmedcentral biomedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 104 |
SubjectTerms | Adolescence Adolescent Age Age Factors Analysis Behavior Brain Brain - physiology Brain Mapping Brain rhythms Brain Waves - physiology Child Child development Child Development - physiology Children Cognition - physiology Colleges & universities Component analysis EEG EEG development Electroencephalography Experimental psychology Female Fourier transforms Humans Male Multivariate Analysis Nervous system Neuropsychological Tests Physiological aspects Power spectrum Principal Component Analysis Principal components analysis Rhythm Rhythms Spectrum Analysis Spontaneous EEG Statistics as Topic Topography Young adults |
SummonAdditionalLinks | – databaseName: BiomedCentral dbid: RBZ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB-0gvgi9TtaJYIgPgST_Ug20JdWLEVonywUX5bZj1BBc2298-93Zi-Xdmvxxbe73cldsjOz85vs7m8A3mmpBymcrvrQx0o5-uT0YKq2GygaB4c98nvIo-P28ER9OdWnVzQ5N1bwG9N-bGj6rITgGhy8i0rdhXuCKVU4M9__Nq8YdCYVypmlN0uSt_zCjbPtP7KQlJj7_56frwWofPPktWh0sA0PJxhZ7q31_gjuxPEx3D-aFsqfAB4ncsXS4RjKixWO6SwZzWwlN6RdhL8pSyagWU6FcNjDz88wUVj_JKk1V0m5GErmQq6umJ_S90V4CicHn79-OqymagqVIxS2rCKqGCgfRUcILxJq8lpGRONFMD52BLWEC7L3uvOxiU0dfGeww8DFhdqAUj6DrXExxhdQehyo2WCQtVK91KTdWkavTDTowyAK2M0G2J6vmTMsc1nnPeRWlvVjWT-2kZb0U8CHjT7mK1OuYtpbZPdZYdk_pAYyITs5nw2MQ8n6nKbk0GFwunN1HAgqMrlPaAt4z-q27NN0Vx6nown0tMyOZfc0xXrVETouYCeTJF_0effGYOw0F_ziHIsrfcmaxuXt3M1X8v62MS5WSUZrQVC0-YeMFASPBaV0BTxf2-D82IKLjhEyLaDLrDMbl7xn_H6W2MSlMnUvm5f_p7NX8IBuQPDbdqF2YGt5uYqvCa4t3Zvkp38A-OU9YA priority: 500 providerName: BioMedCentral – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gLAsojtKAgISEOVhM_Ykfi0lZUVaX2RKXerPEjKhJkW9jl93fGyS5rQHDhtvFDG8-M7W_i8TeMvdVSD1J4zfvYJ648_vJ6sLwzA-7G0UMP9B3y_KI7vVRnV_pqK9UXxYRN9MCT4A4iYQjs6TUCew_Ra-ObNOA2T8QscSLbbvq1MzWfHxib0-a0uPRyISiGZzqgtN3Bpoy3FJX16033L8UGlXn8f1-tt7arMpRya286ecQezqCyPpwG85jdS-MTdv98PjbfZXCRqRZrD2Osb1cw5ptluM7VVJBjCn-gz4yws57T4tB8v7mGTGj9FVtNzCX1YqiJGZn_5IHKz4v4lF2efPx0fMrn3ArcozyXPIFKEb1T8Ij3EmKooGUCsEFEG5JB4CV8lH3QJqQ2tU0MxoKBSKmGughSPmM742JML1gdYMBiC1E2SvVSo64bmYKyyUKIg6jYh0LA7mbi0XDEbF3W4CRzpB9H-nGtdKifir1f62PTM3sutvtD2yNSWPEPuQAtys0W5f5lURV7R-p2NMPxrQLMFxVwtMSV5Q417vzKIFau2H7REmdmKKvXBuPmleE7eVyU90s2KJc3m2rqSdFuY1qschutBQLT9i9tpECwLNDBq9jzyQY3wxaUggxxasVMYZ2FXMqa8fN15haXyja9bF_-D0HusQf4GoK-wAu1z3aW31bpFUK4pX-dZ-sdMkBEeg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB-0gvgifrtaZQVBfFi6m49NFgSpYilC-2ShbyFfawXdvbZ3_v3O5HLXRqVvd8ks-zGTyW-SyW8A3kouR86cbIYwxEY4_OXkqJtejTgbB2cHS-uQR8f94Yn4eipP84LbZU6r3PjE5KjD7GmNfK8j4N6jSbKPi_OGqkbR7mouoXEb7nSs7SmlS51uA65OacE2W5O63-vQETeMUTUPysf6-4z7z2JqSgz-__rpaxNVmUR5bVY6eAD3M5ys99f6fwi34vQI7h7lDfPHYI8TyWLt7BTq85Wd0pky9HA1NaRswt8YLSPgrHNBHBrpizObqKx_odSas6Sex5o4kZsrBqj0fw5P4OTgy7fPh02uqtA4RGPLJloRA8al1iHSi4ievOTRWu1Z0D4qhFzMBT54qXzsYtcGr7RVNlCRoT5Yzp_CzjRP8TnU3o7YrG3grRADl6jllkcvdNTWh5FV8KH4wGaxZtAwxGld9qCqDenHkH5Mxw3qp4L3G31sr0wxi-7_I_uJFFbcITXMF99NHoQmEB5FK3QSg0Rng5PKtXFEyEgkP6Gv4B2p29DYxqfyNh9RwLclliyzL3HOFwpRcgW7hSSOSV92bwzGZJ9waa4suII32266kvLcpjivkoyUDCFpd4MMZwiTGYZ2FTxb2-D2tRkVH0OEWoEqrLP4LmXP9OMssYpzoduBdy9ufvSXcA9vwGhVnYld2FlerOIrhGVL9zqNvT-ieTpj priority: 102 providerName: ProQuest – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSIgLKu_QgoKEhDgEEj8SR2qFCqKqkNoTK_VmjR-hSCVpl92q_HtmvNndGla9Ze1JsvbM2N_E9jeMvVVCdYJbVbS-DYW0eGVVp4u66XA29hZaoO-Qxyf10UR-O1Wn6-PRYwf-3hjaUT6pyfT8w_Xln0_o8PvR4XX9scIBtuCcsnTQPit5l93jEuN02sgn12sKjY6pdFbSy0XLDU_45_T7eTJpRW7__0fwG1NYur3yxnx1uM0ejkAzP1hYxiN2J_SP2f3jcSn9CYOTSL-YW-h9fjmHPp42w7Evp4K4z_AK42iEovmYKofGgIsziCTXv1BqwWaSD11ObMnFmhsq_h78UzY5_Pr9y1Ex5lsoLOK0WRFABo8RK1jEgAFxlVMiAGjHvXahQTDGrRetU40LVahK7xoNDXhKP1R7EOIZ2-qHPrxguYMOizV4UUrZCoX6L0VwUgcNznc8Y3tJB5uLBbeGIbbrtAYdz5B-DOnHVMKgfjL2fqmP1Z0xmtH1BtnPpLDkDbFgmP4wo3saT0gV7dMqDB8teKsaW4YOwSTR__g6Y-9I3YbsEP-Vg_HwAraW-LPMgUI0IBvEzxnbTSTRW11avTQYszR2isIoF5gosV_erKrpTtoB14dhHmWU4ghWq1tkBEcAzTHoy9jzhQ2ums0pLRli14w1iXUm_ZLW9D_PIt-4kLpsRfXy9pbtsAf4Ak7f27ncZVuz6Ty8QsA2s6-jH_4FFu8-dw priority: 102 providerName: Scholars Portal |
Title | Narrow band quantitative and multivariate electroencephalogram analysis of peri-adolescent period |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22920159 https://www.proquest.com/docview/1114860302 https://search.proquest.com/docview/1115526231 https://search.proquest.com/docview/1328512049 http://dx.doi.org/10.1186/1471-2202-13-104 https://pubmed.ncbi.nlm.nih.gov/PMC3480931 https://doaj.org/article/d065067fb5164badb57b0ef1432734d6 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF6SFEovpe-qTY0KhdKDYmsf0gp6sUNCMNiEtAHTy7IvJYFYclO7v78za8nN0tJDL7K1DyTtzOx-I81-Q8gHwUTNqBFZ5SqfcQP_jKhlVpQ1rMbO6Erje8jZvDi75NOFWOwR0e-FCUH71twcNbfLo-bmOsRWrpZ22MeJDc9nx4xLcMTz4T7ZBwXtXfTu00EpOe2_R8pimMPsm1GKKTwwCAvz8FDM0JQjO2m0x_02WpoCg_-f8_S9hSoOory3Kp0-IY87OJmOt7f9lOz55hl5OOs-mD8neh5IFlOjG5d-3-gm7CmDGS7FghBN-BO8ZQCcaZcQBy19da0DlfUSWm05S9K2TpETOfvNABXOW_eCXJ6efD0-y7qsCpkBNLbOvObegV-qDSA9D-jJCua1lpY6aX0JkIsaxyorSutzn4-cLaUutcMkQ4XTjL0kB03b-NcktbqGYqkdG3FeMQFSHjFvufRSW1fThHyOBlittgwaCjmt4xowL4WiUigqlTMFokrIp14eu57BZ5HFX9pOUGDRFUJBe3elOt1RDvEoaKER4CQa7YwozcjXABmR5McVCfmI4lZo23BXVndbFOBpkSVLjQWs-bwElJyQw6gl2KSNq3uFUd2c8AN9Lcz4xUYwLu931dgT49wa325CGyEoQNL8H20YBZhMwbVLyKutDu4eu1fthJSRdkbjEteAkQVW8c6o3vx3z7fkEVyb4gt3yg_Jwfpu498BYlubAdjpohyQB-Px9MsUficn8_OLQXj_AccZl3C8mHwbBEv-BU3ZSlk |
link.rule.ids | 108,230,315,730,783,787,867,888,2109,2228,12068,21400,24330,24949,27936,27937,31731,31732,33756,33757,43322,43817,53804,53806,76140,76141 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSMAF8SZQIEhIiEPUxI_YkZBQQVQLdPfUSnuz_EqLBMm23eX3M-P1bmtAve3ajvKY8cw39vgbQt4KJnpGrag634WKW_hlRa-qVvbgjb01ncF1yOmsnRzzb3MxTwtuFymtcmMTo6H2o8M18r0GgXsLKkk_Ls4qrBqFu6uphMZNcgt5uLCCgZxvA65GKk43W5Oq3WvAEFeUYjUPzMf6-4z7z8w1RQb_f-30FUeVJ1Fe8UoH98m9BCfL_bX8H5AbYXhIbk_ThvkjYmaRZLG0ZvDl2coM8UwZWLgSG2I24W-IlgFwlqkgDs70xamJVNa_YNSas6Qc-xI5katLBqj4f_SPyfHBl6PPkypVVagsoLFlFQwPHuJSYwHpBUBPTrBgjHLUKxckQC5qPeuckC40oam9k8pI47HIUOsNY0_IzjAO4RkpnemhWRnPas47JkDKNQuOq6CM8z0tyIfsA-vFmkFDI6d13gOi1igfjfLRDdMgn4K838hje2WMWVT7n7GfUGDZHWLDeH6i0yTUHvEoaKEVECRa462Qtg49QEYk-fFtQd6huDXObXgqZ9IRBXhbZMnS-wJ8PpeAkguym42EOeny7o3C6GQTLvSlBhfkzbYbr8Q8tyGMqzhGCAqQtLlmDKMAkymEdgV5utbB7WtTLD4GCLUgMtPO7LvkPcOP08gqzriqO9Y8v_7RX5M7k6PpoT78Ovv-gtyFm1FcYad8l-wsz1fhJUC0pX0V5-EfdmQ9Sg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSBUX3pSUAkFCQhyySew4cSQupbAqj131QKWKi-VXaEU3uy27HPj1zDjJsgbEobdNbGvj-PP4m3j8DSEvOOMNo5onta1dUmj4pXkjkrJqYDW2WtUKv0NOpuXhcfHhhJ9spPryQftGn43a89moPTv1sZWLmUmHOLH0aHLACgGOeJ4ubJNeJzdgzmbl4Kj3GwiVKOiwKynKNAcbnFCKiTwwFAuz8VDM05SjRmlw0v08WKC8jv_f1npjuQpDKTfWpvFt8mXoVReS8m20WuqR-fmH4OOVun2H3OoZa7zfVblLrrn2Htme9Hvy94maeh3HWKvWxhcr1fpja2BEY7zhAxZ_gEMOnDbuc-6gMVmcKq-WPYNanSxKPG9ilF1OfotM-eu5fUCOx-8-HxwmfeKGRAPhWyZOFc6C66s0kEkHBM1w5pQShlphXAWsjmrLasMr43KXZ9ZUQlXKYh6j0irGHpKtdt66RyQ2qoHbQlmWFUXNOAApY84UwgllbEMj8joYPbnoRDokymaHJTCDJeJAIg5kziTgICKvhsFet_RukSj_UfcNoiH4B39jfvlV9uMkLVJeALrm4IdqZTWvdOYaYKWoI2TLiLxELEk0H_BURvWnIKC3KMQl9znQiqICIh6RvaAmTHsTFg9olL3Z-Y7uHCYVYxm8l-frYmyJoXStm698Hc4psN78P3UYBSZOwXuMyE4H8HW3h3kTkSqAfvBewhIAtBcu7wG8e-WWz8j20dux_PR--vExuQmPQfHzPi32yNbycuWeAD9c6qfeEvwC9i9n4A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Narrow+band+quantitative+and+multivariate+electroencephalogram+analysis+of+peri-adolescent+period&rft.jtitle=BMC+neuroscience&rft.au=Rodr%C3%ADguez+Martinez%2C+EI&rft.au=Barriga-Paulino%2C+CI&rft.au=Zapata%2C+MI&rft.au=Chinchilla%2C+C&rft.date=2012-08-24&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2202&rft.eissn=1471-2202&rft.volume=13&rft_id=info:doi/10.1186%2F1471-2202-13-104&rft.externalDocID=A534147016 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2202&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2202&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2202&client=summon |