Locomotor adaptation to a powered ankle-foot orthosis depends on control method

We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control) and the second orthosis control metho...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroengineering and rehabilitation Vol. 4; no. 1; p. 48
Main Authors Cain, Stephen M, Gordon, Keith E, Ferris, Daniel P
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 21.12.2007
BioMed Central
BMC
Subjects
Online AccessGet full text
ISSN1743-0003
1743-0003
DOI10.1186/1743-0003-4-48

Cover

Loading…
Abstract We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control) and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control). Both controllers activated an artificial pneumatic muscle providing plantar flexion torque. Subjects walked on a treadmill for two thirty-minute sessions spaced three days apart under either footswitch control (n = 6) or myoelectric control (n = 6). We recorded lower limb electromyography (EMG), joint kinematics, and orthosis kinetics. We compared stance phase EMG amplitudes, correlation of joint angle patterns, and mechanical work performed by the powered orthosis between the two controllers over time. During steady state at the end of the second session, subjects using proportional myoelectric control had much lower soleus and gastrocnemius activation than the subjects using footswitch control. The substantial decrease in triceps surae recruitment allowed the proportional myoelectric control subjects to walk with ankle kinematics close to normal and reduce negative work performed by the orthosis. The footswitch control subjects walked with substantially perturbed ankle kinematics and performed more negative work with the orthosis. These results provide evidence that the choice of orthosis control method can greatly alter how humans adapt to powered orthosis assistance during walking. Specifically, proportional myoelectric control results in larger reductions in muscle activation and gait kinematics more similar to normal compared to footswitch control.
AbstractList Background We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control) and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control). Both controllers activated an artificial pneumatic muscle providing plantar flexion torque. Methods Subjects walked on a treadmill for two thirty-minute sessions spaced three days apart under either footswitch control (n = 6) or myoelectric control (n = 6). We recorded lower limb electromyography (EMG), joint kinematics, and orthosis kinetics. We compared stance phase EMG amplitudes, correlation of joint angle patterns, and mechanical work performed by the powered orthosis between the two controllers over time. Results During steady state at the end of the second session, subjects using proportional myoelectric control had much lower soleus and gastrocnemius activation than the subjects using footswitch control. The substantial decrease in triceps surae recruitment allowed the proportional myoelectric control subjects to walk with ankle kinematics close to normal and reduce negative work performed by the orthosis. The footswitch control subjects walked with substantially perturbed ankle kinematics and performed more negative work with the orthosis. Conclusion These results provide evidence that the choice of orthosis control method can greatly alter how humans adapt to powered orthosis assistance during walking. Specifically, proportional myoelectric control results in larger reductions in muscle activation and gait kinematics more similar to normal compared to footswitch control.
We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control) and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control). Both controllers activated an artificial pneumatic muscle providing plantar flexion torque.BACKGROUNDWe studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control) and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control). Both controllers activated an artificial pneumatic muscle providing plantar flexion torque.Subjects walked on a treadmill for two thirty-minute sessions spaced three days apart under either footswitch control (n = 6) or myoelectric control (n = 6). We recorded lower limb electromyography (EMG), joint kinematics, and orthosis kinetics. We compared stance phase EMG amplitudes, correlation of joint angle patterns, and mechanical work performed by the powered orthosis between the two controllers over time.METHODSSubjects walked on a treadmill for two thirty-minute sessions spaced three days apart under either footswitch control (n = 6) or myoelectric control (n = 6). We recorded lower limb electromyography (EMG), joint kinematics, and orthosis kinetics. We compared stance phase EMG amplitudes, correlation of joint angle patterns, and mechanical work performed by the powered orthosis between the two controllers over time.During steady state at the end of the second session, subjects using proportional myoelectric control had much lower soleus and gastrocnemius activation than the subjects using footswitch control. The substantial decrease in triceps surae recruitment allowed the proportional myoelectric control subjects to walk with ankle kinematics close to normal and reduce negative work performed by the orthosis. The footswitch control subjects walked with substantially perturbed ankle kinematics and performed more negative work with the orthosis.RESULTSDuring steady state at the end of the second session, subjects using proportional myoelectric control had much lower soleus and gastrocnemius activation than the subjects using footswitch control. The substantial decrease in triceps surae recruitment allowed the proportional myoelectric control subjects to walk with ankle kinematics close to normal and reduce negative work performed by the orthosis. The footswitch control subjects walked with substantially perturbed ankle kinematics and performed more negative work with the orthosis.These results provide evidence that the choice of orthosis control method can greatly alter how humans adapt to powered orthosis assistance during walking. Specifically, proportional myoelectric control results in larger reductions in muscle activation and gait kinematics more similar to normal compared to footswitch control.CONCLUSIONThese results provide evidence that the choice of orthosis control method can greatly alter how humans adapt to powered orthosis assistance during walking. Specifically, proportional myoelectric control results in larger reductions in muscle activation and gait kinematics more similar to normal compared to footswitch control.
Abstract Background We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control) and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control). Both controllers activated an artificial pneumatic muscle providing plantar flexion torque. Methods Subjects walked on a treadmill for two thirty-minute sessions spaced three days apart under either footswitch control (n = 6) or myoelectric control (n = 6). We recorded lower limb electromyography (EMG), joint kinematics, and orthosis kinetics. We compared stance phase EMG amplitudes, correlation of joint angle patterns, and mechanical work performed by the powered orthosis between the two controllers over time. Results During steady state at the end of the second session, subjects using proportional myoelectric control had much lower soleus and gastrocnemius activation than the subjects using footswitch control. The substantial decrease in triceps surae recruitment allowed the proportional myoelectric control subjects to walk with ankle kinematics close to normal and reduce negative work performed by the orthosis. The footswitch control subjects walked with substantially perturbed ankle kinematics and performed more negative work with the orthosis. Conclusion These results provide evidence that the choice of orthosis control method can greatly alter how humans adapt to powered orthosis assistance during walking. Specifically, proportional myoelectric control results in larger reductions in muscle activation and gait kinematics more similar to normal compared to footswitch control.
We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control) and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control). Both controllers activated an artificial pneumatic muscle providing plantar flexion torque. Subjects walked on a treadmill for two thirty-minute sessions spaced three days apart under either footswitch control (n = 6) or myoelectric control (n = 6). We recorded lower limb electromyography (EMG), joint kinematics, and orthosis kinetics. We compared stance phase EMG amplitudes, correlation of joint angle patterns, and mechanical work performed by the powered orthosis between the two controllers over time. During steady state at the end of the second session, subjects using proportional myoelectric control had much lower soleus and gastrocnemius activation than the subjects using footswitch control. The substantial decrease in triceps surae recruitment allowed the proportional myoelectric control subjects to walk with ankle kinematics close to normal and reduce negative work performed by the orthosis. The footswitch control subjects walked with substantially perturbed ankle kinematics and performed more negative work with the orthosis. These results provide evidence that the choice of orthosis control method can greatly alter how humans adapt to powered orthosis assistance during walking. Specifically, proportional myoelectric control results in larger reductions in muscle activation and gait kinematics more similar to normal compared to footswitch control.
ArticleNumber 48
Audience Academic
Author Cain, Stephen M
Gordon, Keith E
Ferris, Daniel P
AuthorAffiliation 2 Division of Kinesiology, University of Michigan, 401 Washtenaw Avenue, Ann Arbor, MI 48109-2214, USA
1 Department of Biomedical Engineering, University of Michigan, 1107 Carl A. Gerstacker, 2200 Bonisteel Blvd., Ann Arbor, MI 48109-2099, USA
3 Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI 48109, USA
4 Human Neuromechanics Laboratory, University of Michigan, 401 Washtenaw Avenue, Ann Arbor, MI 48109-2214, USA
AuthorAffiliation_xml – name: 4 Human Neuromechanics Laboratory, University of Michigan, 401 Washtenaw Avenue, Ann Arbor, MI 48109-2214, USA
– name: 3 Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI 48109, USA
– name: 2 Division of Kinesiology, University of Michigan, 401 Washtenaw Avenue, Ann Arbor, MI 48109-2214, USA
– name: 1 Department of Biomedical Engineering, University of Michigan, 1107 Carl A. Gerstacker, 2200 Bonisteel Blvd., Ann Arbor, MI 48109-2099, USA
Author_xml – sequence: 1
  givenname: Stephen M
  surname: Cain
  fullname: Cain, Stephen M
– sequence: 2
  givenname: Keith E
  surname: Gordon
  fullname: Gordon, Keith E
– sequence: 3
  givenname: Daniel P
  surname: Ferris
  fullname: Ferris, Daniel P
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18154649$$D View this record in MEDLINE/PubMed
BookMark eNqFkstv1DAQhyNURB9w5Yhy4pbFjh3buSCtKqCVVuoFzpZjT7YuSSbYXir-e7ykXXV5CPlga-Y3n-d1XpxMOEFRvKZkRakS76jkrCKEsIpXXD0rzg6Gkyfv0-I8xrv84KThL4pTqmjDBW_PipsNWhwxYSiNM3MyyeNUJixNOeM9BHClmb4OUPWIqcSQbjH6WDqYYXKxzFqLUwo4lCNkn3tZPO_NEOHVw31RfPn44fPlVbW5-XR9ud5UneAqVXXXCSGtky2RHbEi52VaK4XsmqbtqJJ9z_oGnKtbYyQBRoW1DqCmTW2UsOyiuF64Ds2dnoMfTfih0Xj9y4Bhq01I3g6gXceEFI2iTNRcQtMZRlvGKbWSkVo2mfV-Yc27bgRnIRdkhiPosWfyt3qL33VdM84pz4D1Aug8_gNw7Mkt1_vh6P1wNNdcZcbbhyQCfttBTHr00cIwmAlwF7UkpFWciv8KaSuEUG2dhatFuDW5C37qMf9t83Ew-jw16H22r_d5cEUakgPePO3DIf_HbckCvghswBgD9Nr6ZWMy2Q-aEr1fyj9LW_0WdiD_PeAnwnHilw
CitedBy_id crossref_primary_10_1152_jn_01128_2011
crossref_primary_10_1109_TNSRE_2014_2324153
crossref_primary_10_3389_fbioe_2022_842294
crossref_primary_10_1109_OJEMB_2023_3288469
crossref_primary_10_1007_s11044_011_9284_5
crossref_primary_10_1152_jn_00391_2021
crossref_primary_10_4028_www_scientific_net_AMM_880_118
crossref_primary_10_1126_scirobotics_abj3487
crossref_primary_10_1186_s12984_018_0381_z
crossref_primary_10_1016_j_apmr_2017_06_024
crossref_primary_10_1016_j_conengprac_2018_08_008
crossref_primary_10_1186_s12984_020_00723_0
crossref_primary_10_1109_TNSRE_2020_2989481
crossref_primary_10_3390_s18082705
crossref_primary_10_1109_LRA_2024_3384081
crossref_primary_10_1186_s12984_019_0559_z
crossref_primary_10_1109_TRO_2021_3137748
crossref_primary_10_1115_1_4048615
crossref_primary_10_1186_s12984_017_0343_x
crossref_primary_10_1242_jeb_017269
crossref_primary_10_1016_j_conengprac_2019_06_003
crossref_primary_10_1186_s12984_015_0015_7
crossref_primary_10_3389_fnbot_2019_00063
crossref_primary_10_1038_s41598_019_45914_5
crossref_primary_10_1016_S1762_827X_13_64677_5
crossref_primary_10_1186_s12984_021_00906_3
crossref_primary_10_3389_fbioe_2017_00037
crossref_primary_10_1016_j_ifacol_2017_08_237
crossref_primary_10_1088_1741_2560_11_5_056021
crossref_primary_10_1098_rsos_240390
crossref_primary_10_1016_j_jbiomech_2017_05_010
crossref_primary_10_1007_s10439_022_02950_z
crossref_primary_10_3389_fbioe_2021_615358
crossref_primary_10_1177_0954411915585597
crossref_primary_10_3390_s22062244
crossref_primary_10_5535_arm_2015_39_2_226
crossref_primary_10_1109_TNSRE_2016_2527780
crossref_primary_10_1152_jn_00604_2009
crossref_primary_10_1152_japplphysiol_00714_2018
crossref_primary_10_1186_1743_0003_6_23
crossref_primary_10_1109_TBME_2021_3083580
crossref_primary_10_1186_1743_0003_7_33
crossref_primary_10_1163_016918611X588907
crossref_primary_10_3389_fbioe_2017_00004
crossref_primary_10_1016_j_jelekin_2023_102755
crossref_primary_10_1186_s12984_018_0424_5
crossref_primary_10_1177_21695067231192634
crossref_primary_10_1017_S0263574719000250
crossref_primary_10_3389_fnsys_2015_00048
crossref_primary_10_3389_fbioe_2023_1188685
crossref_primary_10_3390_act13020054
crossref_primary_10_1186_1743_0003_6_17
crossref_primary_10_1016_j_medengphy_2011_11_018
crossref_primary_10_1109_LRA_2022_3183762
crossref_primary_10_1016_S1762_827X_20_44603_6
crossref_primary_10_1115_1_4041767
crossref_primary_10_1109_TBME_2010_2070840
crossref_primary_10_1115_1_4024286
crossref_primary_10_1109_TNSRE_2008_2008285
crossref_primary_10_1177_0018720819896898
crossref_primary_10_1177_0018720820907450
crossref_primary_10_1126_scirobotics_abh1925
crossref_primary_10_1186_s12984_018_0455_y
crossref_primary_10_1109_TBME_2022_3188482
crossref_primary_10_1186_s12984_018_0379_6
crossref_primary_10_1016_j_jbiomech_2017_09_015
crossref_primary_10_3389_fnhum_2017_00214
Cites_doi 10.1016/j.gaitpost.2005.05.004
10.1016/j.jbiomech.2005.05.018
10.1310/6GL4-UM7X-519H-9JYD
10.1109/TMECH.2006.871087
10.1186/1743-0003-3-3
10.1177/0278364904042198
10.1177/0278364906065505
10.1249/mss.0b013e31802b3562
10.1123/jab.21.2.189
10.1109/TNSRE.2003.823266
10.1163/1568553054455103
10.1016/j.gaitpost.2006.07.002
10.1115/1.2168164
10.1038/81497
10.1007/3-540-45491-8_43
10.1007/s00221-005-0162-3
10.1007/s00221-005-0097-8
10.1163/156855306778394012
10.1016/j.jbiomech.2006.12.006
ContentType Journal Article
Copyright COPYRIGHT 2007 BioMed Central Ltd.
Copyright © 2007 Cain et al; licensee BioMed Central Ltd. 2007 Cain et al; licensee BioMed Central Ltd.
Copyright_xml – notice: COPYRIGHT 2007 BioMed Central Ltd.
– notice: Copyright © 2007 Cain et al; licensee BioMed Central Ltd. 2007 Cain et al; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
DOA
DOI 10.1186/1743-0003-4-48
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList Neurosciences Abstracts
MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Occupational Therapy & Rehabilitation
Physical Therapy
EISSN 1743-0003
EndPage 48
ExternalDocumentID oai_doaj_org_article_db367658136247e5ba3193411c730275
PMC2234414
oai_biomedcentral_com_1743_0003_4_48
A174348050
18154649
10_1186_1743_0003_4_48
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS045486
GroupedDBID ---
0R~
29L
2QV
2VQ
2WC
4.4
53G
5GY
5VS
AAFWJ
AAJSJ
AASML
AAWTL
AAYXX
ABDBF
ACGFO
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AENEX
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BFQNJ
BMC
C6C
CITATION
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EJD
ESX
F5P
GROUPED_DOAJ
GX1
H13
HYE
I-F
IAO
IHR
INH
INR
IPNFZ
IPY
ITC
KQ8
M48
ML0
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
WOQ
WOW
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
-A0
ABVAZ
ACRMQ
ADINQ
AFGXO
AFNRJ
C24
5PM
ID FETCH-LOGICAL-b648t-2bb667cd7907b0c6405a9c767b559b187ff3f5edd29aa70e316ccdee2152a86c3
IEDL.DBID M48
ISSN 1743-0003
IngestDate Wed Aug 27 01:30:26 EDT 2025
Thu Aug 21 14:27:04 EDT 2025
Wed May 22 07:13:07 EDT 2024
Thu Sep 04 19:30:48 EDT 2025
Fri Sep 05 13:22:18 EDT 2025
Tue Jun 10 21:37:42 EDT 2025
Tue Aug 05 11:35:18 EDT 2025
Thu Apr 24 23:08:35 EDT 2025
Tue Jul 01 02:19:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by/2.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b648t-2bb667cd7907b0c6405a9c767b559b187ff3f5edd29aa70e316ccdee2152a86c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1743-0003-4-48
PMID 18154649
PQID 19666892
PQPubID 23462
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_db367658136247e5ba3193411c730275
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2234414
biomedcentral_primary_oai_biomedcentral_com_1743_0003_4_48
proquest_miscellaneous_70098416
proquest_miscellaneous_19666892
gale_infotracacademiconefile_A174348050
pubmed_primary_18154649
crossref_citationtrail_10_1186_1743_0003_4_48
crossref_primary_10_1186_1743_0003_4_48
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-12-21
PublicationDateYYYYMMDD 2007-12-21
PublicationDate_xml – month: 12
  year: 2007
  text: 2007-12-21
  day: 21
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neuroengineering and rehabilitation
PublicationTitleAlternate J Neuroeng Rehabil
PublicationYear 2007
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References JL Patton (124_CR25) 2006; 168
H Kawamoto (124_CR11) 2005; 19
H Kazerooni (124_CR5) 2006; 128
GS Sawicki (124_CR17) 2006; 3
JW Noble (124_CR21) 2006; 169
AB Zoss (124_CR4) 2006; 11
JA Norris (124_CR24) 2007; 25
KE Gordon (124_CR18) 2007; 40
DP Ferris (124_CR1) 2005; 11
JA Rall (124_CR23) 1985; 13
SL Aaron (124_CR20) 1976; 55
K Suzuki (124_CR3) 2005
DM Wolpert (124_CR22) 2000; 3
KE Gordon (124_CR16) 2006; 39
SC Jacobsen (124_CR6) 2004; 23
H Kawamoto (124_CR2) 2002
RC Browning (124_CR19) 2007; 39
T Hayashi (124_CR12) 2005
JA Blaya (124_CR8) 2004; 12
H Kawamoto (124_CR13) 2003
J Ghan (124_CR10) 2006; 20
H Kazerooni (124_CR9) 2006; 25
DP Ferris (124_CR15) 2006; 23
DP Ferris (124_CR14) 2005; 21
JE Pratt (124_CR7) 2004
16568153 - Top Spinal Cord Inj Rehabil. 2005;11(2):34-49
17275829 - J Biomech. 2007;40(12):2636-44
3159582 - Exerc Sport Sci Rev. 1985;13:33-74
16098749 - Gait Posture. 2006 Jun;23(4):425-8
16328304 - Exp Brain Res. 2006 Mar;169(4):482-95
17473778 - Med Sci Sports Exerc. 2007 Mar;39(3):515-25
16082019 - J Appl Biomech. 2005 May;21(2):189-97
1247104 - Am J Phys Med. 1976 Feb;55(1):1-14
16905320 - Gait Posture. 2007 Apr;25(4):620-7
11127840 - Nat Neurosci. 2000 Nov;3 Suppl:1212-7
16249912 - Exp Brain Res. 2006 Jan;168(3):368-83
15068184 - IEEE Trans Neural Syst Rehabil Eng. 2004 Mar;12(1):24-31
16504172 - J Neuroeng Rehabil. 2006 Feb 28;3:3
16023126 - J Biomech. 2006;39(10):1832-41
References_xml – start-page: 1648
  volume-title: International Conference on Systems, Man and Cybernetics; October 5–8. IEEE
  year: 2003
  ident: 124_CR13
– start-page: 3063
  volume-title: Control method of robot suit HAL working as operator's muscle using biological and dynamical information
  year: 2005
  ident: 124_CR12
– volume: 23
  start-page: 425
  issue: 4
  year: 2006
  ident: 124_CR15
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2005.05.004
– volume: 39
  start-page: 1832
  year: 2006
  ident: 124_CR16
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2005.05.018
– volume: 11
  start-page: 34
  year: 2005
  ident: 124_CR1
  publication-title: Topics in Spinal Cord Injury Rehabilitation
  doi: 10.1310/6GL4-UM7X-519H-9JYD
– volume: 11
  start-page: 128
  year: 2006
  ident: 124_CR4
  publication-title: IEEE/ASME Transactions on Mechatronics
  doi: 10.1109/TMECH.2006.871087
– start-page: 2430
  volume-title: IEEE International Conference on Robotics and Automation; New Orleans, LA
  year: 2004
  ident: 124_CR7
– volume: 3
  start-page: 3
  year: 2006
  ident: 124_CR17
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-3-3
– volume: 23
  start-page: 319
  year: 2004
  ident: 124_CR6
  publication-title: International Journal of Robotics Research
  doi: 10.1177/0278364904042198
– volume: 25
  start-page: 561
  year: 2006
  ident: 124_CR9
  publication-title: International Journal of Robotics Research
  doi: 10.1177/0278364906065505
– volume: 39
  start-page: 515
  year: 2007
  ident: 124_CR19
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/mss.0b013e31802b3562
– volume: 21
  start-page: 189
  year: 2005
  ident: 124_CR14
  publication-title: Journal of Applied Biomechanics
  doi: 10.1123/jab.21.2.189
– volume: 12
  start-page: 24
  year: 2004
  ident: 124_CR8
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2003.823266
– volume: 55
  start-page: 1
  year: 1976
  ident: 124_CR20
  publication-title: Am J Phys Med
– volume: 19
  start-page: 717
  year: 2005
  ident: 124_CR11
  publication-title: Advanced Robotics
  doi: 10.1163/1568553054455103
– volume: 25
  start-page: 620
  issue: 4
  year: 2007
  ident: 124_CR24
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2006.07.002
– volume: 128
  start-page: 14
  year: 2006
  ident: 124_CR5
  publication-title: Journal of Dynamic Systems Measurement and Control-Transactions of the Asme
  doi: 10.1115/1.2168164
– volume: 3
  start-page: 1212
  year: 2000
  ident: 124_CR22
  publication-title: Nat Neurosci
  doi: 10.1038/81497
– start-page: 196
  volume-title: Computer Helping People with Special Needs: 8th International Conference, ICCHP 2002. Lecture Notes in Computer Science
  year: 2002
  ident: 124_CR2
  doi: 10.1007/3-540-45491-8_43
– volume: 169
  start-page: 482
  issue: 4
  year: 2006
  ident: 124_CR21
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-005-0162-3
– volume: 168
  start-page: 368
  year: 2006
  ident: 124_CR25
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-005-0097-8
– volume: 13
  start-page: 33
  year: 1985
  ident: 124_CR23
  publication-title: Exerc Sport Sci Rev
– start-page: 2707
  volume-title: Intention-based walking support for paraplegia patient
  year: 2005
  ident: 124_CR3
– volume: 20
  start-page: 989
  year: 2006
  ident: 124_CR10
  publication-title: Advanced Robotics
  doi: 10.1163/156855306778394012
– volume: 40
  start-page: 2636
  issue: 12
  year: 2007
  ident: 124_CR18
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2006.12.006
– reference: 16328304 - Exp Brain Res. 2006 Mar;169(4):482-95
– reference: 16504172 - J Neuroeng Rehabil. 2006 Feb 28;3:3
– reference: 16568153 - Top Spinal Cord Inj Rehabil. 2005;11(2):34-49
– reference: 11127840 - Nat Neurosci. 2000 Nov;3 Suppl:1212-7
– reference: 16023126 - J Biomech. 2006;39(10):1832-41
– reference: 17275829 - J Biomech. 2007;40(12):2636-44
– reference: 17473778 - Med Sci Sports Exerc. 2007 Mar;39(3):515-25
– reference: 1247104 - Am J Phys Med. 1976 Feb;55(1):1-14
– reference: 16249912 - Exp Brain Res. 2006 Jan;168(3):368-83
– reference: 16082019 - J Appl Biomech. 2005 May;21(2):189-97
– reference: 16098749 - Gait Posture. 2006 Jun;23(4):425-8
– reference: 15068184 - IEEE Trans Neural Syst Rehabil Eng. 2004 Mar;12(1):24-31
– reference: 3159582 - Exerc Sport Sci Rev. 1985;13:33-74
– reference: 16905320 - Gait Posture. 2007 Apr;25(4):620-7
SSID ssj0034054
Score 2.1585093
Snippet We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods....
Background We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis...
BACKGROUND: We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis...
Abstract Background We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different...
SourceID doaj
pubmedcentral
biomedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 48
SubjectTerms Adaptation, Physiological - physiology
Adult
Ankle - physiology
Biomechanical Phenomena
Control Groups
Electromyography
Electromyography - methods
Exercise Test - methods
Female
Foot
Health aspects
Humans
Linear Models
Locomotion - physiology
Male
Medical equipment
Methods
Movements
Muscle, Skeletal - physiology
Orthotic Devices
Physiological apparatus
Physiological aspects
Posture
Time Factors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9UwELZQDwgOLI8tUMAHlpPVOHZsp7eCqCpEAaFW6s3yFlGpSp760v_PTJyUF1UVF67xSLbHn8fjjOcbQt75WjnvY8lCVIlJKSJzTYwstTEhC2XpIv6HPP6ujk7l17P6bKvUF74Jy_TAWXF70SOnWG04WFqpU-0dgAZMLw96DLmh9S2bcr5MZRsswA2RORVSYN60mOgauVF719-YZFj1Z5HnfrE4nkYW_5u2euuwWj6k3DqZDh-RB5NLSQ_yVB6TO6lbkftbRIMrcvd4CqGvyPttXmF6kkkF6Af6a0HZvSIPf04rOMs8IT--9QEf7_WX1EW3zpJ06Kmjayy2liLFCvCJtX0_UAwI9ZvzDc11djcUZKeH8TTXrX5KTg-_nHw-YlNBBuaVNAOrvFdKh6jhRu3LoEDLrglaaQ_3Es-NblvR1inGqnFOl0lwFUJMCWvnOqOCeEZ2ur5LLwgVolVGpsZgKix3ovENiMg2-ZqLtuQF2V-si11n8g2LdNjLFpi5xUXFOLqw0kpTEDYvog2T3rDixoUdrzxG3ZD_eC0_93Ob5CfExGI04weArJ0ga_8FWegOEWXRhMCwgpsyIUAzSMZlD7BPacq6LMjbGXQWtj3GclyX-quNBcOplGmq2yU0UsWCu12Q5xmkf6dmwG9WsimIXsB3MatlS3f-e6QeB2cS_Gf58n-o4RW5N_4o5xWr-C7ZGS6v0mvw8Ab_ZtzMfwAItkva
  priority: 102
  providerName: Directory of Open Access Journals
Title Locomotor adaptation to a powered ankle-foot orthosis depends on control method
URI https://www.ncbi.nlm.nih.gov/pubmed/18154649
https://www.proquest.com/docview/19666892
https://www.proquest.com/docview/70098416
http://dx.doi.org/10.1186/1743-0003-4-48
https://pubmed.ncbi.nlm.nih.gov/PMC2234414
https://doaj.org/article/db367658136247e5ba3193411c730275
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Zj9MwELZgV0LwwFGuchQ_cDwZkthxHCSECmK1qigg2Er7ZvkKrFQ1pc1K8O-ZSdzdRqWv8SSO7Rn7G4_9DSHPbS6NtT5hzsvAhOCemdJ7FiofkIUyMR73Iadf5PFMTE7z08vzT7ED1_917TCf1Gw1f_3n99_3YPDvWoNX8g2CarwdzZlgQl0lh7AqSXTEpuIiosABmIhI2rj7DlKHKgATEik1exff5731qqX13528t1av_snKraXq6Da5GTEmHXdKcYdcCYsBubHFPDgg16Yxpj4gL7aJhulJxzJAX9LvPQ7vAbn1LQ7pRuYu-fq5dniar15R482yk6RNTQ1dYva14CmmhA-squuGYoSoXp-taZd4d01BNp6Up10i63tkdvTp5OMxixkamJVCNSyzVsrC-QJcbJs4CZ1sSlfIwoKjYlNVVBWv8uB9VhpTJIGn0jkfAibTNUo6fp8cLOpFeEgo55VUIpQK78amhpe2BBFRBZunvErSIXnbGxe97Ng4NPJj90ug5RrHFwPrXAst1JCwzSBqF_sNU3DMdesDKbkj_-pCflPPPskPqBO9v2kf1KufOhq_9hZ58XKVAloQRcitgYkP4EPqijZsDNWhRmnUcvgtZ-LVCOgZZOfSY6xTqCRPhuTZRuk0zAMY3DGLUJ-vNcykUqoy2y9RIHcsWMaQPOiU9LJpUfeHpOipb69V_ZLF2a-WixzQJQBq8WjvNx-T6-12eJqxLH1CDprVeXgKOK6xI3I4Hk9-TEbtPsioNdd_sOxIOg
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Locomotor+adaptation+to+a+powered+ankle-foot+orthosis+depends+on+control+method&rft.jtitle=Journal+of+neuroengineering+and+rehabilitation&rft.au=Cain%2C+Stephen+M&rft.au=Gordon%2C+Keith+E&rft.au=Ferris%2C+Daniel+P&rft.date=2007-12-21&rft.eissn=1743-0003&rft.volume=4&rft.spage=48&rft_id=info:doi/10.1186%2F1743-0003-4-48&rft_id=info%3Apmid%2F18154649&rft.externalDocID=18154649
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1743-0003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1743-0003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1743-0003&client=summon