Locomotor adaptation to a powered ankle-foot orthosis depends on control method
We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control) and the second orthosis control metho...
Saved in:
Published in | Journal of neuroengineering and rehabilitation Vol. 4; no. 1; p. 48 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
21.12.2007
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1743-0003 1743-0003 |
DOI | 10.1186/1743-0003-4-48 |
Cover
Loading…
Abstract | We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control) and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control). Both controllers activated an artificial pneumatic muscle providing plantar flexion torque.
Subjects walked on a treadmill for two thirty-minute sessions spaced three days apart under either footswitch control (n = 6) or myoelectric control (n = 6). We recorded lower limb electromyography (EMG), joint kinematics, and orthosis kinetics. We compared stance phase EMG amplitudes, correlation of joint angle patterns, and mechanical work performed by the powered orthosis between the two controllers over time.
During steady state at the end of the second session, subjects using proportional myoelectric control had much lower soleus and gastrocnemius activation than the subjects using footswitch control. The substantial decrease in triceps surae recruitment allowed the proportional myoelectric control subjects to walk with ankle kinematics close to normal and reduce negative work performed by the orthosis. The footswitch control subjects walked with substantially perturbed ankle kinematics and performed more negative work with the orthosis.
These results provide evidence that the choice of orthosis control method can greatly alter how humans adapt to powered orthosis assistance during walking. Specifically, proportional myoelectric control results in larger reductions in muscle activation and gait kinematics more similar to normal compared to footswitch control. |
---|---|
AbstractList | Background We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control) and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control). Both controllers activated an artificial pneumatic muscle providing plantar flexion torque. Methods Subjects walked on a treadmill for two thirty-minute sessions spaced three days apart under either footswitch control (n = 6) or myoelectric control (n = 6). We recorded lower limb electromyography (EMG), joint kinematics, and orthosis kinetics. We compared stance phase EMG amplitudes, correlation of joint angle patterns, and mechanical work performed by the powered orthosis between the two controllers over time. Results During steady state at the end of the second session, subjects using proportional myoelectric control had much lower soleus and gastrocnemius activation than the subjects using footswitch control. The substantial decrease in triceps surae recruitment allowed the proportional myoelectric control subjects to walk with ankle kinematics close to normal and reduce negative work performed by the orthosis. The footswitch control subjects walked with substantially perturbed ankle kinematics and performed more negative work with the orthosis. Conclusion These results provide evidence that the choice of orthosis control method can greatly alter how humans adapt to powered orthosis assistance during walking. Specifically, proportional myoelectric control results in larger reductions in muscle activation and gait kinematics more similar to normal compared to footswitch control. We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control) and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control). Both controllers activated an artificial pneumatic muscle providing plantar flexion torque.BACKGROUNDWe studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control) and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control). Both controllers activated an artificial pneumatic muscle providing plantar flexion torque.Subjects walked on a treadmill for two thirty-minute sessions spaced three days apart under either footswitch control (n = 6) or myoelectric control (n = 6). We recorded lower limb electromyography (EMG), joint kinematics, and orthosis kinetics. We compared stance phase EMG amplitudes, correlation of joint angle patterns, and mechanical work performed by the powered orthosis between the two controllers over time.METHODSSubjects walked on a treadmill for two thirty-minute sessions spaced three days apart under either footswitch control (n = 6) or myoelectric control (n = 6). We recorded lower limb electromyography (EMG), joint kinematics, and orthosis kinetics. We compared stance phase EMG amplitudes, correlation of joint angle patterns, and mechanical work performed by the powered orthosis between the two controllers over time.During steady state at the end of the second session, subjects using proportional myoelectric control had much lower soleus and gastrocnemius activation than the subjects using footswitch control. The substantial decrease in triceps surae recruitment allowed the proportional myoelectric control subjects to walk with ankle kinematics close to normal and reduce negative work performed by the orthosis. The footswitch control subjects walked with substantially perturbed ankle kinematics and performed more negative work with the orthosis.RESULTSDuring steady state at the end of the second session, subjects using proportional myoelectric control had much lower soleus and gastrocnemius activation than the subjects using footswitch control. The substantial decrease in triceps surae recruitment allowed the proportional myoelectric control subjects to walk with ankle kinematics close to normal and reduce negative work performed by the orthosis. The footswitch control subjects walked with substantially perturbed ankle kinematics and performed more negative work with the orthosis.These results provide evidence that the choice of orthosis control method can greatly alter how humans adapt to powered orthosis assistance during walking. Specifically, proportional myoelectric control results in larger reductions in muscle activation and gait kinematics more similar to normal compared to footswitch control.CONCLUSIONThese results provide evidence that the choice of orthosis control method can greatly alter how humans adapt to powered orthosis assistance during walking. Specifically, proportional myoelectric control results in larger reductions in muscle activation and gait kinematics more similar to normal compared to footswitch control. Abstract Background We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control) and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control). Both controllers activated an artificial pneumatic muscle providing plantar flexion torque. Methods Subjects walked on a treadmill for two thirty-minute sessions spaced three days apart under either footswitch control (n = 6) or myoelectric control (n = 6). We recorded lower limb electromyography (EMG), joint kinematics, and orthosis kinetics. We compared stance phase EMG amplitudes, correlation of joint angle patterns, and mechanical work performed by the powered orthosis between the two controllers over time. Results During steady state at the end of the second session, subjects using proportional myoelectric control had much lower soleus and gastrocnemius activation than the subjects using footswitch control. The substantial decrease in triceps surae recruitment allowed the proportional myoelectric control subjects to walk with ankle kinematics close to normal and reduce negative work performed by the orthosis. The footswitch control subjects walked with substantially perturbed ankle kinematics and performed more negative work with the orthosis. Conclusion These results provide evidence that the choice of orthosis control method can greatly alter how humans adapt to powered orthosis assistance during walking. Specifically, proportional myoelectric control results in larger reductions in muscle activation and gait kinematics more similar to normal compared to footswitch control. We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control) and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control). Both controllers activated an artificial pneumatic muscle providing plantar flexion torque. Subjects walked on a treadmill for two thirty-minute sessions spaced three days apart under either footswitch control (n = 6) or myoelectric control (n = 6). We recorded lower limb electromyography (EMG), joint kinematics, and orthosis kinetics. We compared stance phase EMG amplitudes, correlation of joint angle patterns, and mechanical work performed by the powered orthosis between the two controllers over time. During steady state at the end of the second session, subjects using proportional myoelectric control had much lower soleus and gastrocnemius activation than the subjects using footswitch control. The substantial decrease in triceps surae recruitment allowed the proportional myoelectric control subjects to walk with ankle kinematics close to normal and reduce negative work performed by the orthosis. The footswitch control subjects walked with substantially perturbed ankle kinematics and performed more negative work with the orthosis. These results provide evidence that the choice of orthosis control method can greatly alter how humans adapt to powered orthosis assistance during walking. Specifically, proportional myoelectric control results in larger reductions in muscle activation and gait kinematics more similar to normal compared to footswitch control. |
ArticleNumber | 48 |
Audience | Academic |
Author | Cain, Stephen M Gordon, Keith E Ferris, Daniel P |
AuthorAffiliation | 2 Division of Kinesiology, University of Michigan, 401 Washtenaw Avenue, Ann Arbor, MI 48109-2214, USA 1 Department of Biomedical Engineering, University of Michigan, 1107 Carl A. Gerstacker, 2200 Bonisteel Blvd., Ann Arbor, MI 48109-2099, USA 3 Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI 48109, USA 4 Human Neuromechanics Laboratory, University of Michigan, 401 Washtenaw Avenue, Ann Arbor, MI 48109-2214, USA |
AuthorAffiliation_xml | – name: 4 Human Neuromechanics Laboratory, University of Michigan, 401 Washtenaw Avenue, Ann Arbor, MI 48109-2214, USA – name: 3 Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI 48109, USA – name: 2 Division of Kinesiology, University of Michigan, 401 Washtenaw Avenue, Ann Arbor, MI 48109-2214, USA – name: 1 Department of Biomedical Engineering, University of Michigan, 1107 Carl A. Gerstacker, 2200 Bonisteel Blvd., Ann Arbor, MI 48109-2099, USA |
Author_xml | – sequence: 1 givenname: Stephen M surname: Cain fullname: Cain, Stephen M – sequence: 2 givenname: Keith E surname: Gordon fullname: Gordon, Keith E – sequence: 3 givenname: Daniel P surname: Ferris fullname: Ferris, Daniel P |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18154649$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstv1DAQhyNURB9w5Yhy4pbFjh3buSCtKqCVVuoFzpZjT7YuSSbYXir-e7ykXXV5CPlga-Y3n-d1XpxMOEFRvKZkRakS76jkrCKEsIpXXD0rzg6Gkyfv0-I8xrv84KThL4pTqmjDBW_PipsNWhwxYSiNM3MyyeNUJixNOeM9BHClmb4OUPWIqcSQbjH6WDqYYXKxzFqLUwo4lCNkn3tZPO_NEOHVw31RfPn44fPlVbW5-XR9ud5UneAqVXXXCSGtky2RHbEi52VaK4XsmqbtqJJ9z_oGnKtbYyQBRoW1DqCmTW2UsOyiuF64Ds2dnoMfTfih0Xj9y4Bhq01I3g6gXceEFI2iTNRcQtMZRlvGKbWSkVo2mfV-Yc27bgRnIRdkhiPosWfyt3qL33VdM84pz4D1Aug8_gNw7Mkt1_vh6P1wNNdcZcbbhyQCfttBTHr00cIwmAlwF7UkpFWciv8KaSuEUG2dhatFuDW5C37qMf9t83Ew-jw16H22r_d5cEUakgPePO3DIf_HbckCvghswBgD9Nr6ZWMy2Q-aEr1fyj9LW_0WdiD_PeAnwnHilw |
CitedBy_id | crossref_primary_10_1152_jn_01128_2011 crossref_primary_10_1109_TNSRE_2014_2324153 crossref_primary_10_3389_fbioe_2022_842294 crossref_primary_10_1109_OJEMB_2023_3288469 crossref_primary_10_1007_s11044_011_9284_5 crossref_primary_10_1152_jn_00391_2021 crossref_primary_10_4028_www_scientific_net_AMM_880_118 crossref_primary_10_1126_scirobotics_abj3487 crossref_primary_10_1186_s12984_018_0381_z crossref_primary_10_1016_j_apmr_2017_06_024 crossref_primary_10_1016_j_conengprac_2018_08_008 crossref_primary_10_1186_s12984_020_00723_0 crossref_primary_10_1109_TNSRE_2020_2989481 crossref_primary_10_3390_s18082705 crossref_primary_10_1109_LRA_2024_3384081 crossref_primary_10_1186_s12984_019_0559_z crossref_primary_10_1109_TRO_2021_3137748 crossref_primary_10_1115_1_4048615 crossref_primary_10_1186_s12984_017_0343_x crossref_primary_10_1242_jeb_017269 crossref_primary_10_1016_j_conengprac_2019_06_003 crossref_primary_10_1186_s12984_015_0015_7 crossref_primary_10_3389_fnbot_2019_00063 crossref_primary_10_1038_s41598_019_45914_5 crossref_primary_10_1016_S1762_827X_13_64677_5 crossref_primary_10_1186_s12984_021_00906_3 crossref_primary_10_3389_fbioe_2017_00037 crossref_primary_10_1016_j_ifacol_2017_08_237 crossref_primary_10_1088_1741_2560_11_5_056021 crossref_primary_10_1098_rsos_240390 crossref_primary_10_1016_j_jbiomech_2017_05_010 crossref_primary_10_1007_s10439_022_02950_z crossref_primary_10_3389_fbioe_2021_615358 crossref_primary_10_1177_0954411915585597 crossref_primary_10_3390_s22062244 crossref_primary_10_5535_arm_2015_39_2_226 crossref_primary_10_1109_TNSRE_2016_2527780 crossref_primary_10_1152_jn_00604_2009 crossref_primary_10_1152_japplphysiol_00714_2018 crossref_primary_10_1186_1743_0003_6_23 crossref_primary_10_1109_TBME_2021_3083580 crossref_primary_10_1186_1743_0003_7_33 crossref_primary_10_1163_016918611X588907 crossref_primary_10_3389_fbioe_2017_00004 crossref_primary_10_1016_j_jelekin_2023_102755 crossref_primary_10_1186_s12984_018_0424_5 crossref_primary_10_1177_21695067231192634 crossref_primary_10_1017_S0263574719000250 crossref_primary_10_3389_fnsys_2015_00048 crossref_primary_10_3389_fbioe_2023_1188685 crossref_primary_10_3390_act13020054 crossref_primary_10_1186_1743_0003_6_17 crossref_primary_10_1016_j_medengphy_2011_11_018 crossref_primary_10_1109_LRA_2022_3183762 crossref_primary_10_1016_S1762_827X_20_44603_6 crossref_primary_10_1115_1_4041767 crossref_primary_10_1109_TBME_2010_2070840 crossref_primary_10_1115_1_4024286 crossref_primary_10_1109_TNSRE_2008_2008285 crossref_primary_10_1177_0018720819896898 crossref_primary_10_1177_0018720820907450 crossref_primary_10_1126_scirobotics_abh1925 crossref_primary_10_1186_s12984_018_0455_y crossref_primary_10_1109_TBME_2022_3188482 crossref_primary_10_1186_s12984_018_0379_6 crossref_primary_10_1016_j_jbiomech_2017_09_015 crossref_primary_10_3389_fnhum_2017_00214 |
Cites_doi | 10.1016/j.gaitpost.2005.05.004 10.1016/j.jbiomech.2005.05.018 10.1310/6GL4-UM7X-519H-9JYD 10.1109/TMECH.2006.871087 10.1186/1743-0003-3-3 10.1177/0278364904042198 10.1177/0278364906065505 10.1249/mss.0b013e31802b3562 10.1123/jab.21.2.189 10.1109/TNSRE.2003.823266 10.1163/1568553054455103 10.1016/j.gaitpost.2006.07.002 10.1115/1.2168164 10.1038/81497 10.1007/3-540-45491-8_43 10.1007/s00221-005-0162-3 10.1007/s00221-005-0097-8 10.1163/156855306778394012 10.1016/j.jbiomech.2006.12.006 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2007 BioMed Central Ltd. Copyright © 2007 Cain et al; licensee BioMed Central Ltd. 2007 Cain et al; licensee BioMed Central Ltd. |
Copyright_xml | – notice: COPYRIGHT 2007 BioMed Central Ltd. – notice: Copyright © 2007 Cain et al; licensee BioMed Central Ltd. 2007 Cain et al; licensee BioMed Central Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM DOA |
DOI | 10.1186/1743-0003-4-48 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Occupational Therapy & Rehabilitation Physical Therapy |
EISSN | 1743-0003 |
EndPage | 48 |
ExternalDocumentID | oai_doaj_org_article_db367658136247e5ba3193411c730275 PMC2234414 oai_biomedcentral_com_1743_0003_4_48 A174348050 18154649 10_1186_1743_0003_4_48 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS045486 |
GroupedDBID | --- 0R~ 29L 2QV 2VQ 2WC 4.4 53G 5GY 5VS AAFWJ AAJSJ AASML AAWTL AAYXX ABDBF ACGFO ACGFS ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AENEX AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BFQNJ BMC C6C CITATION CS3 DIK DU5 E3Z EBD EBLON EBS EJD ESX F5P GROUPED_DOAJ GX1 H13 HYE I-F IAO IHR INH INR IPNFZ IPY ITC KQ8 M48 ML0 M~E O5R O5S OK1 OVT P2P PGMZT RBZ RIG RNS ROL RPM RSV SBL SOJ TR2 TUS WOQ WOW XSB ~8M CGR CUY CVF ECM EIF NPM 7TK 7X8 -A0 ABVAZ ACRMQ ADINQ AFGXO AFNRJ C24 5PM |
ID | FETCH-LOGICAL-b648t-2bb667cd7907b0c6405a9c767b559b187ff3f5edd29aa70e316ccdee2152a86c3 |
IEDL.DBID | M48 |
ISSN | 1743-0003 |
IngestDate | Wed Aug 27 01:30:26 EDT 2025 Thu Aug 21 14:27:04 EDT 2025 Wed May 22 07:13:07 EDT 2024 Thu Sep 04 19:30:48 EDT 2025 Fri Sep 05 13:22:18 EDT 2025 Tue Jun 10 21:37:42 EDT 2025 Tue Aug 05 11:35:18 EDT 2025 Thu Apr 24 23:08:35 EDT 2025 Tue Jul 01 02:19:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b648t-2bb667cd7907b0c6405a9c767b559b187ff3f5edd29aa70e316ccdee2152a86c3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1743-0003-4-48 |
PMID | 18154649 |
PQID | 19666892 |
PQPubID | 23462 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_db367658136247e5ba3193411c730275 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2234414 biomedcentral_primary_oai_biomedcentral_com_1743_0003_4_48 proquest_miscellaneous_70098416 proquest_miscellaneous_19666892 gale_infotracacademiconefile_A174348050 pubmed_primary_18154649 crossref_citationtrail_10_1186_1743_0003_4_48 crossref_primary_10_1186_1743_0003_4_48 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-12-21 |
PublicationDateYYYYMMDD | 2007-12-21 |
PublicationDate_xml | – month: 12 year: 2007 text: 2007-12-21 day: 21 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of neuroengineering and rehabilitation |
PublicationTitleAlternate | J Neuroeng Rehabil |
PublicationYear | 2007 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | JL Patton (124_CR25) 2006; 168 H Kawamoto (124_CR11) 2005; 19 H Kazerooni (124_CR5) 2006; 128 GS Sawicki (124_CR17) 2006; 3 JW Noble (124_CR21) 2006; 169 AB Zoss (124_CR4) 2006; 11 JA Norris (124_CR24) 2007; 25 KE Gordon (124_CR18) 2007; 40 DP Ferris (124_CR1) 2005; 11 JA Rall (124_CR23) 1985; 13 SL Aaron (124_CR20) 1976; 55 K Suzuki (124_CR3) 2005 DM Wolpert (124_CR22) 2000; 3 KE Gordon (124_CR16) 2006; 39 SC Jacobsen (124_CR6) 2004; 23 H Kawamoto (124_CR2) 2002 RC Browning (124_CR19) 2007; 39 T Hayashi (124_CR12) 2005 JA Blaya (124_CR8) 2004; 12 H Kawamoto (124_CR13) 2003 J Ghan (124_CR10) 2006; 20 H Kazerooni (124_CR9) 2006; 25 DP Ferris (124_CR15) 2006; 23 DP Ferris (124_CR14) 2005; 21 JE Pratt (124_CR7) 2004 16568153 - Top Spinal Cord Inj Rehabil. 2005;11(2):34-49 17275829 - J Biomech. 2007;40(12):2636-44 3159582 - Exerc Sport Sci Rev. 1985;13:33-74 16098749 - Gait Posture. 2006 Jun;23(4):425-8 16328304 - Exp Brain Res. 2006 Mar;169(4):482-95 17473778 - Med Sci Sports Exerc. 2007 Mar;39(3):515-25 16082019 - J Appl Biomech. 2005 May;21(2):189-97 1247104 - Am J Phys Med. 1976 Feb;55(1):1-14 16905320 - Gait Posture. 2007 Apr;25(4):620-7 11127840 - Nat Neurosci. 2000 Nov;3 Suppl:1212-7 16249912 - Exp Brain Res. 2006 Jan;168(3):368-83 15068184 - IEEE Trans Neural Syst Rehabil Eng. 2004 Mar;12(1):24-31 16504172 - J Neuroeng Rehabil. 2006 Feb 28;3:3 16023126 - J Biomech. 2006;39(10):1832-41 |
References_xml | – start-page: 1648 volume-title: International Conference on Systems, Man and Cybernetics; October 5–8. IEEE year: 2003 ident: 124_CR13 – start-page: 3063 volume-title: Control method of robot suit HAL working as operator's muscle using biological and dynamical information year: 2005 ident: 124_CR12 – volume: 23 start-page: 425 issue: 4 year: 2006 ident: 124_CR15 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2005.05.004 – volume: 39 start-page: 1832 year: 2006 ident: 124_CR16 publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2005.05.018 – volume: 11 start-page: 34 year: 2005 ident: 124_CR1 publication-title: Topics in Spinal Cord Injury Rehabilitation doi: 10.1310/6GL4-UM7X-519H-9JYD – volume: 11 start-page: 128 year: 2006 ident: 124_CR4 publication-title: IEEE/ASME Transactions on Mechatronics doi: 10.1109/TMECH.2006.871087 – start-page: 2430 volume-title: IEEE International Conference on Robotics and Automation; New Orleans, LA year: 2004 ident: 124_CR7 – volume: 3 start-page: 3 year: 2006 ident: 124_CR17 publication-title: J Neuroeng Rehabil doi: 10.1186/1743-0003-3-3 – volume: 23 start-page: 319 year: 2004 ident: 124_CR6 publication-title: International Journal of Robotics Research doi: 10.1177/0278364904042198 – volume: 25 start-page: 561 year: 2006 ident: 124_CR9 publication-title: International Journal of Robotics Research doi: 10.1177/0278364906065505 – volume: 39 start-page: 515 year: 2007 ident: 124_CR19 publication-title: Med Sci Sports Exerc doi: 10.1249/mss.0b013e31802b3562 – volume: 21 start-page: 189 year: 2005 ident: 124_CR14 publication-title: Journal of Applied Biomechanics doi: 10.1123/jab.21.2.189 – volume: 12 start-page: 24 year: 2004 ident: 124_CR8 publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2003.823266 – volume: 55 start-page: 1 year: 1976 ident: 124_CR20 publication-title: Am J Phys Med – volume: 19 start-page: 717 year: 2005 ident: 124_CR11 publication-title: Advanced Robotics doi: 10.1163/1568553054455103 – volume: 25 start-page: 620 issue: 4 year: 2007 ident: 124_CR24 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2006.07.002 – volume: 128 start-page: 14 year: 2006 ident: 124_CR5 publication-title: Journal of Dynamic Systems Measurement and Control-Transactions of the Asme doi: 10.1115/1.2168164 – volume: 3 start-page: 1212 year: 2000 ident: 124_CR22 publication-title: Nat Neurosci doi: 10.1038/81497 – start-page: 196 volume-title: Computer Helping People with Special Needs: 8th International Conference, ICCHP 2002. Lecture Notes in Computer Science year: 2002 ident: 124_CR2 doi: 10.1007/3-540-45491-8_43 – volume: 169 start-page: 482 issue: 4 year: 2006 ident: 124_CR21 publication-title: Exp Brain Res doi: 10.1007/s00221-005-0162-3 – volume: 168 start-page: 368 year: 2006 ident: 124_CR25 publication-title: Exp Brain Res doi: 10.1007/s00221-005-0097-8 – volume: 13 start-page: 33 year: 1985 ident: 124_CR23 publication-title: Exerc Sport Sci Rev – start-page: 2707 volume-title: Intention-based walking support for paraplegia patient year: 2005 ident: 124_CR3 – volume: 20 start-page: 989 year: 2006 ident: 124_CR10 publication-title: Advanced Robotics doi: 10.1163/156855306778394012 – volume: 40 start-page: 2636 issue: 12 year: 2007 ident: 124_CR18 publication-title: J Biomech doi: 10.1016/j.jbiomech.2006.12.006 – reference: 16328304 - Exp Brain Res. 2006 Mar;169(4):482-95 – reference: 16504172 - J Neuroeng Rehabil. 2006 Feb 28;3:3 – reference: 16568153 - Top Spinal Cord Inj Rehabil. 2005;11(2):34-49 – reference: 11127840 - Nat Neurosci. 2000 Nov;3 Suppl:1212-7 – reference: 16023126 - J Biomech. 2006;39(10):1832-41 – reference: 17275829 - J Biomech. 2007;40(12):2636-44 – reference: 17473778 - Med Sci Sports Exerc. 2007 Mar;39(3):515-25 – reference: 1247104 - Am J Phys Med. 1976 Feb;55(1):1-14 – reference: 16249912 - Exp Brain Res. 2006 Jan;168(3):368-83 – reference: 16082019 - J Appl Biomech. 2005 May;21(2):189-97 – reference: 16098749 - Gait Posture. 2006 Jun;23(4):425-8 – reference: 15068184 - IEEE Trans Neural Syst Rehabil Eng. 2004 Mar;12(1):24-31 – reference: 3159582 - Exerc Sport Sci Rev. 1985;13:33-74 – reference: 16905320 - Gait Posture. 2007 Apr;25(4):620-7 |
SSID | ssj0034054 |
Score | 2.1585093 |
Snippet | We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods.... Background We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis... BACKGROUND: We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis... Abstract Background We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different... |
SourceID | doaj pubmedcentral biomedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 48 |
SubjectTerms | Adaptation, Physiological - physiology Adult Ankle - physiology Biomechanical Phenomena Control Groups Electromyography Electromyography - methods Exercise Test - methods Female Foot Health aspects Humans Linear Models Locomotion - physiology Male Medical equipment Methods Movements Muscle, Skeletal - physiology Orthotic Devices Physiological apparatus Physiological aspects Posture Time Factors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9UwELZQDwgOLI8tUMAHlpPVOHZsp7eCqCpEAaFW6s3yFlGpSp760v_PTJyUF1UVF67xSLbHn8fjjOcbQt75WjnvY8lCVIlJKSJzTYwstTEhC2XpIv6HPP6ujk7l17P6bKvUF74Jy_TAWXF70SOnWG04WFqpU-0dgAZMLw96DLmh9S2bcr5MZRsswA2RORVSYN60mOgauVF719-YZFj1Z5HnfrE4nkYW_5u2euuwWj6k3DqZDh-RB5NLSQ_yVB6TO6lbkftbRIMrcvd4CqGvyPttXmF6kkkF6Af6a0HZvSIPf04rOMs8IT--9QEf7_WX1EW3zpJ06Kmjayy2liLFCvCJtX0_UAwI9ZvzDc11djcUZKeH8TTXrX5KTg-_nHw-YlNBBuaVNAOrvFdKh6jhRu3LoEDLrglaaQ_3Es-NblvR1inGqnFOl0lwFUJMCWvnOqOCeEZ2ur5LLwgVolVGpsZgKix3ovENiMg2-ZqLtuQF2V-si11n8g2LdNjLFpi5xUXFOLqw0kpTEDYvog2T3rDixoUdrzxG3ZD_eC0_93Ob5CfExGI04weArJ0ga_8FWegOEWXRhMCwgpsyIUAzSMZlD7BPacq6LMjbGXQWtj3GclyX-quNBcOplGmq2yU0UsWCu12Q5xmkf6dmwG9WsimIXsB3MatlS3f-e6QeB2cS_Gf58n-o4RW5N_4o5xWr-C7ZGS6v0mvw8Ab_ZtzMfwAItkva priority: 102 providerName: Directory of Open Access Journals |
Title | Locomotor adaptation to a powered ankle-foot orthosis depends on control method |
URI | https://www.ncbi.nlm.nih.gov/pubmed/18154649 https://www.proquest.com/docview/19666892 https://www.proquest.com/docview/70098416 http://dx.doi.org/10.1186/1743-0003-4-48 https://pubmed.ncbi.nlm.nih.gov/PMC2234414 https://doaj.org/article/db367658136247e5ba3193411c730275 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Zj9MwELZgV0LwwFGuchQ_cDwZkthxHCSECmK1qigg2Er7ZvkKrFQ1pc1K8O-ZSdzdRqWv8SSO7Rn7G4_9DSHPbS6NtT5hzsvAhOCemdJ7FiofkIUyMR73Iadf5PFMTE7z08vzT7ED1_917TCf1Gw1f_3n99_3YPDvWoNX8g2CarwdzZlgQl0lh7AqSXTEpuIiosABmIhI2rj7DlKHKgATEik1exff5731qqX13528t1av_snKraXq6Da5GTEmHXdKcYdcCYsBubHFPDgg16Yxpj4gL7aJhulJxzJAX9LvPQ7vAbn1LQ7pRuYu-fq5dniar15R482yk6RNTQ1dYva14CmmhA-squuGYoSoXp-taZd4d01BNp6Up10i63tkdvTp5OMxixkamJVCNSyzVsrC-QJcbJs4CZ1sSlfIwoKjYlNVVBWv8uB9VhpTJIGn0jkfAibTNUo6fp8cLOpFeEgo55VUIpQK78amhpe2BBFRBZunvErSIXnbGxe97Ng4NPJj90ug5RrHFwPrXAst1JCwzSBqF_sNU3DMdesDKbkj_-pCflPPPskPqBO9v2kf1KufOhq_9hZ58XKVAloQRcitgYkP4EPqijZsDNWhRmnUcvgtZ-LVCOgZZOfSY6xTqCRPhuTZRuk0zAMY3DGLUJ-vNcykUqoy2y9RIHcsWMaQPOiU9LJpUfeHpOipb69V_ZLF2a-WixzQJQBq8WjvNx-T6-12eJqxLH1CDprVeXgKOK6xI3I4Hk9-TEbtPsioNdd_sOxIOg |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Locomotor+adaptation+to+a+powered+ankle-foot+orthosis+depends+on+control+method&rft.jtitle=Journal+of+neuroengineering+and+rehabilitation&rft.au=Cain%2C+Stephen+M&rft.au=Gordon%2C+Keith+E&rft.au=Ferris%2C+Daniel+P&rft.date=2007-12-21&rft.eissn=1743-0003&rft.volume=4&rft.spage=48&rft_id=info:doi/10.1186%2F1743-0003-4-48&rft_id=info%3Apmid%2F18154649&rft.externalDocID=18154649 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1743-0003&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1743-0003&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1743-0003&client=summon |